• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

环境胁迫与发芽协同调控植物内源性γ-氨基丁酸富集的研究进展

徐开媛, 王默涵, 郑骁阳, 李思楠, 王佳, 张智慧, 徐炳政, 柳嘉, 王颖, 张璐

徐开媛,王默涵,郑骁阳,等. 环境胁迫与发芽协同调控植物内源性γ-氨基丁酸富集的研究进展[J]. 食品工业科技,2024,45(22):361−370. doi: 10.13386/j.issn1002-0306.2023120292.
引用本文: 徐开媛,王默涵,郑骁阳,等. 环境胁迫与发芽协同调控植物内源性γ-氨基丁酸富集的研究进展[J]. 食品工业科技,2024,45(22):361−370. doi: 10.13386/j.issn1002-0306.2023120292.
XU Kaiyuan, WANG Mohan, ZHENG Xiaoyang, et al. Research Progress on Synergistic Regulation of Endogenous Gamma-aminobutyric Acid Enrichment in Plants by Environmental Stress and Germination[J]. Science and Technology of Food Industry, 2024, 45(22): 361−370. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120292.
Citation: XU Kaiyuan, WANG Mohan, ZHENG Xiaoyang, et al. Research Progress on Synergistic Regulation of Endogenous Gamma-aminobutyric Acid Enrichment in Plants by Environmental Stress and Germination[J]. Science and Technology of Food Industry, 2024, 45(22): 361−370. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120292.

环境胁迫与发芽协同调控植物内源性γ-氨基丁酸富集的研究进展

详细信息
    作者简介:

    徐开媛(2000−),女,硕士研究生,研究方向:粮食、油脂及植物蛋白工程,E-mail:xky000510@163.com

    通讯作者:

    王颖(1979−),女,博士,教授,研究方向:农产品加工与贮藏工程及食品质量安全,E-mail:wychen156@163.com

    张璐(1987−),女,博士,高级工程师,功能食品开发与精准营养及功效评价,E-mail:zhanglu8078@126.com

  • 中图分类号: TS201.2

Research Progress on Synergistic Regulation of Endogenous Gamma-aminobutyric Acid Enrichment in Plants by Environmental Stress and Germination

  • 摘要: γ-氨基丁酸(γ-aminobutyric acid,GABA)作为一种新型功能因子,具有调节血压、缓解抑郁、治疗癫痫、延缓衰老和治疗糖尿病等功能,广泛分布在植物体内。研究证明植物发芽是可以提高内源性GABA含量的有效方式,结合不同的环境胁迫方式可以进一步促进发芽植物中GABA累积。本文主要阐述了植物富集GABA的代谢途径和影响因素,以及环境胁迫与发芽协同对植物内源性GABA富集的协同效应,以期为富含GABA植物基食品的开发与应用提供参考。
    Abstract: As a novel functional component, γ-aminobutyric acid (GABA) with many kinds of functions of regulating blood pressure, alleviating depression, treating epilepsy, delaying aging and treating diabetes, is widely distributed in a large variety of plants. It is reported that plant germination was recognized as an effective way to raise endogenous GABA levels, which in combination with several environmental stress modes could further promote GABA enrichment in germinating plants. This paper mainly discusses the metabolic pathways and influence factors of GABA enrichment in plants, as well as the synergistic effects of environmental stress and germination on endogenous GABA enrichment in plants, providing references for the development and application of GABA-rich plant-based foods.
  • γ-氨基丁酸(γ-aminobutyric acid,GABA)化学式为C4H9NO2,结构式见图1,是一种自由态非蛋白质氨基酸[1],属于次级代谢产物,也是细胞内一种信号分子。1883年GABA被首次合成,并于1949年在马铃薯中首次发现[2],随后研究表明,GABA主要存在于植物的胚芽中,具有调节碳氮间平衡、抵御逆境胁迫和维持pH平衡等功能。1950年,研究发现GABA还存在于哺乳动物的神经系统中,同时后续研究表明在哺乳动物的神经细胞中GABA是重要的抑制性神经递质[3],具有缓解焦虑、加快伤口愈合、调节内分泌和防止动脉硬化等功效[45]

    图  1  GABA化学结构式
    Figure  1.  Chemical structure formula of GABA

    虽然GABA具有良好的生理功能,但人体内GABA含量较低,需要从外界食物中获得以满足机体需求[6]。2009年我国将GABA认定为新食品原料[7],并允许在饮料、可可制品和巧克力等食品中添加(除婴儿食品外),添加量不能超过500 mg/d。因此,通过日常膳食结构的优化来补充GABA有助于人体健康,而如何提高食物中GABA含量以开发富含GABA的功能食品也逐步受到广泛关注。目前,我国关于GABA食品大多以糙米、大豆、玉米和燕麦等粮食作物为原料,通过GABA富集方式研制功能性食品和饮料。发芽是指植物种子吸水涨破后,籽粒膨胀、软化,呼吸和代谢作用增强,根芽生长的过程[8],在发芽过程中植物籽粒中GABA等营养物质快速富集,同时,当受到外界环境刺激,如低温、低氧、超声等非生物胁迫时,植物会通过一系列生理代谢调节适应胁迫环境,该过程也会促进GABA等营养物质富集[9]

    本文将从GABA的制备、代谢途径、影响因素以及环境胁迫对植物发芽富集内源性GABA的协同效应进行分析总结,旨在为富含GABA的功能性食品开发与研究提供理论依据。

    目前,GABA的制备方法主要有化学合成法、植物富集法和微生物发酵(表1)。

    表  1  GABA的制备
    Table  1.  Preparation of GABA
    方法定义特点
    化学合成法化学合成法是利用化学物质反应合成GABA。该方法具有反应迅速、得率高的优势,但由于该方法反应过于剧烈、
    有化学物质残留且成本较高[10]
    微生物发酵法微生物发酵法是利用菌种对底物物质进行发酵产生GABA。该方法具有成本低、转化率高等优点[11]
    植物富集法植物富集法是利用植物组织细胞在受到外界刺激时产生的
    应激代谢来富集GABA。
    该方法具有安全、环保等特点,可以大大提高食品原料营养价值[12]
    下载: 导出CSV 
    | 显示表格

    化学合成法主要有四种方法,分别为γ-氯丁氰法、α-吡咯烷酮开环法、丁酸和氨水法以及γ-丁内酯和亚硫酰氯法。其中,γ-氯丁氰具有成本低廉的特点,但由于工艺条件过于复杂,且易存在化学物质残留被限制推广使用。α-吡咯烷酮开环法具有温和、安全的特点,但所得产物并非天然产物,故而不能用于食品添加。γ-丁内酯和亚硫酰氯法虽然具有产率高的优势,但生产成本过高且有化学残留[13],目前该方法主要应用在化工和医药领域,暂未在食品领域应用。

    微生物发酵法早期以大肠杆菌为主要菌种,但因大肠杆菌在食品开发上仍存在安全问题,现在大多选择使用安全、有益的酵母菌和乳酸菌等菌种进行GABA的富集。夏亚男等[14]对高产GABA的菌株进行筛选,发现存在3株高产GABA菌株SMN10-3、SMN12-7、SMN15-6。邢宏博等[15]采用红曲霉固态发酵的方式对生产GABA的发酵工艺条件进行优化研究发现,在加水量30 mL、接种量25%、培养温度25 ℃、发酵培养8 d条件下,GABA含量为655 mg/100 g,为优化前的1.90倍。另外,有研究者对发酵培养基pH、组成成分[16]等培养条件进行优化,说明微生物发酵法富集GABA受多种条件影响。

    植物在受到外界环境刺激时会引起GABA的富集。郭芳[17]对燕麦进行发芽处理,发现在25 ℃浸泡8 h、发芽16 h时,GABA含量为253.55 mg/100 g,为原料的12.34倍。童晓萌等[18]研究发现在20 ℃浸泡8 h、发芽98 h时,苦荞籽粒的GABA含量为286 mg/100 g,为原料的1.17倍。王淑芳等[19]发现发芽大豆在培养液pH5.0、发芽温度30 ℃、低氧胁迫48 h条件下,GABA含量可达到197 mg/100 g,为原料的1.56倍。研究发现不同胁迫方式对植物富集GABA效果有较大差异,本文将着重对不同胁迫方式对植物发芽过程中内源性GABA富集的影响效果进行探究。

    GABA在植物体内的代谢途径主要包括GABA支路和多胺降解途径。其中GABA支路为主要代谢途径,对GABA支路的贡献率可达70%左右,而多胺降解途径在植物体内的贡献率为30%左右[6]。在GABA支路中,植物GAD活性主要表现在pH依赖性和Ca2+依赖性两种调节水平[20],通过调节GAD活性来影响GABA的富集。另外还可通过添加GABA支路和多胺降解途径相关底物物质来提高GABA的富集效果。

