• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于TLR-4/NF-κB信号通路探究金花茶提取物对非酒精性脂肪肝的作用

陆少君, 蔡肇栩, 郭瑞雪, 谢群巧, 罗力, 唐春萍, 陈文健, 江涛

陆少君,蔡肇栩,郭瑞雪,等. 基于TLR-4/NF-κB信号通路探究金花茶提取物对非酒精性脂肪肝的作用[J]. 食品工业科技,2024,45(20):349−360. doi: 10.13386/j.issn1002-0306.2023120249.
引用本文: 陆少君,蔡肇栩,郭瑞雪,等. 基于TLR-4/NF-κB信号通路探究金花茶提取物对非酒精性脂肪肝的作用[J]. 食品工业科技,2024,45(20):349−360. doi: 10.13386/j.issn1002-0306.2023120249.
LU Shaojun, CAI Zhaoxu, GUO Ruixue, et al. Investigating the Effects of Camellia petelotii Chi Extract on Nonalcoholic Fatty Liver Disease Based on TLR-4/NF-κB Signaling Pathway[J]. Science and Technology of Food Industry, 2024, 45(20): 349−360. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120249.
Citation: LU Shaojun, CAI Zhaoxu, GUO Ruixue, et al. Investigating the Effects of Camellia petelotii Chi Extract on Nonalcoholic Fatty Liver Disease Based on TLR-4/NF-κB Signaling Pathway[J]. Science and Technology of Food Industry, 2024, 45(20): 349−360. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023120249.

基于TLR-4/NF-κB信号通路探究金花茶提取物对非酒精性脂肪肝的作用

基金项目: 广东省中医药局科研项目(20221216,20221217,20221457);广东省教育厅项目-特色创新类项目(2021KTSCX050)。
详细信息
    作者简介:

    陆少君(1988−),女,硕士,实验师,研究方向:人类疾病动物模型的构建及药理药效学相关研究,E-mail:316744088@qq.com

    通讯作者:

    江涛(1966−),男,本科,教授,研究方向:中药药效评价与临床应用,E-mail:1181894563@qq.com

  • 中图分类号: TS272

Investigating the Effects of Camellia petelotii Chi Extract on Nonalcoholic Fatty Liver Disease Based on TLR-4/NF-κB Signaling Pathway

  • 摘要: 探讨金花茶提取物对非酒精性脂肪肝病(NAFLD)大鼠模型的改善作用及其机制。随机选取10只SD大鼠为空白组,剩余50只则灌服高糖高脂乳剂复制非酒精性脂肪肝模型,14 d后造模大鼠按血清中总胆固醇(TC)水平随机分为模型组、辛伐他汀组(8 mg/kg)及金花茶高、中、低剂量组(260、130、65 mg/kg)。分组后连续给药6周,于末次给药前进行口服葡萄糖耐量试验(OGTT)并计算血糖曲线下面积(AUC),末次给药后采集血清及肝组织,检测血脂指标总胆固醇(TC)、三酰甘油(TG)、高密度脂蛋白(HDL-C)、低密度脂蛋白(LDL-C)及游离脂肪酸(FFA),肝脂指标TC及TG,肝功能指标谷丙转氨酶(ALT)及谷草转氨酶(AST),肝脏脂质过氧化指标丙二醛(MDA)及超氧化物歧化酶(SOD);测定大鼠血清炎症因子指标白介素6(IL-6)、白介素8(IL-8)及肿瘤坏死因子(TNF-α);检测血清胰岛素(FINS)并计算胰岛素抵抗指数(HOMA-IR);HE染色法观察肝脏病理形态学变化并进行非酒精性脂肪肝病活动度积分(NAS)评分;测定肝组织中Toll样受体4(TLR-4)和核因子κB(NF-κB)的基因及蛋白的表达。结果表明:与模型组相比,金花茶药物组AUC、HOMA-IR及血清中FINS、TG、TC、LDL-C、FFA、ALT、AST、IL-6、IL-8、TNF水平显著降低(P<0.05),HDL-C水平明显升高(P<0.05);肝组织TG、TC、MDA中含量显著降低(P<0.05),SOD活性显著升高(P<0.05);肝脏脂肪肝病样变减轻,肝细胞形态异常及炎症浸润明显改善,NAS评分显著下降(P<0.05);TLR-4、NF-κB蛋白及mRNA表达降低,差异均有统计学意义(P<0.05),其中以金花茶高剂量的改善效果最佳。综上所述,金花茶提取物可通过TLR-4/NF-κB信号通路来调节糖脂代谢紊乱,降低炎症反应和减轻炎症浸润,改善NAFLD大鼠肝脏病变。
    Abstract: To examine the effects and mechanisms of Camellia petelotii Chi extract on the rat model of non-alcoholic fatty liver disease (NAFLD), a set of ten SD rats was randomly chosen as the blank group, while the remaining 50 rats were given a high-sugar, high-fat emulsion to develop the model of non-alcoholic fatty liver disease. After 14 days, the rats were separated into different groups based on their serum total cholesterol (TC) levels. These groups included the model group, the simvastatin group (8 mg/kg), and the Camellia petelotii Chi high, medium, and low dose groups (260, 130, 65 mg/kg). The medication was administered continuously for 6 weeks. Before the last administration, an oral glucose tolerance test (OGTT) was performed, and the area under the blood glucose curve (AUC) was calculated. Both serum and liver tissues were collected to examine the concentrations of total cholesterol (TC), triacylglycerol (TG), high-density lipoprotein (HDL-C), low-density lipoprotein (LDL-C), and free fatty acid (FFA). In addition, TC and TG were measured to evaluate the amount of lipids in the liver, while glutamic-pyruvic transaminase (ALT) and glutamic oxaloacetic transaminase (AST) were examined to assess liver function. The levels of malondialdehyde (MDA) was measured to evaluate the extent of lipid peroxidation in the liver, while the activity of superoxide dismutase (SOD) was also evaluated. Serum inflammatory factors interleukin 6 (IL-6), interleukin 8 (IL-8), and tumor necrosis factor (TNF-α) were determined in rats. Serum insulin (FINS) was measured and the insulin resistance index (HOMA-IR) was calculated. The HE staining technique was employed to examine the pathomorphological alterations in the liver and determine the non-alcoholic fatty liver disease activity score (NAS). The gene and protein expression of Toll-like receptor 4 (TLR-4) and nuclear factor κB (NF-κB) were determined in liver tissue. The results showed that compared with the model group, AUC, HOMA-IR and serum levels of FINS, TG, TC, LDL-C, FFA, ALT, AST, IL-6, IL-8, TNF were significantly lower (P<0.05), and HDL-C levels was significantly higher in the Camellia petelotii Chi groups (P<0.05). The content of TG, TC and MDA in liver were significantly reduced (P<0.05), and the SOD activity was significantly increased (P<0.05). There was a significant improvement in the condition of hepatic steatosis, abnormal hepatocyte shape, and inflammatory infiltration, leading to a noticeable decrease in the NAS score. The protein and mRNA levels of TLR-4 and NF-κB were exhibited a substantial decrease (P<0.05). The high dose of Camellia petelotii Chi had the best improvement effect among these groups. In conclusion, Camellia petelotii Chi extract would improve liver damage in NAFLD rats by regulating glucose and lipid metabolism, and reducing inflammatory reaction and inflammatory infiltration through the TLR-4/NF-κB signaling pathway.
  • 非酒精性脂肪肝病(NAFLD)是一种以肝脏脂质沉积为主要病理变化的代谢性疾病[1]。病程早期的NAFLD主要是单纯性脂肪肝(NAFL),病理特征表现为无炎症的单纯性脂肪变性,随着病情的发展,可能会转化为非酒精性脂肪性肝炎(NASH),出现肝小叶炎症、肝细胞气球样变等肝细胞损伤,NASH在终末阶段则可能演变成肝硬化(HS)和肝细胞癌(HCC)[24]。近年来,全球肥胖症的发生率不断上升,75%~92%的病态肥胖症将发展为NAFLD,其中10%~15%发展成肝癌[5]。Chan等[6]的研究显示全球NAFLD患病率已高达38.77%,其中欧洲地区为 55.33%,亚洲地区为36.31%,随着时间推移仍在不断上升,严重威胁人类健康。目前,NAFLD患者的治疗措施主要通过调整饮食结构、减少食物摄入和适量的有氧运动,改善胰岛素抵抗从而起到防治NAFLD的作用[7],然而所有上述方式改善NAFLD的作用令人不甚满意,仍然缺乏公认的特效治疗方法。临床上用于治疗NAFLD的一线药物有吡格列酮、二甲双胍、利拉鲁肽,维生素E等[8],它们已被证实可改善肝脏脂肪聚积、降低转氨酶和肝脏炎症水平,但是这些药物都具有明显的应用限制,难以广泛使用。大量研究[911]表明,与化学药物相比,天然产物及活性成分可在整体和多向调节防治NAFLD,不良反应小、治疗效果长期稳定,同时还具有多组分多靶点组合或协同效应的优势。因此,开发药食同源的天然活性物质既可用于防治NAFLD,又可促进天然产物的精深加工,具有良好市场前景和重要的社会意义。

    金花茶(Camellia petelotii Chi)为山茶科植物,于2010年被收录为“药食同源”目录里的天然中草药茶,属于“新资源食品”[12],富含微量元素及人体必需的氨基酸,茶多糖、多酚、皂苷、黄酮等均为金花茶的功能性组成成分[13]。因此,金花茶功能性保健品的开发应用备受关注,现已问世的以金花茶为原料的药品、食品有口服液[14]、浓缩液[1516]、饮料[17]、速溶茶[1819]、酒[20]、冲剂[21]、含片[22]、棒棒糖[23]、醋[24]等。现代药理研究表明金花茶提取物有抗肿瘤、抗氧化、抗炎、调血脂、降血糖等多种药理活性。多项研究[2527]显示金花茶的叶、花和种子提取物对多种肿瘤细胞的增殖有显著的抑制作用,可升高乌拉坦所诱导的肺癌模型小鼠血清中白细胞介素-2(IL-2)和肿瘤坏死因子-α(TNF-α)的水平,并降低肺部肿瘤发生率;韦霄等[28]通过考察金花茶对羟基自由基、超氧阴离子自由基和DPPH自由基3种自由基的清除能力证实其具有良好的抗氧化作用。此外,众多研究者[2931]通过急性炎症、高血脂、脂肪肝、二型糖尿病等疾病动物模型发现金花茶与炎症靶点间存在良好的结合活性,可以降低血清中总胆固醇、三酰甘油和低密度脂蛋白的水平,降低空腹血糖和升高胰岛素水平,改善胰腺结构和功能。根据上述总结可知,富含茶多酚、茶多糖和皂苷等物质的金花茶且具有良好的药理作用,开发成高端保健产品的空间非常大。

