• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

新疆肉苁蓉不同品种与部位间活性成分差异及抗氧化活性分析

陈君然, 朱星宇, 崔瀚元, 邢皓然, 胡云峰, 胡立武, 彭旭阳, 王洁

陈君然,朱星宇,崔瀚元,等. 新疆肉苁蓉不同品种与部位间活性成分差异及抗氧化活性分析[J]. 食品工业科技,2024,45(21):227−233. doi: 10.13386/j.issn1002-0306.2023110047.
引用本文: 陈君然,朱星宇,崔瀚元,等. 新疆肉苁蓉不同品种与部位间活性成分差异及抗氧化活性分析[J]. 食品工业科技,2024,45(21):227−233. doi: 10.13386/j.issn1002-0306.2023110047.
CHEN Junran, ZHU Xingyu, CUI Hanyuan, et al. Variations of Active Ingredients and Antioxidant Activities Analysis of Cistanche deserticola from Different Breeds and Parts in Xinjiang Province[J]. Science and Technology of Food Industry, 2024, 45(21): 227−233. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110047.
Citation: CHEN Junran, ZHU Xingyu, CUI Hanyuan, et al. Variations of Active Ingredients and Antioxidant Activities Analysis of Cistanche deserticola from Different Breeds and Parts in Xinjiang Province[J]. Science and Technology of Food Industry, 2024, 45(21): 227−233. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110047.

新疆肉苁蓉不同品种与部位间活性成分差异及抗氧化活性分析

基金项目: 新疆维吾尔自治区重点研发任务专项(2022B02030)。
详细信息
    作者简介:

    陈君然(1984−),男,博士,讲师,研究方向:农产品保鲜加工研究,E-mail:junran2876@126.com

    通讯作者:

    崔瀚元(1983−),男,硕士,助理研究员,研究方向:农产品加工,E-mail:283935986@qq.com

  • 中图分类号: TS201.4

Variations of Active Ingredients and Antioxidant Activities Analysis of Cistanche deserticola from Different Breeds and Parts in Xinjiang Province

  • 摘要: 本文评估了新疆和田策勒县梭梭肉苁蓉、红柳肉苁蓉的不同部位的活性成分含量及抗氧化能力。结果表明:红柳肉苁蓉的总多酚、总黄酮、总糖、毛蕊花糖苷含量均表现为下部含量最高,中部、上部含量递减。其中红柳肉苁蓉下部的总多酚、总黄酮含量(38.35 mg GAE/g DW、35.61 mg RE/g DW)分别为梭梭肉苁蓉下部的2.47、10.95倍。梭梭上部松果菊苷含量在两种肉苁蓉不同部位中最高,为92.93 mg/g DW,两种肉苁蓉下部总三萜含量显著高于上部、中部(P<0.05),梭梭下部总三萜最多,为6.75 mg OAE/g DW。此外,梭梭肉苁蓉和红柳肉苁蓉均表现出较强的抗氧化性,并且肉苁蓉下部的抗氧化效果最好,其IC50 DPPH分别为7.15和5.95 mg/mL,IC50 ABTS+分别为5.19和3.28 mg/mL。相关性分析表明,肉苁蓉中的总多酚、总黄酮、原花青素、总糖、毛蕊花糖苷含量与IC50 DPPH和IC50 ABTS+呈负相关。结果表明,梭梭肉苁蓉上部的松果菊苷含量丰富,红柳肉苁蓉下部的总多酚、总黄酮、总糖、毛蕊花糖苷含量丰富且高于梭梭肉苁蓉对应部位。本文可以为不同产地肉苁蓉标准化及功能性产品深度研发提供理论基础。
    Abstract: In this paper, the content of active ingredients and antioxidant capacity of different parts of Hoxylon and Red Willow Cistanche deserticola, from Hotan Cele County, Xinjiang, were evaluated. The results showed that the active substances, including total phenols, total flavonoids, total sugars, and verbascoside of Red Willow Cistanche deserticola, were the highest in the lower part of the plant, and decreased in the middle and upper parts. In terms of total phenols and total flavonoids, the contents of the lower part of Red Willow Cistanche deserticola (38.35 mg GAE/g DW, 35.61 mg RE/g DW) were 2.47 and 10.95 times compared to the lower part of Hoxylon Cistanche deserticola, respectively. The upper part of Hoxylon Cistanche deserticola showed the highest content of echinacoside with 92.93 mg/g DW. And the total triterpene content of the lower part-especially that of Hoxylon Cistanche deserticola was significantly higher than the upper and middle part (P<0.05), at 6.75 mg OAE/g DW. In addition, it was found that the antioxidant properties of both Hoxylon and Red Willow Cistanche deserticola were strong, and the highest antioxidant capacity was observed in their lower parts (IC50 DPPH: 7.15 and 5.95 mg/mL; IC50 ABTS+: 5.19 and 3.28 mg/mL, respectively). As shown in the correlation analysis, the contents of total polyphenols, total flavonoids, proanthocyanidins, total sugars, and verbascoside in Cistanche deserticola were negatively correlated with IC50 DPPH and IC50 ABTS+. The results demonstrated that the content of echinacoside was the most abundant in the upper part of Hoxylon Cistanche deserticola. And the lower part of Red Willow Cistanche deserticola was rich in total polyphenols, total flavonoids, total sugars and verbascoside, compared to the corresponding part of Hoxylon Cistanche deserticola. This paper lays the theoretical groundwork for the standardization and in-depth development of functional products derived from Cistanche deserticola from various regions.
  • 肉苁蓉作为中国名贵的药食同源食物之一,在《中国药典》中记录为列当科植物肉苁蓉或管花肉苁蓉干燥带鳞叶的肉质茎[1]。其中,梭梭肉苁蓉寄生在藜科植物梭梭的根部,红柳肉苁蓉寄生在怪柳科植物红柳的根部[23]。肉苁蓉作为一种非光合作用的寄生型植物,对生长环境的适应性强,在沙地、河床、盐碱地等胁迫条件下均能生长[4]。新疆和田作为人工种植肉苁蓉的主产区之一,肉苁蓉年产量可达8000吨,供应全国市场90%以上[56]

