• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

表面活性剂改良牛蒡多糖粒径工艺优化及其结构表征

陈晓乐, 韩笑, 宫建泉, 李玲玉, 朱文卿, 郑振佳

陈晓乐,韩笑,宫建泉,等. 表面活性剂改良牛蒡多糖粒径工艺优化及其结构表征[J]. 食品工业科技,2024,45(21):140−147. doi: 10.13386/j.issn1002-0306.2023110030.
引用本文: 陈晓乐,韩笑,宫建泉,等. 表面活性剂改良牛蒡多糖粒径工艺优化及其结构表征[J]. 食品工业科技,2024,45(21):140−147. doi: 10.13386/j.issn1002-0306.2023110030.
CHEN Xiaole, HAN Xiao, GONG Jianquan, et al. Particle Size Optimization and Structural Characterization of Arctium lappa L. Polysaccharides Improved by Surfactant[J]. Science and Technology of Food Industry, 2024, 45(21): 140−147. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110030.
Citation: CHEN Xiaole, HAN Xiao, GONG Jianquan, et al. Particle Size Optimization and Structural Characterization of Arctium lappa L. Polysaccharides Improved by Surfactant[J]. Science and Technology of Food Industry, 2024, 45(21): 140−147. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110030.

表面活性剂改良牛蒡多糖粒径工艺优化及其结构表征

基金项目: 山东省重点研发计划(2022TZXD0020);百脉山科技研发基金(BMS202301)。
详细信息
    作者简介:

    陈晓乐(1998−),女,硕士,助理农艺师,研究方向:果蔬加工与功能食品,E-mail:C18854881522@163.com

    通讯作者:

    郑振佳(1985−),男,博士,副教授,研究方向:果蔬加工与功能食品,E-mail:zhengzhenjia@sdau.edu.cn

  • 中图分类号: TS201.1

Particle Size Optimization and Structural Characterization of Arctium lappa L. Polysaccharides Improved by Surfactant

  • 摘要: 使用表面活性剂对牛蒡多糖粒径进行改良,通过单因素和响应面法优化得到最优的表面活性剂改良工艺条件,通过紫外光谱、红外、粒径和扫描电镜等对改良前后的牛蒡多糖进行结构表征。结果表明:牛蒡多糖粒径的最优改良工艺条件为:表面活性剂种类为吐温-80(Tween-80),浓度为0.5%,涡旋时间16 s,pH5.67,此条件下得到牛蒡多糖粒径为6.19±0.14 nm。傅里叶红外光谱分析显示表面活性剂改良并未改变牛蒡多糖的结构,紫外光谱显示改良后多糖在280 nm处出现了一个细微的波动,推测可能是表面活性剂在该波段的紫外吸收。粒径分析对比表明改良后的牛蒡多糖粒径较改良前显著减小。扫描电镜结果显示改良后牛蒡多糖呈现出更为有序的球状结构,大小较均一。本研究可为制备粒径可控的多糖体系提供理论依据。
    Abstract: Using surfactants to improve the particle size of Arctium lappa L. polysaccharides, and the optimal process conditions were obtained by single factor and response surface method. The structure of Arctium lappa L. polysaccharides before and after improvement was characterized by UV, Fourier transform infrared spectroscopy (FT-IR), particle size, and scanning electron microscopy. The results showed that the optimal process conditions for improving the particle size of Arctium lappa L. polysaccharides were as follows: The surfactant was Tween-80, the concentration was 0.5%, the vortex time was 16 s, and the pH was 5.67, under these conditions, the particle size of Arctium lappa L. polysaccharides was 6.19±0.14 nm. FT-IR analysis showed that the modification with surfactants did not change the structure of Arctium lappa L. polysaccharides. The UV spectrum showed a slight fluctuation at 280 nm, which might be attributed to the UV absorption of surfactants in this wave band. The particle size analysis showed that the grain size of improved Arctium lappa L. polysaccharides decreased significantly compared with unimprovement. The scanning electron microscopy results showed that the improved Arctium lappa L. polysaccharides exhibited a more ordered spherical structure and more uniform sizes. This study can provide a theoretical basis for the preparation of a polysaccharide system with controlled particle size.
  • 牛蒡多糖是牛蒡重要的活性成分之一,具有抗肿瘤[1]、降血糖血脂[2]、增强免疫力[34]、抵抗肝损伤[5]及预防氧化损伤[6]等活性,能够被结肠微生物降解,具有粘膜粘附性[7],可作为载体负载功能性成分,靶向运输到作用部位[8]。作为靶向递送材料,多糖为无定形状态,粒径不可控,装载效率不稳定,因此研制粒径可控的多糖载体对于提升其对功能性成分装载率具有重要意义。