    在植物体内,GABA支路(图2[21]是指L-Glu在谷氨酸脱羧酶(Glutamate decarboxylase,GAD)催化下生成的GABA从细胞质转到线粒体后,在GABA转氨酶(GABA transaminase,GABA-T)催化下生成琥珀酸半醛(Succinic acid,SSA),再经琥珀酸半醛脱氢酶(Succinic semial dehyde dehydrogenase,SSADH)的催化作用转化为琥珀酸进入三羧酸循环的代谢过程[2224]。其中,L-Glu能够参与碳氮平衡的协调,连接GABA支路和TCA循环,为GABA合成提供碳骨架和α-氨基,L-Glu的合成主要依赖谷氨酸合成酶(Glutamate synthetase,GOGAT)和谷氨酸脱氢酶(Glutamate dehydrogenase,GDH)的催化作用,其在GABA代谢途径中起重要作用[25]。GABA支路对细胞质内pH的调节、氧化应激保护、信号传导、氮代谢和渗透调节等生理反应均有影响[26]

    图  2  GABA代谢途径
    Figure  2.  Metabolic pathway of GABA

    多胺(Polyamines,PAs)是一种多聚阳离子,主要分布在植物的细胞壁以及液泡内,在植物中多以游离、不溶性束缚和可溶性结合三种形态存在。多胺降解途径合成GABA的限速酶为由相同亚基构成的二聚体二胺氧化酶(Diamine oxidase,DAO)和单体酶多胺氧化酶(Polyamine oxidase,PAO)。如图2所示[21],精胺(Spermine,Spm)在PAO催化作用下生成1,3-二氨基丙烷和1-(3-氨丙基)-2-吡哆啉,亚精胺(Spermidine,Spd)在PAO催化下生成4-氨基丁醛和1,3-二氨基丙烷,腐胺(Putyescine,Put)在DAO催化下生成4-氨基丁醛,三种多胺物质生成的4-氨基丁醛后经氨基醛脱氢酶(Aminoaldehyde dehydrogenase,AMADH)催化产生GABA。

    植物体内GAD活性最适pH在5.5~6.0左右[27],植物在受到机械损伤、低氧胁迫和酸处理等情况时,胞质内H+浓度增加,胞质发生酸化,GAD被激活,GABA含量提高。同时,GABA在合成过程中会消耗一定量的H+,引起胞内pH的增加(图3[28]。李楠等[29]研究发现玉米胚中GAD的最适pH为5.7,在pH4.5~7.5时GAD酶活可维持在80%以上。魏彤[30]发现绿豆GAD1和GAD2在强酸和中性环境中稳定性较差,在弱酸环境中稳定性较高。张晖等[31]发现在pH为8.0的微碱性环境下,米胚GAD蛋白的微环境构象和酶活无明显变化,但在pH为3.0的酸性环境中,酶蛋白构象发生改变并导致GAD失活,说明在适宜的pH环境有利于GAD活性表达。

    图  3  H+和Ca2+浓度对GABA富集的影响
    Figure  3.  Effects of H+ and Ca2+ concentrations on GABA enrichment

    植物GAD是一种钙调素协调蛋白(Calmodulin,CaM),可以与Ca2+结合形成Ca2+/CaM复合体[32]。GAD氨基酸C末端的22~25个氨基酸残基组成的空间结构起到保证植物GAD与Ca2+/CaM结合的作用,能够激发GAD活性并提高GABA含量(图3[28],但Ca2+和CaM独立存在时并不能激发GAD活性,必须是二者的复合物才能激发GAD活性[33]。植物在受到如低温、高温、机械损伤等外界刺激时,会引起细胞质内Ca2+浓度的增加,进而提高GABA含量。程建军等[34]研究发现发芽小米在CaCl2浓度3.5 mmol/L、浸泡温度35 ℃、浸泡时间13 h、发芽时间48 h、发芽温度31 ℃条件下,GABA含量为251.46 mg/100 g,为原料的2.90倍。

    在植物富集GABA的代谢途径中,GABA支路虽仍占据主要地位,除胁迫方式外,目前大多采用添加GABA支路相关底物来促进GABA的累积(表2),但多胺降解途径对GABA的富集仍有一定的贡献率。Spd为植物体内多胺降解途径的前体物质之一,在PAO催化下可以生成氨基丁醛进而生成GABA[35]。DAO对二胺类物质具有底物专一性,对Put有催化作用,当添加外源Put时,底物增加可以促进DAO的催化作用,提高GABA含量[36]。何根生等[37]研究发现0.5 mmol/L的Put可以提高发芽豇豆胚芽和子叶PAO活性,但当Put浓度过高时会抑制PAO活性。在GABA支路中,L-Glu是GAD唯一底物,外源添加L-Glu可以促进GABA的累积[38]。GAD以磷酸吡哆醛(Pyridoxal-5-phosphate,PLP)为辅酶专一性催化L-Glu脱羧,导致GABA累积,同时维生素B6因其与PLP具有相似的结构,是PLP的前体物质,故而亦可作为底物物质外源添加来富集GABA[39]

    表  2  底物对植物发芽GABA含量影响
    Table  2.  Effects of different substrates on GABA enrichment during plant germination
    相关代谢合成途径原料底物物质GABA含量
    GABA支路大豆[40]Spd117.1 mg/100 g,为原料的2.26倍
    大豆[41]NaCl、Spd161 mg/100 g,为原料的1.97倍
    多胺降解途径大豆[42]NaCl、CaCl2、PLP、MSG269.93 mg/100 g,为原料的10倍
    蚕豆[43]CaCl2、VB6、MSG198 mg/100 g,为原料的1.83倍
    豇豆[44]VB696.66 mg/100 g,为原料的1.5倍
    绿豆[45]Glu0.467 mg/mL,为原料的1.145倍
    南瓜籽[46]CaCl2、VB6、MSG36.1 mg/100 g,为原料的5.18倍
    下载: 导出CSV 
    | 显示表格

    常见的胁迫方式包括超声胁迫、低温胁迫、低氧胁迫、盐胁迫、微酸性处理水以及高静水压技术等。不同环境胁迫方式对GABA富集效果不同,其富集机理也有所不同。

    超声是一种频率高于20 kHz的机械声波[47],可以通过改变植物种子内部GAD酶的构象变化来改变酶的活性,从而加速酶的催化速率,同时能够增加细胞膜的通透性,提高胞内Ca2+和H+浓度,激活GAD活性,提高GABA含量[4849]。张祎等[50]发现糙米在30 kHz频率下超声15 min,发芽16 h时,GABA含量为85.36 mg/100 g,为原料的2.7倍。Ding等[51]对燕麦进行超声协同发芽处理72 h后,GABA含量为原料的32.7倍,为仅发芽处理燕麦的1.12倍,进一步代谢产物分析表明,超声波胁迫可能通过影响细胞质Ca2+水平和GAD结构来提高GAD活性。Ding等[52]在红米萌发72 h后对其进行超声处理,通过代谢组学分析发现GABA含量显著提高。单迪[53]研究发现在超声功率225 W、超声时间28 min、超声温度38 ℃条件下,发芽粟米GABA含量为389 mg/100 g,为仅发芽粟米的1.83倍。超声是采用水为介质进行的非接触式胁迫处理,具有耗时短、耗能低、产热少、可操作性强和无需生物或化学试剂等优点,但目前使用该胁迫方式进行GABA富集的相关研究较少[54]

    植物种子萌发过程中,低温胁迫是一种重要的胁迫方式[55]。低温胁迫分为冻害和冷害处理,冻害指0 ℃下产生的损害,会使植物的细胞结构破坏,回温后受害部位无法恢复,冷害的温度则在0 ℃以上,一般不会严重破坏植物细胞结构,只对其生长发育产生影响,回温后可通过救治使其恢复生命活动[56]。不同程度的低温胁迫会破坏植物细胞结构,增加H+浓度,激发GAD活性,同时抑制GABA-T的活性,达到富集GABA的目的。低温处理通过破坏细胞膜完整性提高胞质内Ca2+浓度[57],形成Ca2+/CaM复合体,激发GAD活性,诱导GABA的累积。Yang等[58]研究发现在缺氧处理后,将发芽大豆在−18 ℃冷冻12 h后,置于25 ℃解冻6 h可使GABA发生累积,GABA含量为非冻融处理的7.21倍。孙威等[59]研究发现在冷冻胁迫2 h、浸泡6 h、培养24 h时,发芽小麦中GABA含量为139.83 mg/100 g,比未发芽和发芽的小麦高出93.5%和29.3%。尹永琪等[60]将经低氧处理的发芽玉米进行低温处理,发现在−18 ℃冷冻8 h后解冻4 h时GABA含量最高,推测解冻期是GABA累积的主要阶段,可能是因为冷冻使胞内的冰晶结构对细胞膜造成破坏,解冻时冰晶消失细胞液恢复成流动状态使Ca2+和H+进入胞质。Yu等[61]对冷胁迫协同发芽处理黑米的工艺条件进行优化,发现在0 ℃处理1 h、萌发72 h时,GABA含量为195.64 mg/100 g,比发芽黑米GABA含量高51.54%,该过程中Ca2+浓度增加导致GAD活性提高,而AMADH活性降低,使GABA得到累积。在低温条件下,发芽植物体内GABA大量累积,但不同植物对低温的耐受性存在差异,同时低温处理的温度、时间等因素均会对GABA含量产生较大影响,故而对于不同的植物原料的低温处理条件需重新进行探究。

