Extraction and Purification of Lycium barbarum Polysaccharides and Its in Vitro Antioxidation and in Vivo Anti-aging Effects
-
摘要: 目的:从枸杞子中分离纯化得到枸杞子多糖,并对其体外抗氧化活性及抗衰老作用进行研究。方法:通过水提醇沉法提取得到枸杞子粗多糖,再经过Sevage试剂除蛋白、DEAE-52纤维素离子交换树脂从粗多糖中分离纯化得到枸杞子多糖LBP。通过测定LBP对DPPH自由基、羟基自由基和ABTS+自由基的清除能力及对Fe3+还原能力,评价LBP的体外抗氧化能力,采用D-半乳糖诱导建立衰老小鼠模型,给药结束后,比较各组小鼠的体质量及脏器指数,检测血清、肝和脑组织中丙二醛(MDA)、超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH-Px)和过氧化氢酶(CAT)的水平,蛋白质印迹(Western blotting)法检测肝组织中核内因子-E2-相关因子(Nrf-2)和血红素氧合酶-1(HO-1)的蛋白表达。结果:分离纯化得到的多糖LBP含量为86.64%±2.34%;LBP对DPPH自由基、羟基自由基和ABTS+自由基清除能力的IC50值分别为0.2081±0.0182、0.7132±0.0220和0.3646±0.0138 mg/mL;与模型组相比,阳性组和LBP高剂量组显著提高小鼠体质量(P<0.05或P<0.01),脏器指数显著升高(P<0.05或P<0.01);阳性组和LBP高剂量组可显著提高小鼠血清、肝和脑组织中SOD、CAT和GSH-Px水平(P<0.05或P<0.01),并极显著降低MDA水平(P<0.01),肝脏组织中Nrf-2蛋白表达水平除LBP低剂量外均显著升高(P<0.05),HO-1蛋白表达水平在各组中均显著升高(P<0.05或P<0.01)。结论:枸杞子多糖LBP具有较强的抗氧化能力和一定的抗衰老作用,其作用机制可能与Nrf-2/HO-1信号通路有关。
-
关键词:
- 枸杞子 /
- 多糖 /
- 抗氧化 /
- 抗衰老 /
- Nrf-2/HO-1信号通路
Abstract: Objective: To isolate and purify the polysaccharides from Lycium barbarum and study its in vitro antioxidant activity and in vivo anti-aging effect. Methods: Crude polysaccharides from Lycium barbarum were obtained by water extraction and alcohol precipitation, and then LBP was isolated and purified from crude polysaccharides by Sevage reagent and DEAE-52 cellulose ion exchange resin. By measuring the scavenging ability of LBP to DPPH free radical, hydroxyl radical and ABTS+ free radical, and Fe3+ reduction, the antioxidant ability of LBP in vitro was evaluated. The aging mouse model was established by D-galactose. After administration, the body weights and organ indexes of mice in each group were compared. The levels of MDA, SOD, GSH-Px and CAT in serum, liver and brain were measured. The protein expression of Nrf-2 and HO-1 in liver tissue was detected by Western blotting. Results: The content of LBP after isolation and purification was 86.64%±2.34%. The IC50 values of scavenging ability of LBP to DPPH free radical, hydroxyl radical and ABTS+ free radical were 0.2081±0.0182, 0.7132±0.0220 and 0.3646±0.0138 mg/mL, respectively. Compared with the model group, the body weights and organ indexes of the mice in positive and high dose of LBP groups were significantly increased (P<0.05 or P<0.01). The levels of SOD, CAT and GSH-Px in serum, liver and brain of mice in positive and high dose of LBP groups were significantly increased, and the level of MDA was significantly decreased (P<0.01). The expression level of Nrf-2 protein in liver tissue increased significantly except for in the low dose of LBP group (P<0.05), and the expression level of HO-1 protein increased significantly in all groups (P<0.05 or P<0.01). Conclusion: LBP from Lycium barbarum has strong antioxidant ability and certain anti-aging effect, and its mechanism may be related to Nrf-2/HO-1 signal pathway.-
Keywords:
- Lycium barbarum /
- polysaccharide /
- antioxidant /
- anti-aging /
- Nrf-2/HO-1 signaling pathway
-
衰老是以器官功能逐渐衰退为特征的复杂生理过程,通常产生行为障碍、学习记忆功能衰减等,也是肠道疾病、心血管疾病、睡眠障碍、神经退行性疾病和癌症等一系列疾病的重要危险因素[1−2]。关于衰老的机制,国内外学者研究报道众多,其中自由基理论/氧化应激假说是主要因素,当自由基的产生与抗氧化系统失衡时,会对细胞和组织造成氧化损伤,导致衰老的产生[3−4]。核内因子-E2-相关因子(Nrf-2)是调节机体氧化还原动态平衡的主要因子,可激活下游醌氧化还原酶1(NQO-1)和血红素氧合酶1(HO-1),诱导产生一系列的过氧化物酶和过氧还原酶,从而参与机体的氧化还原平衡,起到抗衰老的作用[5−6]。因此,提高机体的抗氧化能力,可以有效延缓衰老的发展,在中草药中含有大量的抗氧化活性成分,因此从中草药中寻找抗衰老物质成为当前的研究热点。