    虽然目前金花茶的产品类型及药理作用研究众多,但多属于基础性探究,利用金花茶及其单体成分防治NAFLD的研究鲜有报道,其抗NAFLD的作用机制深入研究则更少。因此,本课题通过高糖高脂乳剂建立非酒精性脂肪肝大鼠模型,从血脂、肝脂、肝功能、炎症因子水平、口服葡萄糖糖耐量试验、肝组织病理切片及TLR-4/NF-κB信号通路的基因和蛋白水平表达多方面考察金花茶提取物的效用,为拓宽金花茶在防治NAFLD的应用提供理论依据,为天然植物抗NAFLD的研发供准确有力的支撑。

    健康雄性SD大鼠 60只,6周龄,180~220 g,珠海百试通生物科技有限公司,生产许可证号:SCXK(粤)2020-0051。饲养环境为SPF级,恒定室温20~26 ℃,相对湿度40%~70%,实验期间所有大鼠自由饮食;金花茶原材料 采自茂名地区人工种植金花茶茶树,于12月至次年3月间采摘,经广东药科大学中药学院药用植物与中药鉴定系刘基柱老师鉴定为中东金花茶(Camellia petelotii Chi);蔗糖 广州创奕食品有限公司;食用猪油 裕升食用油有限公司;胆固醇 上海麦克林生化科技股份有限公司;异氟烷 山东科源制药有限公司;辛伐他汀片 杭州默沙东制药有限公司;大鼠血清胰岛素(FINS)、大鼠白细胞介素6(IL-6)、大鼠白细胞介素8(IL-8)、大鼠肿瘤坏死因子α(TNF-α)、大鼠游离脂肪酸(FFA)ELISA检测试剂盒 江苏酶免实业有限公司;丙二醛(MDA)、超氧化物歧化酶(SOD)检测试剂盒 南京建成生物工程研究所;总胆固醇(TC)、甘油三酯(TG)、谷草转氨酶(AST)、谷丙转氨酶(ALT)、低密度脂蛋白胆固醇(LDL-C)、高密度脂蛋白胆固醇(HDL-C) 桂林优利特医疗电子有限公司;总RNA提取试剂、反转录试剂盒、ECL化学发光试剂盒 、RIPA裂解液、PMSF、BCA蛋白定量检测试剂盒、磷酸化蛋白酶抑制剂 武汉赛维尔生物科技有限公司;TLR-4抗体、NF-κB p65抗体 SAB公司;GAPDH兔抗 武汉三鹰生物技术有限公司;脱脂奶粉 广州瑞舒生物科技有限公司;PVDF膜 美国Millipore公司。

    101A-1E 型电热鼓风干燥箱 上海安亭科学仪器有限公司;800A志高中药粉碎机 泰安志高实业集团有限责任公司;FD-1D-50真空冷冻干燥机 上海贺帆仪器有限公司;HSIV-μ吸入式小动物麻醉机 上海瑞曼信息科技有限公司;LUKYM-1冷冻匀浆机 广州露卡测序仪器有限公司;URIT-8021A全自动生化分析仪 桂林优利特医疗电子有限公司;Epoch酶标检测仪 BioTeK公司;Tanon5200化学发光成像仪 上海天能科技有限公司;Nanodrop 2000分光光度计 赛默飞世尔科技公司;CFX Connect荧光定量PCR仪、165-8001Mini型蛋白凝胶电泳仪 美国Bio-Rad公司。

    高糖高脂乳剂:称取蔗糖、猪油及胆固醇(三者比例为:4:5:2)共55 g、再加入脱氧胆酸钠2 g和丙基硫氧嘧啶1 g,量取10 mL吐温-80,加热混匀后,用蒸馏水定容至100 mL,于4 ℃冰箱保存,给药前水浴加热溶解。

    金花茶提取物:选择干燥清洁金花茶茶花部分于烘箱中50 ℃烘干,粉碎机粉碎,过80目筛,加入20倍蒸馏水,煎煮2次,先煎煮1 h,收集滤液,后煎煮0.5 h,两次滤液合并混匀后于冷冻干燥机中冷冻干燥成粉末即得金花茶水提物,使用前用蒸馏水溶解。

    辛伐他汀药液:将辛伐他汀片研磨粉碎后用0.5% CMC-Na溶液混悬后使用。

    雄性SD大鼠60只,本实验获得广东药科大学实验动物伦理委员会批准,伦理编号:gdpulacspf2017672,适应性3 d后根据体重随机选取10只作为空白组,灌服生理盐水,剩余50只灌服自制高糖高脂乳剂,体积为10 mL/kg。第14 d后,所有动物麻醉后眼眶采血,检测血清TC水平,统计显示造模组与空白组有显著性差异(P<0.05)后以造模大鼠血清TC水平随机分组,即模型组、辛伐他汀组(8 mg/kg)及金花茶高、中、低剂量组(260、130、65 mg/kg),每组各10只。分组后,分9:00~10:00及16:00~17:00两个时段给药,上午空白组灌服生理盐水,剩余各组大鼠继续灌服造模乳剂,下午空白组和模型组灌服0.5% CMC-Na,辛伐他汀组及金花茶给药组灌服相应剂量的药物溶液,体积均为10 mL/kg,连续给药6周。

    末次给药前,大鼠禁食不禁水12 h后,尾静脉采血测定空腹血糖。灌服葡萄糖(2 g/kg),记录3个间点的血糖值,即30、60、120 min,绘制血糖时间变化曲线,分析血糖曲线下面积(AUC)。

    药物干预6周后,大鼠禁食不禁水12 h,异氟烷麻醉,腹主动脉采血,4 ℃、3500 r/min离心15 min,吸取上层血清。颈部脱臼,摘取肝脏组织,一部分肝脏组织4%多聚甲醛固定,剩余肝脏组织液氮速冻后于−80 ℃保存。

    取1.2.4方法所得血清,通过全自动生化分析仪检测血清中TG、TC、HDL-C、LDL-C、FFA、AST、ALT的含量或活性;严格按相应的试剂盒说明书采用酶联免疫吸附测定法(ELISA)测定血清中IL-6、IL-8、TNF-α、FINS指标并计算相应含量。胰岛素抵抗指数(HOMA-IR=FINS×FBG/22.5)。

    取1.2.4方法所得肝组织用生理盐水制成10%肝匀浆,4 ℃、3500 r/min离心15 min,取上清液,通过全自动生化分析仪及按照相应的试剂盒说明书测定TC、TG、MDA、SOD指标并计算相应含量。

    取出1.2.4方法中4%多聚甲醛固定的肝组织,经常规脱水处理、石蜡包埋、切片后采用苏木精-伊红(HE)染色,显微镜下观察肝组织脂肪变、小叶炎症及气球样变,结合文献[32]评分标准,对非酒精性肝病的活动度(NAS)进行评定,NAS评分标准见表1

    表  1  非酒精性脂肪肝病活动度积分(NAS)评分标准
    Table  1.  Activity score (NAS) scoring criteria for non-alcoholic fatty liver disease
    项目 评价范围标准 得分(分)
    肝细胞脂肪变 <5% 0
    5%~33% 1
    34%~66% 2
    >66% 3
    小叶内炎症 0
    <2个 1
    2~4个 2
    >4个 3
    肝细胞气球样变 0
    少见 1
    多见 2
    总分 8
    下载: 导出CSV 
    | 显示表格

    采用总RNA提取试剂提取肝脏组织总RNA,用Nanodrop 2000检测RNA浓度及纯度(A260/A280=1.8~2.0),使其终浓度为200 ng/μL;采用反转录试剂盒反向转录制备cDNA,逆转录反应体系为20 μL;再配制反应体系:2×SYBR Green qPCR Master Mix 7.5 μL、2.5 μmoL/L基因引物(上游+下游)1.5 μL、cDNA 2.0 μL、双蒸水4 μL cDNA,用荧光定量PCR进行扩增和检测,反应条件:95 ℃,30 s预变性;95 ℃,15 s变性;60 ℃,30 s退火/延伸,共40个循环;按照相对定量方法分析,以甘油醛-3-磷酸脱氢酶(GAPDH)为内参,用2−ΔΔCt法表示mRNA的相对表达量,实验重复3次。引物序列由武汉赛维尔生物科技有限公司设计,见表2

    表  2  RT-qPCR引物序列
    Table  2.  Primer sequences of RT-qPCR
    引物名称 正向 反向 片段长度(bp)
    GAPDH CTGGAGAAACCTGCCAAGTATG GGTGGAAGAATGGGAGTTGCT 38
    TLR-4 CCAGGTGTGAAATTGAGACAATTG AAGCTGTCCAATATGGAAACCC 191
    NF-κB p65 CAGATACCACTAAGACGCACCC CTCCAGGTCTCGCTTCTTCACA 227
    下载: 导出CSV 
    | 显示表格

    取30 mg肝组织,按比例加入RIPA裂解缓、磷酸酶抑制剂和PMSF并冷冻匀浆,12000 r/min离心30 min取上清液;BCA法测定蛋白质浓度;配制蛋白上样液;SDS-PAGE凝胶电泳分离蛋白;湿法电转至PVDF膜;5%脱脂奶粉封闭膜2 h;TBST洗膜后于4 ℃下在一抗中孵育过夜,一抗TLR-4(1:1000)、NF-κB p65(1:1000)、GAPDH(1:2000);洗膜后,二抗(1:2000)孵育1.5 h;洗膜后,ELC法对蛋白条带进行可视化;用分析软件对蛋白条带进行数据分析,并以GAPDH为内参,分析肝组织中炎性反应相关蛋白(TLR-4、NF-κB p65)的表达水平。

    结果使用平均值±标准差(x¯±s)表示,每个实验重复10次(n=10)。所有数据采用 SPSS 19.0软件进行统计分析。符合正态分布的方差齐性采用单因素方差分析(one way ANOVA)和方差齐性采用最小显著差数(LSD)法检测组间差异比较;不符合正态分布和方差齐性采用秩和检验,以P<0.05为差异有统计学意义。图像数据处理与分析采用 Image J 和 Prism GraphPad 6.0软件。

    表3结果显示,模型组的空腹血糖、30 min、120 min血糖水平及AUC与空白组相比极显著升高(P<0.01);辛伐他汀组及金花茶中、高剂量组30 min血糖水平较模型组相比显著下降(P<0.05,P<0.05),金花茶高剂量120 min血糖水平显著下降(P<0.05),辛伐他汀组及金花茶高剂量组AUC极显著降低(P<0.01)。经金花茶提取物灌胃后,调节了NAFLD大鼠体内各种酶的活性,对葡萄糖的摄取及利用起到很好的平衡作用,提高了其对葡萄糖的耐受能力[33]。Wang等[34]的研究中指出,金花茶醋酸乙酯/二氯甲烷提取物、正丁醇提取物和粗提物均有具有显著的降血糖效果。可见,高剂量金花茶具有调节血糖的能力,具有很好的提高葡萄糖耐受的作用。表4结果显示,与空白组比较,模型组FINS和HOMA-IR均极显著增高(P<0.01);辛伐他汀组及金花茶中、高剂量组的FINS水平及HOMA-IR显著低于模型组(P<0.05,P<0.01),金花茶低剂量组的FINS水平有极显著降低(P<0.01)。结果表明金花茶能增加NAFLD模型大鼠的口服糖耐量,减轻胰岛素抵抗。

