• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

铬(Ⅲ)参与调控机体糖脂代谢的作用机制研究进展

李倩, 袁勇敢, 张燕青, 宋莲军, 程永霞, 黄现青

李倩,袁勇敢,张燕青,等. 铬(Ⅲ)参与调控机体糖脂代谢的作用机制研究进展[J]. 食品工业科技,2024,45(22):397−405. doi: 10.13386/j.issn1002-0306.2024020070.
引用本文: 李倩,袁勇敢,张燕青,等. 铬(Ⅲ)参与调控机体糖脂代谢的作用机制研究进展[J]. 食品工业科技,2024,45(22):397−405. doi: 10.13386/j.issn1002-0306.2024020070.
LI Qian, YUAN Yonggan, ZHANG Yanqing, et al. Research Progress on the Mechanism of Chromium (Ⅲ) in Regulating Glucose and Lipid Metabolism[J]. Science and Technology of Food Industry, 2024, 45(22): 397−405. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020070.
Citation: LI Qian, YUAN Yonggan, ZHANG Yanqing, et al. Research Progress on the Mechanism of Chromium (Ⅲ) in Regulating Glucose and Lipid Metabolism[J]. Science and Technology of Food Industry, 2024, 45(22): 397−405. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020070.

铬(Ⅲ)参与调控机体糖脂代谢的作用机制研究进展

基金项目: 河南农业大学科技创新基金资助项目(KJCX2021A19);河南省研究生联合培养基地项目(YJS2022JD16);河南省高校科技创新团队支持计划资助(23IRTSTHN023)。
详细信息
    作者简介:

    李倩(1983−)(ORCID:0000−0002−6782−9521),女,博士,研究方向:食品营养与安全,E-mail:lgql1991@qq.com

    通讯作者:

    宋莲军(1969−)(ORCID:0000−0003−3891−3668),女,博士,教授,研究方向:食品营养与安全,E-mail:slj69@126.com

  • 中图分类号: TS201.4

Research Progress on the Mechanism of Chromium (Ⅲ) in Regulating Glucose and Lipid Metabolism

  • 摘要: 铬(Ⅲ)是人体必需的微量元素之一,与胰岛素的合成、分泌及其在体内的含量有着密切的联系,能够参与调节机体的糖脂代谢,具有降糖、降脂等多种重要的生理作用。糖脂代谢异常是许多慢性病的病因,发病机制复杂。铬(Ⅲ)与机体糖脂代谢有关,因此本文对铬(Ⅲ)的安全性以及对糖脂代谢影响的相关研究进行了综合分析,阐述了铬(Ⅲ)通过调节AMPK/GLUT-4、PI3K/Akt信号通路增强胰岛素敏感性,促进葡萄糖吸收及糖原合成,改善胰岛素抵抗;通过调节SREBP-1C、ACC1、CD36表达改善脂质代谢的作用机制,旨在为铬(Ⅲ)防治糖尿病和肥胖等代谢类疾病提供理论基础,使其能够进一步应用于食品工业中。
    Abstract: Chromium (III) is an essential trace element for the human body. It modulates the synthesis, secretion, and content of insulin in the body. In addition to participating in the regulation of glucose and lipid metabolism, it performs various important physiological functions, including the reduction of glucose and lipid levels. Glucose and lipid metabolism disorders are the cause of many chronic diseases and have a complex pathogenesis. Research shows that chromium (III) is related to glucose and lipid metabolism. Therefore, this study performes a meta-analysis of studies related to the safety of chromium (III) and its influence on glucose and lipid metabolism and elucidated the mechanisms. Chromium (III) can enhance insulin sensitivity, promote glucose absorption and glycogen synthesis and improve insulin resistance by regulating AMPK/GLUT-4 and PI3K/Akt signaling pathways. And it also can improve lipid metabolism by regulating the expression of SREBP-1C, ACC1 and CD36. The article would provide a theoretical basis for the use of chromium (III) toward the prevention and treatment of metabolic diseases, such as diabetes mellitus and obesity, so that it could be further applied in the food industry.
  • 糖脂代谢异常是以糖尿病、胰岛素抵抗(insulin resistance,IR)、肥胖和高血脂症等为代表的一类代谢综合征,具有患病率高、知晓率、控制率和治疗率低的特点。随着经济发展和人们生活方式的改变,我国居民的糖脂代谢异常患病率呈现逐年增高的趋势。据统计,我国是世界上糖尿病患者最多的国家,2011~2021年,我国糖尿病患者由9000万人增长到1亿4000万人,其中尚未确诊的患者约7283万人,占比高达51.70%[1]。我国居民营养与慢性病调查(2020)结果显示[2],高胆固醇血症患病率达8.2%,显著高于2015的调查数据,未来我国居民的血脂异常患病人群有可能继续增长,导致的相关疾病负担将持续加重。虽然目前糖脂代谢异常的防治手段已有了很大进步[35],但其治疗率仍然较低[67],因此开发新型有效的糖脂代谢异常防治手段具有极其重要的意义。

    铬(Ⅲ)是生物体内必需的微量元素,具有有机态和无机态两种形式,机体对于有机态铬的吸收率为10%~25%,而无机态铬的吸收率仅为1%~3%[8],有机态铬的吸收率远高于无机态铬,并且其生物活性也优于无机态铬[9]。此外,铬(Ⅲ)还是构成葡萄糖耐量因子(Glucose tolerance factor,GTF)的主要活性成分[10],与胰岛素的合成、分泌及其在体内的含量有着密切的联系[11]。研究发现,机体缺乏铬(Ⅲ)可能导致糖脂代谢异常[1214],与糖脂代谢异常症状的发生存在着关联性,能够通过影响胰岛素的生理功能对生物体内的糖脂代谢等一系列生理活动进行调节[15],对胰岛素发挥正常功能具有重要作用。

    因此,本文综述了当前铬(Ⅲ)对糖脂代谢影响的相关研究内容,阐述了铬(Ⅲ)对机体糖脂代谢的调控效果以及参与调节机体糖脂代谢的途径,以期为铬(Ⅲ)的营养价值深入探究提供理论基础,为防治机体糖脂代谢异常提供了新的思路和途径。

    铬(Cr)属于过渡金属元素,在自然界中常见的价态有三价和六价。六价铬具有较强的毒性,有刺激、致癌和致畸等危害,由于其具有强氧化性和高渗透性,因此极易被人体吸收,对人体危害性较大[16]。铬的毒性与其价态密切相关,有研究报道六价铬毒性比三价铬高10~100倍[17]。三价铬是生物体内铬最稳定的氧化态,是生物体内必需的微量元素[18]。有关三价铬的毒性,相关研究也有了报道。2014年欧洲食品安全局在一项大鼠慢性口服毒性研究中,确定了三价铬的可耐受日摄入量为300 μg Cr/kg/d[19]。Stout等[20]在两年内对雄性和雌性大鼠和小鼠暴露于0、0.2%、1%和5%吡啶甲酸铬的饮食,结果发现,5%的极限添加量对大鼠的存活率、体重、饲料消耗量或非肿瘤性病变没有引起生物学上的显著变化,对大鼠或小鼠也均无致癌作用。Rhodes等[21]的研究表明,在F334/N大鼠和B6C3F1小鼠的饮食中连续13周添加5 %吡啶甲酸铬不会产生任何不良的血液学或生理生化变化,最终实验人员得出结论:在3个月内,对大鼠或者小鼠亚慢性饲喂浓度高达5%三价铬的饲料不会产生毒性。Shara等[22]通过对雄性和雌性Sprague-Dawley大鼠连续52周每天口服0或25 mg/L的三价铬,研究了烟酸铬的长期安全性。结果发现,长期口服三价铬的大鼠与正常饮食大鼠相比,肝脏脂质过氧化和DNA片段、血液学指标和临床化学指标以及组织病理学评估均未观察到显著变化。Li等[23]也得到了同样的实验结果,染料木素铬在亚急性毒性试验中未对实验动物造成任何危险症状或死亡。以上研究均未发现三价铬的毒害作用,说明三价铬作为营养补充剂是切实可行的。