枸杞子为茄科植物宁夏枸杞(Lycium barbarum L.)的干燥成熟果实,2020版中国药典记载,其具有益精明目、滋补肝肾、养阴润肺、补虚益精等功效[7]。枸杞子不仅是常见中药材同时又是食品,属于药食同源性药材[8],《本草纲目》记载“久服坚筋骨,轻身不老,耐寒暑”。枸杞子富含多种营养成分,多糖、总黄酮、生物碱、甜菜碱、维生素、类胡萝素及微量元素[9−11]。研究报道,枸杞子具有抗氧化[12]、抗肿瘤[13]、增强免疫力[14]、抗炎[15]、降低血糖和调节血脂[16−17]、抗衰老[18]、抗骨质疏松[19]和保肝[20]的作用。有学者发现,枸杞粗多糖及总黄酮具有抗衰老的作用[21−22],而有关枸杞子精多糖LBP抗氧化及抗衰老研究,国内外鲜见报道。
因此,本研究采用传统的水提醇沉法制备枸杞子粗多糖,经Sevage法除蛋白,DEAE-52纤维素层析柱分离纯化,得到精多糖LBP。通过体外抗氧化实验,评价LBP体外活性,采用D-半乳糖诱导建立衰老小鼠模型,评价LBP的抗衰老作用,并对其潜在的保护机制进行初步研究,以期为枸杞子多糖的综合利用及抗氧化和抗衰老产品的开发提供理论依据。
1. 材料与方法
1.1 材料与仪器
枸杞子 河南张仲景大药房,产地宁夏;维生素C、1,1-二苯基-2-苦基肼(DPPH,批号:S30629-250 mg)、2,2-联岸-双二胺盐(ABTS,批号:S19198-1 g)、DEAE纤维素-52 均购自上海源叶生物科技有限公司;丙二醛(MDA,批号:20211021)、超氧化物歧化酶(SOD,批号:20210918)、谷胱甘肽-过氧化物酶(GSH-Px)、过氧化氢酶(CAT)试剂盒 南京建成生物工程研究所;核蛋白抽提试剂盒(P0028)、SDS-PAGE凝胶制备试剂盒(P0012AC) 均购自上海碧云天生物技术有限公司;兔抗Nrf-2(货号:16396-1-AP)、HO-1抗体(货号:10701-1-AP)、鼠抗β-actin抗体(货号:380624)、山羊抗兔IgG/HRP二抗 均购于武汉三鹰公司;其他试剂均为国产分析级;清洁级昆明(KM)种雄性小鼠50只 体质量18~22 g,购自河南省实验动物中心,许可证号:SCXK(豫)2021-0002。实验动物操作及相关福利均经黄河科技学院实验动物伦理委员会批准认可(编号:2024-003)。
Thermo Scientific型多功能酶标仪 美国Thermo公司;L9型双光束紫外可见分光光度计 上海仪电分析仪器有限公司;BT125D型电子分析天平 赛多利斯科学仪器(北京)有限公司;16K-M高速离心机 长沙鑫奥仪器仪表有限公司;Power PAC Basic型电泳仪、Mini PROTEAT Tetra型垂直电泳槽、Mini TransBlot型转移蛋白电泳槽 美国Bio-Rad公司;凝胶成像仪 北京科创锐新生物科技有限公司。
1.2 实验方法
1.2.1 枸杞子粗多糖的提取
称取500 g枸杞子加入4000 mL蒸馏水,90 ℃热水提取2 h,提取2次,合并滤液。利用旋转蒸发仪浓缩至原体积的1/5,然后加入无水乙醇至乙醇体积分数为80%,充分搅拌后,4 ℃静置12 h,4000 r/min离心10 min,取沉淀,采用Sevage法除去沉淀中的蛋白质,然后浓缩,用8000~10000 Da的透析袋透析48 h,冷冻干燥后得枸杞子粗多糖。
1.2.2 枸杞子粗多糖的分离纯化
利用DEAE-52纤维素层析柱对枸杞子粗多糖进行分离纯化[23]。取200 mg粗多糖溶于10 mL超纯水中,制备浓度为20 mg/mL的溶液,12000 r/min高速离心10 min,取上清液用于DEAE-52纤维素柱填料进行柱层析洗脱,以超纯水为洗脱液,使用试管收集,每管10 mL。采用硫酸-苯酚法测定每一管溶液的吸光度值,以管数为横坐标,吸光度值为纵坐标,绘制洗脱曲线。对出现吸收峰的溶液进行收集合并,并冷冻干燥得到枸杞子精多糖LBP。
1.2.3 多糖含量测定
采用硫酸-苯酚法检测多糖含量[24],以无水葡萄糖作为标准品,在490 nm波长处测得吸光度值A为纵坐标,无水葡萄糖浓度C为横坐标,绘制工作曲线,其工作曲线为A=10.324C+0.0149,R2=0.9997。
1.2.4 LBP的体外抗氧化活性测定
将LBP分别配制成质量浓度为0.0625、0.125、0.25、0.5、1 mg/mL的系列溶液,备用。
1.2.4.1 清除DPPH自由基能力的测定
参考文献[25−26],并修改,称取DPPH粉末39.432 mg,加无水乙醇1000 mL,配制成浓度为0.1 mmol/L的DPPH乙醇溶液,备用。准确吸取1.2.4项所配制的LBP溶液2 mL于玻璃试管中,然后加入2 mL浓度为0.1 mmol/L DPPH乙醇溶液,充分混匀后,37 ℃避光放置30 min,在517 nm波长处测得吸光度值A1,以蒸馏水代替LBP溶液作为空白对照,测得吸光度值A0,以维生素C作为阳性对照。各样品重复测定3次,取均值,按以下公式计算DPPH自由基清除率。
DPPH自由基清除率(%)=(A0−A1)A0×100 1.2.4.2 清除ABTS+自由基能力的测定
参考文献[25−26],并修改,将浓度为7.4×10−3 mol/mL ABTS+与浓度为2.6×10−6 mol/mL过硫酸钾按照体积比1:1混合,避光放置过夜,用无水乙醇稀释至在734 nm处的吸光度值在0.7±0.02范围内。
准确吸取1.2.4项所配制的LBP溶液1 mL,再加入2.0 mL的ABTS+自由基工作液,室温条件下反应10 min,在波长734 nm处测得吸光度值A1,同法以蒸馏水代替LBP溶液作为空白对照,测得吸光度值A0,以维生素C作为阳性对照。各样品重复测定3次,取均值,按以下公式计算ABTS+自由基清除率。
ABTS+自由基清除率(%)=(A0−A1)A0×100 1.2.4.3 清除羟基自由能力的测定
参考文献[25−26],并修改,准确吸取1.2.4项所配制的LBP溶液2 mL,依次加入9 mmol/L FeSO4溶液、9 mmol/L水杨酸-乙醇溶液、6 mmol/L H2O2溶液各2 mL,混匀,室温反应30 min,在波长510 nm处测得吸光度值A1,同法以蒸馏水代替LBP溶液作为空白对照,测得吸光度值A0,以维生素C作为阳性对照。各样品重复测定3次,取均值,按以下公式计算羟基自由基清除率。
羟基自由基清除率(%)=(A0−A1)A0×100 1.2.4.4 Fe3+还原能力的测定
参考文献[27],并修改,准确吸取1.2.4项所配制的LBP溶液1 mL,分别加入2.5 mL 的pH6.6的PBS溶液和1% K3[Fe(CN)6]溶液,充分混匀,50 ℃水浴反应20 min。依次加10% C2HCl3O2 2.5 mL、蒸馏水2.5 mL、0.1% FeCl3溶液0.5 mL,混匀静置10 min,在波长700 nm条件下测定吸光度值A,以维生素C作为阳性对照。各样品重复测定3次,取均值。
1.2.5 LBP对D-半乳糖诱导衰老小鼠的保护作用
1.2.5.1 动物分组、造模及给药
衰老小鼠模型的建立参考文献[28],并修改。将50只雄性昆明种小鼠适应性饲养一周,随机分为正常组、模型组、阳性组、LBP低剂量组和高剂量组。除正常组外,各组连续每天上午10点腹腔注射D-半乳糖(200 mg/kg),下午5点灌胃LBP溶液,LBP低剂量组灌胃50 mg/kg的溶液,LBP高剂量组灌胃100 mg/kg的溶液,给药剂量参考文献[29],阳性组灌胃100 mg/kg维生素C,正常组和模型组灌胃空白溶剂,共计给药42 d。末次给药后,禁食不禁水12 h,眼眶取血,处死小鼠,取小鼠肝脏、胸腺和脾脏并称重,按照如下公式计算脏器指数。