    表  3  金花茶提取物对NAFLD大鼠血糖的影响
    Table  3.  Effect of Camellia petelotii Chi extract on blood glucose in NAFLD rats
    组别 剂量(mg·kg−1 FBG(mmol·L−1 30 min(mmol·L−1 60 min(mmol·L−1 120 min(mmol·L−1 AUC(mmol·min·L−1
    空白组 4.24±0.50 7.82±1.30 8.44±0.79 5.7±0.58 849.00±57.33
    模型组 5.06±0.35△△ 9.55±1.60△△ 9.17±0.63 7.09±0.88△△ 988.00±77.66△△
    辛伐他汀组 8 5.00±0.49 8.14±0.66** 8.20±0.78 6.48±0.43 882.38±57.05**
    金花茶高剂量组 260 4.73±0.37 8.15±0.80** 8.61±2.08 6.23±0.63* 889.69±92.06**
    金花茶中剂量组 130 4.98±0.64 8.48±0.55* 8.71±0.70 6.69±0.93 921.94±34.49
    金花茶低剂量组 65 5.26±0.37 8.98±0.73 8.91±0.92 6.70±0.92 949.94±69.12
    注:与空白组比较:△△差异极显著P<0.01;与模型组比较:*差异显著P<0.05**差异极显著P<0.01;表4~表10同。
    下载: 导出CSV 
    | 显示表格
    表  4  金花茶提取物对NAFLD大鼠FINS水平和 HOMA-IR 指数的影响
    Table  4.  Effect of Camellia petelotii Chi extract on FINS levels and HOMA-IR index in NAFLD rats
    组别 剂量(mg·kg−1 FINS(mU·L−1 HOMA-IR(%)
    空白组 18.45±0.71 3.38±0.40
    模型组 24.01±0.81△△ 5.34±0.48△△
    辛伐他汀组 8 19.66±0.73** 4.38±0.49**
    金花茶高剂量组 260 20.78±0.84** 4.37±0.31**
    金花茶中剂量组 130 21.85±0.93** 4.80±0.68*
    金花茶低剂量组 65 22.87±0.39** 5.24±0.24
    下载: 导出CSV 
    | 显示表格

    结果见表5,与空白组比较,模型组大鼠血清TC、TG、LDL-C及FFA水平极显著升高(P<0.01),HDL-C水平极显著降低(P<0.01);与模型组比较,辛伐他汀组及金花茶高剂量组TC、TG、LDL-C及FFA指标均有极显著改善(P<0.01),HDL-C指标显著升高(P<0.05);金花茶中剂量组在TG、HDL-C、FFA水平起到显著调节作用(P<0.05,P<0.01);金花茶低剂量组的TC、TG、LDL-C均无统计学差异(P>0.05),HDL-C水平极显著升高(P<0.01),FFA水平极显著下降(P<0.01),这是由于金花茶提取物经体内吸收后参与了NAFLD大鼠的脂代谢,使TC、TG、LDL-C及FFA水平降低,HDL-C水平提高。有研究指出[35],经治疗后的NAFLD大鼠脂代谢水平能够得到明显改善,这与本研究中高剂量金花茶的治疗效果一致。结果表明金花茶提取物可改善NAFLD大鼠异常脂代谢,调节血脂水平紊乱。

    表  5  金花茶提取物对NAFLD大鼠血脂的影响
    Table  5.  Effect of Camellia petelotii Chi extract on blood lipids in NAFLD rats
    组别 剂量(mg·kg−1 TG(mmol·L−1 TC(mmol·L−1 HDL-C(mmol·L−1 LDL-C(mmol·L−1 FFA(µmol·L−1
    空白组 0.41±0.05 1.88±0.19 1.39±0.13 0.95±0.12 915.07±26.77
    模型组 0.56±0.07△△ 3.07±0.18△△ 1.18±0.19△△ 1.51±0.10△△ 1209.66±28.8△△
    辛伐他汀组 8 0.40±0.06** 2.70±0.14** 1.30±0.16* 1.26±0.04** 956.94±41.30**
    金花茶高剂量组 260 0.47±0.05** 2.83±0.22** 1.30±0.11* 1.28±0.11** 1017.81±31.66**
    金花茶中剂量组 130 0.49±0.07* 2.97±0.16 1.44±0.10** 1.47±0.13 1077.26±44.85**
    金花茶低剂量组 65 0.52±0.05 2.94±0.23 1.48±0.11** 1.47±0.11 1142.71±32.87**
    下载: 导出CSV 
    | 显示表格

    表6所示,与空白组比较,模型组血清AST、ALT极显著增高(P<0.01);模型组的大鼠服用辛伐他汀和不同剂量金花茶提取物治疗6周后,其肝功能指标AST、ALT极显著下降(P<0.01)。结果表明金花茶提取物对高糖、高脂饮食所致NAFLD大鼠肝功能异常有明显的治疗作用。

    表  6  金花茶提取物对NAFLD大鼠肝功能的影响
    Table  6.  Effect of Camellia petelotii Chi extract on liver function in NAFLD rats
    组别 剂量
    (mg·kg−1
    血清ALT
    (U·L−1
    血清AST
    (U·L−1
    空白组 22.67±2.15 68.75±2.22
    模型组 88.50±5.40△△ 93.17±7.03△△
    辛伐他汀组 8 45.08±3.50** 67.00±7.08**
    金花茶高剂量组 260 41.33±3.89** 72.25±4.63**
    金花茶中剂量组 130 47.50±2.68** 63.58±4.36**
    金花茶低剂量组 65 47.67±2.81** 65.42±7.23**
    下载: 导出CSV 
    | 显示表格

    表7所示,与空白组相比,模型组炎症因子IL-6、IL-8、TNF-α水平极显著升高(P<0.01)。辛伐他汀组及金花茶各剂量组血清中IL-6、IL-8及TNF-α水平较模型组显著下降(P<0.05,P<0.01)。结果表明金花茶提取物可明显减轻 NAFLD模型大鼠的炎症反应。Wang等[36]使用离体培养的小鼠巨噬RAW264.7细胞对金花茶分离出的化合物进行抗炎活性评估后指出金花茶提取物可以抑制RAW264.7细胞一系列炎症细胞因子的表达,具有抗炎抗菌活性,由此也印证了本研究结果。因此,金花茶提取物能够降低NAFLD大鼠的炎症反应,有助于防治非酒精性脂肪肝。

    表  7  金花茶提取物对NAFLD大鼠血清炎症因子水平的影响
    Table  7.  Effect of Camellia petelotii Chi extract on serum levels of inflammatory factors in NAFLD rats
    组别 剂量
    (mg·kg−1
    IL-6(pg·mL−1 IL-8(ng·L−1 TNF(ng·L−1
    空白组 111.36±5.95 466.3±21.77 349.81±15.76
    模型组 142.41±2.76△△ 570.17±20.7△△ 461.68±14.37△△
    辛伐他汀组 8 116.20±4.09** 482.51±15.55** 372.34±20.10**
    金花茶高
    剂量组
    260 121.57±5.86** 500.45±24.15** 393.64±9.37**
    金花茶中
    剂量组
    130 126.89±7.02** 500.49±10.89** 407.39±15.21**
    金花茶低
    剂量组
    65 135.90±5.79* 531.04±23.37** 422.44±18.48**
    下载: 导出CSV 
    | 显示表格

    表8所示,与空白组相比,模型组的肝组织TC、TG水平极显著增高(P<0.01)。辛伐他汀组和金花茶高、中剂量组的肝组织TC、TG水平极显著低于模型组(P<0.01)。结果表明辛伐他汀和中、高剂量的金花茶提取物可明显改善NAFLD大鼠肝组织脂质水平紊乱,缓解NAFLD大鼠肝脏脂质病变。

    表  8  金花茶提取物对NAFLD大鼠肝脂的影响
    Table  8.  Effect of Camellia petelotii Chi extract on liver lipids in NAFLD rats
    组别 剂量
    (mg·kg−1
    肝TG
    (mmol·L−1
    肝TC
    (mmol·L−1
    空白组 2.34±0.33 1.10±0.35
    模型组 2.72±0.42△△ 1.40±0.16△△
    辛伐他汀组 8 2.23±0.44** 0.78±0.28**
    金花茶高剂量组 260 2.28±0.20** 0.48±0.10**
    金花茶中剂量组 130 2.14±0.24** 0.63±0.22**
    金花茶低剂量组 65 2.63±0.40 1.21±0.34
    下载: 导出CSV 
    | 显示表格

    表9反映了金花茶提取物对NAFLD大鼠氧化应激相关指标MDA及SOD的影响,与空白组相比,经过灌服高糖高脂乳剂大鼠模型组的肝组织 MDA含量升高, SOD水平极显著降低(P<0.01);辛伐他汀组及金花茶各剂量组相较于模型组肝脏脂质过氧化水平得到显著改善(P<0.05,P<0.01)。结果表明,金花茶提取物能够通过改善机体氧化应激相关酶水平从而发挥抗NAFLD的作用。

    表  9  金花茶提取物对NAFLD大鼠肝脏脂质过氧化水平的影响
    Table  9.  Effect of Camellia petelotii Chi extract on the levels of lipid peroxidation in the liver of NAFLD rats
    组别 剂量
    (mg·kg−1
    MDA含量
    (nmol/mg prot)
    SOD
    (U/mg prot)
    空白组 0.73±0.10 1134.5±37.72
    模型组 1.04±0.12△△ 972.89±60.50△△
    辛伐他汀组 8 0.79±0.13** 1145.39±113.29**
    金花茶高剂量组 260 0.73±0.11** 1265.94±122.62**
    金花茶中剂量组 130 0.74±0.10** 1146.26±127.44**
    金花茶低剂量组 65 0.75±0.17** 1092.35±110.86*
    下载: 导出CSV 
    | 显示表格