    植物在低氧胁迫环境下,体内电子传递链受到抑制,糖类物质易经过糖酵解途径产生丙酮酸,进而分解生成乙醇和乳酸,使胞质内pH升高,GAD在酸性环境中被激活,催化L-Glu进行脱羧反应生成GABA[6263]。另外,低氧胁迫能够抑制植物种子有氧呼吸作用,使GABA-T活性被抑制,促进GABA的累积[64]。丁俊胄等[65]采用不同气体对发芽糙米进行厌氧胁迫,发现糙米在发芽66 h后持续通入6 h CO2时,GABA含量为965.44 mg/g,为原料的1.91倍,同时发现CO2的GABA富集效果优于N2,可能是因为CO2溶于水引起pH的降低或CO2参与发芽过程中的碳代谢活动。为了提高GABA含量,目前许多研究利用低氧胁迫协同其他胁迫的方式富集GABA。周新勇等[66]通过对发芽大麦进行低氧联合酸胁迫发现在柠檬酸缓冲液pH4.0、通氧量为4.5 L/min、发芽111 h时,GABA含量可达到0.335 mg/g,与原料比提高了33.6倍。朱云辉等[67]在低氧胁迫时添加10 mmol/L NaCl进行盐胁迫,GABA含量为仅低氧胁迫的1.1倍。综上所述,低氧胁迫能够使植物GABA富集,具有成本低,操作简单等特点,但对不同的植物原料GABA富集效果有较大差异。

    盐胁迫会导致植物的生理性干旱,此时细胞需要从细胞膜外吸收大量离子,其中Ca2+与CaM结合,激发GAD活性,同时植物体内的PAO、DAO和AMADH活性也会随之增加,说明盐胁迫条件下植物体内两条代谢途径均有参与[68]。Al-Quraan等[69]利用qRT-PCR技术研究发现,盐胁迫处理小麦萌发后GABA累积和GAD表达均显著提高,表明在盐和渗透胁迫下GAD均被激活。陈春旭等[70]将糙米置于NaCl培养液中进行发芽处理,发芽3 d后GABA含量为121.714 mg/100 g、GAD活性为5.7845 U/g,分别为未胁迫处理的1.12和1.24倍,同时对蛋白组成分析发现,盐胁迫处理后大分子蛋白组分会降解成小分子组分,而醇溶蛋白在该胁迫过程中未被利用。由于盐胁迫对植物生长有抑制作用,所以在进行盐胁迫处理时,大多选择加入外源添加物来缓解这一现象。郭元新等[8]发现,单纯低氧胁迫与低氧联合盐胁迫相比,GAD和DAO活性均提高,说明该种联合胁迫方式对两条代谢途径均有提高作用。盐胁迫是GABA富集的有效方式之一,但研究表明同一植物的不同器官感受盐胁迫的强度不同,GABA含量存在差异[71]

    微酸性电解水(SAEW)是在电解装置中电解稀盐或稀盐酸溶液生成的pH5.0~6.5的水溶液[72],有效氯成分主要是次氯酸(HClO),作为杀菌剂在食品中广泛应用。微酸性电解水的瞬时杀菌效果良好,可迅速夺取细菌电子点位,短时间内快速杀死细菌[73]。研究发现微酸性电解水对植物种子发芽具有诱导作用,可以促进植物体内营养物质的富集[74]。Hao等[75]将荞麦放入pH5.83,有效氯20.3 mg/L的微酸性电解水中浸泡后进行发芽,发现在发芽6 d时GABA含量达到最大值143.20 mg/100 g,为原料的14.3倍,同时GAD活性显著提高。华建业等[76]对发芽小米进行微酸性电解水处理,发现在有效氯浓度24 mg/L、浸泡10.5 h、温度29 ℃、发芽时间40.5 h时,GABA含量为109.72 mg/100 g,为原料的1.7倍。Li等[77]研究发现在微酸性电解质水中加入15 mg/mL或30 mg/mL有效氯处理发芽粟谷,可促进GABA累积,较原料增加21%。微酸性电解水作为一种新型非热杀菌技术,具有绿色经济、无毒无害和光谱抑菌性等优点,目前主要集中在食品杀菌、保鲜、营养物质富集等方面。

    高静水压技术(High hydrostatic pressure,HHP)是指在一个密闭容器中以水为压力传递介质对其中物料进行均衡压力的施加[78]的技术。HPP会破坏植物体内细胞结构,加速植物细胞内物质运输速度,可以通过酶促反应诱导L-Glu转化为GABA。HHP可以破坏该分子物质结构,引起大分子物质改性,但对小分子物质影响变小。在研究过程中可以通过改变温度、压力和时间等相关工艺参数来影响植物体内化学反应及酶反应速率。Kim等[79]研究发现将发芽与HHP处理结合可以显著促进生理代谢物质的生物合成,加快酶促反应速率,提高GABA和总阿拉伯木聚糖等功能性化合物含量,发芽2 d的糙米在50 MPa压强环境下继续发芽24 h后,GABA含量为111.4 mg/100 g,为原料的1.76倍。高静水压技术作为一种非热物理改性技术,对食品本身的营养成分损害较小,能够最大程度保持食品本身的色、香、味和营养成分,具有纯天然、绿色、无公害的优点,但目前高静水压技术的相关研究仍比较欠缺[80]

    除常见胁迫方式外,紫外光照[81]、等离子体处理[82]、高压灭菌[82]、等方式也可起到富集GABA的目的。紫外线波长能通过破坏生物体内DNA物质导致细菌死亡从而起到杀菌作用。范军等[83]研究发现将发芽24 h糙米置于距离紫外光线25 cm处,每隔6 h进行3 min紫外照射,GABA含量可达到55.7 mg/100 g,与未进行紫外处理的相比增加了1.11倍。冷等离子体(Cold Plasma,CP)是指在各类激发能激发作用下,能够提高气态分子、原子的动能,从低能态激发到高能态产生的等离子体,是一新型的非加热杀菌技术[84]。Chen等[85]研究发现对发芽荞麦进行冷等离子体胁迫处理时,GABA含量为222 mg/100 g,为原料的2.64倍。脉冲强光处理后植物体内的GAD活性增加,可通过三羧酸循环来提高GABA含量[86]。张良晨等[87]研究发现发芽糙米在照射距离9.0 cm、光照强度450 J、照射次数395次时GABA含量可达到170.10 mg/100 g,为原料的3.7倍。

    GABA作为一种具有缓解焦虑、促进睡眠、降低血糖等多种生理功能的新型功能因子,在我国食品科学基础研究及应用研究领域逐渐引起关注。现阶段对于GABA的研究大多集中在GABA生理功能机制研究以及食物原料富集GABA的多元化途径探究,多以评估盐胁迫、低氧胁迫、超声胁迫等常见的胁迫方式对GABA富集的影响,具有一定的局限性,缺乏对新型胁迫方式的探索研究以及不同胁迫方式作用机制的深度挖掘,同时,不同食物原料GABA富集效果的差异化机制还有待探讨。此外,市售产品所用食品原料单一,大多以发芽糙米或大豆为主,从口感风味、营养组成、健康功效等方面存在局限性,故而在保证食品本身营养价值和安全品质的前提下,开发更多高含量GABA且营养均衡的健康产品是实现GABA产业发展的前提。

  • 图  1   GABA化学结构式

    Figure  1.   Chemical structure formula of GABA

    图  2   GABA代谢途径

    Figure  2.   Metabolic pathway of GABA

    图  3   H+和Ca2+浓度对GABA富集的影响

    Figure  3.   Effects of H+ and Ca2+ concentrations on GABA enrichment

    表  1   GABA的制备

    Table  1   Preparation of GABA

    方法定义特点
    化学合成法化学合成法是利用化学物质反应合成GABA。该方法具有反应迅速、得率高的优势,但由于该方法反应过于剧烈、
    有化学物质残留且成本较高[10]
    微生物发酵法微生物发酵法是利用菌种对底物物质进行发酵产生GABA。该方法具有成本低、转化率高等优点[11]
    植物富集法植物富集法是利用植物组织细胞在受到外界刺激时产生的
    应激代谢来富集GABA。
    该方法具有安全、环保等特点,可以大大提高食品原料营养价值[12]
    下载: 导出CSV