    研究表明铬(Ⅲ)可以改善机体的糖代谢异常[2425]。Zhang等[26]使用苦瓜多糖与三价铬进行螯合,合成了新型铬络合物——苦瓜多糖铬。将苦瓜多糖铬以80(mg Cr)/kg剂量对糖尿病模型小鼠进行腹腔注射,进而评估苦瓜多糖铬进行抗糖尿病作用。结果表明,苦瓜多糖铬能显著降低链脲佐菌素(Streptozocin,STZ)诱导的糖尿病模型小鼠的空腹血糖水平,显著提高患病小鼠机体的体重。Liu等[27]将高铬酵母进行干燥处理,并用高铬酵母对16周龄糖尿病小鼠进行膳食干预。研究结果显示,高铬酵母干预的糖尿病小鼠的高血糖发作显著延迟,且高铬酵母干预组显著改善了糖尿病小鼠的空腹血糖水平,改善效果优于普通酵母组。Li等[28]将三价铬离子与柠檬酸螯合,合成了柠檬酸铬络合物,并研究了柠檬酸铬的抗糖尿病活性。研究发现,对糖尿病大鼠饲喂0.25~0.75(mg Cr)/kg剂量的复合物可降低其血糖水平,并提高其肝糖原水平,且柠檬酸铬的降糖活性优于同等剂量的六水合三氯化铬,这说明铬(Ⅲ)可改善机体糖代谢异常症状,同时也说明有机态铬的生物活性优于无机态铬,与Tang等[8]研究结果一致。

    以上研究表明,铬(Ⅲ)具有改善糖代谢异常的作用,未来可通过膳食补充铬(Ⅲ)的形式对糖代谢异常的患者进行营养干预以期对糖代谢异常进行防治。同时也可进一步深入探究铬(Ⅲ)改善糖代谢异常的具体作用机制,以期为糖代谢异常的相关疾病防治提供新靶点和新思路。

    研究发现铬(Ⅲ)对脂代谢异常也具有改善作用[2729]等。Krzysik等[30]研究了纤维素、果胶和三价铬化合物对高脂饮食(high-fat diet,HFD)大鼠糖脂代谢的影响。结果表明,铬(Ⅲ)可通过降低HFD大鼠肝脏中的胆固醇浓度和甘油三酯(triglyceride,TG)水平,改善HFD大鼠脂代谢异常症状。Sahin等[31]使用高脂饲料和STZ联合诱导建立了糖尿病模型大鼠。使用吡啶甲酸铬对糖尿病模型大鼠进行膳食干预后发现,吡啶甲酸铬可以显著降低糖尿病模型大鼠的血糖、游离脂肪酸(free fatty acid,FFA)、TG和总胆固醇水平(total cholesterol,TC),改善了糖尿病模型大鼠的脂代谢异常症状。Sahin等[32]研究了不同组氨酸铬配合物对HFD大鼠的影响。待HFD大鼠的体重和机体脂代谢参数包括瘦素(leptin,LEP)、FFA、TC、低密度脂蛋白胆固醇水平(low density lipoprotein cholesterol,LDL-C)等与正常饮食大鼠相比出现异常之后,对正常饮食大鼠和HFD大鼠进行组氨酸铬的膳食干预。研究结果发现,补充组氨酸铬复合物的HFD组相比于未补充的HFD组而言,其体重和脂代谢参数更接近于正常饮食大鼠的水平,这说明组氨酸铬复合物减轻了HFD对大鼠造成的负面影响,改善了脂代谢异常症状。Hashemian等[33]研究了饲料中添加铬(Ⅲ)对肥胖羔羊胴体脂肪堆积的影响,结果发现,相较于正常饲料喂养的肥胖羔羊,含铬饲料喂养的肥胖羔羊机体内的血糖、胰岛素、TG和低密度脂蛋白水平(low density lipoprotein,LDL)显著降低,且机体皮下脂肪、腹部脂肪、尾部脂肪和胴体总脂肪均有减少。

    以上研究显示铬(Ⅲ)能参与调节机体的脂代谢,铬(Ⅲ)可通过降低脂代谢异常机体的胆固醇水平、甘油三酯水平和游离脂肪酸水平,来缓解和改善机体的脂代谢异常症状。此外铬(Ⅲ)还能通过降低脂代谢异常机体内的脂肪在堆积改善脂代谢异常症状。

    糖尿病的发病机制与胰岛素相关信号转导通路密切相关,这些通路主要包含腺苷酸活化蛋白激酶(AMPK)信号通路、磷脂酰肌醇-3激酶(PI3K)信号通路、c-Jun氨基末端激酶(JNK)信号通路和核因子κB(NF-κB)信号通路等,这些通路导致胰岛素无法与正常激活的受体相结合,从而引起血糖变化[34]。机体的糖代谢过程离不开胰岛素信号的正常转导,有研究表明糖代谢异常的发生多与胰岛素信号转导阻碍相关[3537]。铬(Ⅲ)可以通过调节胰岛素信号转导改善糖代谢异常。

    铬(Ⅲ)可以通过改善PI3K/丝/苏氨酸激酶(serine threonine kinase,Akt)途径的信号转导[38],维持胰岛素发挥正常作用。Wang等[39]研究了砒啶甲酸铬对IR模型大鼠的影响。对IR模型大鼠进行3个月的80 μg/kg/d吡啶甲酸铬补充后,IR得到改善,对其骨骼肌进行胰岛素信号检测后发现,吡啶甲酸铬的补充增强了PI3K/Akt途径的信号转导。Dong等[40]对IR模型小鼠进行苯丙氨酸铬膳食干预,取其骨骼肌研究了苯丙氨酸铬对胰岛素信号转导的影响。研究结果表明,苯丙氨酸铬补充组骨骼肌内Akt的磷酸化程度高于空白组,且葡萄糖摄取能力得到改善,IR症状减轻。Ye等[41]将硫酸化鼠李糖多糖与铬进行螯合,合成了硫酸化鼠李糖多糖铬。对其生物活性进行研究发现,硫酸化鼠李糖多糖铬可通过上调胰岛素受体(insulin receptor,INSR)/胰岛素受体底物-2(insulin receptor substrate 2,IRS-2)/PI3K/蛋白激酶B(protein kinase B,PKB)/糖原合成酶激酶-3β(glycogen synthase kinase-3β,GSK-3β)信号通路改善糖代谢异常,并通过激活胰岛素信号级联诱导的葡萄糖转运蛋白4(Glucose transporter 4,GLUT-4)易位增强葡萄糖转运,降低机体血糖水平从而改善糖尿病小鼠的临床症状。Shi等[42]探究了饲料中添加铬(Ⅲ)对南美白虾糖代谢的影响,结果也发现铬(Ⅲ)可以上调胰岛素信号通路相关的信号表达如INSR、IRS1、PI3K、Akt等。

    铬(Ⅲ)还能通过腺嘌呤核糖核苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)信号通路改善糖代谢异常[4344],Hoffman等[45]发现吡啶甲酸铬具有改善生理性高胰岛素血症引起的L6骨骼肌管质膜胆固醇积聚、皮质细丝肌动蛋白(F-actin)丢失和IR的作用,并探究了铬(Ⅲ)是否通过AMPK信号通路来达到改善IR这一效果。结果表明,经吡啶甲酸铬处理的IR模型L6骨骼肌管,AMPK信号增强且GLUT-4的转运增加,IR得到改善。这说明铬(Ⅲ)还可通过增强AMPK信号通路改善胰岛素信号转导。Peng等[38]也研究发现新型铬配合物苯丙氨酸铬可以通过激活Akt/AMPK的磷酸化来敏化胰岛素细胞信号通路,进而改善机体的胰岛素敏感性,改善糖尿病症状。