    现有研究表明,苯乙醇苷类、多糖、环烯醚萜类等是肉苁蓉的主要化学成分[7],有报道称其中的苯乙醇苷类化合物具有抗氧化、调节肠道菌群[8]、免疫、护肝[910]和神经保护功能[1112]。FENG等[13]发现肉苁蓉总糖苷可抑制HepG2细胞线粒体呼吸和糖酵解功能,增加ROS水平,抑制细胞增殖。QI等[14]研究发现肉苁蓉中的苯乙醇苷类物质可以抑制肿瘤生长并诱导肿瘤组织凋亡和自噬。BAI等[15]发现肉苁蓉水提物可以减少炎症、氧化应激和细胞凋亡来减轻庆大霉素引起的大鼠肾功能障碍和结构损伤。肉苁蓉除了针对性治愈某些疾病,也被添加到茶、固体饮料、酒[16]中作为保健食品食用[17]。保健食品市场的飞速发展带动下肉苁蓉的需求量也随之增多。

    由于寄主数量减少以及野生肉苁蓉资源的稀缺,限制了肉苁蓉在市场上的推广[18]。因此,人工种植肉苁蓉成为了解决肉苁蓉资源稀缺问题的关键。但肉苁蓉受不同地理位置的气候、土壤条件及自身生长发育等因素影响,不同产地及不同部位活性成分会存在一定差异,难于区分其品质优劣。基于此,本文以新疆策勒的梭梭肉苁蓉、红柳肉苁蓉为研究对象,重点分析测定了该产区不同寄主肉苁蓉、不同部位的活性成分含量并评价其抗氧化能力,以此为肉苁蓉的深加工与产品研发提供理论支撑。

    梭梭肉苁蓉、红柳肉苁蓉 均产于新疆和田策勒县,挑选外皮无损伤的肉苁蓉,清洗后平均分成三部分,命名为上部、中部、下部。将切分后的肉苁蓉冻干,打粉后过60目筛,装入密封袋中于4 ℃环境储存备用;没食子酸、芦丁、原花青素、齐墩果酸、无水葡萄糖、毛蕊花糖苷、松果菊苷 标准品,上海源叶生物科技有限公司;甲醇、甲酸 国药集团化学试剂有限公司;甲醇、甲酸为色谱纯,其余试剂均为分析纯。

    PL203/01电子分析天平 梅特勒-托利多仪器(上海)有限公司;TGL-16M台式高速冷冻离心机 德国Eppendorf公司;DK-98-1型电热恒温水浴锅 天津泰斯特有限公司;M200酶标仪 奥地利Fecan公司;Agilent-1260 infinityⅡ高效液相色谱系统 美国安捷伦公司;FD-1A-50真空冷冻干燥机 北京博医康实验仪器有限公司;TU-1810型紫外可见分光光度计 北京普析通用仪器有限责任公司;康拜恩冰箱 广东科龙电器股份有限公司;SYU-10-300DT超声清洗机 郑州生元仪器有限公司。

    采用福林酚法[19]测定总多酚含量。样品液配制:称取0.3 g样品,加入30 mL70%乙醇,经250 W超声提取30 min,4000 r/min离心10 min,取上清液稀释10倍供后续成分测定备用。取1.0 mL样品液,加入5.0 mL蒸馏水与1.0 mL福林酚试剂,充分混合后,再加入3.0 mL 7.5%碳酸钠溶液,避光静置30 min,记录760 nm下的吸光度值,带入标准曲线y=0.018x−0.0079,R2=0.9969计算总多酚含量,结果以没食子酸当量表示(mg GAE/g DW)。

    参考晏俊玲等[20]的方法。取样品液1.0 mL,加入0.4 mL 5%的NaNO2静置6 min,加入0.4 mL 10%的Al(NO)3,静置6 min,最后加入4.0 mL 4%的NaOH,补充70%的乙醇溶液至10 mL,静置10 min。在505 nm下测定吸光度值,带入标准曲线y=0.0069x−0.0024,R2=0.9991计算总黄酮含量,以芦丁当量表示(mg RE/g DW)。

    采用苯酚硫酸法[21]测定总糖含量,取肉苁蓉样品以蒸馏水配制成0.1 mg/mL的溶液,取样液2.0 mL,加入1 mL苯酚溶液,缓慢加入5.0 mL浓硫酸,混匀后,100 ℃水浴30 min,冷却至室温后于490 nm波长处测定吸光度值,蒸馏水作为空白对照。带入标准曲线y=0.0082x−0.002,R2=0.9993计算总糖含量,结果以无水葡萄糖当量表示(mg DE/g DW)。

    参考江绍琳等[22]的方法,取0.4 mL样品液于试管中,热水浴蒸干后,冷却至室温,加入0.4 mL 5%的香草醛-冰醋酸以及1.6 mL的高氯酸溶液,60 ℃水浴15 min,冷却后加入5.0 mL乙酸乙酯,混匀后静置15 min,于560 nm下测定吸光度值,带入标准曲线y=0.048x+0.00766,R2=0.9963 计算总三萜含量,结果以齐墩果酸当量表示(mg OAE/g DW)。

    采用香草醛-盐酸法[23]。取0.5 mL样品液,加入3.0 mL的4%香草醛-甲醇溶液和1.5 mL的浓盐酸,室温反应10 min后于500 nm处测定吸光度值,带入标准曲线y=0.422x+0.0812,R2=0.9993计算花青素含量,结果以原花青素当量表示(mg PCE/g DW)。