    表  2   底物对植物发芽GABA含量影响

    Table  2   Effects of different substrates on GABA enrichment during plant germination

    相关代谢合成途径原料底物物质GABA含量
    GABA支路大豆[40]Spd117.1 mg/100 g,为原料的2.26倍
    大豆[41]NaCl、Spd161 mg/100 g,为原料的1.97倍
    多胺降解途径大豆[42]NaCl、CaCl2、PLP、MSG269.93 mg/100 g,为原料的10倍
    蚕豆[43]CaCl2、VB6、MSG198 mg/100 g,为原料的1.83倍
    豇豆[44]VB696.66 mg/100 g,为原料的1.5倍
    绿豆[45]Glu0.467 mg/mL,为原料的1.145倍
    南瓜籽[46]CaCl2、VB6、MSG36.1 mg/100 g,为原料的5.18倍
    下载: 导出CSV
  • [1]

    WANG Y S, LIU C Q, MA T Y, et al. Physicochemical and functional properties of gamma-aminobutyric acid-treated soy proteins[J]. Food Chemistry,2019,295:267−273. doi: 10.1016/j.foodchem.2019.05.128

    [2] 王雨清, 杨春会, 王雷, 等. 糙米发芽过程中γ-氨基丁酸(GABA)富集工艺的研究进展[J]. 湖北农业科学,2022,61(S1):11−16. [WANG Y Q, YANG C H, WANG L, et al. Research progress of γ-aminobutyric acid (GABA) enrichment process in brown rice germination[J]. Hubei Agricultural Sciences,2022,61(S1):11−16.]

    WANG Y Q, YANG C H, WANG L, et al. Research progress of γ-aminobutyric acid (GABA) enrichment process in brown rice germination[J]. Hubei Agricultural Sciences, 2022, 61(S1): 11−16.

    [3]

    KIM K, YOON H. Gamma-aminobutyric acid signaling in damage response, metabolism, and disease[J]. International Journal of Molecular Sciences, 2023, 24(5):36902014.

    [4] 马嘉欣, 杜怀东, 刘海成, 等. 水稻籽粒中γ-氨基丁酸的研究进展[J]. 杂交水稻,2022,37(6):6−14. [MA J X, DU H D, LIU H C, et al. Research progress of γ-aminobutyric acid in rice grains[J]. Hybrid Rice,2022,37(6):6−14.]

    MA J X, DU H D, LIU H C, et al. Research progress of γ-aminobutyric acid in rice grains[J]. Hybrid Rice, 2022, 37(6): 6−14.

    [5]

    HOU D Z, TANG J, FENG Q Q, et al. Gamma-aminobutyric acid (GABA):A comprehensive review of dietary sources, enrichment technologies, processing effects, health benefits, and its applications[J]. Critical Reviews in Food Science and Nutrition, 2023:21−23.

    [6] 李海峰, 李冰冰, 石硕硕, 等. γ-氨基丁酸在食品中的应用研究进展[J]. 河南工业大学学报(自然科学版),2023,44(1):117−125. [LI H F, LI B B, SHI S S, et al. Research progress on the application of γ-aminobutyric acid in food[J]. Journal of Henan University of Technology (Natural Science Edition),2023,44(1):117−125.]

    LI H F, LI B B, SHI S S, et al. Research progress on the application of γ-aminobutyric acid in food[J]. Journal of Henan University of Technology (Natural Science Edition), 2023, 44(1): 117−125.

    [7] 马燕, 段双梅, 赵明. 富含γ-氨基丁酸食品的研究进展[J]. 氨基酸和生物资源,2016,38(3):1−6. [MA Y, DUAN S M, ZHAO M. Research progress of foods rich in gamma-aminobutyric acid[J]. Amino Acids and Biotic Resources,2016,38(3):1−6.]

    MA Y, DUAN S M, ZHAO M. Research progress of foods rich in gamma-aminobutyric acid[J]. Amino Acids and Biotic Resources, 2016, 38(3): 1−6.

    [8] 郭元新. 盐和低氧胁迫下发芽大豆γ-氨基丁酸富集与调控机理研究[D]. 南京:南京农业大学, 2011. [GUO Y X. Accumulation of γ-aminobutyric acid and its regulation mechanisms under NaCl and hypoxia stress in germinated soybean[D]. Nanjing:Nanjing Agricultural University, 2011.]

    GUO Y X. Accumulation of γ-aminobutyric acid and its regulation mechanisms under NaCl and hypoxia stress in germinated soybean[D]. Nanjing: Nanjing Agricultural University, 2011.

    [9] 王婷婷, 刘嘉坤, 李岩. 发芽处理对蚕豆主要成分和γ-氨基丁酸的影响[J]. 食品研究与开发,2017,8(1):6−9. [[WANG T T, LIU J K, LI Y. Effects of germination on major components and GABA road bean[J]. Food Research and Development,2017,8(1):6−9.]

    [WANG T T, LIU J K, LI Y. Effects of germination on major components and GABA road bean[J]. Food Research and Development, 2017, 8(1): 6−9.

    [10] 李伊昕. 基于米糠发酵的富γ-氨基丁酸黄酒的制备及品质分析[D]. 武汉:武汉轻工大学, 2021. [LI Y X, Reparation and quality analysis of γ-aminobutyric acid-rich rice wine based on rice bran fermentation[D]. Wuhan:Wuhan Polytechnic University, 2021.]

    LI Y X, Reparation and quality analysis of γ-aminobutyric acid-rich rice wine based on rice bran fermentation[D]. Wuhan: Wuhan Polytechnic University, 2021.

    [11] 纪大乙. 超声胁迫咖啡叶γ-氨基丁酸的积累及其机理初探[D]. 南京:江苏大学, 2021. [JI D Y. Investigation into the accumulation of γ-aminobutyric acid in coffee leaves and the associated mechanism in response to ultrasound stress[D]. Nanjing:Jiangsu University, 2021.]

    JI D Y. Investigation into the accumulation of γ-aminobutyric acid in coffee leaves and the associated mechanism in response to ultrasound stress[D]. Nanjing: Jiangsu University, 2021.

    [12] 林金新, 黄平, 蔡少丽. γ-氨基丁酸的应用及生产前景展望[J]. 化工设计通讯,2021,47(5):136−137. [LIN J X, HUANG P, CAI S L. The application and production prospect of γ-aminobutyric acid[J]. Chemical Engineering Design Communications,2021,47(5):136−137.]

    LIN J X, HUANG P, CAI S L. The application and production prospect of γ-aminobutyric acid[J]. Chemical Engineering Design Communications, 2021, 47(5): 136−137.

    [13]

    HELI Z, HONGYU C, DAPENG B, et al. Recent advances of gamma-aminobutyric acid:Physiological and immunity function, enrichment, and metabolic pathway[J]. Frontiers in Nutrition,2022,9:1076223. doi: 10.3389/fnut.2022.1076223

    [14] 夏亚男, 冯晨晨, 韩荣, 等. 高产γ-氨基丁酸乳酸菌的筛选、鉴定及其益生特性研究[J]. 食品科技,2023,48(2):14−20. [XIA Y N, FENG C C, HAN R, et al. Screening, identification and prebiotic characteristics of high-yielding γ-aminobutyric acid lactic acid bacteria[J]. Food Science and Technology,2023,48(2):14−20.]

    XIA Y N, FENG C C, HAN R, et al. Screening, identification and prebiotic characteristics of high-yielding γ-aminobutyric acid lactic acid bacteria[J]. Food Science and Technology, 2023, 48(2): 14−20.

    [15] 邢宏博, 许赣荣, 倪冬姣, 等. 响应面法优化红曲菌固态发酵产γ-氨基丁酸的研究[J]. 饲料研究,2021,44(20):64−69. [XING H B, XU G R, NI D J, et al. Response surface methodology in optimization of γ-aminobutyric acid fermentation conditions by Monascus[J]. Feed Research,2021,44(20):64−69.]

    XING H B, XU G R, NI D J, et al. Response surface methodology in optimization of γ-aminobutyric acid fermentation conditions by Monascus[J]. Feed Research, 2021, 44(20): 64−69.

    [16] 郭兴燃. 细胞融合选育高产γ-氨基丁酸菌株关键技术及发酵培养基条件优化研究[D]. 吉林:吉林农业大学, 2022. [GUO X R. Study on the key technology of breeding high-yield GABA strain by cell fusion and optimization of fermentation medium conditions[D]. Jilin:Jilin Agricultural University, 2022.]