    另外,铬(Ⅲ)还能通过c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)[46]、核因子κB(nuclear factor kappa-B,NF-κB)[47]这两条信号通路对胰岛素信号转导途径进行调节,保证胰岛素信号的正常传导。在此通路中,磷酸酶及张力蛋白基因(phosphatase and tensin homolog deleted on chromosome ten,PTEN)是PI3K/Akt途径中Akt的一个上游分子,在整个信号转导过程中,PTEN可以通过催化二磷酸磷脂酰肌醇(phosphatidylinositol diphosphate,PIP2)生成三磷酸磷脂酰肌醇(phosphatidylinositol trisphosphate,PIP3)的逆反应来抑制Akt的磷酸化,从而抑制PI3K/Akt的信号转导。目前的研究已知铬(Ⅲ)可增强PI3K/ Akt的信号转导[48],但铬(Ⅲ)是否通过抑制PTEN这一分子来达到增强PI3K/Akt信号转导仍是未知的。Akt的下游分子主要包括叉头框蛋白O1(forkhead box protein O1,FoxO1)、GSK-3和雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)等。PI3K/ Akt途径中被激活的Akt分别对其下游分子进行激活,每个下游分子又通过不同的途径实现对糖代谢的调控。目前铬(Ⅲ)对于PI3K/AKT/GSK-3β这一信号途径已有研究[48],但铬(Ⅲ)是否也可通过PI3K/Akt/FoxO1和PI3K/Akt/mTOR这两条信号通路对糖代谢进行调控仍有待于进一步研究。

    目前,铬(Ⅲ)主要通过影响以下胰岛素信号转导来参与调节糖代谢:通过改善PI3K/ Akt途径的信号转导来敏化胰岛素信号转导通路,增加葡萄糖的吸收,减轻IR;通过激活INSR/IR-2/PI3K/PKB/GSK-3β信号通路促进机体的糖原合成,从而增加血糖的利用减轻机体的血糖水平;通过增强AMPK活性改善机体胰岛素敏感性和增加葡萄糖转运,改善糖代谢异常症状。

    机体的糖代谢过程是由一系列代谢酶参与完成的,代谢酶的活性及水平对糖代谢的正常进行有重要影响,铬(Ⅲ)可通过影响机体内的代谢酶活性及其表达水平从而参与调节糖代谢。张梅等[49]使用富铬酵母来对糖尿病小鼠进行了四周的膳食干预,结果发现经富铬酵母饮食干预后的糖尿病小鼠血糖水平显著降低,且与未经富铬酵母干预的糖尿病小鼠相比,经富铬酵母饮食干预的糖尿病小鼠肝脏琥珀酸脱氢酶活性上升。这表明铬(Ⅲ)能通过提高机体的琥珀酸脱氢酶活性来降低血糖水平,改善糖代谢异常。Elseweidy等[50]对果糖诱导的IR大鼠进行吡啶甲酸铬膳食干预,经过45 d的膳食干预,结果显示经吡啶甲酸铬膳食干预的IR大鼠与未经膳食干预的IR大鼠相比,其体重、血脂、胰高血糖素、IR和肝脏胰岛素降解酶(Insulin degrading enzyme,IDE)水平显著降低,且INSR磷酸化以及高密度脂蛋白胆固醇(High density lipoprotein cholesterol,HDL-C)水平增加。这表明铬(Ⅲ)可通过降低肝脏IDE水平和激活INSR信号来缓解果糖诱导的IR,进而改善糖代谢异常。张宏馨等[51]利用富铬酵母对糖尿病小鼠进行灌服补充铬,研究了富铬酵母对糖尿病小鼠的影响。结果表明,富铬酵母能提高糖尿病模型小鼠的己糖激酶和苹果酸脱氢酶活性及水平,促进机体的三羧酸循环,加速糖的消耗利用,进而降低糖尿病模型小鼠的血糖水平,改善糖代谢异常。Wang等[52]研究了桦褐孔菌多糖及其铬(Ⅲ)配合物的α-淀粉酶和α-葡萄糖苷酶抑制活性。结果表明桦褐孔菌多糖铬对α-淀粉酶和α-葡萄糖苷酶的抑制活性显著高于桦褐孔菌多糖。但由于铬(Ⅲ)在体外和体内发挥作用的形式存在着差异性,桦褐孔菌多糖铬在机体内是否仍能对α-淀粉酶和α-葡萄糖苷酶具有抑制作用还需进一步探究。

    因此,铬(Ⅲ)对糖代谢的调节途径主要涉及以下代谢酶:提高糖代谢异常机体的琥珀酸脱氢酶活性,加速琥珀酸的氧化,从而增加糖的利用,维持机体的血糖水平;提高糖代谢异常机体己糖激酶和苹果酸脱氢酶活性及水平,加速三羧酸循环,增加机体糖的利用;降低肝脏胰岛素降解酶的水平,减缓糖代谢异常机体的胰岛素降解,提高糖代谢异常胰岛素水平改善糖代谢异常。

    铬(Ⅲ)可通过改善肠道菌群稳态参与调节糖代谢。肠道菌群参与了机体的代谢,影响着机体的能量平衡、血糖代谢及慢性低水平炎症[5354]。肠道微生物稳态失衡可能会导致机体免疫力下降、机体慢性炎症产生和能量代谢失衡等一系列并发症,这些症状会进一步导致机体代谢紊乱,产生IR,使糖代谢出现异常,因此肠道菌群稳态会密切影响着机体的糖代谢。

    于雷雷等[55]将鼠李糖乳杆菌CCFM0528、植物乳杆菌X1与富铬酵母进行复配,探究其对HFD和STZ诱导的糖尿病小鼠的协同降糖作用。结果发现,乳酸菌复配富铬酵母组降糖效果相比于乳酸菌组更加明显,血脂水平和炎症水平都得到缓解,这说明铬(Ⅲ)对缓解糖代谢异常症状具有协同增效作用。周兴婷等[56]在于雷雷等[55]的研究基础上将鼠李糖乳杆菌CCFM0528、植物乳杆菌X1与富铬酵母进行复配,探究复配组分对HFD和STZ诱导的糖尿病模型小鼠肠道菌群结构和功能影响。结果发现,乳酸菌组和乳酸菌复配富铬酵母组对糖尿病模型小鼠的肠道菌群结构和功能均具有改善作用,且乳酸菌复配富铬酵母组的肠道菌群结构和功能保护效果更加显著。与普通乳酸菌组相比,乳酸菌复配富铬酵母组显著增加了有益菌Lactobacillus的丰度和短链脂肪酸(Short chain fatty acid,SCFA)含量,显著降低致病菌Coprococcus和Rikenel-laceae-g_的丰度。SCFA介导了胰高血糖素样肽1的分泌,而胰高血糖素样肽1可调节血糖稳态,改善胰岛素β细胞功能[57]。Guo等[58]研究了灰树花多糖铬对HFD和STZ联合诱导糖尿病小鼠肠道菌群稳态的影响。结果发现,灰树花多糖铬可改善糖尿病小鼠肠道菌群失衡,显著增加有益菌的丰度,且灰树花多糖铬还显著提高了糖尿病小鼠盲肠内的SCFA含量,与于雷雷等[55]和周兴婷等[56]研究结果一致。

    铬(Ⅲ)可通过增加肠道有益菌丰度和短链脂肪酸的分泌来改善糖代谢异常,但是相关研究内容较少,有待于进一步研究,完善补充这一领域。目前研究发现,肠道菌群对糖代谢异常改善主要涉及以下途径:产生SCFA和介导释放肠道激素(如胰高血糖素样肽1)调节胆汁酸代谢和改善肠道屏障功能;改善肠道免疫系统和抑制组织慢性低度炎症,改善IR。铬(Ⅲ)是否可以通过调节胆汁酸代谢和改善肠道免疫系统来改善糖代谢异常,还未有相关研究报道。

    氧化应激是机体氧化与抗氧化作用失衡的一种状态,机体氧化应激会产生大量自由基,也会造成机体糖代谢异常。2型糖尿病病因中的炎性学说认为,在炎性因子的作用下,脂质细胞会成倍增加,从而导致IR[59]。因此通过抗炎和抗氧化可维持机体糖代谢正常进行。