    表面活性剂是一类能够改变溶液性质的具有较高表面活性的物质,分为阳离子型、阴离子型和非离子型三类,代表性表面活性剂有季铵盐类化合物、十二烷基硫酸钠(SDS)、柠檬酸、吐温(Tween)和司班(Span)等,可以使界面张力或溶剂的表面张力显著下降,从而减小溶剂平均粒径[9]。Tween-20可以使玉米蛋白纳米颗粒粒径从140 nm降至90 nm左右,对姜黄素的包封率从47.1%提高至85.7%,且包封率与表面活性剂浓度呈正相关[10]。十二烷基硫酸钠对羧甲基-己酰基壳聚糖纳米颗粒聚集体的形成和尺寸分布有一定影响,可以使其粒径从123.6±4.2 nm降低到73.8±2.6 nm[11]。随着Span-80添加量的增加,海藻酸钠微胶囊的粒径逐渐减小,当Span-80添加量为1.5%时粒径最小,为168±18 µm,海藻酸钠微胶囊的包埋率随Span-80添加量的增加呈先上升后下降的趋势,当Span-80添加量为1.0%时包埋率最高为86.5%[12]。ZHAO等[13]通过放大微反应器系统研究了表面活性剂、流速比、流速和溶剂浓度对芹菜素粒径的影响,制备得到纳米芹菜素的最小粒径为116 nm,回收率为95.3%,纯度提高0.88%,证明了高效、高通量、粒径可控的纳米药物制备方法的可行性。具有广泛尺寸分布的载体可能无法控制功能性成分释放速度,从而导致剂量过量或剂量不足问题[14],表面活性剂的加入可以制备粒径可控的载体,优化载体装载性能。

    本文使用表面活性剂对牛蒡多糖粒径进行优化,考察了表面活性剂种类、Tween-80浓度、涡旋时间和pH对牛蒡多糖粒径的影响,并对改良前后的多糖进行结构表征,探究表面活性剂对多糖粒径的优化特性,为提高牛蒡多糖的装载效率和装载性能,研制以牛蒡多糖为载体的靶向递送材料提供理论依据。

    牛蒡多糖 实验室前期制备,纯度为95.71%,核磁鉴定结构为α-D-吡喃葡萄糖基-(1→2)-[β-D-呋喃果糖基-(1→2)]10-β-D-呋喃果糖基[15];盐酸、氢氧化钠 分析纯,天津市科密欧化学试剂有限公司;透析袋(500 Da) 怡康科贸生物试剂耗材试验有限公司;Tween-80、Span-80、SDS 北京索莱宝科技有限公司。

    Zetasizer-Nano-ZS激光纳米粒度分析仪 英国马尔文公司;S210 pH计 梅特勒-托利多仪器有限公司;QL-901旋涡混合器 江苏海门市麒麟医用仪器厂;UV2450分光光度计 日本岛津公司;Nicolet iS 10傅里叶变换红外光谱 美国赛默飞世尔科技公司;SUPRATM 55热场发射扫描电子显微镜 德国蔡司公司。

    固定牛蒡多糖溶液浓度为10 g/L,自然pH(5~6),涡旋时间10 s,表面活性剂浓度为多糖溶液体积的0.5%,分别加入Tween-80、Span-80和SDS,通过旋涡混合器混合均匀,4 ℃透析24 h得到多糖悬浮液,真空冷冻干燥后测定粒径、电位,考察表面活性剂种类对多糖粒径的影响[16]

    固定牛蒡多糖溶液浓度为10 g/L,自然pH(5~6),涡旋时间10 s,Tween-80浓度分别为多糖溶液体积的0、0.3%、0.5%、0.7%、1.0%和2.0%,参考“1.2.1.1”进行实验。