脏器指数(%)=脏器质量(g)体质量(g)×100 1.2.5.2 生化指标的测定
采集小鼠血液后,于4 ℃ 3000 r/min离心10 min,取血清,分装保存备用。分别取分离后的小鼠肝脏和脑组织,加入4 ℃预冷后的生理盐水,制备组织匀浆液,于4 ℃ 3000 r/min离心10 min,取上清,备用。按照各试剂盒说明书方法分别检测血清、肝匀浆液和脑匀浆液中MDA、SOD、GSH-Px、CAT水平。
1.2.5.3 Western Blot检测小鼠肝脏组织中Nrf-2和HO-1蛋白表达
取约1 g肝脏组织,通过液氮研磨法和核蛋白提取试剂盒提取核蛋白,并BCA法定量,SDS-PAGE凝胶制备试剂盒制备10%的分离胶和5%的浓缩胶,上样,电泳,转膜,封闭2 h,孵育一抗,并过夜,TBST溶液清洗3次,再加入二抗1:1000稀释,TBST溶液清洗3次,用化学发光试剂在Chemi-Doc XRS系统中对免疫条带进行可视化分析,ImageJ软件对蛋白条带灰度值进行分析。
1.3 数据处理
所有实验数据均采用SPSS 22.00及GraphPad Prism 5软件进行分析处理,结果以平均值±标准差(¯x±s)表示,多组间比较采用单因素方差分析,P<0.05具有统计学差异。
2. 结果与分析
2.1 枸杞子粗多糖的提取分离、纯化
枸杞子粗多糖的提取率为8.25%±0.09%,多糖含量为26.83%±1.74%。DEAE-52纤维素柱为阴离子交换柱,经超纯水洗脱后,可制备中性精多糖。枸杞子粗多糖的DEAE-52柱层析洗脱结果见图1,收集洗脱液分组冷冻干燥后得中性精多糖LBP,得率为9.41%±0.66%,LBP多糖含量为86.64%±2.34%。
2.2 LBP抗氧化能力
本研究通过对DPPH自由基、羟基自由基、ABTS+自由基的清除能力和对Fe3+的总还原能力的测定,评价LBP的体外抗氧化活性,并用维生素C作为阳性对照。
由图2可知,随着LBP浓度的增加,其清除能力也不断增强,当浓度达到1 mg/mL时,对DPPH自由基、羟基自由基、ABTS+自由基的清除率分别达到82.64%±1.39%、56.50±2.07%和70.75%±2.36%,对Fe3+的吸光度值为0.8775±0.0293,但其抗氧化能力均极显著小于维生素C(P<0.01)。经过计算可知LBP对DPPH自由基、羟基自由基和ABTS+自由基清除能力的IC50值分别为0.2081±0.0182、0.7132±0.0220和0.3646±0.0138 mg/mL。研究表明,LBP具有较强的体外抗氧化能力。
2.3 LBP对小鼠体质量的影响
体重下降是机体衰老的重要指标之一,可以反映出机体的生长发育情况。为了明确LBP对小鼠体质量的影响,本实验每一周对小鼠称重一次并记录,结果如图3所示。结果显示,在实验开始前,各组小鼠体重无显著差异(P>0.05),在前三周,各组小鼠体质量仍然无显著差异(P>0.05),第四周后,与正常组比较,模型组小鼠体质量显著降低(P<0.05),与模型组相比,各给药组小鼠体质量均无显著差异(P>0.05)。在第五周至第六周,与模型组比较,正常组、阳性组及LBP高剂量组小鼠体质量均显著或极显著增加(P<0.05或P<0.01)。研究表明,LBP具有延缓衰老小鼠体质量下降的作用。
图 3 LBP对小鼠体质量的影响(n=10)注:与正常组比较:#P<0.05,##P<0.01;与模型组比较:*P<0.05,**P<0.01;图4同。Figure 3. Effects of LBP on body weight of mice (n=10)2.4 LBP对小鼠脏器指数的影响
研究报道,腹腔注射D-半乳糖可引发脏器官功能的减弱与免疫功能的失调[30]。脏器指数的变化在一定程度上可以反映出各脏器的衰老程度,是判断机体是否衰老的重要指标,特别是肝脏、脾脏和胸腺器官的萎缩[31]。由表1可知,与正常组比较,模型组小鼠的肝脏、脾脏和胸腺指数均极显著降低(P<0.01),说明D-半乳糖已造成了小鼠主要器官的萎缩,从器官指数上看模型建立成功;给药干预后,与模型组比较,各给药组小鼠的肝脏、脾脏和胸腺指数均有不同程度升高,其中阳性组和LBP高剂量组小鼠均具有统计学差异(P<0.05或P<0.01)。研究表明,LBP在一定程度上能够抑制器官萎缩,从而达到延缓衰老的作用。
表 1 LBP对小鼠脏器指数的影响(n=10)Table 1. Effects of LBP on organ index in mice (n=10)2.5 LBP对小鼠血清、肝脏、脑组织中氧化指标的影响
研究报道,机体的抗氧化能力与机体的健康存在着紧密关系,当机体的抗氧化能力遭受破坏或降低时,就容易引发各种疾病[32]。自由基学说是目前公认衰老的主要学说之一[33]。MDA、SOD、GSH-Px和CAT是目前研究抗氧化中的标志性指标[34]。MDA作为机体脂质过氧化的主要产物,MDA的增多能够反映出组织氧化损伤程度[35],SOD是机体中抗氧化系统中唯一以氧自由基为底物的酶,分布广泛,能够催化超氧阴离子自由基歧化生成氧和过氧化氢[36]。GSH-Px是机体内重要的过氧化物分解酶之一,具有保护细胞膜的结构及功能的作用[37]。CAT广泛存在于组织中,特别是肝脏组织,能够清除体内过氧化氢,从而抑制羟基自由基的生成[37]。
由表2、表3和表4可知,与正常组比较,模型组小鼠血清、肝组织和脑组织中的MDA水平极显著升高(P<0.01),而SOD、GSH-Px和CAT水平均极显著降低(P<0.01);给药干预后,与模型组比较,给药组小鼠血清、肝组织和脑组织中的MDA水平均有不同程度降低,其中阳性组和LBP高剂量组极显著降低(P<0.01),小鼠血清、肝组织和脑组织中SOD、GSH-Px和CAT水平均有不同程度升高,阳性组和LBP高剂量组均显著或极显著升高(P<0.05或P<0.01)。结果表明,LBP能够调节衰老小鼠体内氧化应激反应的发生,这可能与LBP体外较强的抗氧化能力有关。
表 2 LBP对小鼠血清中氧化指标的影响(n=10)Table 2. Effects of LBP on oxidative markers in mouse serum (n=10)组别 剂量(mg/kg) MDA (nmol/L) SOD (U/mL) GSH-Px (U/mL) CAT (U/mL) 正常组 − 10.83±1.84 229.07±23.46 118.52±6.27 58.40±5.59 模型组 − 21.19±3.75## 115.84±11.22## 60.07±11.23## 27.25±8.26## 阳性组 100 12.26±1.82** 205.33±11.01** 106.25±10.18** 44.46±5.49** LBP低剂量组 50 19.32±1.75 120.26±11.38 64.32±8.38 29.41±6.67 LBP高剂量组 100 15.48±1.77** 137.03±18.34* 75.41±10.99* 39.51±5.82** 表 3 LBP对小鼠肝脏组织中氧化指标的影响(n=10)Table 3. Effects of LBP on oxidative markers in mouse liver tissue (n=10)组别 剂量(mg/kg) MDA(nmol/L prot) SOD(U/mL prot) GSH-Px(U/mL prot) CAT(U/mL prot) 正常组 − 16.91±3.11 572.31±44.96 829.84±35.53 120.65±10.41 模型组 − 38.44±4.75## 426.22±34.81## 668.77±34.19## 79.04±6.10## 