    Sundaram等[60]对糖尿病小鼠口服吡啶甲酸铬补充剂,结果发现,相比于未补充铬的糖尿病小鼠,补铬组糖尿病小鼠的葡萄糖水平、脂质过氧化状态和抗氧化状态显著改善(P<0.05)。这说明补充铬(Ⅲ)可以缓解机体的氧化应激状态,调节糖代谢异常。Wang等[52]评估了桦褐孔菌多糖及其铬配合物对H2O2诱导的肝L02细胞氧化损伤的保护作用。结果表明,桦褐孔菌多糖铬对肝L02细胞氧化损伤具有保护作用,且具有DPPH自由基清除活性、铁还原能力和溶血抑制活性,这说明该络合物具有良好的抗氧化能力,可以缓解机体的氧化应激状态,减少氧化应激对机体的损伤。Jain等[61]研究了补充烟酸铬和吡啶甲酸铬对STZ诱导的糖尿病大鼠脂质过氧化、肿瘤坏死因子-α(tumour necrosis factor-α,TNF-α)、白细胞介素-6(interleukin-6,IL-6)、C-反应蛋白(C-reactive protein,CRP)、糖化血红蛋白(haemoglobin A1c,HbA1c)、TC和TG的影响。结果表明,两种铬补充剂均可降低糖尿病大鼠血液中促炎症细胞因子(TNF-α、IL-6、CRP)和血脂水平,缓解氧化应激状态,改善机体糖代谢异常症状。因此,铬(Ⅲ)可以通过抗炎和抗氧化对机体的糖代谢异常进行改善和调节。

    铬(Ⅲ)可通过调节细胞质膜的胆固醇稳态参与调节糖代谢。细胞质膜的胆固醇稳态与糖代谢具有相关性:胆固醇会对细胞的葡萄糖摄取产生影响,当细胞质膜的胆固醇含量过高时不利于葡萄糖转运蛋白4的易位,这会导致细胞的葡萄糖转运能力下降[45]。Pattar等[62]研究发现吡啶甲酸铬可显著减少3T3-L1脂肪细胞的质膜胆固醇的含量(P<0.05),且高糖(25 mmol/L 葡萄糖)条件下的3T3-L1脂肪细胞内的GLUT-4在质膜胆固醇减少时更易转运到质膜,这会增加质膜上的GLUT-4含量,从而提高细胞对葡萄糖的摄取能力。Chen等[63]研究也发现铬(Ⅲ)处理可降低细胞质膜胆固醇,增加细胞质膜流动性,从而促进GLUT-4的易位和胰岛素刺激的葡萄糖转运,加快葡萄糖的吸收利用。

    铬(Ⅲ)能调节细胞质膜的胆固醇稳态,通过降低质膜胆固醇,改善质膜的流动性。这可进一步促进葡萄糖转运蛋白4由胞内向质膜转移,从而提高细胞对葡萄糖的吸收转运,改善糖代谢异常。

    胰高血糖素是一种由胰脏胰岛α-细胞分泌的激素, 与胰岛素的生物学功能恰好相反,若胰高血糖素分泌过剩,则会表现出高血糖症。董金龙等[64]研究表明,苯乙双胍铬配合物可以缓解糖尿病小鼠的症状,改善糖代谢异常。并且该配合物与胰高血糖素按1:1结合形成复合物后,可抑制过剩胰高血糖素的表达,减轻糖尿病小鼠体内胰高血糖素对胰岛素的拮抗作用,达到降糖的目的。这说明铬(Ⅲ)与苯乙双胍的结合可以达到协同生物学效应,从而改善糖代谢异常机体的症状。

    铬(Ⅲ)可以调节脂代谢相关的酶活性及其表达水平,从而改善脂代谢异常。机体内的脂代谢活动受到各种酶的影响,如肝脂质分解酶、肝内皮细胞酶和卵磷脂胆固醇酰基转移酶等。Chen等[65]研究了含铬(六水合氯化铬)浓缩乳胶囊对非酒精性脂肪肝病模型小鼠的影响。结果表明,该胶囊可改善非酒精性脂肪肝病模型小鼠机体的糖代谢和脂代谢,能减少机体的肝TG积累、提高肝脂质分解酶活性及水平。当动物体内铬含量低于正常水平时,机体的肝内皮细胞酶和卵磷脂胆固醇酰基转移酶的活性会降低,这会引起脂肪组织和肌肉组织对脂蛋白酶的作用下降,使高密度脂蛋白(high-density lipoprotein,HDL)合成受到阻碍,相应的LDL水平增加[66]。HDL具有将多余的胆固醇从外周细胞转运到肝脏进行排泄的作用,因此HDL合成受到阻碍可能引发机体脂代谢异常。刘明等[67]研究了三氯化铬对高脂血症大鼠的影响,结果发现,不同浓度三价铬离子在体外均能增强高脂血症大鼠血浆卵磷脂胆固醇酰基转移酶和肝内皮细胞脂酶活性,在三价铬离子浓度为10 μg/L~10 g/L范围内,其作用随三价铬离子浓度增高而增强。以上研究表明,铬(Ⅲ)可通过调节脂代谢相关的酶(肝脂质分解酶、肝内皮细胞酶和卵磷脂胆固醇酰基转移酶等)活性及其表达水平改善脂代谢异常症状。

    铬(Ⅲ)可通过调节脂代谢相关的基因表达改善脂代谢。Hashemian等[33]研究了铬(Ⅲ)对肥胖羔羊胴体脂肪堆积的影响,结果发现铬(Ⅲ)能通过降低乙酰辅酶A羧化酶1(Acetyl-coa carboxylase1,ACC1)和甘油二酯酰基转移酶2(Diglycerol acyl transferase 2,DGAT 2)基因的表达水平减少脂质的合成,从而改善肥胖羔羊脂代谢异常症状。Guo等[58]研究发现,灰树花多糖铬可显著降低糖尿病模型小鼠甾醇调节元件结合蛋白1C(Sterol regulatory element binding protein-1C,SREBP-1C)、ACC1、羟甲基戊二酸单酰辅酶A还原酶(Hydroxymethylglutarate monoacyl coA reductase,HMGCR)和人类白细胞分化抗原36(Cluster of differentiation 36,CD36)的表达。其中,SREBP-1C、ACC1、CD36和HMGCR均与脂代谢相关,抑制以上基因的表达可减少机体脂质的合成,机体脂肪水平下降。另外,灰树花多糖铬还使得糖尿病模型小鼠机体的酰基辅酶A氧化酶1(Acyl-coaoxidase 1,Acox 1)、胆盐输出泵(Bile salt output pump,BSEP)和胆固醇7α-羟化酶(Cholesterol 7α-hydroxylase 1,CYP7A1)基因表达水平显著升高。这些基因均可增加脂肪酸的氧化分解,因此促进以上基因的表达可加快机体脂代谢,减少脂肪堆积。Sadeghi等[68]研究蛋氨酸铬对机体不同组织类型中涉及脂肪生物合成和脂质代谢的重要基因表达的影响。结果表明,蛋氨酸铬能够显著降低机体ACC1、甘油二酯酰基转移酶1(Diglycerol acyl transferase 2,DGAT1)、脂肪酸结合蛋白4(Fatty acid binding protein 4,FABP4)、脂肪酸合成酶(Fatty acid synthase,FAS)、激素敏感脂肪酶(Hormone sensitive lipase,HSL)、LEP基因的表达,这有利于减少机体脂肪水平,改善脂代谢异常。此外,Orhan等[69]研究发现组氨酸铬和吡啶甲酸铬可显著提升肥胖模型大鼠体内的过氧化酶体增殖物激活受体γ(Peroxidase body proliferators activate receptors-γ,PPAR-γ)表达水平。PPAR-γ具有增强线粒体脂肪酸β氧化的作用,有利于促进机体脂代谢,降低机体脂肪水平,这表明铬(Ⅲ)也可以促进脂代谢异常机体的PPAR-γ基因表达,改善脂代谢异常。因此在进一步的研究中,可通过铬(Ⅲ)与以上基因表达的关系来深入揭示与铬(Ⅲ)脂代谢相关疾病的作用机制。