    参考《中华人民共和国药典》[1](第一部)中肉苁蓉项目下的方法测定肉苁蓉中松果菊苷和毛蕊花糖苷含量。色谱柱:Alltima C18 柱(4.6 mm×250 mm,5 μm);流动相:甲醇溶液(A)-0.1%甲酸溶液(B);洗脱程序为:0~17 min,26.5%A:73.5%B;17~20 min,29.5%A:70.5%B;20~37 min,29.5%A:70.5%B,柱温25 ℃,流速为1.00 mL/min;检测波长为330 nm;进样量为10 μL。以物质浓度为横坐标,相应的峰面积为纵坐标,得出松果菊苷的标准曲线y=17395.5x−11283.4,R2=0.9999,毛蕊花糖苷的标准曲线y=13663.1x−15072.6,R2=0.9998。

    参考SONG等[24]的方法。样液的配制:取1.2 g样品,以无水乙醇为提取溶剂,在250 W超声装置中超声40 min,后于4500 r/min条件下离心15 min后配制成40 mg/mL的样液,留上清液备用。将上清液用无水乙醇稀释成3、5、10、20、30、40 mg/mL供后续测定使用。测定方法:在96孔板中加入50 μL样液及DPPH溶液 200 μL,混匀后避光反应30 min,在517 nm波长处测定吸光度。

    DPPH(%)=(1A1A2A0)×100
    (1)

    式中:A0为乙醇与DPPH溶液的吸光值;A1为样液与DPPH溶液的吸光值;A2为蒸馏水与样液的吸光值。

    参考LI等[25]的方法。将7 mmol/L的ABTS母液与2.45 mmol/L的过硫酸钾按1:1混合后,于黑暗环境下放置12~16 h,使用前用无水乙醇稀释至在735 nm处吸光度为0.7±0.20,即为ABTS工作液。在96孔板中加入50 μL样液及ABTS工作液200 μL,混匀后室温反应10 min,在735 nm波长处测定吸光度。

    ABTS+(%)=(1A1A2A0)×100
    (2)

    式中:A0为乙醇与ABTS+溶液的吸光值;A1为样液与ABTS+溶液的吸光值;A2为蒸馏水与样液的吸光值。

    所有实验均重复三次进行,结果表示为平均值±标准差。使用GraphPad Prism 9.5和SPSS Statistics 27软件进行作图与数据分析,使用单因素方差分析对结果进行分析。

    酚类化合物是植物次生代谢产物中的一类生物活性物质,其广泛存在于植物中。如图1所示,从不同部位活性成分差异分析来看,梭梭肉苁蓉各部位总多酚含量差异显著(P<0.05),红柳肉苁蓉各部位总多酚含量则无显著差异,其中梭梭肉苁蓉上部总多酚含量最高为27.90 mg GAE/g DW,梭梭肉苁蓉中部总多酚含量最低为14.43 mg GAE/g DW。从品种间活性成分差异分析来看,红柳肉苁蓉各部位总多酚含量较高,其上、中、下各部位总多酚含量分别是梭梭肉苁蓉相应部位的1.36、2.66、2.47倍。

    图  1  肉苁蓉不同品种及部位的总多酚含量
    注:图中不同字母表示组间差异显著(P<0.05);图2~图9同。
    Figure  1.  Total polyphenol content of different species and parts of Cistanche deserticola

    图2为梭梭、红柳肉苁蓉不同部位总黄酮含量。由图可知,红柳肉苁蓉上部、中部、下部的总黄酮含量存在显著差异(P<0.05)。红柳下部总黄酮含量为35.61 mg RE/g DW,分别是红柳中、上部的1.66、3.30倍。而梭梭肉苁蓉上、中、下部总黄酮含量分别为3.25、1.99、2.52 mg RE/g DW,且均显著低于红柳肉苁蓉相应部位的总黄酮含量(P<0.05)。分析原因可能是肉苁蓉不同部位成分的差异可能与肉苁蓉的寄主有关,也可能是受种植土壤的微生物群落、矿物质含量影响[26]。牛玉清等[27]对新疆塔克拉玛干沙漠6个产地的管花肉苁蓉的成分含量进行了分析,发现肉苁蓉根部中的总多酚、总黄酮含量显著高于中部、上部。这与本文研究结果一致。

    图  2  肉苁蓉不同品种及部位的总黄酮含量
    Figure  2.  Total flavonoid content of different species and parts of Cistanche deserticola

    图3表明,红柳肉苁蓉上、中、下部总糖含量存在显著差异(P<0.05),上、中、下部总糖含量依次升高,分别为56.00、61.11、72.10 mg DE/g DW。梭梭肉苁蓉不同部位间总糖含量差异不显著,含量为14.16~15.70 mg DE/g DW,且各部位总糖含量均显著低于红柳肉苁蓉相应部位总糖含量(P<0.05)。

    图  3  肉苁蓉不同品种及部位的总糖含量
    Figure  3.  Total sugar content of different species and parts of Cistanche deserticola

    图4可知,两种样品下部位的总三萜含量均显著高于中部和上部(P<0.05),其中梭梭下部总三萜含量最高为6.75 mg OAE/g DW。红柳下部的总三萜含量(4.59 mg OAE/g DW)分别是中部、上部的1.18、1.13倍。从各部位总三萜含量可以看出,梭梭肉苁蓉总三萜含量显著高于红柳肉苁蓉(P<0.05)。

    图  4  肉苁蓉不同品种及部位的总三萜含量
    Figure  4.  Total triterpene content of different species and parts of Cistanche deserticola