    固定牛蒡多糖溶液浓度为10 g/L,自然pH(5~6),Tween-80浓度为多糖溶液体积的0.5%,涡旋时间分别为5、10、15、20和25 s,参考“1.2.1.1”进行实验。

    固定牛蒡多糖溶液浓度为10 g/L,Tween-80浓度为多糖溶液体积的0.5%,涡旋时间10 s,反应pH分别为4、5、6和7,参考“1.2.1.1”进行实验。

    根据单因素实验结果,选取Tween-80浓度(A)、涡旋时间(B)及pH(C)三个试验参数,以多糖粒径为响应值,采用Box-Behnken设计试验方案,优化各试验因素。响应面试验设计因素与水平见表1

    表  1  响应面试验因素与水平
    Table  1.  Factors and levels of response surface experiment
    水平 因素
    A Tween-80浓度(%) B涡旋时间(s) C pH
    −1 0.3 10 5
    0 0.5 15 6
    1 0.7 20 7
    下载: 导出CSV 
    | 显示表格

    将牛蒡多糖配制成1 mg/mL水溶液,使用全波长紫外-可见光分光光度计对样品进行全波长扫描,波长范围为200~800 nm[17]

    采用傅里叶变换红外光谱-衰减全反射光谱技术对样品进行分析[18]。将约5 mg牛蒡多糖粉末放置在锥形附件板上并压实,在4000~500 cm−1波数范围内进行扫描分析,仪器扫描次数为64次,分辨率4 cm−1

    采用激光纳米粒度分析仪测定样品的粒径大小,设定散射角为90°,折光指数1.330,测定温度25 ℃,保温2.0 min,每个样品均重复三次[19]

    将干燥的样品表面喷一层薄薄的金并置于观察台,在10 kV加速电压和1000×放大倍数下观察表面形貌[20]

    每组实验均重复3次,采用Design Expert 8.0.6进行数据统计分析,采用Origin 2017软件绘图。使用SPSS 25.0统计软件进行单因素方差分析(One-Way ANOVA),使用Waller-Duncan(W)进行多重比较分析。P<0.05为有显著性差异、P<0.01为有极显著性差异。

    牛蒡多糖及其添加Tween-80、Span-80和SDS的粒径分布情况见图1。牛蒡多糖粒径为80~110 nm,而添加Tween-80的牛蒡多糖粒径在6~10 nm之间,是几种纳米颗粒样品中粒径最小的,这说明Tween-80对牛蒡多糖粒径大小的调节作用明显。添加Span-80和SDS制备的牛蒡多糖粒径大小在80~110 nm之间,无明显变化。Tween-80和SDS的亲水疏水平衡值(HLB)分别为15和40,属于亲水性表面活性剂,更容易在晶核表面作用,减少晶核聚集,从而形成粒径较小的纳米颗粒[16]。SDS的亲水疏水平衡值高于Tween-80,但是添加Tween-80制备的牛蒡多糖粒径小于添加SDS制备的多糖粒径。推测主要是由于SDS属于阴离子型表面活性剂,与带负电荷的牛蒡多糖相互作用,二者之间会产生一定的静电排斥力,导致表面活性剂在晶核表面的堆积数量降低,减少对纳米颗粒粒径的控制作用[21]。Tween-80作为小分子表面活性剂具有更高的表面活性并形成较小的纳米颗粒,并且由于Tween-80分子的大聚氧乙烯(亲水性)头基引起的空间排斥,阻碍多糖分子链之间的相互结合与碰撞,能使纳米颗粒具有更好的稳定性[22]

    图  1  牛蒡多糖(A)以及使用Tween-80(B)、Span-80(C)和SDS(D)改良后牛蒡多糖粒径
    Figure  1.  Particle size of Arctium lappa L. polysaccharides (A) and Arctium lappa L. polysaccharides improved by Tween-80 (B), Span-80 (C) and SDS (D)

    添加0.5%的不同种类表面活性剂后牛蒡多糖的电位分布图见图2。牛蒡多糖空白样品Zeta电位绝对值为23.53 mV,带有较多的负电荷。然而添加Span-80、Tween-80和SDS改良的牛蒡多糖Zeta电位绝对值减小至22.4、18.5和21.8 mV,加入表面活性剂后多糖Zeta电位绝对值减小,可能是由于表面活性剂吸附在牛蒡多糖表面,使多糖表面存在巨大的空间位阻,降低电荷密度[16]。考虑添加表面活性剂后多糖粒径分布情况,选择Tween-80进行下一步实验。