    机体的脂质蓄积通常是由于长时间的高脂饮食模式导致的。过量的脂质蓄积会增强机体的氧化应激,提高NF-κB水平,引起多种促炎细胞因子的过度表达,使机体出现慢性炎症。慢性炎症状态下,机体的脂代谢正常进行会受到影响。铬可以通过抗炎、抗氧化的作用改善脂代谢异常。研究表明,对机体补充铬(Ⅲ)可以显著缓解机体氧化应激状态,减少机体促炎细胞因子的表达,从而减少脂代谢异常发生的几率[60-61]

    综上所述,铬调节脂代谢异常的主要机制包括:调节脂代谢相关的酶(肝脂质分解酶、肝内皮细胞酶和卵磷脂胆固醇酰基转移酶等);调节脂代谢相关的基因表达(SREBP-1CACC1Cd36Acox1HMGCRCYP7A1BSEP等);抗炎和抗氧化作用。除以上机制,常见的脂代谢异常调节方式还有通过肠道菌群的途径对脂代谢异常进行调节,如肠道微生物产生的短链脂肪酸可以通过激活短链脂肪酸受体(G-protein-coupled receptor 41,GPR41)减少脂肪生成。有研究发现亚麻籽纤维可以增加乳酸菌属、阿克曼氏菌属和双歧杆菌等潜在有益菌的丰度和盲肠中短链脂肪酸总量,不仅能给机体提供能量,而且可以调节GPR41的表达,改善脂代谢异常[70]。铬(Ⅲ)是否同样也能通过这一途径对脂代谢异常进行调节仍有待深入探究。

    铬(Ⅲ)作为一种人体必需的微量元素,主要通过调节糖脂代谢过程中的相关信号及基因表达、调节糖脂代谢关键酶的活性及水平、调节肠道微生物稳态及抗炎抗氧化等途径调节糖脂代谢异常。铬(Ⅲ)对糖脂代谢异常的调节作用在许多临床试验及动物实验中已经得到证实,但是也有一些研究与之缺乏一致性[48,71],研究对象、疾病状态、铬的补充形式及补充剂量和给药方法等因素均可能对研究结论产生影响。因此要排除可能造成差异的影响因素,进一步明确铬(Ⅲ)与糖脂代谢的关系,并对铬(Ⅲ)与糖脂代谢的剂量效应关系进行深入探究。

    当前已有关于铬(Ⅲ)对胰岛素信号转导相关的信号通路的影响研究,但仍然不够完善,如铬对PI3K/AKT/FoxO1、PI3K/AKT/mTOR及PTEN/PI3K/AKT等通路还未见报道,与JNK和NF-κB信号通路相关的研究内容也较为少见。因此仍需进一步探究铬(Ⅲ)调节糖脂代谢异常的新型分子机制,以期为糖脂代谢异常的相关疾病防治提供新靶点和新思路。另外,铬(Ⅲ)对胰高血糖素功能影响的相关内容同样有待于进一步完善补充,可进一步在体内和体外探究不同铬(Ⅲ)配合物和不同铬(Ⅲ)的使用量对胰高血糖素功能影响的差异性。此外,由于机体对有机态铬的吸收率较高,因此研制和开发低毒、高生物活性的新型有机态铬络合物作为铬(Ⅲ)的补充剂具有良好的市场前景,这将为糖脂代谢异常的防治提供更多可能,具有广阔的应用前景。

  • [1]

    International Diabetes Federation. IDF Diabetes Atlas 2022 Reports[R]. Belgium:International Diabetes Federation, 2023.

    [2] 国家卫生和计划生育委员会疾病预防控制局. 中国居民营养与慢性病状况报告(2020)[M]. 北京:人民卫生出版社, 2020. [National Health and Family Planning Commission Disease Control and Prevention Bureau. Report on Nutrition and Chronic Diseases in China (2020)[M]. Beijing:People's Medical Publishing House, 2020.]

    National Health and Family Planning Commission Disease Control and Prevention Bureau. Report on Nutrition and Chronic Diseases in China (2020)[M]. Beijing: People's Medical Publishing House, 2020.

    [3]

    DU H Z, ZHAO Y R, LI H P, et al. Roles of microRNAs in glucose and lipid metabolism in the heart[J]. Frontiers in Cardiovascular Medicine, 2021:746.

    [4]

    CHENG C, ZHUO S M, ZHANG B, et al. Treatment implications of natural compounds targeting lipid metabolism in nonalcoholic fatty liver disease, obesity and cancer[J]. International Journal of Biological Sciences,2019,15(8):1654. doi: 10.7150/ijbs.33837

    [5] 中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 国际内分泌代谢杂志,2021,41(5):482−548. [Diabetes Branch of Chinese Medical Association. Guidelines for Prevention and Treatment of Type 2 diabetes in China (2020)[J]. International Journal of Endocrinology and Metabolism,2021,41(5):482−548.] doi: 10.3760/cma.j.cn121383-20210825-08063

    Diabetes Branch of Chinese Medical Association. Guidelines for Prevention and Treatment of Type 2 diabetes in China (2020)[J]. International Journal of Endocrinology and Metabolism, 2021, 41(5): 482−548. doi: 10.3760/cma.j.cn121383-20210825-08063

    [6] 诸骏仁, 高润霖, 赵水平, 等. 中国成人血脂异常防治指南(2016年修订版)[J]. 中华健康管理学杂志,2017,11(1):7−28. [ZHU J R, GAO R L, ZHAO S P, et al. Chinese guidelines for prevention and control of dyslipidemia in adults (2016 Revision)[J]. Chinese Journal of Health Management,2017,11(1):7−28.] doi: 10.3760/j.issn.1674-0815.2017.01.003

    ZHU J R, GAO R L, ZHAO S P, et al. Chinese guidelines for prevention and control of dyslipidemia in adults (2016 Revision)[J]. Chinese Journal of Health Management, 2017, 11(1): 7−28. doi: 10.3760/j.issn.1674-0815.2017.01.003

    [7] 吴扬, 胡志和. 铬及铬络合物与糖尿病的关系研究进展[J]. 食品科学,2008,29(12):774−779. [WU Y, HU Z H. Advances in the study of chromium and chromium complexes in relation to diabetes mellitus[J]. Food Science,2008,29(12):774−779.] doi: 10.3321/j.issn:1002-6630.2008.12.181

    WU Y, HU Z H. Advances in the study of chromium and chromium complexes in relation to diabetes mellitus[J]. Food Science, 2008, 29(12): 774−779. doi: 10.3321/j.issn:1002-6630.2008.12.181

    [8]

    TANG H Y, XIAO Q G, XU H B, et al. Hypoglycemic activity and acute oral toxicity of chromium methionine complexes in mice[J]. Journal of Trace elements in Medicine and Biology,2015,29:136−144. doi: 10.1016/j.jtemb.2014.07.001

    [9]

    SCHWARZ K, MERTZ W. A glucose tolerance factor and its differentiation from factor 3[J]. Archives of Biochemistry,1957,72:515−518. doi: 10.1016/0003-9861(57)90228-X

    [10] 唐海燕, 肖清贵, 徐红彬, 等. 有机铬营养生物学研究进展[J]. 食品工业科技,2014,35(12):378−383. [TANG H Y, XIAO Q G, XU H B, et al. Advances in nutritional biology of organic chromium[J]. Science and Technology of Food Industry,2014,35(12):378−383.]

    TANG H Y, XIAO Q G, XU H B, et al. Advances in nutritional biology of organic chromium[J]. Science and Technology of Food Industry, 2014, 35(12): 378−383.

    [11] 陈思婧, 金小玲, 单志磊, 等. 微量元素铬与2型糖尿病的关联性研究[C]//中国营养学会第十三届全国营养科学大会暨全球华人营养科学家大会论文汇编, 2017:368. [CHEN S J, JIN X L, SHAN Z L, et al. Relationship between trace element chromium and type 2 diabetes mellitus[C]// Chinese Nutrition Society 13th National Nutrition Science Conference and Global Chinese Compendium of papers of the Congress of Nutritional Scientists, 2017:368.]