    图5所示,梭梭与红柳样品不同部位间的原花青素含量均存在着显著差异(P<0.05)。梭梭肉苁蓉各部位原花青素含量为:梭梭下部(0.546 mg PCE/g DW)>梭梭上部(0.423 mg PCE/g DW)>梭梭中部(0.233 mg PCE/g DW);红柳肉苁蓉各部位原花青素含量为:红柳下部(0.498 mg PCE/g DW)>红柳中部(0.447 mg PCE/g DW)>红柳上部(0.352 mg PCE/g DW);梭梭肉苁蓉除中部原花青素含量显著低于红柳肉苁蓉外,其余部位原花青素含量均显著高于红柳肉苁蓉(P<0.05)。

    图  5  肉苁蓉不同品种及部位的原花青素含量
    Figure  5.  Proanthocyanidin content of different species and parts of Cistanche deserticola

    图6表明,红柳样品的毛蕊花糖苷含量显著高于梭梭样品(P<0.05),红柳样品和梭梭样品各部位间的毛蕊花糖苷含量差异明显,含量由高到低依次为:红柳下部(265.81 mg/g DW)>红柳中部(168.39 mg/g DW)>红柳上部(61.76 mg/g DW)>梭梭下部(59.74 mg/g DW)>梭梭上部(55.06 mg/g DW)>梭梭中部(35.89 mg/g DW)。

    图  6  肉苁蓉不同品种及部位的毛蕊花糖苷含量
    Figure  6.  Verbascoside content of different species and parts of Cistanche deserticola

    图7为肉苁蓉不同部位的松果菊苷含量。各样品间松果菊苷含量差异也较显著(P<0.05),梭梭肉苁蓉上部松果菊苷含量最高、下部最低,红柳肉苁蓉松果菊苷含量则与之相反,其中梭梭肉苁蓉上部松果菊苷含量最高为92.93 mg/g DW,分别是红柳肉苁蓉各部位(40.78~57.68 mg/g DW)的2.27、2.11、1.61倍;但梭梭肉苁蓉中部和下部松果菊苷含量显著低于红柳肉苁蓉中部和下部松果菊苷含量(P<0.05)。

    图  7  肉苁蓉不同品种及部位的松果菊苷含量
    Figure  7.  Echinacoside content of different species and parts of Cistanche deserticola

    赵岩等[28]对青海管花肉苁蓉不同部位的松果菊苷和毛蕊花糖苷含量进行测定发现,样品根部的毛蕊花糖苷(13.31 mg/g DW)、松果菊苷(79.12 mg/g DW)显著高于中部和顶部。向铃等[29]采用高效液相色谱法对荒漠肉苁蓉、管花肉苁蓉中的毛蕊花糖苷、松果菊苷含量进行了分析,发现管花肉苁蓉含量多于荒漠肉苁蓉,并提出样品的体态和生长年限也可导致成分含量的差异。刘海民等[30]收集不同产地的荒漠肉苁蓉并将样品划分成根部、中部、顶部并分析毛蕊花糖苷和松果菊苷含量,结果表明不同产地样品的成分含量有显著差异,其中根部的毛蕊花糖苷成分含量最为丰富,样品顶部含量最少,松果菊苷含量则相反。这与本文研究结果一致。

    使用DPPH法与ABTS+法来评价两种肉苁蓉各部位的抗氧化活性。由图8可见,两种肉苁蓉均表现出一定的DPPH自由基清除能力,红柳肉苁蓉的清除能力较强。红柳肉苁蓉上、中、下部位的IC50值分别为9.94、6.57和5.95 mg/mL。梭梭肉苁蓉也表现出较好的自由基清除能力,梭梭下部IC50值为7.15 mg/mL,梭梭上部、中部的清除能力最弱(IC50值分别为12.14、10.32 mg/mL)。

    图  8  肉苁蓉不同品种及部位的DPPH自由基清除率(IC50
    Figure  8.  DPPH radical scavenging rate (IC50) of different species and parts of Cistanche deserticola

    图9所示,两种肉苁蓉对ABTS+自由基的清除能力有显著差异(P<0.05)。红柳肉苁蓉中部、下部的清除能力最强,IC50值分别为3.53、3.28 mg/mL,表明红柳肉苁蓉有较强的ABTS+自由基清除活性。梭梭中、下部(IC50值分别为5.42、5.19 mg/mL)与红柳中、下部差异显著(P<0.05),梭梭上部的清除能力最弱,其IC50值为6.81 mg/mL,表明梭梭肉苁蓉对ABTS+自由基清除能力弱于红柳肉苁蓉。

    图  9  肉苁蓉不同品种及部位的ABTS+自由基清除率(IC50
    Figure  9.  ABTS+ radical scavenging rate (IC50) of different species and parts of Cistanche deserticola

    图10所示,总多酚含量与总糖含量呈显著正相关(P<0.05),与总三萜含量呈显著负相关(P<0.05);总黄酮含量与总糖含量、毛蕊花糖苷含量分别呈显著正相关(P<0.05)和极显著正相关(P<0.01);毛蕊花糖苷含量与总糖含量呈显著正相关(P<0.05);IC50 ABTS+与毛蕊花糖苷含量呈显著负相关(P<0.05);IC50 DPPH、IC50 ABTS+与总多酚含量、总黄酮含量、原花青素含量、总糖含量、毛蕊花糖苷含量均呈负相关,表明肉苁蓉抗氧化活性受总多酚含量、总黄酮含量、原花青素含量、总糖含量、毛蕊花糖苷含量影响。

    图  10  肉苁蓉活性成分与抗氧化能力的相关性分析
    注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。
    Figure  10.  Correlation analysis between active components and antioxidant capacity of Cistanche deserticola