阳性组 100 22.45±3.52** 525.12±29.34** 787.18±21.24** 111.61±10.24** LBP低剂量组 50 34.84±4.10 435.52±25.33 678.19±46.72 82.38±12.15 LBP高剂量组 100 30.28±3.97** 480.29±40.26* 712.22±15.51** 89.54±5.63* 表 4 LBP对小鼠脑组织中氧化指标的影响(n=10)Table 4. Effects of LBP on oxidative markers in mouse brain tissue (n=10)组别 剂量(mg/kg) MDA(nmol/L prot) SOD(U/mL prot) GSH-Px(U/mL prot) CAT(U/mL prot) 正常组 − 80.69±8.14 108.58±8.22 806.06±51.87 57.26±6.71 模型组 − 184.55±5.53## 58.32±7.17## 550.69±70.09## 23.28±4.39## 阳性组 100 125.11±42.97** 89.26±10.21** 740.84±54.13** 49.39±10.88** LBP低剂量组 50 177.72±5.76 61.40±11.19 617.94±75.79 27.51±6.59 LBP高剂量组 100 165.17±11.17** 69.84±7.25** 643.99±48.19* 36.33±4.01** 2.6 LBP对小鼠肝脏组织中Nrf-2和HO-1蛋白表达的影响
Nrf-2/HO-1信号通路是氧化应激反应的“开关”,调节机体氧化应激动态平衡[38],当机体活性氧(ROS)产生过量时,Nrf-2被激活从细胞质转移至细胞核[39],同时激活抗氧化反应元件(ARE),并诱导下游重要因子HO-1等抗氧化基因的表达[40],因此,Nrf-2/HO-1信号通路被激活可能是预防D-半乳糖诱导衰老的一个潜在机制[41]。由图4可知,与正常组比较,模型组小鼠肝脏组织中Nrf-2和HO-1蛋白表达水平均极显著降低(P<0.01);与模型组比较,阳性组和LBP高剂量组小鼠肝脏组织中Nrf-2蛋白表达水平显著升高(P<0.05),HO-1蛋白在各给药组中均显著或极显著升高(P<0.05或P<0.01)。结果表明,LBP的抗衰老的作用机制与Nrf-2/HO-1信号通路被激活有关。
3. 结论
本研究通过对枸杞子粗多糖提取分离纯化得到中性精多糖LBP,通过体外抗氧化实验,评价LBP的体外活性,同时采用体内小鼠实验评价其抗衰老作用。体外实验结果表明,LBP具有较强的抗氧化能力;动物实验结果表明,LBP高剂量组能够显著升高小鼠血清、肝脏组织和脑组织中SOD、GSH-Px和CAT水平,显著降低MDA水平,同时还能够显著升高肝组织中Nrf-2和HO-1蛋白表达水平(P<0.05或P<0.01)。由此可以推断,LBP对D-半乳糖诱导的衰老小鼠模型具有一定的保护作用,其作用机制可能与激活Nrf-2/HO-1信号通路有关。本研究初步阐明了枸杞子精多糖LBP体外抗氧化活性及抗衰老作用,并对其抗衰老机制进行了初步分析,为枸杞子多糖抗氧化和抗衰老产品的研发提供一定的理论依据。
-
图 3 LBP对小鼠体质量的影响(n=10)
注:与正常组比较:#P<0.05,##P<0.01;与模型组比较:*P<0.05,**P<0.01;图4同。
Figure 3. Effects of LBP on body weight of mice (n=10)
表 1 LBP对小鼠脏器指数的影响(n=10)
Table 1 Effects of LBP on organ index in mice (n=10)
表 2 LBP对小鼠血清中氧化指标的影响(n=10)
Table 2 Effects of LBP on oxidative markers in mouse serum (n=10)
组别 剂量(mg/kg) MDA (nmol/L) SOD (U/mL) GSH-Px (U/mL) CAT (U/mL) 正常组 − 10.83±1.84 229.07±23.46 118.52±6.27 58.40±5.59 模型组 − 21.19±3.75## 115.84±11.22## 60.07±11.23## 27.25±8.26## 阳性组 100 12.26±1.82** 205.33±11.01** 106.25±10.18** 44.46±5.49** LBP低剂量组 50 19.32±1.75 120.26±11.38 64.32±8.38 29.41±6.67 LBP高剂量组 100 15.48±1.77** 137.03±18.34* 75.41±10.99* 39.51±5.82** 表 3 LBP对小鼠肝脏组织中氧化指标的影响(n=10)
Table 3 Effects of LBP on oxidative markers in mouse liver tissue (n=10)
组别 剂量(mg/kg) MDA(nmol/L prot) SOD(U/mL prot) GSH-Px(U/mL prot) CAT(U/mL prot) 正常组 − 16.91±3.11 572.31±44.96 829.84±35.53 120.65±10.41 模型组 − 38.44±4.75## 426.22±34.81## 668.77±34.19## 79.04±6.10## 阳性组 100 22.45±3.52** 525.12±29.34** 787.18±21.24** 111.61±10.24** LBP低剂量组 50 34.84±4.10 435.52±25.33 678.19±46.72 82.38±12.15 LBP高剂量组 100 30.28±3.97** 480.29±40.26* 712.22±15.51** 89.54±5.63* 表 4 LBP对小鼠脑组织中氧化指标的影响(n=10)
Table 4 Effects of LBP on oxidative markers in mouse brain tissue (n=10)
组别 剂量(mg/kg) MDA(nmol/L prot) SOD(U/mL prot) GSH-Px(U/mL prot) CAT(U/mL prot) 正常组 − 80.69±8.14 108.58±8.22 806.06±51.87 57.26±6.71 模型组 − 184.55±5.53## 58.32±7.17## 550.69±70.09## 23.28±4.39## 阳性组 100 125.11±42.97** 89.26±10.21** 740.84±54.13** 49.39±10.88** LBP低剂量组 50 177.72±5.76 61.40±11.19 617.94±75.79 27.51±6.59 LBP高剂量组 100 165.17±11.17** 69.84±7.25** 643.99±48.19* 36.33±4.01** -
[1] GOVINDAN S, JOHNSON E E, CHRISTOPHER J, et al. Antioxidant and anti-aging activities of polysaccharides from Calocybe indica var. APK2[J]. Exp Toxicol Pathol,2016,68(6):329−334. doi: 10.1016/j.etp.2016.04.001