    图1所示,空白组大鼠的肝组织形态大小正常、色泽红润亮滑,边缘锐利,HE染色结果显示肝细胞无脂肪沉积和炎症细胞,肝小叶结构清晰完整,肝窦(蓝色箭头所指)正常,肝索(绿色箭头所指)排列正常,细胞形态大小均无异常;模型组肝脏色泽呈土黄色,肝叶变形黏连,边缘变钝,切面油腻,HE染色结果显示肝小叶结构破坏,炎症细胞浸润(黄色箭头所指),细胞核移位,肝细胞胞质内明显可见大小不等的脂滴空泡和气球样变(红色箭头所指);金花茶各剂量组及辛伐他汀组大鼠肝脏为暗红色,表面光滑,切面油腻感减轻,HE染色结果显示辛伐他汀组及金花茶各剂量组肝内无明显炎性细胞浸润,肝细胞排列整齐,脂肪空泡及脂肪变性明显减少。表10结果显示,与空白组比较,模型组NAFLD大鼠活动度积分中各项指标(脂肪变、小叶内炎症反应、气球样变、NAS评分)极显著增高(P<0.01);与模型组比较,辛伐他汀及金花茶各剂量组可显著改善NAFLD大鼠脂肪变、小叶内炎性反应和气球样变(P<0.05,P<0.01),NAS评分极显降低(P<0.01),但金花茶低剂量组队脂肪变无显著性影响。综合上述结果显示肝组织病理改善效果金花茶高剂量组>金花茶中剂量组>辛伐他汀组>金花茶低剂量组。可见金花茶提取物对NAFLD大鼠的肝组织有明显的保护作用,可明显减轻脂肪空泡、脂质聚积及炎性细胞的浸润,减轻NAFLD大鼠肝脏结构的改变,病理损伤明显减轻。

    图  1  金花茶提取物对NAFLD大鼠肝脏的影响(HE,200×)
    注:A:空白组;B:模型组;C:辛伐他汀组;D:金花茶高剂量组;E:金花茶中剂量组;F:金花茶低剂量组;肝窦(蓝色箭头所指);肝索(绿色箭头所指);炎症细胞浸润(黄色箭头所指);脂滴空泡和气球样变(红色箭头所指)。
    Figure  1.  Effect of Camellia petelotii Chi extract on the liver of NAFLD rats (HE, 200×)
    表  10  金花茶提取物对NAFLD大鼠活动度积分的影响
    Table  10.  Effect of Camellia petelotii Chi extract on activity scores of NAFLD rats
    组别 剂量
    (mg·kg−1
    脂肪变 小叶内炎症 气球样变 NAS
    空白组 0.00±0.00 0.33±0.52 0.33±0.52 0.67±0.82
    模型组 2.17±0.41△△ 2.00±0.00△△ 2.50±0.55△△ 6.67±0.52△△
    辛伐他汀辛
    伐他汀组
    8 1.17±0.41** 1.00±0.63** 0.83±0.41** 3.00±0.00**
    金花茶高
    剂量组
    260 1.33±0.52** 0.67±0.52** 1.00±0.00** 3.00±0.89**
    金花茶中
    剂量组
    130 1.50±0.55** 1.17±0.75** 1.17±0.75** 3.83±1.17**
    金花茶低
    剂量组
    65 1.67±0.52 1.33±0.52* 1.33±0.52** 4.33±0.52**
    下载: 导出CSV 
    | 显示表格

    图2所示,与空白组比较,用自制乳剂诱导的SD大鼠模型组的肝组织TLR-4 mRNA、NF-κB p65 mRNA表达极显著上调(P<0.01);连续灌服金花茶提取物6周后,其各剂量组的肝组织两者表达均极显著低于模型组(P<0.01)。结果表明金花茶提取物能够调控TLR-4/NF-κB信号通路相关基因的表达水平。

    图  2  金花茶提取物对NAFLD大鼠肝脏组织TLR-4 mRNA及NF-κB p65 mRNA表达的影响
    注:与空白组比较:#P<0.05,##P<0.01;与模型组比较:*P<0.05,**P<0.01;图3同。
    Figure  2.  Effect of Camellia petelotii Chi extract on the expression levels of TLR4 mRNA and NF-κB p65 mRNA in liver tissues of NAFLD rats

    图3所示,与空白组比较,模型组肝组织中TLR-4、NF-κB p65蛋白表达水平极显著升高(P<0.01);与模型组比较,金花茶中、高剂量组肝组织中TLR-4、NF-κB p65蛋白表达水平显著降低(P<0.01,P<0.05),低剂量组TLR-4蛋白表达水平显著降低(P<0.05),NF-κB p65蛋白表达无显著性差异(P>0.05)。结果表明,金花茶提取物对TLR-4、NF-κB蛋白的表达具有调节作用。

    图  3  金花茶提取物对NAFLD大鼠肝脏组织TLR-4及NF-κB p65蛋白表达的影响
    Figure  3.  Effects of Camellia petelotii Chi extract extract on the expression of TLR-4 and NF-κB p65 proteins in liver tissues of NAFLD rats

    非酒精性脂肪肝(NAFLD)是一种由肥胖、二型糖尿病以及高脂血症所诱发的以脂质在肝脏内过渡堆积为主要临床症状的代谢综合征[37]。NAFLD的发病机制尚未明确,胰岛素抵抗(IR)、糖耐量异常和脂质代谢改变等一系列糖脂代谢紊乱被认为是NAFLD分子发病机制[38]。不管是过去的“二次打击”学说[39]或是当下公认的“多重打击”学说[40]中,胰岛素抵抗都是NAFLD病情进展中的首要环节。胰岛素抵抗既会导致脂肪过度分解,又会促进脂肪从头合成从而导致大量游离脂肪酸(FFA)转运至肝脏,使得肝脏组织中蓄积过量脂类物质[41],二者共同使得肝脏脂质代谢紊乱,与炎症级联反应、氧化应激和脂毒性的产生都息息相关[4244]。NAFLD大鼠体内会堆积大量游离脂肪酸(FFA)可通过激活NF-κB通路或JNK通路,募集促炎细胞因子、趋化因子等,诱导胰岛β细胞中的细胞凋亡,产生淀粉样变性和纤维化,因而发生胰岛素分泌异常,在外周组织中从全身炎症发展成胰岛素抵抗(IR)[4546]。研究表明,NLRP3炎症小体是诱导脂肪细胞产生IR的关键调节因子,通过激活TLR-4受体可激活NLRP3炎症小体,可介导Caspase-1依赖性的IL-1β前体释放,抑制原活化蛋白激酶(AMPK)活性,从而诱发脂肪细胞IR[4749]。因此,治疗NAFLD的首要目标就是改善胰岛素抵抗。现有研究指出金花茶提取物(花、叶、种子)或可通过以下方式改善胰岛素抵抗:直接提高胰岛素水平,从而提高胰岛素的敏感性[50];通过抗氧化、抑制氧化应激提高胰岛β细胞数量[51];抑制葡萄糖转运载体和相关酶的活性,进一步改善胰岛素抵抗[52];通过强大的抗氧化能力,可以清除体内的自由基,减轻自由基对胰岛β细胞的损伤,从而改善胰岛素抵抗[53];促进胰岛素的分泌,增强免疫力,调节血流量,防止动脉粥样硬化,从而改善胰岛素抵抗[54];通过降低血清中的胆固醇和游离脂肪酸,调节血脂,从而改善胰岛素抵抗[5557]

    本研究通过口服葡萄糖耐受实验和大鼠空腹胰岛素的检测结果也印证了金花茶可能是通过上述方式直接或间接地改善NAFLD模型大鼠的葡萄糖耐受性和胰岛素敏感性,调节胰岛素和葡萄糖的代谢,进而改善肝组织、脂肪组织和骨骼肌内发生的胰岛素抵抗。NAFLD 往往伴随着脂代谢紊乱,主要表现为血脂升高[58]。本研究结果显示,NAFLD大鼠模型组血脂TG、TC、LDL-C和FFA水平及肝TG、TC水平、炎症因子水平明显高于空白组出现典型的脂肪肝病样变,与王静等[59]和王树根等 [60]的所制备的NAFLD大鼠模型表现一致。与模型组比较,金花茶给药组可以有效降低大鼠血清中 TC、TG、LDL-C、FFA水平,升高HDL-C水平,肝功能指标AST、ALT显著降低,且大部分指标呈现剂量依赖性。研究显示[6163],氧化应激损伤是NAFLD发生、发展的重要因素。本研究表明金花茶可以改善NAFLD大鼠氧化应激相关指标MDA及SOD的水平,有效治疗高脂高糖乳剂饮食引起的脂代谢紊乱、肝功能异常。大鼠肝脏HE染色亦显示金花茶可以有效地改善高脂高糖饮食引起的肝细胞结构变化,减轻炎性细胞浸润的现象,结合上述结果我们合理猜测金花茶可通过降低细胞凋亡,减轻炎症细胞浸润和斑块的形成、抑制高糖高脂饮食导致的糖脂代谢紊乱、减少肝内脂类物质的蓄积,从达到保护肝脏的作用。

    TLR-4属于横跨膜模式识别受体(PRR)家族,其主要外源性配体是脂多糖(LPS)。TLR-4在肝细胞中均有表达,是参与非特异性免疫的蛋白。TLR-4可通过招募Myd88激酶,主要激活NF-κB信号通路从而诱发促炎或抗炎免疫调节[64]。TLR-4作为一个关键的模式识别受体(PRR),通过受体二聚化与下游有丝分裂MAPKs和NF-κB结合[65]。NF-κB是一种重要的转录因子,它在炎症反应中起着关键作用,激活NF-κB信号通路促进IL-1β、TNF-α等和其他促炎细胞因子的产生,增加促炎基因表达[6667]。因此,抑制TLR-4、NF-κB蛋白表达是一个潜在的抗炎靶点,可抑制炎症反应引起的组织损伤,预防NAFLD引起的肝细胞损伤。张艳等[68]研究显示,TLR4/Myd88/NF-κB通路可通过协同且复杂的基因表达和蛋白合成引起细胞炎症反应,TLR-4通过介导巨噬细胞表达并分泌促炎细胞因子,激活MyD88依赖的信号链,从而启动炎性级联反应。与此研究结果相同,本研究发现金花茶提取物干预后NAFLD模型鼠的炎症相关因子IL-6、IL-8和TNF-α的水平明显降低,均趋向于空白组,TLR-4、NF-κB p65基因表达和蛋白表达显著下降。由此可见,金花茶提取物可通过TLR-4/NF-κB p65信号通路发挥对抗炎症的作用,从而减轻NAFLD大鼠的脂肪变性和脂质代谢紊乱。

    综上所述,金花茶提取物具有改善胰岛素抵抗、减轻炎症反应和降低脂质积累等功效。同时,作为“药食同疗”的金花茶具有无毒性的天然优势,副作用较小[69],因此这种天然植物提取物在未来可能具有广泛的发展前景,食用含有金花茶的食品可能起到预防作用,降低NAFLD的发生概率,而使用含有金花茶的天然药品有助于减缓NAFLD的进程。当下本研究虽然在NAFLD模型大鼠上对金花茶的降血脂、抗氧化应激以及其他改善NAFLD的功能进行了验证,确定了金花茶治疗NAFLD的方向及部分信号通路,但尚待确认参与该信号通路的所有分子以及与其他信号通路间的互作机制,金花茶防治NAFLD的用量、疗效、耐受性及生物利用度以及其作用单体和剂量亦需进一步确定。本研究为金花茶相关的食品、保健品、日用品的开发应用或临床治疗NAFLD提供科学依据。