    GUO X R. Study on the key technology of breeding high-yield GABA strain by cell fusion and optimization of fermentation medium conditions[D]. Jilin: Jilin Agricultural University, 2022.

    [17] 郭芳. 富含γ-氨基丁酸燕麦发芽条件的优化[J]. 粮食与油脂,2021,34(7):35−38. [GUO F. Optimization of germination con-ditions of the oat rich in γ-aminobutyric acid[J]. Cereals & Oils,2021,34(7):35−38.]

    GUO F. Optimization of germination con-ditions of the oat rich in γ-aminobutyric acid[J]. Cereals & Oils, 2021, 34(7): 35−38.

    [18] 童晓萌, 柴春祥, 王永强. 萌发对苦荞籽粒品质的影响及工艺优化[J]. 食品与机械,2021,37(4):176−183. [TONG X M, CAI C X, WANG Y Q. Effect of germination on grain quality of tartary buckwheat and optimization of technology[J]. Food & Machinery,2021,37(4):176−183.]

    TONG X M, CAI C X, WANG Y Q. Effect of germination on grain quality of tartary buckwheat and optimization of technology[J]. Food & Machinery, 2021, 37(4): 176−183.

    [19] 王淑芳, 杨润强, 顾振新. 低氧胁迫下大豆发芽富集γ-氨基丁酸品种筛选及培养条件优化[J]. 食品科学,2014,35(21):159−163. [WANG S F, YANG R Q, GU Z X. Cultivar selection and culture condition optimization for γ-amino butyric acid (GABA) accumulation in germinating soybean under hypoxia stress[J]. Food Science,2014,35(21):159−163.]

    WANG S F, YANG R Q, GU Z X. Cultivar selection and culture condition optimization for γ-amino butyric acid (GABA) accumulation in germinating soybean under hypoxia stress[J]. Food Science, 2014, 35(21): 159−163.

    [20]

    GUT H, DOMINICI P, PILATI S, et al. A common structural basis for pH and calmodulin-mediated regulation in plant glutamate decarboxylase[J]. Journal of Molecular Biology,2009,392(2):334−351. doi: 10.1016/j.jmb.2009.06.080

    [21] 尹永祺. NaCl及其联合Ca2+变化与GABA富集调控机理[D]. 南京:南京农业大学, 2014. [YIN Y Q. Study on physiological change and the regulation mechanism of GABA accumulation in germinating soybean under NaCl and NaCl-Ca2+ treatment[D]. Nanjing:Nanjing Agricultural University, 2014.]

    YIN Y Q. Study on physiological change and the regulation mechanism of GABA accumulation in germinating soybean under NaCl and NaCl-Ca2+ treatment[D]. Nanjing: Nanjing Agricultural University, 2014.

    [22]

    SUN Y, MEHMOOD A, BATTINO M, et al. Enrichment of gamma-aminobutyric acid in foods:From conventional methods to innovative technologies[J]. Food Research International, 2022, 162(Pt A):111801.

    [23] 朱莉. 苏云金芽胞杆菌γ-氨基丁酸代谢旁路相关基因簇的结构与功能研究[D]. 北京:中国农业科学院, 2007. [ZHU L. Structure and function of gene clusters related to gamma-aminobutyric acid metabolic bypass in Bacillus thuringiensis[D]. Beijing:Chinese Academy of Agricultural Sciences, 2007.]

    ZHU L. Structure and function of gene clusters related to gamma-aminobutyric acid metabolic bypass in Bacillus thuringiensis[D]. Beijing: Chinese Academy of Agricultural Sciences, 2007.

    [24]

    LI L, DOU N, ZHANG H, et al. The versatile GABA in plants[J]. Plant Signaling & Behavior,2021,16(3):1862565.

    [25] 李文新, 王乐, 马燕, 等. 植物中L-谷氨酸代谢与信号转导研究进展[J]. 食品安全质量检测学报,2023,14(14):45−51. [LI W X, WANG L, MA Y, et al. Advances in L-glutamic acid metabolism and signal transduction in plants[J]. Journal of Food Safety & Quality,2023,14(14):45−51.]

    LI W X, WANG L, MA Y, et al. Advances in L-glutamic acid metabolism and signal transduction in plants[J]. Journal of Food Safety & Quality, 2023, 14(14): 45−51.

    [26]

    PODLESAKOVA K, UGENA L, SPICHAL L, et al. Phytohormones and polyamines regulate plant stress responses by altering GABA pathway[J]. Nature Biotechnology,2019,48:53−65.

    [27] 孙磊, 王苑, 柏映国, 等. 谷氨酸脱羧酶结构及催化机制的研究概述[J]. 微生物学通报, 2020, 47(7):2236−2244. [SUN L, WANG Y, BAI Y G, et al. Structure and catalytic mechanism of glutamate decarboxylase:A review[J]. 2020, 47(7):2236−2244.]

    SUN L, WANG Y, BAI Y G, et al. Structure and catalytic mechanism of glutamate decarboxylase: A review[J]. 2020, 47(7): 2236−2244.

    [28] 余南静. 大豆籽粒中γ-氨基丁酸富集技术及其胚芽豆乳开发研究[D]. 南京:南京农业大学, 2012. [YU N J. Accumulation technology of γ-aminobutyric acid in soybean seed and development of soybean milk[D]. Nanjing:Nanjing Agricultural University, 2012.]

    YU N J. Accumulation technology of γ-aminobutyric acid in soybean seed and development of soybean milk[D]. Nanjing: Nanjing Agricultural University, 2012.

    [29] 李楠, 王玲玲, 吴子健, 等. 玉米胚谷氨酸脱羧酶的性质[J]. 食品与发酵工业,2011,37(7):34−38. [LI N, WANG L L, WU Z J, et al. Properties of glutamate decarboxylase in maize embryo[J]. Food and Fermentation Industries,2011,37(7):34−38.]

    LI N, WANG L L, WU Z J, et al. Properties of glutamate decarboxylase in maize embryo[J]. Food and Fermentation Industries, 2011, 37(7): 34−38.

    [30] 魏彤. 绿豆中谷氨酸脱羧酶的性质及结构研究[D]. 大庆:黑龙江八一农垦大学, 2020. [WEI T. Master dissertation study on the properties and structure of glutamate decarboxylase in mung bean[D]. Daqing:Heilongjiang Bayi Agricultural University, 2020.]

    WEI T. Master dissertation study on the properties and structure of glutamate decarboxylase in mung bean[D]. Daqing: Heilongjiang Bayi Agricultural University, 2020.

    [31] 张晖, 姚惠源. 稻米胚芽谷氨酸脱羧酶的光谱分析[J]. 分析化学,2006(5):647−650. [ZHANG H, YAO H Y. Spectral analysis of glutamate decarboxylase in rice germ[J]. Chinese Journal of Analytical Chemistry,2006(5):647−650.]

    ZHANG H, YAO H Y. Spectral analysis of glutamate decarboxylase in rice germ[J]. Chinese Journal of Analytical Chemistry, 2006(5): 647−650.

    [32]

    MAZZUCOTELLI E, TARTARI A, CATTIVELLI L, et al. Metabolism of gamma-aminobutyric acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat[J]. Journal of Experimental Botany,2006,57(14):3755−3766. doi: 10.1093/jxb/erl141

    [33]

    SNEDDEN W A, ARAZI T, FROMM H, et al. Calcium/calmodulin activation of soybean glutamate decarboxylase[J]. Plant Physiology,1995,108(2):543−549. doi: 10.1104/pp.108.2.543

    [34] 程建军, 徐丽, 欧才智, 等. 优化催芽温度及CaCl2溶液浓度提高发芽小米中γ-氨基丁酸含量[J]. 农业工程学报,2019,35(3):301−308. [CHENG J J, XU L, OU C Z, et al. The content of gamma-aminobutyric acid in germinated millet was increased by optimizing the germination temperature and CaCl2 solution concentration[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(3):301−308.] doi: 10.11975/j.issn.1002-6819.2019.03.038

    CHENG J J, XU L, OU C Z, et al. The content of gamma-aminobutyric acid in germinated millet was increased by optimizing the germination temperature and CaCl2 solution concentration[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(3): 301−308. doi: 10.11975/j.issn.1002-6819.2019.03.038

    [35]

    FANG W M, QI F, YIN Y Q, et al. Exogenous spermidine promotes gamma-aminobutyric acid accumulation and alleviates the negative effect of NaCl stress in germinating soybean (Glycine max L.)[J]. Foods, 2020, 9(3).

    [36] 周沫霖. 低温和二氧化碳胁迫下龙眼γ-氨基丁酸富集与机理研究[D]. 广州:华南农业大学, 2017. [ZHOU M L. Study on γ-aminobutyric acid (GABA) accumulation and regulation mechanism in longan (Dimocarpus longan Lour.) fruit in response to cold stress and CO2 stress[D]. Guangzhou:South China Agricultural University, 2017.]