[2] ZHONG W, LIU N, XIE Y, et al. Antioxidant and anti-aging activities of mycelial polysaccharides from Lepista sordida[J]. Int J Biol Macromol,2013,6(18):355−359.
[3] WARRAICH U E, HUSSAIN F, KAYANI H U R. Agin-oxidative stress, antioxidants and computational modeling[J]. Heliyon,2020,6(5):e04107. doi: 10.1016/j.heliyon.2020.e04107
[4] 冯晴霞, 孙艳艳, 孙晶波, 等. 姬松茸多肽对D-半乳糖致衰老小鼠的作用机制[J]. 食品科学技术学报,2023,41(5):58−67. [FENG Q X, SUN Y Y, SUN J B, et al. Mechanism of Agaricus blazei polypeptide on aging mice induced by D-galactose[J]. Journal of Food Science and Technology,2023,41(5):58−67.] doi: 10.12301/spxb202300229 FENG Q X, SUN Y Y, SUN J B, et al. Mechanism of Agaricus blazei polypeptide on aging mice induced by D-galactose[J]. Journal of Food Science and Technology, 2023, 41(5): 58−67. doi: 10.12301/spxb202300229
[5] KUBBEN N, ZHANG W, WANG L, et al. Repression of the antioxidant NRF2 pathway in premature aging[J]. Cell,2016,165(6):1361−1374. doi: 10.1016/j.cell.2016.05.017
[6] QU Y, GUO Y, LI W, et al. The improvement of Coreopsis tinctoria essential oil on learning and memory impairment of D-galactose-induced mice through Nrf2/NF-κB pathway[J]. Front Pharmacol,2022,13:994705. doi: 10.3389/fphar.2022.994705
[7] 国家药典委员会. 中华人民共和国药典[S]. 北京:中国医药科技出版社, 2020:260. [Chinese Pharmacopoeia Commission. Chinese pharmacopoeia[M]. Beijing:China Medical Science Press, 2020:260.] Chinese Pharmacopoeia Commission. Chinese pharmacopoeia[M]. Beijing: China Medical Science Press, 2020: 260.
[8] 程建明, 薛峰, 张云羽, 等. 药食同源产品研发现状、技术关键与对策[J]. 南京中医药大学学报,2023,39(9):814−826. [CHENG J M, XUE F, ZHANG Y Y, et al. Research and development status, technical keys and countermeasures of medicinal and food homologous product[J]. Journal of Nanjing University of Traditional Chinese Medicine,2023,39(9):814−826.] CHENG J M, XUE F, ZHANG Y Y, et al. Research and development status, technical keys and countermeasures of medicinal and food homologous product[J]. Journal of Nanjing University of Traditional Chinese Medicine, 2023, 39(9): 814−826.
[9] NEELAM K, DEY S, SIM R, et al. Fructus lycii:A natural dietary supplement for amelioration of retinal diseases[J]. Nutrients,2021,13(1):246. doi: 10.3390/nu13010246
[10] 冯美玲, 王书芳, 张兴贤. 枸杞子的化学成分研究[J]. 中草药,2013,44(3):265−268. [FENG M L, WANG S F, ZHANG X X. Chemical constituents in fruits of Lycium barbarum[J]. Chinese Traditional and Herbal Drugs,2013,44(3):265−268.] doi: 10.7501/j.issn.0253-2670.2013.03.005 FENG M L, WANG S F, ZHANG X X. Chemical constituents in fruits of Lycium barbarum[J]. Chinese Traditional and Herbal Drugs, 2013, 44(3): 265−268. doi: 10.7501/j.issn.0253-2670.2013.03.005
[11] 孔江波, 朱莹, 张文静, 等. 枸杞子醋酸乙酯部位非生物碱类化学成分研究[J]. 中草药,2021,52(7):1877−1883. [KONG J B, ZHU Y, ZHANG W J, et al. Non-alkaloid constituents from ethyl acetate extract of fruits of Lycium barbarum[J]. Chinese Traditional and Herbal Drugs,2021,52(7):1877−1883.] doi: 10.7501/j.issn.0253-2670.2021.07.003 KONG J B, ZHU Y, ZHANG W J, et al. Non-alkaloid constituents from ethyl acetate extract of fruits of Lycium barbarum[J]. Chinese Traditional and Herbal Drugs, 2021, 52(7): 1877−1883. doi: 10.7501/j.issn.0253-2670.2021.07.003
[12] MA Z F, ZHANG H, TEH S S, et al. Goji berries as a potential natural antioxidant medicine:An insight into their molecular mechanisms of action[J]. Oxid Med Cell Longev,2019,2019:2437397.