    CHEN S J, JIN X L, SHAN Z L, et al. Relationship between trace element chromium and type 2 diabetes mellitus[C]// Chinese Nutrition Society 13th National Nutrition Science Conference and Global Chinese Compendium of papers of the Congress of Nutritional Scientists, 2017: 368.

    [12]

    HANSEN A F, SIMIĆ A, ÅSVOLD B O, et al. Trace elements in early phase type 2 diabetes mellitus-A population-based study. The HUNT study in Norway[J]. Journal of Trace Elements in Medicine and Biology,2017,40:46−53. doi: 10.1016/j.jtemb.2016.12.008

    [13]

    CANCARINI A, FOSTINELLI J, NAPOLI L, et al. Trace elements and diabetes:Assessment of levels in tears and serum[J]. Experimental Eye Research,2017,154:47−52. doi: 10.1016/j.exer.2016.10.020

    [14]

    ASBAGHI O, FATEMEH N, MAHNAZ R K, et al. Effects of chromium supplementation on glycemic control in patients with type 2 diabetes:A systematic review and meta-analysis of randomized controlled trials[J]. Pharmacological Research, 2020:105098.

    [15] 朱予津, 胡雅君, 杨淑敏, 等. 铬元素对糖脂代谢的影响[J]. 医学与哲学(B),2014,35(9):53−55,69. [ZHU Y J, HU Y J, YANG S M, et al. Effect of chromium on glycolipid metabolism[J]. Medicine and Philosophy(B),2014,35(9):53−55,69.]

    ZHU Y J, HU Y J, YANG S M, et al. Effect of chromium on glycolipid metabolism[J]. Medicine and Philosophy(B), 2014, 35(9): 53−55,69.

    [16] 郭少飞, 凌约涛, 王惠, 等. HPLC-ICP-MS法测定食品中六价铬的研究[J]. 粮食与食品工业,2014,21(5):95−98. [GUO S F, LIN Y T, WANG H, et al. HPLC-ICP-MS for the determination of hexavalent chromium in food[J]. Cereal & Food Industry,2014,21(5):95−98.] doi: 10.3969/j.issn.1672-5026.2014.05.027

    GUO S F, LIN Y T, WANG H, et al. HPLC-ICP-MS for the determination of hexavalent chromium in food[J]. Cereal & Food Industry, 2014, 21(5): 95−98. doi: 10.3969/j.issn.1672-5026.2014.05.027

    [17]

    SHAHID M, SHAMSHAD S, RAFIQ M, et al. Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system:A review[J]. Chemosphere,2017,178:513−533. doi: 10.1016/j.chemosphere.2017.03.074

    [18] 祝银. 海产品中铬及其形态含量分布与转化规律研究[D]. 杭州:浙江工商大学, 2019. [ZHU Y. Study on the distribution and transformation of chromium and its morphological content in seafood[D]. Hangzhou:Zhejiang Gongshang University, 2019.]

    ZHU Y. Study on the distribution and transformation of chromium and its morphological content in seafood[D]. Hangzhou: Zhejiang Gongshang University, 2019.

    [19]

    EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific opinion on the risks to public health related to the presence of chromium in food and drinking water[J]. EFSA Journal,2014,12(3):3595.

    [20]

    STOUT M D, NYSKA A, COLLINS B J, et al. Chronic toxicity and carcinogenicity studies of chromium picolinate monohydrate administered in feed to F344/N rats and B6C3F1 mice for 2 years[J]. Food and Chemical Toxicology,2009,47(4):729−733. doi: 10.1016/j.fct.2009.01.006

    [21]

    RHODES M C, HEBERT C D, HERBERT R A, et al. Absence of toxic effects in F344/N rats and B6C3F1 mice following subchronic administration of chromium picolinate monohydrate[J]. Food and Chemical Toxicology,2005,43(1):21−29. doi: 10.1016/j.fct.2004.08.006

    [22]

    SHARA M, KINCAID A E, LIMPACH A L, et al. Long-term safety evaluation of a novel oxygen-coordinated niacin-bound chromium (III) complex[J]. Journal of Inorganic Biochemistry,2007,101(7):1059−1069. doi: 10.1016/j.jinorgbio.2007.03.015

    [23]

    LI P S, CAO Y J, SONG G, et al. Anti-diabetic properties of genistein-chromium (III) complex in db/db diabetic mice and its sub-acute toxicity evaluation in normal mice[J]. Journal of Trace Elements in Medicine and Biology,2020,62:126606. doi: 10.1016/j.jtemb.2020.126606

    [24]

    KRÓL E, KREJPCIO Z. Chromium (III) propionate complex supplementation improves carbohydrate metabolism in insulin-resistance rat model[J]. Food and Chemical Toxicology,2010,48(10):2791−2796. doi: 10.1016/j.fct.2010.07.008

    [25] 王维纲, 李晓红, 刘冰, 等. 染料木素铬配合物对谷氨酸钠诱导的肥胖大鼠糖脂代谢的影响[J]. 吉林大学学报(医学版),2022,48(4):892−897. [WANG W G, LI X H, LIU B, et al. Effect of chromic complex of genistein on glycolipid metabolism in obese rats induced by sodium glutamate[J]. Journal of Jilin University (Medical Edition),2022,48(4):892−897.]

    WANG W G, LI X H, LIU B, et al. Effect of chromic complex of genistein on glycolipid metabolism in obese rats induced by sodium glutamate[J]. Journal of Jilin University (Medical Edition), 2022, 48(4): 892−897.

    [26]

    ZHANG C, HUANG M, HONG R, et al. Preparation of a Momordica charantia L. polysaccharide-chromium (III) complex and its anti-hyperglycemic activity in mice with streptozotocin-induced diabetes[J]. International Journal of Biological Macromolecules,2019,122:619−627. doi: 10.1016/j.ijbiomac.2018.10.200

    [27]

    LIU L, ZHANG S W, LU J, et al. Antidiabetic effect of high-chromium yeast against type 2 diabetic KK-ay mice[J]. Journal of Food Science,2018,83(7):1956−1963. doi: 10.1111/1750-3841.14138

    [28]

    LI F, WU X Y, ZHAO T, et al. Anti-diabetic properties of chromium citrate complex in alloxan-induced diabetic rats[J]. Journal of Trace Elements in Medicine and Biology,2011,25(4):218−224. doi: 10.1016/j.jtemb.2011.08.143

    [29]

    SHARMA S, AGRAWAL R P, CHOUDHARY M, et al. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes[J]. Journal of Trace Elements in Medicine and Biology,2011,25(3):149−153. doi: 10.1016/j.jtemb.2011.03.003

    [30]

    KRZYSIK M, GRAJETA H, PRESCHA A, et al. Effect of cellulose, pectin and chromium (III) on lipid and carbohydrate metabolism in rats[J]. Journal of Trace Elements in Medicine and Biology,2011,25(2):97−102. doi: 10.1016/j.jtemb.2011.01.003

    [31]

    SAHIN K, ONDERCI M, TUZCU M, et al. Effect of chromium on carbohydrate and lipid metabolism in a rat model of type 2 diabetes mellitus:The fat-fed, streptozotocin-treated rat[J]. Metabolism,2007,56(9):1233−1240. doi: 10.1016/j.metabol.2007.04.021

    [32]

    SAHIN K, KUCUK O, ORHAN C, et al. Effects of supplementing different chromium histidinate complexes on glucose and lipid metabolism and related protein expressions in rats fed a high-fat diet[J]. Journal of Trace Elements in Medicine and Biology,2021,65:126723. doi: 10.1016/j.jtemb.2021.126723

    [33]

    HASHEMIAN K, NOROUZIAN M A, MOHAMMADI-SANGCHESHMEH A. Dietary supplemental chromium and niacin influence the growth performance and fat deposition in lambs[J]. Animal Production Science,2020,60(5):618−624. doi: 10.1071/AN18717

    [34] 史丽伟. 新消渴方调控AMPK信号通路改善2型糖尿病肝脏胰岛素抵抗的机制研究[D]. 北京:中国中医科学院, 2019. [SHI L W. Mechanism study on the regulation of AMPK signaling pathway to improve hepatic insulin resistance in type 2 diabetes mellitus by the new thirst-quenching formula[D]. Beijing:Chinese Academy of Chinese Medicine (CACM), 2019.]