    本研究对新疆和田地区收获的不同品种肉苁蓉的不同部位的活性成分进行比较分析,结果表明,不同品种肉苁蓉的不同部位中活性成分含量均较为丰富。红柳肉苁蓉下部的总黄酮、总糖、毛蕊花糖苷含量最高,中部、上部的含量依次递减,梭梭肉苁蓉下部的总三萜、原花青素以及上部的松果菊苷含量最多,红柳肉苁蓉总多酚含量整体高于梭梭肉苁蓉。刘海民等[30]对不同产地荒漠肉苁蓉不同部位的活性成分进行测定,分析发现荒漠肉苁蓉根部的总多酚、总黄酮、总三萜含量相对丰富于中部、上部。赵岩等[28]在对管花肉苁蓉的研究中也发现了相似的结果,这也与本文的研究结果一致。此外,先前的研究表明,日照时间及温度对果蔬中糖含量的积累起重要作用[3133],新疆和田地区作为典型的内陆干旱区,属于荒漠性气候,昼夜温差极大,平均可达32.7 ℃[34]。独特的环境条件促使果蔬中糖含量的提升,这也是本文中肉苁蓉糖含量丰富的原因。原花青素广泛存在于自然界中,与果蔬、花卉的颜色相关联,一般聚集在植物的果实、种子中,根、茎、叶中含量较少[3536]。本研究使用的梭梭、红柳两种肉苁蓉切片后,由两种肉苁蓉切片颜色来看均为白色,不具有高原花青素含量果蔬的特征,可见两种肉苁蓉不同部位的原花青素含量较少。此外,姬晓惠等[37]采集新疆古尔班通古特沙漠的肉苁蓉样品,分为茎上部、茎中部、茎下部,分析发现茎上部的松果菊苷含量最多,茎下部的毛蕊花糖苷含量相对丰富。本研究中,红柳肉苁蓉的毛蕊花糖苷含量整体高于梭梭肉苁蓉,而梭梭肉苁蓉上部的松果菊苷含量显著高于其他部位(P<0.05),这与前人的结果一致。推测与肉苁蓉的生长及营养成分运输、寄主植物的特性有关,但具体机制仍需进一步研究。

    综上,本文研究了新疆梭梭肉苁蓉、红柳肉苁蓉两个品种不同部位的活性成分及其抗氧化能力,结果表明,红柳肉苁蓉总多酚、总黄酮、总糖、毛蕊花糖苷含量与梭梭肉苁蓉相比更为丰富,均是在红柳肉苁蓉的下部含量最多,中部、上部含量则依次递减。梭梭肉苁蓉总三萜、松果菊苷含量总体较红柳肉苁蓉高,其中梭梭肉苁蓉下部含总三萜最多、上部含松果菊苷最多。此外,两种肉苁蓉的不同部位均能表现出较好的自由基清除能力,其中下部的清除能力强于其他部位。本研究可以为新疆人工种植肉苁蓉食品的深加工与研发提供参考。

  • 图  1   肉苁蓉不同品种及部位的总多酚含量

    注:图中不同字母表示组间差异显著(P<0.05);图2~图9同。

    Figure  1.   Total polyphenol content of different species and parts of Cistanche deserticola

    图  2   肉苁蓉不同品种及部位的总黄酮含量

    Figure  2.   Total flavonoid content of different species and parts of Cistanche deserticola

    图  3   肉苁蓉不同品种及部位的总糖含量

    Figure  3.   Total sugar content of different species and parts of Cistanche deserticola

    图  4   肉苁蓉不同品种及部位的总三萜含量

    Figure  4.   Total triterpene content of different species and parts of Cistanche deserticola

    图  5   肉苁蓉不同品种及部位的原花青素含量

    Figure  5.   Proanthocyanidin content of different species and parts of Cistanche deserticola

    图  6   肉苁蓉不同品种及部位的毛蕊花糖苷含量

    Figure  6.   Verbascoside content of different species and parts of Cistanche deserticola

    图  7   肉苁蓉不同品种及部位的松果菊苷含量

    Figure  7.   Echinacoside content of different species and parts of Cistanche deserticola

    图  8   肉苁蓉不同品种及部位的DPPH自由基清除率(IC50

    Figure  8.   DPPH radical scavenging rate (IC50) of different species and parts of Cistanche deserticola

    图  9   肉苁蓉不同品种及部位的ABTS+自由基清除率(IC50

    Figure  9.   ABTS+ radical scavenging rate (IC50) of different species and parts of Cistanche deserticola

    图  10   肉苁蓉活性成分与抗氧化能力的相关性分析

    注:*表示显著相关(P<0.05),**表示极显著相关(P<0.01)。

    Figure  10.   Correlation analysis between active components and antioxidant capacity of Cistanche deserticola

  • [1] 国家药典委员会. 中国药典[M]. 北京:中国医药科技出版社, 2020. [National Pharmacopoeia Committee. Chinese pharmacopoeia[M]. Beijing:China Medical Science and Technology Press, 2020.]

    National Pharmacopoeia Committee. Chinese pharmacopoeia[M]. Beijing: China Medical Science and Technology Press, 2020.

    [2] 张艳文, 韩文凯, 娜仁, 等. 肉苁蓉及一种常见地方习用品的生药学研究[J]. 时珍国医国药,2023,34(7):1652−1656. [ZHANG Y W, HAN W K, NA R, et al. Pharmacognosy study of Cistanche and a common local practice[J]. Shi Zhen Chinese Medicine,2023,34(7):1652−1656.] doi: 10.3969/j.issn.1008-0805.2023.07.28

    ZHANG Y W, HAN W K, NA R, et al. Pharmacognosy study of Cistanche and a common local practice[J]. Shi Zhen Chinese Medicine, 2023, 34(7): 1652−1656. doi: 10.3969/j.issn.1008-0805.2023.07.28

    [3] 彭旭阳, 陈君然, 崔瀚元, 等. 基于GC-IMS分析新疆不同寄主肉苁蓉挥发性物质[J]. 食品工业科技,2024,45(9):272−279. [PENG X Y, CHEN J R, CUI H Y, et al. Analysis of volatile substances in different host Cistanche in Xinjiang based on GC-IMS[J]. Science and Technology of Food Industry,2024,45(9):272−279.]