[13] 张多强, 辛国军. 枸杞多糖抑制SMMC-7721肝癌细胞的VEGF表达、迁移与侵袭[J]. 中国组织化学与细胞化学杂志,2019,28(1):26−31. [ZHANG D Q, XIN G J. Lycium barbarum polysaccharide inhibits VEGF expression, migration and invasion of SMMC-7721 hepatocellular carcinoma cells[J]. Chinese Journal of Histochemistry and Cytochemistry,2019,28(1):26−31.] ZHANG D Q, XIN G J. Lycium barbarum polysaccharide inhibits VEGF expression, migration and invasion of SMMC-7721 hepatocellular carcinoma cells[J]. Chinese Journal of Histochemistry and Cytochemistry, 2019, 28(1): 26−31.
[14] 潘京一, 杨隽, 潘喜华, 等. 枸杞子抗疲劳与增强免疫作用的实验研究[J]. 上海预防医学杂志,2003,15(8):377−379. [PAN J Y, YANG X, PAN X H, et al. Antifatigue effects and immune function assessment of the fruit of Lyceum barbaruml[J]. Shanghai Journal of Preventive Medicine,2003,15(8):377−379.] PAN J Y, YANG X, PAN X H, et al. Antifatigue effects and immune function assessment of the fruit of Lyceum barbaruml[J]. Shanghai Journal of Preventive Medicine, 2003, 15(8): 377−379.
[15] LI Z Y, LIN L H, LIANG H J, et al. Lycium barbarum polysaccharide alleviates DSS-induced chronic ulcerative colitis by restoring intestinal barrier function and modulating gut microbiota[J]. Ann Med,2023,55(2):2290213. doi: 10.1080/07853890.2023.2290213
[16] TIAN B, ZHAO J, XIE X, et al. Anthocyanins from the fruits of Lycium ruthenicum Murray improve high-fat diet-induced insulin resistance by ameliorating inflammation and oxidative stress in mice[J]. Food Funct,2021,12(9):3855−3871. doi: 10.1039/D0FO02936J
[17] 胡馨予, 卢文倩, 孙晓琪, 等. 宁夏枸杞水提物对四氧嘧啶诱导糖尿病小鼠的降糖作用[J]. 食品与生物技术学报,2019,38(3):91−96. [HU X Y, LU W Q, SUN X Q, et al. Studies on the hypoglycemic activity of Lycium barbarum L. water extracts[J]. Journal of Food Science and Biotechnology,2019,38(3):91−96.] doi: 10.3969/j.issn.1673-1689.2019.03.013 HU X Y, LU W Q, SUN X Q, et al. Studies on the hypoglycemic activity of Lycium barbarum L. water extracts[J]. Journal of Food Science and Biotechnology, 2019, 38(3): 91−96. doi: 10.3969/j.issn.1673-1689.2019.03.013
[18] WANG Z, SUN Q, FANG J, et al. The anti-aging activity of Lycium barbarum polysaccharide extracted by yeast fermentation:In vivo and in vitro studies[J]. Int J Biol Macromol,2022,209(PtB):2032−2041.
[19] 郑慧丽, 华永庆, 刘欣慧, 等. 基于斑马鱼模型的枸杞子改善骨质疏松活性部位筛选及其机制初探[J]. 药学学报,2023,58(1):127−138. [ZHENG H L, HUA Y Q, LIU X H, et al. Screening of active components and preliminary mechanism exploration of Lycii Fructus for improving osteoporosis based on the zebrafish model[J]. Acta Pharmaceutica Sinica,2023,58(1):127−138.] ZHENG H L, HUA Y Q, LIU X H, et al. Screening of active components and preliminary mechanism exploration of Lycii Fructus for improving osteoporosis based on the zebrafish model[J]. Acta Pharmaceutica Sinica, 2023, 58(1): 127−138.
[20] GUO L, GUAN Q, DUAN W, et al. Dietary goji shapes the gut microbiota to prevent the liver injury induced by acute alcohol intake[J]. Front Nutr,2022,9:929776. doi: 10.3389/fnut.2022.929776
[21] 刘杰, 潘晓秋, 周晖, 等. 枸杞多糖的提取及其抗衰老的研究[J]. 中国医院用药评价与分析,2016,16(3):357−359. [LIU J, PAN X Q, ZHOU H, et al. Research on the extraction and anti-aging of Lycium barbarum polysaccharide[J]. Evaluation and Analysis of Drug-Use in Hospitals of China,2016,16(3):357−359.] LIU J, PAN X Q, ZHOU H, et al. Research on the extraction and anti-aging of Lycium barbarum polysaccharide[J]. Evaluation and Analysis of Drug-Use in Hospitals of China, 2016, 16(3): 357−359.
[22] NIU Y, LIAO J, ZHOU H, et al. Flavonoids from Lycium barbarum leaves exhibit anti-aging effects through the redox-modulation[J]. Molecules,2022,27(15):4952−4972. doi: 10.3390/molecules27154952
[23] 聂梅, 黎鹏, 汤静洁, 等. 人参多糖的分离纯化及其对UVB致皮肤损伤的保护作用[J]. 食品工业科技,2023,44(16):412−419. [NIE M, LI P, TANG J J, et al. Separation and purification of ginseng polysaccharide and its protective effect on skin damage by UVB[J]. Science and Technology of Food Industry,2023,44(16):412−419.] NIE M, LI P, TANG J J, et al. Separation and purification of ginseng polysaccharide and its protective effect on skin damage by UVB[J]. Science and Technology of Food Industry, 2023, 44(16): 412−419.