    ZHOU M L. Study on γ-aminobutyric acid (GABA) accumulation and regulation mechanism in longan (Dimocarpus longan Lour.) fruit in response to cold stress and CO2 stress[D]. Guangzhou: South China Agricultural University, 2017.

    [37] 何生根, 黄学林, 傅家瑞. 豇豆种子萌发过程中多胺氧化酶活性的变化及其影响因素[J]. 园艺学报,2002(2):153−157. [HE S G, HUANG X L, FU J R. Change of polyamine oxidase activity during cowpea seed germination and its influencing factors[J]. Acta Horticulturae Sinica,2002(2):153−157.]

    HE S G, HUANG X L, FU J R. Change of polyamine oxidase activity during cowpea seed germination and its influencing factors[J]. Acta Horticulturae Sinica, 2002(2): 153−157.

    [38] 吕秋洁. 富营养紫糙米发芽工艺及紫米花色苷抗氧化活性研究[D]. 广州:华南农业大学, 2020. [LÜ Q J. Study on the processing technology of nutritious germinating purple brown rice and antioxidant activity of anthocyanins in purple rice[D] Guangzhou:South China Agricultural University, 2020.]

    LÜ Q J. Study on the processing technology of nutritious germinating purple brown rice and antioxidant activity of anthocyanins in purple rice[D] Guangzhou: South China Agricultural University, 2020.

    [39] 陈雅芝, 罗鑫, 姚芙蓉, 等. 发芽黑小麦富集γ-氨基丁酸的培养组分优化[J]. 食品工业,2021,42(6):114−118. [CHEN Y Z, LUO X, YAO F R, et al. Optimization of medium composition for γ-aminobutyric acid accumulation in germinated black wheat[J]. The Food Industry,2021,42(6):114−118.]

    CHEN Y Z, LUO X, YAO F R, et al. Optimization of medium composition for γ-aminobutyric acid accumulation in germinated black wheat[J]. The Food Industry, 2021, 42(6): 114−118.

    [40] 何旭东, 徐佳宁, 方维明, 等. 亚精胺促进发芽大豆γ-氨基丁酸富集的工艺研究[J]. 现代食品,2021(20):115−118. [HE X D, XU J N, FANG W M, et al. Study on the enrichment of γ-aminobutyric acid in germinated soybean by spermidine[J]. Modern Food,2021(20):115−118.]

    HE X D, XU J N, FANG W M, et al. Study on the enrichment of γ-aminobutyric acid in germinated soybean by spermidine[J]. Modern Food, 2021(20): 115−118.

    [41] 周新勇, 齐菲, 尹永祺, 等. NaCl胁迫下外源亚精胺对发芽大豆生理生化及γ-氨基丁酸代谢的影响[J]. 扬州大学学报(农业与生命科学版),2020,41(2):107−112. [ZHOU X Y, QI F, YIN Y Q, et al. Exogenous spermidine regulating the main physiological and the GABA accumulation in germinating soybean under NaCI stress[J]. Journal of Yangzhou University (Agricultural and Life Science Edition),2020,41(2):107−112.]

    ZHOU X Y, QI F, YIN Y Q, et al. Exogenous spermidine regulating the main physiological and the GABA accumulation in germinating soybean under NaCI stress[J]. Journal of Yangzhou University (Agricultural and Life Science Edition), 2020, 41(2): 107−112.

    [42] 曾晴, 谢菲, 尹京苑, 等. 大豆发芽富集γ-氨基丁酸的培养液组分优化及盐胁迫下的富集机理[J]. 食品科学,2017,38(12):96−103. [ZENG Q, XIE F, YIN J Y, et al. Optimization of medium composition for γ-aminobutyric acid accumulation in germinated soybean and mechanism of γ-aminobutyric acid accumulation under salt[J]. Food Science,2017,38(12):96−103.]

    ZENG Q, XIE F, YIN J Y, et al. Optimization of medium composition for γ-aminobutyric acid accumulation in germinated soybean and mechanism of γ-aminobutyric acid accumulation under salt[J]. Food Science, 2017, 38(12): 96−103.

    [43] 陈惠, 杨润强, 韩永斌, 等. 发芽蚕豆富集γ-氨基丁酸的培养液组分优化[J]. 中国粮油学报,2011,26(11):27−31. [CHEN H, YANG R Q, HAN Y B, et al. Optimization of culture solution compositions for γ-aminobutyric acid accumulation in germinated fav beans (Vicia faba L.)[J]. Journal of the Chinese Cereals and Oils Association,2011,26(11):27−31.]

    CHEN H, YANG R Q, HAN Y B, et al. Optimization of culture solution compositions for γ-aminobutyric acid accumulation in germinated fav beans (Vicia faba L.)[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(11): 27−31.

    [44] 申迎宾, 范子剑, 王显生, 等. 萌芽时间、温度以及不同浸泡液对萌芽豇豆γ-氨基丁酸含量的影响[J]. 食品与发酵工业,2009,35(4):10−15. [SHEN Y B, FAN Z J, WANG X S, et al. Effects of germination time, temperature and different soaking solution on gamma-aminobutyric acid content in budding cowpea[J]. Food and Fermentation Industries,2009,35(4):10−15.]

    SHEN Y B, FAN Z J, WANG X S, et al. Effects of germination time, temperature and different soaking solution on gamma-aminobutyric acid content in budding cowpea[J]. Food and Fermentation Industries, 2009, 35(4): 10−15.

    [45] 石磊, 刘超, 周柏玲, 等. 萌发条件对绿豆芽中γ-氨基丁酸含量的影响研究[J]. 粮食与油脂,2019,32(3):50−53. [SHI L, LIU C, ZHOU B L, et al. Effects of germination conditions on the content of γ-aminobutyric acid in mung bean sprouts[J]. Cereals & Oils,2019,32(3):50−53.]

    SHI L, LIU C, ZHOU B L, et al. Effects of germination conditions on the content of γ-aminobutyric acid in mung bean sprouts[J]. Cereals & Oils, 2019, 32(3): 50−53.

    [46] 白青云, 陈敏嫣, 张化贤, 等. 南瓜籽发芽富集γ-氨基丁酸的培养条件优化[J]. 中国果菜,2019,39(5):36−41. [BAI Q Y, CHEN M Y, ZHANG H X, et al. Optimization of culture conditions for γ-aminobutyric acid accumulation by germination of pumpkin seed[J]. China Fruit & Vegetable,2019,39(5):36−41.]

    BAI Q Y, CHEN M Y, ZHANG H X, et al. Optimization of culture conditions for γ-aminobutyric acid accumulation by germination of pumpkin seed[J]. China Fruit & Vegetable, 2019, 39(5): 36−41.

    [47]

    ZENG Z, CHEN J Y, LIU X L, et al. Ultrasonic treatment alleviated cadmium stress in sugarcane via improving antioxidant activity and physiological and biochemical status[J]. Ecotoxicology and Environmental Safety,2023,263:115381. doi: 10.1016/j.ecoenv.2023.115381

    [48]

    WU Y N, HE S D, PAN T G, et al. Enhancement of gamma-aminobutyric acid and relevant metabolites in brown glutinous rice (Oryza sativa L.) through salt stress and low-frequency ultrasound treatments at pre-germination stage[J]. Food Chemistry,2023,410:135362. doi: 10.1016/j.foodchem.2022.135362

    [49]

    NAUMENKO N, POTOROKO I, KALININA I. Stimulation of antioxidant activity and gamma-aminobutyric acid synthesis in germinated wheat grain Triticum aestivum L. by ultrasound:Increasing the nutritional value of the product[J]. Ultrasonics Sonochemistry,2022,86:106000. doi: 10.1016/j.ultsonch.2022.106000

    [50] 张祎, 赵婷婷, 赵炳涵, 等. 发芽糙米富集GABA的超声波处理条件优化[J]. 食品研究与开发,2016,37(11):34−39. [ZHANG W, ZHAO T T, ZHAO B H, et al. Optimization of ultrasonic treatment for enriching gaba in germinated brown rice[J]. Food Research and Development,2016,37(11):34−39.] doi: 10.3969/j.issn.1005-6521.2016.11.009

    ZHANG W, ZHAO T T, ZHAO B H, et al. Optimization of ultrasonic treatment for enriching gaba in germinated brown rice[J]. Food Research and Development, 2016, 37(11): 34−39. doi: 10.3969/j.issn.1005-6521.2016.11.009

    [51]

    DING J, JOHNSON J, CHU Y F, et al. Enhancement of gamma-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound[J]. Food Chemistry,2019,283:239−247. doi: 10.1016/j.foodchem.2018.12.136

    [52]

    DING J, ULANOV A V, DONG M, et al. Enhancement of gamma-aminobutyric acid (GABA) and other health-related metabolites in germinated red rice (Oryza sativa L.) by ultrasonication[J]. Ultrasonics Sonochemistry, 2018, 40(Pt A):791−797.