    PENG X Y, CHEN J R, CUI H Y, et al. Analysis of volatile substances in different host Cistanche in Xinjiang based on GC-IMS[J]. Science and Technology of Food Industry, 2024, 45(9): 272−279.

    [4]

    SUN X, ZHANG L, PEI J, et al. Regulatory relationship between quality variation and environment of in three ecotypes based on soil microbiome analysis[J]. Scientific Reports,2020,10(1):6662. doi: 10.1038/s41598-020-63607-2

    [5] 吴明, 沈飞. 新疆肉苁蓉产业发展现状及对策[J]. 新疆林业,2022(3):24−26. [WU M, SHEN F. Industry development status and countermeasures of Cistanche in Xinjiang[J]. Xinjiang Forestry,2022(3):24−26.] doi: 10.3969/j.issn.1005-3522.2022.03.010

    WU M, SHEN F. Industry development status and countermeasures of Cistanche in Xinjiang[J]. Xinjiang Forestry, 2022(3): 24−26. doi: 10.3969/j.issn.1005-3522.2022.03.010

    [6] 尼加提·图尔迪麦麦提, 米合热古丽·库尔班, 马挺军. 肉苁蓉的资源概括和营养保健特性研究进展[J]. 食品工业,2023,44(10):280−283. [NIGATI T E D M T, MIHEZEGURI K E B, MA T J. Review on resources and nutritional and health properties of Cistanche deserticola[J]. Food Industry,2023,44(10):280−283.]

    NIGATI T E D M T, MIHEZEGURI K E B, MA T J. Review on resources and nutritional and health properties of Cistanche deserticola[J]. Food Industry, 2023, 44(10): 280−283.

    [7]

    WANG F, ZHUO B, WANG S, et al. Atriplex canescens:A new host for Cistanche deserticola[J]. Heliyon,2021,7(6):e07368. doi: 10.1016/j.heliyon.2021.e07368

    [8]

    LI Y, ZHANG Y, SU X, et al. Effects of two kinds of extracts of Cistanche deserticola on intestinal microbiota and its metabolism[J]. Foods,2022,11(18):2897. doi: 10.3390/foods11182897

    [9] 王富江, 屠鹏飞, 曾克武, 等. 荒漠肉苁蓉总苷对酒精性肝损伤小鼠的保护作用研究[J]. 药学学报,2021,56(9):2528−2535. [WANG F J, TU P F, ZENG K W, et al. Protective effect of total Cistanche glycosides on alcoholic liver injury in mice[J]. Acta Pharmacologica Sinica,2021,56(9):2528−2535.]

    WANG F J, TU P F, ZENG K W, et al. Protective effect of total Cistanche glycosides on alcoholic liver injury in mice[J]. Acta Pharmacologica Sinica, 2021, 56(9): 2528−2535.

    [10]

    WANG H C, LI Y Y, BIAN Y F, et al. Potential hepatoprotective effects of Cistanche deserticola Y. C. Ma:Integrated phytochemical analysis using UPLC-Q-TOF-MS/MS, target network analysis, and experimental assessment[J]. Frontiers in Pharmacology,2022,13:1018572. doi: 10.3389/fphar.2022.1018572

    [11] 王璐, 白雨朦, 李晓宇, 等. 肉苁蓉总苷对阿尔茨海默病模型大鼠学习认知功能和氧化应激的影响[J]. 解剖学杂志,2020,43(3):194−199,275. [WANG L, BAI Y M, LI X Y, et al. Effects of total Cistanche glycosides on learning cognitive function and oxidative stress in Alzheimer's disease model rats[J]. Journal of Anatomy,2020,43(3):194−199,275.] doi: 10.3969/j.issn.1001-1633.2020.03.004

    WANG L, BAI Y M, LI X Y, et al. Effects of total Cistanche glycosides on learning cognitive function and oxidative stress in Alzheimer's disease model rats[J]. Journal of Anatomy, 2020, 43(3): 194−199,275. doi: 10.3969/j.issn.1001-1633.2020.03.004

    [12]

    CHOI J G, MOON M, JEONG H U, et al. Cistanches Herba enhances learning and memory by inducing nerve growth factor[J]. Behav Brain Res,2011,216(2):652−628. doi: 10.1016/j.bbr.2010.09.008

    [13]

    FENG D, ZHOU S Q, ZHOU Y X, et al. Effect of total glycosides of Cistanche deserticola on the energy metabolism of human HepG2 cells[J]. Front Nutr,2023,10:1117364. doi: 10.3389/fnut.2023.1117364

    [14]

    QI X, HOU X, SU D, et al. Effect of phenylethanol glycosides from Cistanche tubulosa on autophagy and apoptosis in H22 tumor-bearing mice[J]. Evid Based Complement Alternat Med,2022,2022:3993445.

    [15]

    BAI R, FAN J, WANG Y, et al. Protective effect of Cistanche deserticola on gentamicin-induced nephrotoxicity in rats[J]. Chin Herb Med,2023,15(1):102−109.

    [16] 李建辉, 黄家扬, 卫世乾. 复方肉苁蓉保健酒的制备工艺研究[J]. 河南农业,2023(15):60−61. [LI J H, HUANG J Y, WEI S Q. Study on preparation technology of compound Cistanche health wine[J]. Henan Agriculture,2023(15):60−61.]

    LI J H, HUANG J Y, WEI S Q. Study on preparation technology of compound Cistanche health wine[J]. Henan Agriculture, 2023(15): 60−61.