    SHI L W. Mechanism study on the regulation of AMPK signaling pathway to improve hepatic insulin resistance in type 2 diabetes mellitus by the new thirst-quenching formula[D]. Beijing: Chinese Academy of Chinese Medicine (CACM), 2019.

    [35]

    QIU N, WEI X M, ZHANG Z J, et al. Asymmetrical dimethylarginine induces dysfunction of insulin signal transduction via endoplasmic reticulum stress in the liver of diabetic rats[J]. Life Sciences,2020,260:118373. doi: 10.1016/j.lfs.2020.118373

    [36]

    BLÁZQUEZ E, HURTADO-CARNEIRO V, LEBAUT-AYUSO Y, et al. Significance of brain glucose hypometabolism, altered insulin signal transduction, and insulin resistance in several neurological diseases[J]. Frontiers in Endocrinology,2022,13:873301. doi: 10.3389/fendo.2022.873301

    [37]

    KHALID M, ALKAABI J, KHAN M A B, et al. Insulin signal transduction perturbations in insulin resistance[J]. International Journal of Molecular Sciences,2021,22(16):8590. doi: 10.3390/ijms22168590

    [38]

    PENG M, YANG X P. Controlling diabetes by chromium complexes:The role of the ligands[J]. Journal of Inorganic Biochemistry,2015,146:97−103. doi: 10.1016/j.jinorgbio.2015.01.002

    [39]

    WANG Z Q, ZHANG X H, RUSSELL J C, et al. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats[J]. The Journal of nutrition,2006,136(2):415−420. doi: 10.1093/jn/136.2.415

    [40]

    DONG F, KANDADI M R, REN J, et al. Chromium (D-phenylalanine) 3 supplementation alters glucose disposal, insulin signaling, and glucose transporter-4 membrane translocation in insulin-resistant mice[J]. The Journal of Nutrition,2008,138(10):1846−1851. doi: 10.1093/jn/138.10.1846

    [41]

    YE H, SHEN Z P, CUI J F, et al. Hypoglycemic activity and mechanism of the sulfated rhamnose polysaccharides chromium (III) complex in type 2 diabetic mice[J]. Bioorganic Chemistry,2019,88:102942. doi: 10.1016/j.bioorg.2019.102942

    [42]

    SHI B, TAO X, BETANCOR M B, et al. Dietary chromium modulates glucose homeostasis and induces oxidative stress in Pacific white shrimp (Litopenaeus vannamei)[J]. Aquatic Toxicology,2021,240:105967. doi: 10.1016/j.aquatox.2021.105967

    [43]

    ZHAO P, WANG J Y, MA H, et al. A newly synthetic chromium complex-Chromium (D-phenylalanine) 3 activates AMP-activated protein kinase and stimulates glucose transport[J]. Biochemical Pharmacology,2009,77(6):1002−1010. doi: 10.1016/j.bcp.2008.11.018

    [44]

    PENUMATHSA S V, THIRUNAVUKKARASU M, SAMUEL S M, et al. Niacin bound chromium treatment induces myocardial Glut-4 translocation and caveolar interaction via Akt, AMPK and eNOS phosphorylation in streptozotocin induced diabetic rats after ischemia-reperfusion injury[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease,2009,1792(1):39−48. doi: 10.1016/j.bbadis.2008.10.018

    [45]

    HOFFMAN N J, PENQUE B A, HABEGGER K M, et al. Chromium enhances insulin responsiveness via AMPK[J]. The Journal of Nutritional Biochemistry,2014,25(5):565−572. doi: 10.1016/j.jnutbio.2014.01.007

    [46]

    KANDADI M R, UNNIKRISHNAN M K, WARRIER A K S, et al. Chromium (D-phenylalanine) 3 alleviates high fat-induced insulin resistance and lipid abnormalities[J]. Journal of Inorganic Biochemistry,2011,105(1):58−62. doi: 10.1016/j.jinorgbio.2010.09.008

    [47]

    SAHIN K, TUZCU M, ORHAN C, et al. Anti-diabetic activity of chromium picolinate and biotin in rats with type 2 diabetes induced by high-fat diet and streptozotocin[J]. British Journal of Nutrition,2013,110(2):197−205. doi: 10.1017/S0007114512004850

    [48]

    WHTTE P E. Potential health benefits of chromium supplementation[M]. The University of Alabama, 2019:58-105.

    [49] 张梅, 张宏馨, 杨宏莉, 等. 有机铬对糖尿病小鼠肝脏琥珀酸脱氢酶的影响[J]. 军医进修学院学报,2009,30(2):209−210. [ZHANG M, ZHANG H X, YANG H L, et al. Effect of organic chromium on hepatic succinate dehydrogenase in diabetic mice[J]. Journal of the College of Continuing Military Medicine,2009,30(2):209−210.]

    ZHANG M, ZHANG H X, YANG H L, et al. Effect of organic chromium on hepatic succinate dehydrogenase in diabetic mice[J]. Journal of the College of Continuing Military Medicine, 2009, 30(2): 209−210.

    [50]

    ELSEWEIDY M M, AMIN R S, ATTEIA H H, et al. Nigella sativa oil and chromium picolinate ameliorate fructose-induced hyperinsulinemia by enhancing insulin signaling and suppressing insulin-degrading enzyme in male rats[J]. Biological Trace Element Research,2018,184(1):119−126. doi: 10.1007/s12011-017-1167-z

    [51] 张宏馨, 李军, 杨宏莉, 等. 富铬酵母对试验性糖尿病小鼠糖代谢酶活性的影响[J]. 黑龙江畜牧兽医,2009(7):82−83. [ZHANG H X, LI J, YANG H L, et al. Effect of chromium-rich yeast on the activity of gluconeogenic enzymes in experimental diabetic mice[J]. Heilongjiang Animal Husbandry and Veterinary Medicine,2009(7):82−83.] doi: 10.3969/j.issn.1004-7034.2009.04.036

    ZHANG H X, LI J, YANG H L, et al. Effect of chromium-rich yeast on the activity of gluconeogenic enzymes in experimental diabetic mice[J]. Heilongjiang Animal Husbandry and Veterinary Medicine, 2009(7): 82−83. doi: 10.3969/j.issn.1004-7034.2009.04.036

    [52]

    WANG C, GAO X, SANTHANAM R K, et al. Effects of polysaccharides from Inonotus obliquus and its chromium (III) complex on advanced glycation end-products formation, α-amylase, α-glucosidase activity and H2O2-induced oxidative damage in hepatic L02 cells[J]. Food and Chemical Toxicology,2018,116:335−345. doi: 10.1016/j.fct.2018.04.047

    [53]

    KARLSSON F, TREMAROLI V, NIELSEN J, et al. Assessing the human gut microbiota in metabolic diseases[J]. Diabetes,2013,62(10):3341−3349. doi: 10.2337/db13-0844

    [54]

    PLOVIER H, EVERARD A, DRUART C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice[J]. Nature Medicine,2017,23(1):107−113. doi: 10.1038/nm.4236

    [55] 于雷雷, 周兴婷, 翟齐啸, 等. 益生菌复配富铬酵母缓解2型糖尿病的效果评价[J]. 中国食品学报,2021,21(3):53−62. [YU L L, ZHOU X T, ZHAI Q X, et al. Evaluation of the effectiveness of probiotics compounded with chromium-rich yeast in alleviating type 2 diabetes mellitus[J]. Chinese Journal of Food Science,2021,21(3):53−62.]