  • 图  1   金花茶提取物对NAFLD大鼠肝脏的影响(HE,200×)

    注:A:空白组;B:模型组;C:辛伐他汀组;D:金花茶高剂量组;E:金花茶中剂量组;F:金花茶低剂量组;肝窦(蓝色箭头所指);肝索(绿色箭头所指);炎症细胞浸润(黄色箭头所指);脂滴空泡和气球样变(红色箭头所指)。

    Figure  1.   Effect of Camellia petelotii Chi extract on the liver of NAFLD rats (HE, 200×)

    图  2   金花茶提取物对NAFLD大鼠肝脏组织TLR-4 mRNA及NF-κB p65 mRNA表达的影响

    注:与空白组比较:#P<0.05,##P<0.01;与模型组比较:*P<0.05,**P<0.01;图3同。

    Figure  2.   Effect of Camellia petelotii Chi extract on the expression levels of TLR4 mRNA and NF-κB p65 mRNA in liver tissues of NAFLD rats

    图  3   金花茶提取物对NAFLD大鼠肝脏组织TLR-4及NF-κB p65蛋白表达的影响

    Figure  3.   Effects of Camellia petelotii Chi extract extract on the expression of TLR-4 and NF-κB p65 proteins in liver tissues of NAFLD rats

    表  1   非酒精性脂肪肝病活动度积分(NAS)评分标准

    Table  1   Activity score (NAS) scoring criteria for non-alcoholic fatty liver disease

    项目 评价范围标准 得分(分)
    肝细胞脂肪变 <5% 0
    5%~33% 1
    34%~66% 2
    >66% 3
    小叶内炎症 0
    <2个 1
    2~4个 2
    >4个 3
    肝细胞气球样变 0
    少见 1
    多见 2
    总分 8
    下载: 导出CSV

    表  2   RT-qPCR引物序列

    Table  2   Primer sequences of RT-qPCR

    引物名称 正向 反向 片段长度(bp)
    GAPDH CTGGAGAAACCTGCCAAGTATG GGTGGAAGAATGGGAGTTGCT 38
    TLR-4 CCAGGTGTGAAATTGAGACAATTG AAGCTGTCCAATATGGAAACCC 191
    NF-κB p65 CAGATACCACTAAGACGCACCC CTCCAGGTCTCGCTTCTTCACA 227
    下载: 导出CSV

    表  3   金花茶提取物对NAFLD大鼠血糖的影响

    Table  3   Effect of Camellia petelotii Chi extract on blood glucose in NAFLD rats

    组别 剂量(mg·kg−1 FBG(mmol·L−1 30 min(mmol·L−1 60 min(mmol·L−1 120 min(mmol·L−1 AUC(mmol·min·L−1
    空白组 4.24±0.50 7.82±1.30 8.44±0.79 5.7±0.58 849.00±57.33
    模型组 5.06±0.35△△ 9.55±1.60△△ 9.17±0.63 7.09±0.88△△ 988.00±77.66△△
    辛伐他汀组 8 5.00±0.49 8.14±0.66** 8.20±0.78 6.48±0.43 882.38±57.05**
    金花茶高剂量组 260 4.73±0.37 8.15±0.80** 8.61±2.08 6.23±0.63* 889.69±92.06**
    金花茶中剂量组 130 4.98±0.64 8.48±0.55* 8.71±0.70 6.69±0.93 921.94±34.49
    金花茶低剂量组 65 5.26±0.37 8.98±0.73 8.91±0.92 6.70±0.92 949.94±69.12
    注:与空白组比较:△△差异极显著P<0.01;与模型组比较:*差异显著P<0.05**差异极显著P<0.01;表4~表10同。
    下载: 导出CSV

    表  4   金花茶提取物对NAFLD大鼠FINS水平和 HOMA-IR 指数的影响

    Table  4   Effect of Camellia petelotii Chi extract on FINS levels and HOMA-IR index in NAFLD rats

    组别 剂量(mg·kg−1 FINS(mU·L−1 HOMA-IR(%)
    空白组 18.45±0.71 3.38±0.40
    模型组 24.01±0.81△△ 5.34±0.48△△
    辛伐他汀组 8 19.66±0.73** 4.38±0.49**
    金花茶高剂量组 260 20.78±0.84** 4.37±0.31**
    金花茶中剂量组 130 21.85±0.93** 4.80±0.68*
    金花茶低剂量组 65 22.87±0.39** 5.24±0.24
    下载: 导出CSV

    表  5   金花茶提取物对NAFLD大鼠血脂的影响

    Table  5   Effect of Camellia petelotii Chi extract on blood lipids in NAFLD rats

    组别 剂量(mg·kg−1 TG(mmol·L−1 TC(mmol·L−1 HDL-C(mmol·L−1 LDL-C(mmol·L−1 FFA(µmol·L−1
    空白组 0.41±0.05 1.88±0.19 1.39±0.13 0.95±0.12 915.07±26.77
    模型组 0.56±0.07△△ 3.07±0.18△△ 1.18±0.19△△ 1.51±0.10△△ 1209.66±28.8△△
    辛伐他汀组 8 0.40±0.06** 2.70±0.14** 1.30±0.16* 1.26±0.04** 956.94±41.30**
    金花茶高剂量组 260 0.47±0.05** 2.83±0.22** 1.30±0.11* 1.28±0.11** 1017.81±31.66**
    金花茶中剂量组 130 0.49±0.07* 2.97±0.16 1.44±0.10** 1.47±0.13 1077.26±44.85**
    金花茶低剂量组 65 0.52±0.05 2.94±0.23 1.48±0.11** 1.47±0.11 1142.71±32.87**
    下载: 导出CSV

    表  6   金花茶提取物对NAFLD大鼠肝功能的影响

    Table  6   Effect of Camellia petelotii Chi extract on liver function in NAFLD rats

    组别 剂量
    (mg·kg−1
    血清ALT
    (U·L−1
    血清AST
    (U·L−1
    空白组 22.67±2.15 68.75±2.22
    模型组 88.50±5.40△△ 93.17±7.03△△
    辛伐他汀组 8 45.08±3.50** 67.00±7.08**
    金花茶高剂量组 260 41.33±3.89** 72.25±4.63**
    金花茶中剂量组 130 47.50±2.68** 63.58±4.36**
    金花茶低剂量组 65 47.67±2.81** 65.42±7.23**
    下载: 导出CSV

    表  7   金花茶提取物对NAFLD大鼠血清炎症因子水平的影响

    Table  7   Effect of Camellia petelotii Chi extract on serum levels of inflammatory factors in NAFLD rats

    组别 剂量
    (mg·kg−1
    IL-6(pg·mL−1 IL-8(ng·L−1 TNF(ng·L−1
    空白组 111.36±5.95 466.3±21.77 349.81±15.76
    模型组 142.41±2.76△△ 570.17±20.7△△ 461.68±14.37△△
    辛伐他汀组 8 116.20±4.09** 482.51±15.55** 372.34±20.10**
    金花茶高
    剂量组
    260 121.57±5.86** 500.45±24.15** 393.64±9.37**
    金花茶中
    剂量组
    130 126.89±7.02** 500.49±10.89** 407.39±15.21**
    金花茶低
    剂量组
    65 135.90±5.79* 531.04±23.37** 422.44±18.48**
    下载: 导出CSV

    表  8   金花茶提取物对NAFLD大鼠肝脂的影响

    Table  8   Effect of Camellia petelotii Chi extract on liver lipids in NAFLD rats

    组别 剂量
    (mg·kg−1
    肝TG
    (mmol·L−1
    肝TC
    (mmol·L−1
    空白组 2.34±0.33 1.10±0.35
    模型组 2.72±0.42△△ 1.40±0.16△△
    辛伐他汀组 8 2.23±0.44** 0.78±0.28**
    金花茶高剂量组 260 2.28±0.20** 0.48±0.10**
    金花茶中剂量组 130 2.14±0.24** 0.63±0.22**
    金花茶低剂量组 65 2.63±0.40 1.21±0.34
    下载: 导出CSV

    表  9   金花茶提取物对NAFLD大鼠肝脏脂质过氧化水平的影响

    Table  9   Effect of Camellia petelotii Chi extract on the levels of lipid peroxidation in the liver of NAFLD rats

    组别 剂量
    (mg·kg−1
    MDA含量
    (nmol/mg prot)
    SOD
    (U/mg prot)
    空白组 0.73±0.10 1134.5±37.72
    模型组 1.04±0.12△△ 972.89±60.50△△
    辛伐他汀组 8 0.79±0.13** 1145.39±113.29**
    金花茶高剂量组 260 0.73±0.11** 1265.94±122.62**
    金花茶中剂量组 130 0.74±0.10** 1146.26±127.44**
    金花茶低剂量组 65 0.75±0.17** 1092.35±110.86*
    下载: 导出CSV

    表  10   金花茶提取物对NAFLD大鼠活动度积分的影响

    Table  10   Effect of Camellia petelotii Chi extract on activity scores of NAFLD rats

    组别 剂量
    (mg·kg−1
    脂肪变 小叶内炎症 气球样变 NAS
    空白组 0.00±0.00 0.33±0.52 0.33±0.52 0.67±0.82
    模型组 2.17±0.41△△ 2.00±0.00△△ 2.50±0.55△△ 6.67±0.52△△
    辛伐他汀辛
    伐他汀组
    8 1.17±0.41** 1.00±0.63** 0.83±0.41** 3.00±0.00**
    金花茶高
    剂量组
    260 1.33±0.52** 0.67±0.52** 1.00±0.00** 3.00±0.89**
    金花茶中
    剂量组
    130 1.50±0.55** 1.17±0.75** 1.17±0.75** 3.83±1.17**
    金花茶低
    剂量组
    65 1.67±0.52 1.33±0.52* 1.33±0.52** 4.33±0.52**
    下载: 导出CSV
  • [1] 中华医学会肝病学分会脂肪肝和酒精性肝病学组, 中国医师协会脂肪性肝病专家委员会. 非酒精性脂肪性肝病防治指南(2018年更新版)[J]. 临床肝胆病杂志,2018,34(5):947−957. [Steatohepatitis and alcoholic liver disease group of the hepatology branch of the chinese medical association, steatohepatitic liver disease expert committee of the Chinese medical doctor's association. Guidelines for the prevention and treatment of non-alcoholic fatty liver disease (2018 updated edition)[J]. Journal of Clinical Hepatology,2018,34(5):947−957.]

    Steatohepatitis and alcoholic liver disease group of the hepatology branch of the chinese medical association, steatohepatitic liver disease expert committee of the Chinese medical doctor's association. Guidelines for the prevention and treatment of non-alcoholic fatty liver disease (2018 updated edition)[J]. Journal of Clinical Hepatology, 2018, 34(5): 947−957.