    [53] 单迪. 超声处理对发芽粟米及其酸奶制品生理活性的影响[D]. 哈尔滨:东北农业大学, 2023. [SHAN D. Effect of ultrasonic treatment on physiological activity of germinated millet and its yogurt products[D]. Harbin:Northeast Agricultural University, 2023.]

    SHAN D. Effect of ultrasonic treatment on physiological activity of germinated millet and its yogurt products[D]. Harbin: Northeast Agricultural University, 2023.

    [54] 丁俊胄. 低氧胁迫与超声场激发对发芽糙米中γ-氨基丁酸积累的影响及其代谢机制[D]. 武汉:华中农业大学, 2016. [DING J Z. Effects of hypoxic stress and ultrasonic stimulation on the t-aminobutyric acid (GABA) accumulation in germinating dehulled rice and metabolomic mechanism[D]. Wuhan:Huazhong Agricultural University, 2016.]

    DING J Z. Effects of hypoxic stress and ultrasonic stimulation on the t-aminobutyric acid (GABA) accumulation in germinating dehulled rice and metabolomic mechanism[D]. Wuhan: Huazhong Agricultural University, 2016.

    [55] 夏军. 低温对棉种萌发过程中贮藏物质转化的影响及激素调控[D]. 石河子:石河子大学, 2020. [XIA J. Effects of low temperature on storage substance transformation during cotton seed germination and hormone regulation[D]. Shihezi:Shihezi University, 2020.]

    XIA J. Effects of low temperature on storage substance transformation during cotton seed germination and hormone regulation[D]. Shihezi: Shihezi University, 2020.

    [56] 李明远. 瓜类蔬菜的冷害与冻害及其应对策略[J]. 蔬菜,2021(1):81−83. [LI M Y. Cold damage and freezing damage of melon vegetables and their coping strategies[J]. Vegetables,2021(1):81−83.]

    LI M Y. Cold damage and freezing damage of melon vegetables and their coping strategies[J]. Vegetables, 2021(1): 81−83.

    [57]

    YANG R Q, HUI Q R, FENG X Y, et al. The mechanism of freeze-thawing induced accumulation of gamma-aminobutyric acid in germinated soybean[J]. Journal of the Science of Food and Agriculture,2020,100(3):1099−1105. doi: 10.1002/jsfa.10118

    [58]

    YANG R Q, FENG L, WANG S F, et al. Accumulation of gamma-aminobutyric acid in soybean by hypoxia germination and freeze-thawing incubation[J]. Journal of the Science of Food and Agriculture,2016,96(6):2090−2096. doi: 10.1002/jsfa.7323

    [59] 孙威, 徐颖, 李芳, 等. 冷冻胁迫对小麦萌发过程中的γ-氨基丁酸含量的影响[J]. 食品科技,2019,44(10):170−174. [SUN W, XU Y, LI F, et al. Effect of refrigeration on the content of γ-aminobutyric acid in wheat during germination[J]. Food Science and Technology,2019,44(10):170−174.]

    SUN W, XU Y, LI F, et al. Effect of refrigeration on the content of γ-aminobutyric acid in wheat during germination[J]. Food Science and Technology, 2019, 44(10): 170−174.

    [60] 尹永祺, 吴进贤, 刘春泉, 等. 低氧与低温胁迫对发芽玉米籽粒中γ-氨基丁酸富集的影响[J]. 食品科学,2015,36(1):89−93. [[YIN Y Q, WU J X, LIU C Q, et al. Effects of hypoxia and cold stress on γ-aminobutyric acid accumulation in germinating maize[J]. Food Science,2015,36(1):89−93.] doi: 10.7506/spkx1002-6630-201501017

    [YIN Y Q, WU J X, LIU C Q, et al. Effects of hypoxia and cold stress on γ-aminobutyric acid accumulation in germinating maize[J]. Food Science, 2015, 36(1): 89−93. doi: 10.7506/spkx1002-6630-201501017

    [61]

    YU Y, LI M, LI C, et al. Accelerated accumulation of gamma-aminobutyric acid and modifications on its metabolic pathways in black rice grains by germination under cold stress[J]. Foods, 2023, 12(6):1290.

    [62]

    GREENWAY H, GIBBS J. Review:Mechanisms of anoxia tolerance in plants. II. Energy requirements for maintenance and energy distribution to essential processes[J]. Functional Plant Biology,2003,30(10):999−1036. doi: 10.1071/PP98096

    [63]

    KAMJIJAM B, SUWANNAPORN P, BEDNARZ H, et al. Elevation of gamma-aminobutyric acid (GABA) and essential amino acids in vacuum impregnation mediated germinated rice traced by MALDI imaging[J]. Food Chemistry,2021,365:130399. doi: 10.1016/j.foodchem.2021.130399

    [64] 白青云. 低氧胁迫和盐胁迫下发芽粟谷γ-氨基丁酸富集机理及抗氧化性研究[D]. 南京:南京农业大学, 2009. [BAI Q Y. Studies on mechanism of γ-aminobutyric acid accumulation and antioxidant activity in germinated foxtail mlllet under hypoxia stress and salt stress[D]. Nanjing:Nanjing Agricultural University, 2009.]

    BAI Q Y. Studies on mechanism of γ-aminobutyric acid accumulation and antioxidant activity in germinated foxtail mlllet under hypoxia stress and salt stress[D]. Nanjing: Nanjing Agricultural University, 2009.

    [65] 丁俊胄, 杨特武, 周强, 等. 厌氧胁迫对发芽糙米中γ-氨基丁酸含量变化的影响[J]. 中国粮油学报,2015,30(2):6−10. [DING J Z, YANG T W, ZHOU Q, et al. Effects of anaerobic stress on gamma-aminobutyric acid content in germinated brown rice[J]. Journal of the Chinese Cereals and Oils Association,2015,30(2):6−10.]

    DING J Z, YANG T W, ZHOU Q, et al. Effects of anaerobic stress on gamma-aminobutyric acid content in germinated brown rice[J]. Journal of the Chinese Cereals and Oils Association, 2015, 30(2): 6−10.

    [66] 周新勇, 陆燕婷, 尹永祺, 等. 低氧联合酸胁迫富集大麦芽中γ-氨基丁酸工艺优化[J]. 中国粮油学报,2020,35(6):144−150. [ZHOU X Y, LU Y T, YIN Y Q, et al. Optimization of enrichment process of γ-aminobutyric acid in barley malt by hypoxia combined with acid stress[J]. Journal of the Chinese Cereals and Oils Association,2020,35(6):144−150.] doi: 10.3969/j.issn.1003-0174.2020.06.022

    ZHOU X Y, LU Y T, YIN Y Q, et al. Optimization of enrichment process of γ-aminobutyric acid in barley malt by hypoxia combined with acid stress[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(6): 144−150. doi: 10.3969/j.issn.1003-0174.2020.06.022

    [67] 朱云辉, 郭元新, 杜传来, 等. 低氧联合NaCl胁迫下外源Ca2+对发芽苦荞γ-氨基丁酸富集的影响[J]. 中国粮油学报,2017,32(1):17−23. [ZHU Y H, GUO Y X, DU Z L, et al. Effects of exogenous Ca2+ on γ-aminobutyric acid enrichment in sprouted tartary buckwheat under hypoxia combined with NaCl stress[J]. Journal of the Chinese Cereals and Oils Association,2017,32(1):17−23.] doi: 10.3969/j.issn.1003-0174.2017.01.004

    ZHU Y H, GUO Y X, DU Z L, et al. Effects of exogenous Ca2+ on γ-aminobutyric acid enrichment in sprouted tartary buckwheat under hypoxia combined with NaCl stress[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(1): 17−23. doi: 10.3969/j.issn.1003-0174.2017.01.004

    [68]

    XIE C, SUN M, WANG P, et al. Interaction of Gamma-Aminobutyric Acid and Ca2+ on Phenolic Compounds Bioaccumulation in Soybean Sprouts under NaCl Stress[J]. Plants (Basel), 2022, 11(24):3503.

    [69]

    AL-QURAAN N A, SARTAWE F A, QARYOUTI M M. Characterization of gamma-aminobutyric acid metabolism and oxidative damage in wheat (Triticum aestivum L.) seedlings under salt and osmotic stress[J]. Journal of Plant Physiology,2013,170(11):1003−1009. doi: 10.1016/j.jplph.2013.02.010

    [70] 陈春旭, 王利勤, 郭元新, 等. 盐胁迫对发芽糙米富集γ-氨基丁酸及蛋白组分变化的影响[J]. 食品科学,2018,39(5):87−92. [CHEN C X, WANG L Q, GUO Y X, et al. Effect of salt stress on γ-aminobutyric acid accumulation and protein composition in germinated brown rice[J]. Food Science,2018,39(5):87−92.]