[24] 杨圆慧, 陈若飞, 资璐熙, 等. 滇橄榄核多糖的酶法提取工艺及其抗氧化活性研究[J]. 粮食与油脂,2023,36(11):120−124. [YANG Y H, CHEN R F, ZI L X, et al. Enzymatic extraction technology and antioxidant activity of polysaccharides from Phyllanthus emblica Linn. Kernel[J]. Cereals & Oils,2023,36(11):120−124.] doi: 10.3969/j.issn.1008-9578.2023.11.026 YANG Y H, CHEN R F, ZI L X, et al. Enzymatic extraction technology and antioxidant activity of polysaccharides from Phyllanthus emblica Linn. Kernel[J]. Cereals & Oils, 2023, 36(11): 120−124. doi: 10.3969/j.issn.1008-9578.2023.11.026
[25] 吴静, 顾震, 谢传奇, 等. 油茶果壳多糖纯化工艺及其抗氧化活性研究[J]. 食品工业,2023,44(11):72−76. [WU J, GU Z, XIE C Q, et al. Study on the extraction process and antioxidant activity of polysaccharide from Camellia oleifera fruit shell[J]. The Food Industry,2023,44(11):72−76.] WU J, GU Z, XIE C Q, et al. Study on the extraction process and antioxidant activity of polysaccharide from Camellia oleifera fruit shell[J]. The Food Industry, 2023, 44(11): 72−76.
[26] 王蒙蒙, 崔敬爱. 蹄叶橐吾黄酮提取工艺优化及其抗氧化活性分析[J]. 食品研究与开发,2023,44(20):144−152. [WANG M M, CUI J A. Optimization of extraction process of flavonoids from Ligularia fischeri and analysis of antioxidant activity[J]. Food Research and Development,2023,44(20):144−152.] doi: 10.12161/j.issn.1005-6521.2023.20.020 WANG M M, CUI J A. Optimization of extraction process of flavonoids from Ligularia fischeri and analysis of antioxidant activity[J]. Food Research and Development, 2023, 44(20): 144−152. doi: 10.12161/j.issn.1005-6521.2023.20.020
[27] 李欣, 薛治浦, 朱文学. 丹参不同部位总酚酸和总黄酮含量分析及其抗氧化活性研究[J]. 食品科学,2011,32(3):108−111. [LI X, XUE Z P, ZHU W X. Antioxidant activities and contents of total flavonoids and phenols from different parts of Salvia miltiorrhiza Bunge[J]. Food Science,2011,32(3):108−111.] LI X, XUE Z P, ZHU W X. Antioxidant activities and contents of total flavonoids and phenols from different parts of Salvia miltiorrhiza Bunge[J]. Food Science, 2011, 32(3): 108−111.
[28] 龚朴双, 胡彧, 段长松, 等. 金线莲-苦荞混合提取物对D-半乳糖致衰老小鼠氧化损伤的改善作用[J]. 食品工业科技,2023,44(14):386−395. [GONG B H, HU Y, DUAN C S, et al. Effects of Anoectochilus roxburghii-Fagopyrum tataricum mixed extracts on improving oxidative damage induced by D-galactose in aging mice[J]. Science and Technology of Food Industry,2023,44(14):386−395.] GONG B H, HU Y, DUAN C S, et al. Effects of Anoectochilus roxburghii-Fagopyrum tataricum mixed extracts on improving oxidative damage induced by D-galactose in aging mice[J]. Science and Technology of Food Industry, 2023, 44(14): 386−395.
[29] 王莹. 枸杞多糖的分离纯化及基于对肠道菌群调节的免疫作用机制研究[D]. 北京:北京中医药大学, 2021. [WANG Y. Isolation and purification of Lycium barbarum polysaccharides and its immune mechanism based on the regulation of intestinal flora[D]. Beijing:Beijing University of Chinese Medicine, 2021.] WANG Y. Isolation and purification of Lycium barbarum polysaccharides and its immune mechanism based on the regulation of intestinal flora[D]. Beijing: Beijing University of Chinese Medicine, 2021.
[30] WANG W, LI X, CHEN K, et al. Extraction optimization, characterization and the antioxidant activities in vitro and in vivo of polysaccharide from Pleurotus ferulae[J]. Int J Biol Macromol,2020,160:380−389. doi: 10.1016/j.ijbiomac.2020.05.158
[31] 解小芬, 胡光线, 潘露,等. 黄精提取物改善D-半乳糖所致衰老小鼠器官功能及机制研究[J]. 食品工业科技,2023,44(18):449−457. [XIE X F, HU G X, PAN L, et al. Effect of Polygonatum sibiricum extract in improving the organ function of D-galactose-induced aging mice and its mechanism[J]. Science and Technology of Food Industry,2023,44(18):449−457.] XIE X F, HU G X, PAN L, et al. Effect of Polygonatum sibiricum extract in improving the organ function of D-galactose-induced aging mice and its mechanism[J]. Science and Technology of Food Industry, 2023, 44(18): 449−457.
[32] 李莹, 王莹, 刘琳, 等. 基于Keap1/Nrf2通路探讨补肾健脾开心方对衰老大鼠学习认知能力及脑皮质氧化应激的影响[J]. 北京中医药大学学报,2023,46(9):1250−1257. [LI Y, WANG Y, LIU L, et al. Effect of Bushen Jianpi Kaixin formula on learning and cognitive ability and oxidative stress in the cerebral cortex of aging rats through the Keap1/Nrf2 pathway[J]. Journal of Beijing University of Traditional Chinese Medicine,2023,46(9):1250−1257.] doi: 10.3969/j.issn.1006-2157.2023.09.010 LI Y, WANG Y, LIU L, et al. Effect of Bushen Jianpi Kaixin formula on learning and cognitive ability and oxidative stress in the cerebral cortex of aging rats through the Keap1/Nrf2 pathway[J]. Journal of Beijing University of Traditional Chinese Medicine, 2023, 46(9): 1250−1257. doi: 10.3969/j.issn.1006-2157.2023.09.010
[33] 刘玥辰, 阎星旭, 赵换, 等. 衰老的分子机制及相关代谢组学研究[J]. 天津中医药大学学报,2021,40(2):267−272. [LIU Y C, YAN X X, ZHAO H, et al. Molecular mechanism of aging and related metabolomics research[J]. Journal of Tianjin University of Traditional Chinese Medicine,2021,40(2):267−272.] LIU Y C, YAN X X, ZHAO H, et al. Molecular mechanism of aging and related metabolomics research[J]. Journal of Tianjin University of Traditional Chinese Medicine, 2021, 40(2): 267−272.