    [17]

    XU R, CHEN J, CHEN S L, et al. Ma cultivated as a new crop in China[J]. Genetic Resources and Crop Evolution,2009,56(1):137−142. doi: 10.1007/s10722-008-9383-1

    [18]

    JIANG L, ZHOU B, WANG X, et al. The quality monitoring of Cistanches Herba (Cistanche deserticola Ma):A value chain perspective[J]. Front Pharmacol,2021,12:782962. doi: 10.3389/fphar.2021.782962

    [19] 刘琦. 大孔树脂对短梗五加多酚的纯化效果及多酚的抗疲劳作用研究[J]. 保鲜与加工,2020,20(4):171−177. [LIU Q. Purification effect of macroporous resin on Acanthopanax sessiliflorus polyphenols and anti-fatigue effect of polyphenols[J]. Preservation and Processing,2020,20(4):171−177.] doi: 10.3969/j.issn.1009-6221.2020.04.027

    LIU Q. Purification effect of macroporous resin on Acanthopanax sessiliflorus polyphenols and anti-fatigue effect of polyphenols[J]. Preservation and Processing, 2020, 20(4): 171−177. doi: 10.3969/j.issn.1009-6221.2020.04.027

    [20] 晏俊玲, 樊扬, 秦川, 等. 苦竹笋总黄酮大孔树脂纯化工艺及其体外抗炎活性研究[J]. 食品与发酵工业,2020,46(23):184−192. [YAN J L, FAN Y, QIN C, et al. Study on purification process of total flavonoids from bamboo shoots with macroporous resin and its anti-inflammatory activity in vitro[J]. Food and Fermentation Industry,2020,46(23):184−192.]

    YAN J L, FAN Y, QIN C, et al. Study on purification process of total flavonoids from bamboo shoots with macroporous resin and its anti-inflammatory activity in vitro[J]. Food and Fermentation Industry, 2020, 46(23): 184−192.

    [21] 邹月. 莼菜酶解多糖的制备及其在酸奶中的应用研究[D]. 成都:西华大学, 2022. [ZOU Y. Preparation of enzymatically hydrolyzed polysaccharide from water shield and its application in yogurt[D]. Chengdu:Xihua University, 2022.]

    ZOU Y. Preparation of enzymatically hydrolyzed polysaccharide from water shield and its application in yogurt[D]. Chengdu: Xihua University, 2022.

    [22] 江绍琳, 江绍玫, 曾令聪. 分光光度法快速测定灵芝中总三萜含量[J]. 江西农业大学学报,2006(4):634−636. [JIANG S L, JIANG S M, ZENG L C. Rapid determination of total triterpenoids in Ganoderma lucidum by spectrophotometry[J]. Journal of Jiangxi Agricultural University,2006(4):634−636.] doi: 10.3969/j.issn.1000-2286.2006.04.033

    JIANG S L, JIANG S M, ZENG L C. Rapid determination of total triterpenoids in Ganoderma lucidum by spectrophotometry[J]. Journal of Jiangxi Agricultural University, 2006(4): 634−636. doi: 10.3969/j.issn.1000-2286.2006.04.033

    [23] 谭永鹏, 李映伟, 程建华. 超声细胞破碎法提取黑果枸杞原花青素[J]. 食品工业,2021,42(12):26−31. [TAN Y P, LI Y W, CHENG J H. Extraction of proanthocyanidins from Lycium barbarum by ultrasonic cell fragmentation[J]. Food Industry,2021,42(12):26−31.]

    TAN Y P, LI Y W, CHENG J H. Extraction of proanthocyanidins from Lycium barbarum by ultrasonic cell fragmentation[J]. Food Industry, 2021, 42(12): 26−31.

    [24]

    SONG H F, ZHANG Q B, ZHANG Z S, et al. In vitro antioxidant activity of polysaccharides extracted from Bryopsis plumosa[J]. Carbohydrate Polymers,2010,80(4):1057−1061. doi: 10.1016/j.carbpol.2010.01.024

    [25]

    LI W, ZHANG Y, DENG H, et al. In vitro and in vivo bioaccessibility, antioxidant activity, and color of red radish anthocyanins as influenced by different drying methods[J]. Food Chem X,2023,18:100633. doi: 10.1016/j.fochx.2023.100633

    [26]

    MIAO Y, ZHANG X, PEI J, et al. Adaptive bacterial and fungal matching between a parasitic plant and its host:A case of Cistanche deserticola and Haloxylon ammodendron[J]. Industrial Crops and Products,2023,191:115932. doi: 10.1016/j.indcrop.2022.115932

    [27] 牛玉清, 赵岩, 于鑫淼, 等. 新疆管花肉苁蓉生物活性物质及产地差异分析[J]. 轻工学报,2022,37(6):25−33. [NIU Y Q, ZHAO Y, YU X M, et al. Analysis of bioactive substances and origin differences of Cistanche tubulosa in Xinjiang[J]. Journal of Light Industry,2022,37(6):25−33.] doi: 10.12187/2022.06.004

    NIU Y Q, ZHAO Y, YU X M, et al. Analysis of bioactive substances and origin differences of Cistanche tubulosa in Xinjiang[J]. Journal of Light Industry, 2022, 37(6): 25−33. doi: 10.12187/2022.06.004

    [28] 赵岩, 于鑫淼, 魏玉萍, 等. 青海管花肉苁蓉不同部位的功能性成分及其抗氧化活性[J]. 食品工业科技,2022,43(11):318−325. [ZHAO Y, YU X M, WEI Y P, et al. Functional components and antioxidant activities of different parts of Cistanche tubulosa[J]. Science and Technology of Food Industry,2022,43(11):318−325.]