    图  2  牛蒡多糖以及使用Tween-80、Span-80和SDS改良的牛蒡多糖电位
    注:不同字母表示差异性显著(P<0.05,n=3);图3~图5同。
    Figure  2.  Potential of Arctium lappa L. polysaccharides and Arctium lappa L. polysaccharides improved by Tween-80, Span-80 and SDS

    Tween-80浓度对牛蒡多糖粒径影响见图3。当Tween-80浓度小于多糖溶液体积的0.5%时,牛蒡多糖粒径缓慢减小,当Tween-80添加量达到多糖溶液体积的0.5%时,多糖粒径明显减小,这可能是由于Tween-80的加入提高了溶液的稳定性,阻碍多糖分子链之间的相互结合与碰撞,因此当加入少量Tween-80时,制得的多糖粒径低于不加表面活性剂时的多糖粒径[23],继续增加Tween-80的添加量,多糖的粒径始终稳定在6~10 nm范围内。因此,Tween-80的最佳添加量为0.5%。

    图  3  Tween-80浓度对牛蒡多糖粒径的影响
    Figure  3.  Effect of Tween-80 concentration on the particle size of Arctium lappa L. polysaccharides

    涡旋时间对牛蒡多糖粒径的影响见图4。随着涡旋时间的增加,牛蒡多糖粒径呈现先减小后增大的趋势,当涡旋时间为15 s时,粒径达到最小值6.73 nm,这可能是因为多糖受到一定剪切力,粒径减小[24]。但当涡旋时间继续增加时,粒径开始增加,25 s时粒径达到7.79 nm,这可能是因为随着涡旋时间延长,出现部分聚合现象,体系稳定性下降[25]。因此最佳涡旋时间为15 s。

    图  4  涡旋时间对牛蒡多糖粒径的影响
    Figure  4.  Effect of vortex time on the particle size of Arctium lappa L. polysaccharides

    pH对牛蒡多糖粒径的影响见图5。随着pH的增大,牛蒡多糖粒径呈现先减小后增大的趋势,但整体变化幅度较小,说明表面活性剂钝化了牛蒡多糖的pH敏感性[26]。pH为4~5时,牛蒡多糖的粒径由7.72 nm减小到7.36 nm,而pH为6时,多糖粒径达到最小值7.29 nm,当pH继续增加时,粒径开始增加,pH为7时粒径增加至7.75 nm,这与姜婷婷等[27]的研究结果相似,因此最佳pH为6。

    图  5  pH对牛蒡多糖粒径的影响
    Figure  5.  Effect of pH on the particle size of Arctium lappa L. polysaccharides

    由Design Expert 8.0.6.1软件对试验数据进行回归分析,得到粒径(Y)对Tween-80浓度(A)、涡旋时间(B)和pH(C)的三元二次回归方程为Y=7.62−8.88A−2.47B+2.15C+5.58AB−1.30AC−1.90BC+15.62A2+2.04B2+2.47C2。对回归模型进行方差分析,该模型差异性极显著(P<0.0001),失拟项不显著(P>0.05),决定系数R2为0.9962,校正后决定系数R2Adj为0.9914,说明该回归方程拟合度和可信度均较高,可利用此模型对改良后牛蒡多糖粒径进行预测。响应面试验结果见表2,方差分析结果见表3