    YU L L, ZHOU X T, ZHAI Q X, et al. Evaluation of the effectiveness of probiotics compounded with chromium-rich yeast in alleviating type 2 diabetes mellitus[J]. Chinese Journal of Food Science, 2021, 21(3): 53−62.

    [56] 周兴婷, 于雷雷, 翟齐啸, 等. 益生菌复配富铬酵母缓解2型糖尿病的作用机制涉及调节肠道菌群失调[J]. 食品与发酵工业,2019,45(23):29−36. [ZHOU X T, YU L L, ZHAI Q X, et al. The mechanism of action of probiotic compound chromium-rich yeast in relieving type 2 diabetes involves the regulation of intestinal dysbiosis[J]. Food and Fermentation Industry,2019,45(23):29−36.]

    ZHOU X T, YU L L, ZHAI Q X, et al. The mechanism of action of probiotic compound chromium-rich yeast in relieving type 2 diabetes involves the regulation of intestinal dysbiosis[J]. Food and Fermentation Industry, 2019, 45(23): 29−36.

    [57] 晏群, 冯波. 肠道菌群、肠促胰素与糖代谢异常[J]. 上海医学,2021,44(10):722−725. [YAN Q, FENG B. Abnormal intestinal flora, incretin, and glucose metabolism[J]. Shanghai Medicine,2021,44(10):722−725.]

    YAN Q, FENG B. Abnormal intestinal flora, incretin, and glucose metabolism[J]. Shanghai Medicine, 2021, 44(10): 722−725.

    [58]

    GUO W L, CHEN M, PAN W L, et al. Hypoglycemic and hypolipidemic mechanism of organic chromium derived from chelation of Grifola frondosa polysaccharide-chromium (III) and its modulation of intestinal microflora in high fat-diet and STZ-induced diabetic mice[J]. International Journal of Biological Macromolecules,2020,145:1208−1218. doi: 10.1016/j.ijbiomac.2019.09.206

    [59] 贺云, 杨丽霞, 郭晓颖. 小檗碱治疗2型糖尿病作用机制研究进展[J]. 中医研究,2020,33(12):69−73. [HE Y, YANG L X, GUO X Y. Research progress on the mechanism of berberine in the treatment of type 2 diabetes mellitus[J]. Traditional Chinese Medicine Research,2020,33(12):69−73.] doi: 10.3969/j.issn.1001-6910.2020.12.23

    HE Y, YANG L X, GUO X Y. Research progress on the mechanism of berberine in the treatment of type 2 diabetes mellitus[J]. Traditional Chinese Medicine Research, 2020, 33(12): 69−73. doi: 10.3969/j.issn.1001-6910.2020.12.23

    [60]

    SUNDARAM B, AGGARWAL A, SANDHIR R. Chromium picolinate attenuates hyperglycemia-induced oxidative stress in streptozotocin-induced diabetic rats[J]. Journal of Trace Elements in Medicine and Biology,2013,27(2):117−121. doi: 10.1016/j.jtemb.2012.09.002

    [61]

    JAIN S K, RAINS J L, CROAD J L. Effect of chromium niacinate and chromium picolinate supplementation on lipid peroxidation, TNF-α, IL-6, CRP, glycated hemoglobin, triglycerides, and cholesterol levels in blood of streptozotocin-treated diabetic rats[J]. Free Radical Biology and Medicine,2007,43(8):1124−1131. doi: 10.1016/j.freeradbiomed.2007.05.019

    [62]

    PATTAR G R, TACKETT L, LIU P, et al. Chromium picolinate positively influences the glucose transporter system via affecting cholesterol homeostasis in adipocytes cultured under hyperglycemic diabetic conditions[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis,2006,610(1-2):93−100. doi: 10.1016/j.mrgentox.2006.06.018

    [63]

    CHEN G, LIU P, PATTAR G R, et al. Chromium activates glucose transporter 4 trafficking and enhances insulin-stimulated glucose transport in 3T3-L1 adipocytes via a cholesterol-dependent mechanism[J]. Molecular Endocrinology,2006,20(4):857−870. doi: 10.1210/me.2005-0255

    [64] 董金龙, 沈腊珍, 文斌, 等. 新型抗糖尿病铬(Ⅲ)配合物的合成和生物活性及机理探究[J]. 化学学报,2020,78(11):1260−1267. [DONG J L, SHEN L Z, WEN B, et al. Synthesis and biological activity and mechanism of novel anti-diabetic chromium(III.) complexes[J]. Acta Chimica Sinica,2020,78(11):1260−1267.] doi: 10.6023/A20070285

    DONG J L, SHEN L Z, WEN B, et al. Synthesis and biological activity and mechanism of novel anti-diabetic chromium(III.) complexes[J]. Acta Chimica Sinica, 2020, 78(11): 1260−1267. doi: 10.6023/A20070285

    [65]

    CHEN W Y, CHEN C J, LIU C H, et al. Chromium attenuates high-fat diet-induced nonalcoholic fatty liver disease in KK/HlJ mice[J]. Biochemical and Biophysical Research Communications,2010,397(3):459−464. doi: 10.1016/j.bbrc.2010.05.129

    [66] 付俊鹤, 余明华, 许武桥, 等. 铬的生物学功能及富铬酵母的应用[J]. 微量元素与健康研究,2011,28(1):66−68. [FU J H, YU M H, XU W Q, et al. Biological functions of chromium and applications of chromium-rich yeasts[J]. Studies of Trace Elements and Health,2011,28(1):66−68.]

    FU J H, YU M H, XU W Q, et al. Biological functions of chromium and applications of chromium-rich yeasts[J]. Studies of Trace Elements and Health, 2011, 28(1): 66−68.

    [67] 刘明, 苏静怡, 董超仁. 微量元素(Cr3+)与动脉粥样硬化关系的研究——Ⅱ. Cr3+对高脂血症大鼠几种脂质代谢关键酶的影响[J]. 北京医科大学学报,1991(1):12−14. [LIU M, SU J Y, DONG C R. Studies on the relationship between trace elements (Cr3+) and atherosclerosis-II. Effects of Cr3+ on several key enzymes of lipid metabolism in hyperlipidemic rats[J]. Journal of Peking University (Health Sciences),1991(1):12−14.]

    LIU M, SU J Y, DONG C R. Studies on the relationship between trace elements (Cr3+) and atherosclerosis-II. Effects of Cr3+ on several key enzymes of lipid metabolism in hyperlipidemic rats[J]. Journal of Peking University (Health Sciences), 1991(1): 12−14.

    [68]

    SADEGHI M, PANAH M J N, BAKHTIARIZADEH M R, et al. Transcription analysis of genes involved in lipid metabolism reveals the role of chromium in reducing body fat in animal models[J]. Journal of Trace Elements in Medicine and Biology,2015,32:45−51. doi: 10.1016/j.jtemb.2015.05.004

    [69]

    ORHAN C, KUCUK O, TUZCU M, et al. Effect of supplementing chromium histidinate and picolinate complexes along with biotin on insulin sensitivity and related metabolic indices in rats fed a high‐fat diet[J]. Food Science & Nutrition,2019,7(1):183−194.

    [70]

    ARORA T, RUDENKO O, EGEROD K L, et al. Microbial fermentation of flaxseed fibers modulates the transcriptome of GPR41-expressing enteroendocrine cells and protects mice against diet-induced obesity[J]. American Journal of Physiology-Endocrinology and Metabolism,2019,316(3):E453−E463. doi: 10.1152/ajpendo.00391.2018

    [71]

    OGNIK K, DWORZANSKI W, SEMBRATOWICZ I, et al. The effect of the high-fat diet supplemented with various forms of chromium on rats body composition, liver metabolism and organ histology Cr in liver metabolism and histology of selected organs[J]. Journal of Trace Elements in Medicine and Biology,2021,64:126705. doi: 10.1016/j.jtemb.2020.126705

  • 其他相关附件

计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-18
  • 网络出版日期:  2024-09-12
  • 刊出日期:  2024-11-14

目录

/

返回文章
返回
x 关闭 永久关闭