    [2]

    GUO X, YIN X, LIU Z, et al. Non-alcoholic fatty liver disease (NAFLD) pathogenesis and natural products for prevention and treatment[J]. International Journal of Molecular Sciences,2022,23(24):15489. doi: 10.3390/ijms232415489

    [3]

    MACHADO M V, DIEHL A M. Pathogenesis of nonalcoholic steatohepatitis[J]. Gastroenterology,2016,150(8):1769−1777. doi: 10.1053/j.gastro.2016.02.066

    [4]

    BRUNT E M, WONG V W, NOBILI V, et al. Nonalcoholic fatty liver disease[J]. Nature Reviews Disease Primers,2015,1:15080. doi: 10.1038/nrdp.2015.80

    [5]

    CHOWDHURY A, YOUNOSSI Z M. Global epidemiology and risk factors for nonalcoholic fatty liver disease[J]. Alcoholic and Non-alcoholic Fatty Liver Disease:Bench to Bedside, 2016:21−40.

    [6]

    CHAN K E, KOH T J L, TANG A S P, et al. Global prevalence and clinical characteristics of metabolic-associated fatty liver disease:A meta-analysis and systematic review of 10 739 607 individuals[J]. The Journal of Clinical Endocrinology and Metabolism,2022,107(9):2691−2700. doi: 10.1210/clinem/dgac321

    [7] 王友发, 王启荣, 邓娟, 等. 中国居民健康体重管理之减重行动20条:基于科学循证的专家建议共识[J]. 中国预防医学杂志,2023,24(11):1137−1144. [WANG Y F, WANG Q R, DENG J, et al. The 20 actions for weight loss and healthy weight management among Chinese residents:Evidence-based expert recommendations and consensus[J]. Chinese Preventive Medicine,2023,24(11):1137−1144.]

    WANG Y F, WANG Q R, DENG J, et al. The 20 actions for weight loss and healthy weight management among Chinese residents: Evidence-based expert recommendations and consensus[J]. Chinese Preventive Medicine, 2023, 24(11): 1137−1144.

    [8] 张卓然, 于长禾, 安易, 等. 非酒精性脂肪性肝病临床指南和共识的质量评价及推荐意见比较研究[J]. 中国全科医学,2023,26(20):2439−2446. [ZHANG Z R, YU C H, AN Y, et al. Quality assessment and recommendations of clinical guidelines and consensuses on non-alcoholic fatty liver[J]. Chinese General Practice,2023,26(20):2439−2446.]

    ZHANG Z R, YU C H, AN Y, et al. Quality assessment and recommendations of clinical guidelines and consensuses on non-alcoholic fatty liver[J]. Chinese General Practice, 2023, 26(20): 2439−2446.

    [9] 杨娇. 青钱柳降脂保肝药效活性及正丁醇部位化学成分研究[D]. 宜昌:三峡大学, 2023. [YANG J. Studies on lipid-reducing and liver-protecting activity of Cyclocarya paliurus and chemical constituents of nbutanol fractions[D]. Yichang:China Three Gorges University, 2023.]

    YANG J. Studies on lipid-reducing and liver-protecting activity of Cyclocarya paliurus and chemical constituents of nbutanol fractions[D]. Yichang: China Three Gorges University, 2023.

    [10] 闫冬. 石榴花多酚对非酒精性脂肪肝的作用及机制初探[D]. 乌鲁木齐:新疆医科大学, 2015. [YAN D. A Preliminary study on the effect and mechanism of pomegranate polyphenol on nonalcoholic fatty liver[D]. Urumqi:Xinjiang Medical University, 2015.]

    YAN D. A Preliminary study on the effect and mechanism of pomegranate polyphenol on nonalcoholic fatty liver[D]. Urumqi: Xinjiang Medical University, 2015.

    [11] 陈梅妹. 基于化学信息学和代谢组学的中药抗代谢综合征药效有机成分及作用机制研究[D]. 福州:福建师范大学, 2020. [CHEN M M. Study on active organic ingredients and mechanism of Chinese herb against metabolic syndrome by chemical informatics and metabolomics[D]. Fuzhou:Fujian Normal University, 2020.]

    CHEN M M. Study on active organic ingredients and mechanism of Chinese herb against metabolic syndrome by chemical informatics and metabolomics[D]. Fuzhou: Fujian Normal University, 2020.

    [12] 郭建. 金花茶等5种物品被批准为新资源食品[J]. 农产品加工,2010(6):39. [Guo J. 5 Herbs such as Camellia nitidissima chi approved of new resource food[J]. Farm Products Processing,2010(6):39.] doi: 10.3969/j.issn.1671-9646(X).2010.06.011

    Guo J. 5 Herbs such as Camellia nitidissima chi approved of new resource food[J]. Farm Products Processing, 2010(6): 39. doi: 10.3969/j.issn.1671-9646(X).2010.06.011

    [13] 龚雯, 唐婕, 韦雅渊, 等. 金花茶多糖分离纯化、结构表征及其体外抗氧化性[J]. 食品与机械,2021,37(6):184−190. [GONG W, TANG J, WEI Y Y, et al. Isolation and purification of polysaccharides from Camellia sinensis, structural characterisation and their in vitro antioxidant properties[J]. Food & Machinery,2021,37(6):184−190.]

    GONG W, TANG J, WEI Y Y, et al. Isolation and purification of polysaccharides from Camellia sinensis, structural characterisation and their in vitro antioxidant properties[J]. Food & Machinery, 2021, 37(6): 184−190.

    [14] 宁恩创, 秦小明, 杨 宏. 金花茶口服液加工工艺研究[J]. 食品工业科技,2006,27(1):121−122,125. [NING E C, QIN X M, YANG H. Studies on processing technic of Camellia nitidissima chi oral liquid[J]. Science and Technology of Food Industry,2006,27(1):121−122,125.]

    NING E C, QIN X M, YANG H. Studies on processing technic of Camellia nitidissima chi oral liquid[J]. Science and Technology of Food Industry, 2006, 27(1): 121−122,125.

    [15] 覃中凤, 梁家亮, 李宝生, 等. 金花茶浓缩液的应用探析[J]. 现代农业科技,2020(23):223−224. [QIN Z F, LIANG J L, LI B S, et al. The application of camellia concentrate[J]. Modern Agricultural Science and Technology,2020(23):223−224.]

    QIN Z F, LIANG J L, LI B S, et al. The application of camellia concentrate[J]. Modern Agricultural Science and Technology, 2020(23): 223−224.

    [16] 杨宏, 秦小明, 宁恩创. 金花茶浓缩饮液加工工艺研究[J]. 农业研究与应用,2005(3):38−39. [YANG H, QIN X M, NING E C. Studies on processing technic of Camellia nitidissima chi concentrated drink[J]. Agricultural Research and Application,2005(3):38−39.]

    YANG H, QIN X M, NING E C. Studies on processing technic of Camellia nitidissima chi concentrated drink[J]. Agricultural Research and Application, 2005(3): 38−39.

    [17] 宁恩创, 秦小明, 宁健, 等. 金花茶保健饮料加工工艺研究[J]. 广西轻工业,2007,23(1):7−8. [NING E C, QIN X M, NING J, et al. Studies on processing technic of Camellia nitidissima Chi health drink[J]. Light Industry Science and Technology,2007,23(1):7−8.] doi: 10.3969/j.issn.1003-2673.2007.01.004

    NING E C, QIN X M, NING J, et al. Studies on processing technic of Camellia nitidissima Chi health drink[J]. Light Industry Science and Technology, 2007, 23(1): 7−8. doi: 10.3969/j.issn.1003-2673.2007.01.004

    [18] 王远湖, 王珂, 符笋, 等. 一种解酒护肝的金花茶功能茶及其制备方法:中国, 111000003A[P]. 2020-04-14. [WANG Y H, WANG K, FU S, et al. The invention relates to preparation for Camellia nitidissima Chi's tea of relieving alcohol and protecting liver:China, 111000003A[P]. 2020-04-14.]

    WANG Y H, WANG K, FU S, et al. The invention relates to preparation for Camellia nitidissima Chi's tea of relieving alcohol and protecting liver: China, 111000003A[P]. 2020-04-14.

    [19] 肖旖倩. 辅助降血脂保健茶分析与研发[J]. 福建茶叶,2023,45(9):21−23. [XIAO Y Q. Analysis and research and development of health tea[J]. Tea in Fujian,2023,45(9):21−23.] doi: 10.3969/j.issn.1005-2291.2023.09.009

    XIAO Y Q. Analysis and research and development of health tea[J]. Tea in Fujian, 2023, 45(9): 21−23. doi: 10.3969/j.issn.1005-2291.2023.09.009

    [20] 李安彦. 金花茶保健酒:中国, 106221998A[P]. 2016-12-14. [LI A Y. Health wine of Camellia nitidissima Chi:China, 106221998A[P]. 2016-12-14.]

    LI A Y. Health wine of Camellia nitidissima Chi: China, 106221998A[P]. 2016-12-14.

    [21] 程金生, 李舒雅, 万维宏, 等. 凹脉金花茶冲剂抗氧化活性研究[J]. 广州化工,2020,48(14):94−96. [CHENG J S, LI S Y, WAN W H, et al. Study on antioxidant activity of Camellia chrysantha granules[J]. Guangzhou Chemical Industry,2020,48(14):94−96.] doi: 10.3969/j.issn.1001-9677.2020.14.031

    CHENG J S, LI S Y, WAN W H, et al. Study on antioxidant activity of Camellia chrysantha granules[J]. Guangzhou Chemical Industry, 2020, 48(14): 94−96. doi: 10.3969/j.issn.1001-9677.2020.14.031

    [22] 于大永, 宋昱, 史丽颖. 一种金花茶抗过敏口含片及其制备方法:中国, 107007693A[P]. 2017-08-04. [YU D Y, SONG Y, SHI L Y. The invention relates to preparation for Camellia nitidissima Chi's buccal tablets of anti-hypersensitivity:China, 107007693A[P]. 2017-08-04.]

    YU D Y, SONG Y, SHI L Y. The invention relates to preparation for Camellia nitidissima Chi's buccal tablets of anti-hypersensitivity: China, 107007693A[P]. 2017-08-04.

    [23] 张美玲. 金花茶低糖保健棒棒糖:中国, 106858009A[P]. 2017-06-20. [ZHANG M L. Low-sugar and healthy lollipop of Camellia nitidissima Chi:China, 106858009A[P]. 2017-06-20.]

    ZHANG M L. Low-sugar and healthy lollipop of Camellia nitidissima Chi: China, 106858009A[P]. 2017-06-20.

    [24] 徐翔宇, 赖树生, 彭桂明, 等. 一种金花茶醋及其制备方法:中国, 117281188A[P]. 2023-12-26. [XU X Y, LAI S S, PENG G M, et al. A flower tea vinegar and its preparation method:China, 117281188A[P]. 2023-12-26.]

    XU X Y, LAI S S, PENG G M, et al. A flower tea vinegar and its preparation method: China, 117281188A[P]. 2023-12-26.