    CHEN C X, WANG L Q, GUO Y X, et al. Effect of salt stress on γ-aminobutyric acid accumulation and protein composition in germinated brown rice[J]. Food Science, 2018, 39(5): 87−92.

    [71] 尹永祺. NaCl及其联合Ca2+处理下发芽大豆生理变化与GABA富集调控机理[D]. 南京:南京农业大学, 2014. [YIN Y Q. Study on the physiological change and the regulation mechanism of GABA accumulation in germinating soybean under NaCl and NaCl and NaCl-Ca2+ treatment[D]. Nanjing:Nanjing Agricultural University, 2014.]

    YIN Y Q. Study on the physiological change and the regulation mechanism of GABA accumulation in germinating soybean under NaCl and NaCl and NaCl-Ca2+ treatment[D]. Nanjing: Nanjing Agricultural University, 2014.

    [72] 聂梅梅, 吴海虹, 李大婧, 等. 超声联合微酸性电解水去除蔬菜农药残留效果分析[J]. 食品与发酵科技,2023,59(4):85−91. [NEI M M, WU H H, LI D J, et al. Effect of ultrasonic combined with acidic electrolyzed water on removing pesticide residues in vegetables[J]. Food and Fermentation Science & Technology,2023,59(4):85−91.]

    NEI M M, WU H H, LI D J, et al. Effect of ultrasonic combined with acidic electrolyzed water on removing pesticide residues in vegetables[J]. Food and Fermentation Science & Technology, 2023, 59(4): 85−91.

    [73] 张建中, 王芳, 彭云, 等. 微酸性电解水性能及其在消毒领域的应用价值[J]. 广州化工,2021,49(7):130−133. [ZHANG J Z, WANG F, PENG Y, et al. Performance of slightly acidic electrolyzed water and application value in disinfection field[J]. Guangzhou Chemical Industry,2021,49(7):130−133.] doi: 10.3969/j.issn.1001-9677.2021.07.043

    ZHANG J Z, WANG F, PENG Y, et al. Performance of slightly acidic electrolyzed water and application value in disinfection field[J]. Guangzhou Chemical Industry, 2021, 49(7): 130−133. doi: 10.3969/j.issn.1001-9677.2021.07.043

    [74] 赵梓帆. 微酸性电解水和光质对豌豆芽苗菜生长及品质的影响研究[D]. 合肥:安徽农业大学, 2022. [ZHAO Z F. The effect of slightly acidic electrolyzed water and light quality on the growth and quality of pea sprouts[D]. Hefei:Anhui Agricultural University, 2022.]

    ZHAO Z F. The effect of slightly acidic electrolyzed water and light quality on the growth and quality of pea sprouts[D]. Hefei: Anhui Agricultural University, 2022.

    [75]

    HAO J, WU T, LI H, et al. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of gamma-aminobutyric acid (GABA) and rutin in germinated buckwheat[J]. Food Chemistry,2016,201:87−93. doi: 10.1016/j.foodchem.2016.01.037

    [76] 华建业, 饶欢, 马淑红, 等. 微酸性电解水富集发芽小米中γ-氨基丁酸的条件优化[J]. 粮食与油脂,2022,35(10):17−21. [HUA J Y, RAO H, MA S H, et al. Optimization of enrichment conditions of γ-aminobutyric acid in germinated millet by slightly acidic electrolyzed water[J]. Cereals & Oils,2022,35(10):17−21.]

    HUA J Y, RAO H, MA S H, et al. Optimization of enrichment conditions of γ-aminobutyric acid in germinated millet by slightly acidic electrolyzed water[J]. Cereals & Oils, 2022, 35(10): 17−21.

    [77]

    LI X, HAO J, LIU X, et al. Effect of the treatment by slightly acidic electrolyzed water on the accumulation of gamma-aminobutyric acid in germinated brown millet[J]. Food Chemistry,2015,186:249−255. doi: 10.1016/j.foodchem.2015.03.004

    [78] 段梦雯, 吴雪娥, 车黎明, 等. 高静水压处理技术及其在食品工业应用的研究进展[J]. 中国调味品,2022,47(5):215−220. [DUAN M W, WU X E, CHE L M, et al. Research progress of high hydrostatic pressure treatment technology and its application in food industry[J]. China Condiment,2022,47(5):215−220.] doi: 10.3969/j.issn.1000-9973.2022.05.042

    DUAN M W, WU X E, CHE L M, et al. Research progress of high hydrostatic pressure treatment technology and its application in food industry[J]. China Condiment, 2022, 47(5): 215−220. doi: 10.3969/j.issn.1000-9973.2022.05.042

    [79]

    KIM M Y, LEE S H, JANG G Y, et al. Effects of high hydrostatic pressure treatment on the enhancement of functional components of germinated rough rice (Oryza sativa L.)[J]. Food Chemistry,2015,166:86−92. doi: 10.1016/j.foodchem.2014.05.150

    [80]

    HUANG H W, HSU C P, WANG C Y. Healthy expectations of high hydrostatic pressure treatment in food processing industry[J]. Journal of Food and Drug Analysis,2020,28(1):1−13. doi: 10.1016/j.jfda.2019.10.002

    [81]

    YAN L, ZHENG H, LIU W, et al. UV-C treatment enhances organic acids and GABA accumulation in tomato fruits during storage[J]. Food Chemistry,2021,338:128126. doi: 10.1016/j.foodchem.2020.128126

    [82]

    LIU H, ZHANG X, CUI Z, et al. Cold plasma effects on the nutrients and microbiological quality of sprouts[J]. Food Research International,2022,159:111655. doi: 10.1016/j.foodres.2022.111655

    [83] 范军, 刘源, 李娟, 等. 采用紫外线照射控制发芽糙米细菌总数研究[J]. 粮食与油脂,2012,25(9):20−22. [FAN J, LIU Y, LI J, et al. The effect of ultraviolet radiation on bacterial counts in germinated brown rice[J]. Cereals & Oils,2012,25(9):20−22.] doi: 10.3969/j.issn.1008-9578.2012.09.008

    FAN J, LIU Y, LI J, et al. The effect of ultraviolet radiation on bacterial counts in germinated brown rice[J]. Cereals & Oils, 2012, 25(9): 20−22. doi: 10.3969/j.issn.1008-9578.2012.09.008

    [84]

    HEYDARI M, CARBONE K, GERVASI F, et al. Cold plasma-assisted extraction of phytochemicals:A review[J]. Foods,2023,12(17):3181. doi: 10.3390/foods12173181

    [85]

    CHEN G Y, WANG Y S, ZHANG M Y, et al. Cold atmospheric plasma treatment improves the gamma-aminobutyric acid content of buckwheat seeds providing a new anti-hypertensive functional ingredient[J]. Food Chemistry,2022,388:133064. doi: 10.1016/j.foodchem.2022.133064

    [86] 王勃, 马涛, 惠丽娟, 等. 脉冲强光对糙米发芽过程积累GABA条件的优化[J]. 食品工业科技,2014,35(22):281−285. [WANG B, MA T, HUI L J, et al. Optimization of pulsed light on the accumulation of GABA conditions in the process of brown rice germination[J]. Science and Technology of Food Industry,2014,35(22):281−285.]

    WANG B, MA T, HUI L J, et al. Optimization of pulsed light on the accumulation of GABA conditions in the process of brown rice germination[J]. Science and Technology of Food Industry, 2014, 35(22): 281−285.

    [87] 张良晨, 李东红, 于淼, 等. 双响应值联合优化发芽糙米脉冲强光杀菌耦合γ-氨基丁酸富集技术研究[J]. 食品研究与开发,2019,40(19):69−75. [ZHANG L C, LI D H, YU M, et al. Optimization of pulsed light treatment on sterilization coupling γ-aminobutyric acid enrichment on germinated brown rice by double response value[J]. Food Research and Development,2019,40(19):69−75.] doi: 10.12161/j.issn.1005-6521.2019.19.013

    ZHANG L C, LI D H, YU M, et al. Optimization of pulsed light treatment on sterilization coupling γ-aminobutyric acid enrichment on germinated brown rice by double response value[J]. Food Research and Development, 2019, 40(19): 69−75. doi: 10.12161/j.issn.1005-6521.2019.19.013

  • 其他相关附件

图(3)  /  表(2)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  14
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-26
  • 网络出版日期:  2024-09-10
  • 刊出日期:  2024-11-14

目录

/

返回文章
返回
x 关闭 永久关闭