    ZHAO Y, YU X M, WEI Y P, et al. Functional components and antioxidant activities of different parts of Cistanche tubulosa[J]. Science and Technology of Food Industry, 2022, 43(11): 318−325.

    [29] 向玲, 梅小乐, 罗华秀, 等. 不同种、产地、生长期的肉苁蓉中苯乙醇苷类含量比较[J]. 食品工业,2022,43(9):124−129. [XIANG L, MEI X L, LUO H X, et al. Comparison of phenylethanol glycosides in Cistanche deserticola of different species, places and growing periods[J]. Food Industry,2022,43(9):124−129.]

    XIANG L, MEI X L, LUO H X, et al. Comparison of phenylethanol glycosides in Cistanche deserticola of different species, places and growing periods[J]. Food Industry, 2022, 43(9): 124−129.

    [30] 刘海民, 赵岩, 于鑫淼, 等. 我国不同产地荒漠肉苁蓉品质分析及其综合评价[J]. 食品工业科技,2023,44(8):341−350. [LIU H M, ZHAO Y, YU X M, et al. Quality analysis and comprehensive evaluation of Cistanche deserticola from different origins in China[J]. Science and Technology of Food Industry,2023,44(8):341−350.]

    LIU H M, ZHAO Y, YU X M, et al. Quality analysis and comprehensive evaluation of Cistanche deserticola from different origins in China[J]. Science and Technology of Food Industry, 2023, 44(8): 341−350.

    [31] 白鹏威, 邹志荣, 杨振超, 等. 不同温度和光照处理对番茄果实不同部位糖含量的影响[J]. 西北农业学报,2010,19(3):184−187. [BAI P W, ZOU Z R, YANG Z C, et al. Effects of different temperature and light treatments on sugar content in different parts of tomato fruit[J]. Acta Agriculturae Sinica of Northwest China,2010,19(3):184−187.] doi: 10.3969/j.issn.1004-1389.2010.03.039

    BAI P W, ZOU Z R, YANG Z C, et al. Effects of different temperature and light treatments on sugar content in different parts of tomato fruit[J]. Acta Agriculturae Sinica of Northwest China, 2010, 19(3): 184−187. doi: 10.3969/j.issn.1004-1389.2010.03.039

    [32] 任雷, 邹志荣, 李鹏飞. 不同温度对甜瓜糖分积累与蔗糖代谢酶的影响[J]. 北方园艺,2010(7):12−16. [REN L, ZOU Z R, LI P F. Effects of different temperature on sugar accumulation and sucrose metabolism enzymes in melon[J]. Northern Horticulture,2010(7):12−16.]

    REN L, ZOU Z R, LI P F. Effects of different temperature on sugar accumulation and sucrose metabolism enzymes in melon[J]. Northern Horticulture, 2010(7): 12−16.

    [33] 王会鱼, 王国霞, 李春阁, 等. 不同产地灰枣中主要活性成分比较分析[J]. 安徽农业科学,2019,51(11):152−155,165. [WANG H Y, WANG G X, LI C G, et al. Comparative analysis of main active components in ash jujube from different producing areas[J]. Journal of Anhui Agricultural Sciences,2019,51(11):152−155,165.]

    WANG H Y, WANG G X, LI C G, et al. Comparative analysis of main active components in ash jujube from different producing areas[J]. Journal of Anhui Agricultural Sciences, 2019, 51(11): 152−155,165.

    [34] 许红军, 李彦荣, 崔拥民, 等. 新疆和田沙漠腹地日光温室环境测试与分析[J]. 农业工程学报,2018,34(S1):60−65. [XU H J, LI Y R, CUI Y M, et al. Test and analysis of solar greenhouse environment in the hinterland of Hotan Desert, Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(S1):60−65.] doi: 10.11975/j.issn.1002-6819.2018.z.010

    XU H J, LI Y R, CUI Y M, et al. Test and analysis of solar greenhouse environment in the hinterland of Hotan Desert, Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(S1): 60−65. doi: 10.11975/j.issn.1002-6819.2018.z.010

    [35] 王芳, 陈梦颖, 李晓怡, 等. 原花青素的食用安全性研究进展[J]. 沈阳药科大学学报,2023,40(10):1394−1400. [WANG F, CHEN M Y, LI X Y, et al. Research progress on food safety of proanthocyanidins[J]. Journal of Shenyang Pharmaceutical University,2023,40(10):1394−1400.]

    WANG F, CHEN M Y, LI X Y, et al. Research progress on food safety of proanthocyanidins[J]. Journal of Shenyang Pharmaceutical University, 2023, 40(10): 1394−1400.

    [36]

    ZHAO Y, JIANG C, LU J, et al. Research progress of proanthocyanidins and anthocyanidins[J]. Phytotherapy Research,2023,37(6):2552−2577. doi: 10.1002/ptr.7850

    [37] 姬晓慧, 李鸿辉, 李桂芳, 等. 新疆古尔班通古特沙漠不同地区荒漠肉苁蓉功效物质评价[J]. 广东农业科学,2018,45(10):112−117. [JI X H, LI H H, LI G F, et al. Evaluation of functional substances of Cistanche deserticola in different areas of the Gurbantünggüt Desert in Xinjiang[J]. Guangdong Agricultural Sciences,2018,45(10):112−117.]

    JI X H, LI H H, LI G F, et al. Evaluation of functional substances of Cistanche deserticola in different areas of the Gurbantünggüt Desert in Xinjiang[J]. Guangdong Agricultural Sciences, 2018, 45(10): 112−117.

  • 其他相关附件

图(10)
计量
  • 文章访问数:  113
  • HTML全文浏览量:  12
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-07
  • 网络出版日期:  2024-09-02
  • 刊出日期:  2024-10-31

目录

/

返回文章
返回
x 关闭 永久关闭