    [25] 孔桂菊, 杜鸿志, 袁胜涛, 等. 金花茶正丁醇提取物对乌拉坦诱导小鼠肺癌作用研究[J]. 亚太传统医药,2015,11(21):4−7. [KONG G J, DU H Z, YUAN S T, et al. Study effect of extrative fraction of Camellia chrysantja (Hu) Tuyama from n-butyl alcohol on lung carinogenesis indused by urethane[J]. Asia-Pacific Traditional Medicine,2015,11(21):4−7.]

    KONG G J, DU H Z, YUAN S T, et al. Study effect of extrative fraction of Camellia chrysantja (Hu) Tuyama from n-butyl alcohol on lung carinogenesis indused by urethane[J]. Asia-Pacific Traditional Medicine, 2015, 11(21): 4−7.

    [26]

    LIN J N, LIN H Y, YANG N S, et al. Chemical constituents and anticancer activity of yellow Camellia petelotii Chi extracts against mda-mb-231 human breast cancer cells[J]. Journal of Agricultural and Food Chemistry,2013,61(40):9638−9644.

    [27] 夏青, 乔炜超, 白夜. 金花茶提取物诱导细胞自噬增强紫杉醇抗大鼠乳腺癌的干预作用及其机制研究[J]. 世界中西医结合杂志,2021,16(6):1026−1030. [XIA Q, QIAO W C, BAI Y. Camellia tea induces autophagy to enhance the interventional effect of paclitaxel against breast cancer in rats and its mechanism[J]. World Journal of Integrated Traditional and Western Medicine,2021,16(6):1026−1030.]

    XIA Q, QIAO W C, BAI Y. Camellia tea induces autophagy to enhance the interventional effect of paclitaxel against breast cancer in rats and its mechanism[J]. World Journal of Integrated Traditional and Western Medicine, 2021, 16(6): 1026−1030.

    [28] 韦霄, 黄兴贤, 蒋运生, 等. 3 种金花茶组植物提取物的抗氧化活性比较[J]. 中国中药杂志,2011,36(5):639−641. [WEI X, HUANG X X, JIANG Y S, et al. Comparison of antioxidant activities of plant extracts from three kinds of camellia tea[J]. China Journal of Chinese Materia Medica,2011,36(5):639−641.]

    WEI X, HUANG X X, JIANG Y S, et al. Comparison of antioxidant activities of plant extracts from three kinds of camellia tea[J]. China Journal of Chinese Materia Medica, 2011, 36(5): 639−641.

    [29] 高妙姿, 唐军荣, 邓佳, 等. 基于斑马鱼模型及网络药理学研究云南金花茶多酚的抗炎作用[J]. 食品科学,2023,44(11):134−142. [GAO M Z, TANG J R, DENG J, et al. Evaluation of anti-inflammatory effect of Camellia fascicularis polyphenols using zebrafish model and network pharmacology[J]. Food Science,2023,44(11):134−142.]

    GAO M Z, TANG J R, DENG J, et al. Evaluation of anti-inflammatory effect of Camellia fascicularis polyphenols using zebrafish model and network pharmacology[J]. Food Science, 2023, 44(11): 134−142.

    [30] 秦健峰, 苏梓霞, 郝二伟, 等. 善清金花茶对高脂血症小鼠的降脂作用[J]. 现代食品科技,2021,37(8):30−35. [QIN J F, SU Z X, HAO E W, et al. Hypolipidemic effects of shanqing Camellia nitidissima tea on hyperlipidemic mice[J]. Modern Food Science and Technology,2021,37(8):30−35.]

    QIN J F, SU Z X, HAO E W, et al. Hypolipidemic effects of shanqing Camellia nitidissima tea on hyperlipidemic mice[J]. Modern Food Science and Technology, 2021, 37(8): 30−35.

    [31] 刘芬芬, 蒲首丞, 赵雯靓, 等. 金花茶花对2型糖尿病小鼠的降糖及抗氧化作用[J]. 食品科学,2024,45(3):94−101. [LIU F F, PU S C, ZHAO W L, et al. Hypoglycemic and antioxidant effects of camellia nitidissima flower on type 2 diabetic mice[J]. Food Science,2024,45(3):94−101.]

    LIU F F, PU S C, ZHAO W L, et al. Hypoglycemic and antioxidant effects of camellia nitidissima flower on type 2 diabetic mice[J]. Food Science, 2024, 45(3): 94−101.

    [32]

    KLEINER D E, BRUNT E M, VAN NATTA M, et al. Design and validation of a histological scoring system for nonalcoholic fatty liver disease[J]. Hepatology,2005,41(6):1313−1321. doi: 10.1002/hep.20701

    [33] 管立军, 李家磊, 王崑仑, 等. 乳酸菌发酵对刺五加叶活性成分、体外抗氧化作用与降血糖相关酶的影响[J]. 食品工业科技,2022,43(7):155−162. [GUAN L J, LI J L, WANG K L, et al. Effects of lactic acid bacteria fermentation on the active components, antioxidant activity and enzymes on hypoglycemic activity in vitro of Acanthopanax senticosus leave[J]. Science and Technology of Food Industry,2022,43(7):155−162.]

    GUAN L J, LI J L, WANG K L, et al. Effects of lactic acid bacteria fermentation on the active components, antioxidant activity and enzymes on hypoglycemic activity in vitro of Acanthopanax senticosus leave[J]. Science and Technology of Food Industry, 2022, 43(7): 155−162.

    [34]

    WANG L, ROY D, LIN S S, et al. Hypoglycemic effect of Camellia chrysantha extract on type 2 diabetic mice model[J]. Bangladesh Journal of Pharmacology,2017,12:359−363. doi: 10.3329/bjp.v12i4.32995

    [35] 赵传志, 丁慧敏, 胡紫晴, 等. 苓桂术甘汤干预非酒精性脂肪肝病的药效学研究及作用机制探讨[J]. 海南医学院学报,2024,30(1):29−38. [ZHAO C Z, DING H M, HU Z Q, et al. Pharmacodynamic study and investigation of the mechanism of action of ling guizhu gantang in intervening non-alcoholic fatty liver disease[J]. Journal of Hainan Medical University,2024,30(1):29−38.]

    ZHAO C Z, DING H M, HU Z Q, et al. Pharmacodynamic study and investigation of the mechanism of action of ling guizhu gantang in intervening non-alcoholic fatty liver disease[J]. Journal of Hainan Medical University, 2024, 30(1): 29−38.

    [36]

    WANG Z N, GUAN Y, YANG R, et al. Anti-nflammatory activity of 3-cinnamoyltribuloside and its etabolomic analysis in lps-activated raw 264.7 cells[J]. BMC Complementary Medicine and Therapies,2020,20(1):329. doi: 10.1186/s12906-020-03115-y

    [37] 赵红, 谢雯. 非酒精性脂肪性肝病的中西医结合治疗现状[J]. 中国临床医生杂志,2020,48(1):16−18. [ZHAO H, XIE W. Current status of integrated chinese and western medicine in non-alcoholic fatty liver disease[J]. Chinese Journal for Clinicians,2020,48(1):16−18.]

    ZHAO H, XIE W. Current status of integrated chinese and western medicine in non-alcoholic fatty liver disease[J]. Chinese Journal for Clinicians, 2020, 48(1): 16−18.

    [38] 屠晓婷, 卜淑蕊. 短链脂肪酸在非酒精性脂肪性肝病和胰岛素抵抗中的作用及进展[J]. 肝脏,2023,28(12):1521−1524. [TU X T, BU S R. Role and progression of short-chain fatty acids in non-alcoholic fatty liver disease and insulin resistance[J]. Chinese Hepatology,2023,28(12):1521−1524.]

    TU X T, BU S R. Role and progression of short-chain fatty acids in non-alcoholic fatty liver disease and insulin resistance[J]. Chinese Hepatology, 2023, 28(12): 1521−1524.

    [39]

    DAY C P, JAMES O. Steatohepatitis:a tale of two "hits"[J]. Gastroenterology,1998,114(4):842−845. doi: 10.1016/S0016-5085(98)70599-2

    [40] 华爽, 吕明慧, 刘倩颖, 等. 糖脂代谢病的发病机制:多重打击学说[J]. 世界中医药,2019,14(3):638−644. [HUA S, LÜ M H, LIU Q Y, et al. The multiple-hit pathogenesis of glucolipid metabolic disorders:Doctrine of multiple strikes[J]. World Chinese Medicine,2019,14(3):638−644.]

    HUA S, LÜ M H, LIU Q Y, et al. The multiple-hit pathogenesis of glucolipid metabolic disorders: Doctrine of multiple strikes[J]. World Chinese Medicine, 2019, 14(3): 638−644.

    [41] 曹拥军. 基于多组学技术探究健肝消脂方对非酒精性脂肪肝的临床疗效及机制[D]. 南京:南京中医药大学, 2023. [CAO Y J. Efficacy and mechanic study of jian-gan-xiao-zhi decoction on non-alcoholic fatty liver disease based on multi-omice techniques[D]. Nanjing:Nanjing University of Chinese Medicine, 2023.]

    CAO Y J. Efficacy and mechanic study of jian-gan-xiao-zhi decoction on non-alcoholic fatty liver disease based on multi-omice techniques[D]. Nanjing: Nanjing University of Chinese Medicine, 2023.

    [42]

    KUMAR S, DUAN Q, WU R, el al. Pathophysiological communication between hepatocytes and non-parenchymal cells in liver injury from NAFLD to liver fibrosis[J]. Advanced Drug Delivery Reviews,2021,176:113869. doi: 10.1016/j.addr.2021.113869

    [43] 徐玉艳. 核受体RORγ调节非酒精性脂肪肝中的脂质代谢作用机制研究[D]. 厦门:厦门大学, 2022. [XU Y Y. Mechanism of nuclear recepter RORγ regulating lipid metabolism in nonalcoholic fatty liver[D]. Xiamen:Xiamen University, 2022.]

    XU Y Y. Mechanism of nuclear recepter RORγ regulating lipid metabolism in nonalcoholic fatty liver[D]. Xiamen: Xiamen University, 2022.

    [44] 张文杰, 孙迪阳, 王培. 炎症小体介导的细胞焦亡在非酒精性脂肪肝病中的作用及机制[J]. 药学实践杂志,2020,38(1):9−13,41. [ZHANG W J, SUN D Y, WANG P. The role and mechanism of inflammasome-associated pyroptosis in nonalcoholic fatty liver disease[J]. Journal of Pharmaceutical Practice,2020,38(1):9−13,41.]

    ZHANG W J, SUN D Y, WANG P. The role and mechanism of inflammasome-associated pyroptosis in nonalcoholic fatty liver disease[J]. Journal of Pharmaceutical Practice, 2020, 38(1): 9−13,41.