[34] 闫建华, 许晓玲, 李荷莲, 等. 铁皮石斛总黄酮对D-半乳糖所致小鼠衰老模型的影响[J]. 中医学报,2021,36(2):366−370. [YAN J H, XU X L, LI H L, et al. Effect of Dendrobium officinale flavonoids on senescent model mice induced by D-galactose[J]. Acta Chinese Medicine,2021,36(2):366−370.] YAN J H, XU X L, LI H L, et al. Effect of Dendrobium officinale flavonoids on senescent model mice induced by D-galactose[J]. Acta Chinese Medicine, 2021, 36(2): 366−370.
[35] 游庭活, 温露, 刘凡. 衰老机制及延缓衰老活性物质研究进展[J]. 天然产物研究与开发,2015,27(11):1985−1990. [YOU T H, WEN L, LIU F, et al. Recent advances on active substances of anti-aging and its mechanisms[J]. Natural Product Research and Development,2015,27(11):1985−1990.] YOU T H, WEN L, LIU F, et al. Recent advances on active substances of anti-aging and its mechanisms[J]. Natural Product Research and Development, 2015, 27(11): 1985−1990.
[36] GUO Y, PAN D, LI H, et al. Antioxidant and immunomodulatory activity of selenium exopolysaccharide produced by Lactococcus lactis subsp. Lactis[J]. Food Chem,2013,138(1):84−89. doi: 10.1016/j.foodchem.2012.10.029
[37] 熊芸雲, 周艳宁, 谢昌材, 等. 海南番木瓜提取物对D-半乳糖所致衰老模型小鼠抗衰老及学习记忆的影响[J]. 海南医学院学报,2022,28(16):1207−1213. [XIONG Y Y, ZHOU Y N, XIE C C, et al. The Hainan papaya extract's effect on anti-aging, learning and memory of aging model mice induced by D-galactose[J]. Journal of Hainan Medical University,2022,28(16):1207−1213.] XIONG Y Y, ZHOU Y N, XIE C C, et al. The Hainan papaya extract's effect on anti-aging, learning and memory of aging model mice induced by D-galactose[J]. Journal of Hainan Medical University, 2022, 28(16): 1207−1213.
[38] YU H, CHEN B, REN Q. Baicalin relieves hypoxia-aroused H9c2 cell apoptosis by activating Nrf2/HO-1-mediated HIF1α/BNIP3 pathway[J]. Artif Cells Nanomed Biotechnol,2019,47(1):3657−3663. doi: 10.1080/21691401.2019.1657879
[39] 申思楠, 牟珍妮, 唐丽, 等. 寿胎丸通过调控Nrf2信号通路减轻人绒毛膜滋养层细胞的氧化损伤治疗复发性流产[J]. 中国实验方剂学杂志,2023,29(3):44−51. [SHEN, X N, MOU Z N, TANG L, et al. Shoutaiwan ameliorates oxidative damage of human chorionic trophoblast cells by regulating Nrf2 signaling pathway to treat recurrent abortion[J]. Chinese Journal of Experimental Traditional Medical Formulae,2023,29(3):44−51.] SHEN, X N, MOU Z N, TANG L, et al. Shoutaiwan ameliorates oxidative damage of human chorionic trophoblast cells by regulating Nrf2 signaling pathway to treat recurrent abortion[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(3): 44−51.
[40] TENG H, ZHANG Y, JIN C, et al. Polysaccharides from steam-processed Polygonatum cyrtonema Hua protect against D-galactose-induced oxidative damage in mice by activation of Nrf2/HO-1 signaling[J]. J Sci Food Agric,2023,103(2):779−791. doi: 10.1002/jsfa.12189
[41] SHA J Y, ZHOU Y D, YANG J Y, et al. Maltol (3-Hydroxy-2-methyl-4-pyrone) slows D-galactose-induced brain aging process by damping the Nrf2/HO-1-mediated oxidative stress in mice[J]. J Agric Food Chem,2019,67(37):10342−10351. doi: 10.1021/acs.jafc.9b04614
-
期刊类型引用(12)
1. 刘帅,荣晓辉,张书锋,屈磊,刘芳,井娟. 纳豆激酶递送系统研究进展. 中国现代应用药学. 2024(09): 1295-1302 . 百度学术
2. 施雅,朱佳妮,赵博,米飞,顾然. 常见发酵食品中生物活性物质对心脏功能影响的研究进展. 食品与发酵科技. 2024(03): 92-98 . 百度学术
3. 祁红兵,宋军霞,毛艳红. 纳豆固体发酵抗氧化功能研究. 农产品加工. 2024(18): 1-4+9 . 百度学术
4. 屈家亮,柳惠平,张佑红. 纳豆激酶研究进展. 武汉工程大学学报. 2024(05): 527-533 . 百度学术
5. 吴丹,杨苗苗,杜小平,祁蒙,杨水云. 依赖于豆粕原材料的纳豆激酶制备和纯化工艺研究. 中国调味品. 2023(03): 79-85 . 百度学术
6. Chunfang Wang,Jinpeng Chen,Wenguo Tian,Yanqi Han,Xu Xu,Tao Ren,Chengwang Tian,Changqing Chen. Natto: A medicinal and edible food with health function. Chinese Herbal Medicines. 2023(03): 349-359 . 必应学术
7. 王刚,王芝玉,安荣荣,滕玉婷,古梅,刘霞,高慧娟,董瑞丽. 固态发酵条件对纳豆激酶活性的影响及发酵条件的优化. 粮食加工. 2023(05): 33-37 . 百度学术
8. 任莉莉,张胜海,程昆木,杨凌鉴,黄九林. 模拟体内环境下血栓形成及药物溶栓作用. 粘接. 2022(02): 1-5 . 百度学术
9. 潘钰,夏海华,叶阳,曲晓军,于冲. 纳豆软胶囊功效成分安全性及免疫功能研究. 中国调味品. 2022(06): 84-89 . 百度学术
10. 洪奕,夏海华,田洁萍,张淑梅,于冲,田缘,闫更轩,潘钰. 响应面法优化豆粕固体发酵产纳豆激酶培养条件. 中国调味品. 2022(08): 41-45 . 百度学术
11. 樊璐,李宏梁,吕名蕊,严烨,黄峻榕. 纳豆糕点的制备及活菌数变化特性的研究. 农产品加工. 2022(15): 15-17+21 . 百度学术
12. 高梦迪,苏钱琙,李杰,樊学晶,王朝阳,邓立高,李坚斌. 纳豆激酶微生物生产研究进展. 大豆科学. 2022(06): 740-746 . 百度学术
其他类型引用(9)