    [45]

    LONGO M, ZATTERALE F, NADERI J, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications[J]. International Journal of Molecular Sciences,2019,20(9):2358. doi: 10.3390/ijms20092358

    [46]

    REHMAN K, AKASH M S. Mechanisms of inflammatory responses and development of insulin resistance:How are they interlinked?[J]. Journal of Biomedical Science,2016,23(1):87. doi: 10.1186/s12929-016-0303-y

    [47]

    REYNOLDS C M, MCGILLICUDDY F C, HARFORD K A, et al. Dietary saturated fatty acids prime the NLRP 3 inflammasome via TLR 4 in dendritic cells-implications for diet-induced insulin resistance[J]. Molecular Nutrition & Food Research,2012,56(8):1212−1222.

    [48]

    HEALY N P, KIRWAN A M, MCARDLE M A, et al. A casein hydrolysate protects mice against high fat diet induced hyperglycemia by attenuating NLRP3 inflammasome-mediated inflammation and improving insulin signaling[J]. Molecular Nutrition & Food Research,2016,60(11):2421−2432.

    [49]

    FINUCANE O M, LYONS C L, MURPHY A M, et al. Monounsaturated fatty acid-enriched high-fat diets impede adipose NLRP3 inflammasome-mediated IL-1beta secretion and insulin resistance despite obesity[J]. Diabetes,2015,64(6):2116−2128. doi: 10.2337/db14-1098

    [50] 夏星, 黄嘉骏, 王志萍, 等. 金花茶叶的降血糖作用及急性毒性研究[J]. 时珍国医国药,2013,24(5):2. [XIA X, HUANG J J, WANG Z P, et al. Study on the hypoglycemic effect and acute toxicity of camellia nitidissima[J]. Lishizhen Medicine and Materia Medica Research,2013,24(5):2.]

    XIA X, HUANG J J, WANG Z P, et al. Study on the hypoglycemic effect and acute toxicity of camellia nitidissima[J]. Lishizhen Medicine and Materia Medica Research, 2013, 24(5): 2.

    [51] 马硕. 金花茶多酚抗2型糖尿病的开发应用研究[D]. 桂林:桂林医学院, 2019. [MA S. Study on the development and application of camellia nitidissima polyphenols anti-type 2 diabetes mellitus[D]. Guilin:Guilin Medical University, 2019.]

    MA S. Study on the development and application of camellia nitidissima polyphenols anti-type 2 diabetes mellitus[D]. Guilin: Guilin Medical University, 2019.

    [52] 宋昱, 黎玉梅, 史丽颖, 等. 金花茶种子对α-葡萄糖苷酶活性的抑制作用研究[J]. 时珍国医国药,2019,30(6):1292−1294. [SONG Y, LI Y M, SHI L Y, et al. Study on the inhibition of α-glucosidase activity by seeds of Camellia nitidissima chi

    J]. Lishizhen Medicine and Materia Medica Research,2019,30(6):1292−1294.

    [53] 金斐, 朱丽云, 高永生, 等. 植物源活性成分降血糖作用及其机理研究进展[J]. 食品科学,2021,42(21):322−330. [JIN F, ZHU L Y, GAO Y S, et al. Progress in research on the hypoglycemic effect and mechanism of plant-derived active ingredients[J]. Food Science,2021,42(21):322−330.]

    JIN F, ZHU L Y, GAO Y S, et al. Progress in research on the hypoglycemic effect and mechanism of plant-derived active ingredients[J]. Food Science, 2021, 42(21): 322−330.

    [54] 农微, 韦金锐, 陈柏承, 等. 金花茶叶提取物减轻动脉粥样硬化的作用机制[J]. 中成药,2022,44(9):2823−2829. [NONG W, WEI J R, CHEN B C, et al. Mechanisms of Camellia chrysantha leaves extract in attenuating atherosclerosis[J]. Chinese Traditional Patent Medicine,2022,44(9):2823−2829.]

    NONG W, WEI J R, CHEN B C, et al. Mechanisms of Camellia chrysantha leaves extract in attenuating atherosclerosis[J]. Chinese Traditional Patent Medicine, 2022, 44(9): 2823−2829.

    [55] 韦璐, 秦小明, 林华娟, 等. 金花茶多糖的降血脂功能研究[J]. 食品科技,2008(7):247−249. [WEI L, QIN X M, LIN H J, et al. Study on the hypolipidemia activity of polysaccharides from the leaves of Camellia chrysantha (Hu) tyama[J]. Food Science and Technology,2008(7):247−249.]

    WEI L, QIN X M, LIN H J, et al. Study on the hypolipidemia activity of polysaccharides from the leaves of Camellia chrysantha (Hu) tyama[J]. Food Science and Technology, 2008(7): 247−249.

    [56] 卢春毅, 刘红, 杨曦, 等. 金花茶对衰老大鼠脂代谢及肝细胞凋亡的影响[J]. 中国动脉硬化杂志,2012,20(12):1109−1112. [LU C Y, LIU H, YANG X, et al. Effect of Camellia chrysantha (hu) tuyama on lipid metabolism and hepatic apoptosis in aging rats[J]. Chinese Journal of Arteriosclerosis,2012,20(12):1109−1112.]

    LU C Y, LIU H, YANG X, et al. Effect of Camellia chrysantha (hu) tuyama on lipid metabolism and hepatic apoptosis in aging rats[J]. Chinese Journal of Arteriosclerosis, 2012, 20(12): 1109−1112.

    [57]

    OKU H, OGAWA Y, IWAOKA E, et al. Preventive effects of the extract of kinka-cha, a folk tea, on a rat model of metabolic syndrome[J]. Journal of natural medicines,2011,5(3-4):610−616.

    [58]

    DEPRINCE A, HAAS J T, STAELS B. Dysregulated lipid metabolism links NAFLD to cardiovascular disease[J]. Molecular Metabolism,2020,42:101092. doi: 10.1016/j.molmet.2020.101092

    [59] 王静, 张止雨, 余明霞, 等. 当归芍药散通过调节Sirt1/NF-κB信号通路改善高脂饮食诱导大鼠非酒精性脂肪肝炎症反应[J]. 重庆医科大学学报,2023,48(6):656−661. [WANG J, ZHANG Z Y, YU M X, et al. Angelica sinensis and Paeonia lactiflora powder ameliorates high-fat diet-induced inflammatory response in non-alcoholic fatty liver in rats by regulating the Sirt1/NF-κB signalling pathway[J]. Journal of Chongqing Medical University,2023,48(6):656−661.]

    WANG J, ZHANG Z Y, YU M X, et al. Angelica sinensis and Paeonia lactiflora powder ameliorates high-fat diet-induced inflammatory response in non-alcoholic fatty liver in rats by regulating the Sirt1/NF-κB signalling pathway[J]. Journal of Chongqing Medical University, 2023, 48(6): 656−661.

    [60] 王树根, 宁美英, 王颖, 等. 知母山楂饮对大鼠非酒精性脂肪肝的治疗作用及可能机制的研究[J]. 安徽医药,2023,27(10):1927−1932,2122. [WANG S G, NING M Y, WANG Y, et al. Study on the therapeutic effect and mechanism of anemarrhenae-hawthorn drink on non-alcoholic fatty liver in rats[J]. Anhui Medical and Pharmaceutical Journal,2023,27(10):1927−1932,2122.]

    WANG S G, NING M Y, WANG Y, et al. Study on the therapeutic effect and mechanism of anemarrhenae-hawthorn drink on non-alcoholic fatty liver in rats[J]. Anhui Medical and Pharmaceutical Journal, 2023, 27(10): 1927−1932,2122.

    [61]

    TAKAKI, AKINOBU, KAWAI, et al. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH)[J]. International Journal of Molecular Sciences,2013,14(10):20704−20728. doi: 10.3390/ijms141020704

    [62]

    CHAO H W, CHAO S W, LIN H, et al. Homeostasis of glucose and lipid in non-alcoholic fatty liver disease[J]. International Journal of Molecular Sciences,2019,20(2):298. doi: 10.3390/ijms20020298

    [63]

    SHEN B Y, ZHAO C X, WANG Y, et al. Aucubin inhibited lipid accumulation and oxidative stress via Nrf2/HO-1 and AMPK signalling pathways[J]. Journal of Cellular and Molecular Medicine,2019,23(6):4063−4075. doi: 10.1111/jcmm.14293

    [64]

    CAO M, YAN H, HAN X, et al. Ginseng-derived nanoparticles alter macrophage polarization to inhibit melanoma growth[J]. Journal for Immunotherapy of Cancer,2019,7(1):326. doi: 10.1186/s40425-019-0817-4

    [65]

    ARIYADI B, ISOBE N, YOSHIMURA Y. Toll-like receptor signaling for the induction of mucin expression by lipopolysaccharide in the hen vagina[J]. Poultry Science,2014,93(3):673−679. doi: 10.3382/ps.2013-03667

    [66]

    SANCHEZ-LOPEZ E, RAYEGO S, RODRIGUES-DIEZ R, el al. CTGF promotes inflammatory cell infiltration of the renal interstitium by activating NF-kappaB[J]. Journal of the American Society of Nephrology,2009,20(7):1513−1526. doi: 10.1681/ASN.2008090999

    [67]

    LAWRENCE T. The nuclear factor NF-kappaB pathway in inflammation[J]. Cold Spring Harbor Perspectives in Biology,2009,1(6):a001651.

    [68] 张艳, 张宸宇, 夏长军, 等. 基于TLR4/Myd88/NF-κB通路探讨大黄牡丹汤对术后早期炎性肠梗阻大鼠的干预机制[J]. 中药药理与临床,2021,37(6):2−7. [ZHANG Y, ZHANG C Y, XIA C J, et al. Exploration on intervention mechanism of dahuang mudan decoction on early postoperative inflammatory intestinal obstruction in rats based on TLR4/Myd88/NF-κB pathway[J]. Pharmacology and Clinics of Chinese Materia Medica,2021,37(6):2−7.]

    ZHANG Y, ZHANG C Y, XIA C J, et al. Exploration on intervention mechanism of dahuang mudan decoction on early postoperative inflammatory intestinal obstruction in rats based on TLR4/Myd88/NF-κB pathway[J]. Pharmacology and Clinics of Chinese Materia Medica, 2021, 37(6): 2−7.

    [69] 蔡拓, 姜楠, 吴军, 等. 金花茶花朵水溶性提取物毒理学安全性评价[J]. 毒理学杂志,2023,37(1):62−65. [CAI T, JIANG N, WU J, et al. Evaluation of the toxicological safety of water-soluble extract of Camellia nitidissima flowers[J]. Journal of Toxicology,2023,37(1):62−65.]

    CAI T, JIANG N, WU J, et al. Evaluation of the toxicological safety of water-soluble extract of Camellia nitidissima flowers[J]. Journal of Toxicology, 2023, 37(1): 62−65.

  • 其他相关附件

图(3)  /  表(10)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  6
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-21
  • 网络出版日期:  2024-09-01
  • 刊出日期:  2024-10-14

目录

/

返回文章
返回
x 关闭 永久关闭