    表  2  响应面试验结果
    Table  2.  Response surface test results
    试验号A Tween-80浓度(%)B涡旋时间(s)C pH粒径(nm)
    10.5010718.2
    20.7015515.02
    30.3020625
    40.501567.2
    50.501568.2
    60.3010641.7
    70.3015739
    80.3015531.8
    90.501568.1
    100.7020620.02
    110.501567.7
    120.501566.91
    130.7015717.02
    140.5010510.4
    150.502059.85
    160.5020710.06
    170.7010614.42
    下载: 导出CSV 
    | 显示表格
    表  3  回归模型方差分析
    Table  3.  Analysis of variance of regression model
    来源平方和自由度均方FP差异性
    模型1974.519219.39206.47<0.0001极显著
    A630.481630.48593.36<0.0001**
    B48.96148.9646.070.0003**
    C37.02137.0234.840.0006**
    AB124.321124.32117.00<0.0001**
    AC6.7616.766.360.0397*
    BC14.40114.4013.550.0078**
    A21027.6611027.66967.15<0.0001**
    B217.53117.5316.490.0048**
    C225.59125.5924.080.0017**
    总残差7.4471.06
    失拟项6.1832.066.580.0502不显著
    绝对误差1.2540.31
    总和1981.9516
    R2=0.9962R2Adj=0.9914
    注:**表示P<0.01,差异极显著;*表示P<0.05,差异显著。
    下载: 导出CSV 
    | 显示表格

    表3可知,一次项A、B、C,二次项A2、B2、C2,交互项AB、BC对粒径的影响极其显著(P<0.01);交互项AC对粒径的影响显著(P<0.05)。因此,最终确定回归模型为Y=7.62−8.88A−2.47B+2.15C+5.58AB−1.30AC−1.90BC+15.62A2+2.04B2+2.47C2

    响应面及等高线图如图6所示。表面活性剂浓度、涡旋时间和pH对牛蒡多糖粒径存在一定的交互作用,响应面曲线越陡,交互作用越强;陡峭程度越低,交互作用越弱[28]。表面活性剂浓度与涡旋时间、涡旋时间与pH的交互作用极强,对牛蒡多糖粒径影响极显著(P<0.01);表面活性剂浓度与pH的交互作用较强,对牛蒡多糖粒径的影响较显著(P<0.05)。由图6可以看出:AB的交互作用最强,BC次之,AC交互作用最弱。

    图  6  各因素交互作用对牛蒡多糖粒径影响的响应面图
    Figure  6.  Response surface diagram of the interaction of various factors on the particle size of Arctium lappa L. polysaccharides

    通过回归模型的分析,以牛蒡多糖粒径为评价指标,最优的表面活性剂改良工艺条件为:表面活性剂种类为Tween-80,Tween-80浓度为0.55%,涡旋时间为15.56 s,pH5.67,在此条件下,模型预测牛蒡多糖粒径为6.02 nm。考虑实际操作简便,将工艺条件调整为表面活性剂为0.5%的Tween-80,涡旋时间为16 s,pH5.67,此条件下得到牛蒡多糖粒径为6.19±0.14 nm(图7),实际值与理论值基本相符,说明模型对表面活性剂改良牛蒡多糖粒径工艺条件参数优化稳定可靠。

    图  7  表面活性剂改良后牛蒡多糖粒径
    Figure  7.  Particle size of Arctium lappa L. polysaccharides improved by surfactant

    改良前后牛蒡多糖的紫外光谱图见图8。改良前牛蒡多糖在260和280 nm处没有紫外吸收,说明其不含核酸和蛋白质[29]。改良后多糖在280 nm处信号略有增强,推测出现波动可能是表面活性剂在该波段的紫外吸收。

    图  8  改良前后牛蒡多糖的紫外光谱
    Figure  8.  Ultraviolet spectra of Arctium lappa L. polysaccharides before and after improvement

    改良前后牛蒡多糖的傅里叶变换红外光谱如图9所示,改良前后多糖的特征吸收峰存在一定差异。在3200~3300 cm−1处的拉伸振动是因为O-H的存在[30],2920~2930 cm−1处是因为C-H的拉伸振动[31],1650 cm−1处的吸收峰可能归因于C=O键和N-H键的偏差振动或结合水的振动[32],1350~1450 cm−1处的吸收峰是CH2/CH3中的C-H变形振动、O-H弯曲振动或者COO-对称拉伸振动造成的[33],1000~1200 cm−1范围内的特定键一般认为是多糖环或糖苷键C-O-C、C-O-H和O-C-O的拉伸振动[34],933 cm−1和935 cm−1处对应α-D-呋喃果糖基[35],在818 cm−1处的吸收峰为长链菊粉的特征指纹区域,表明存在带有β构型糖苷键的呋喃糖[36]。改良后牛蒡多糖在3280 cm−1处的峰强降低,这可能与多糖分子内和分子间氢键相互作用减弱有关。

    图  9  改良前后牛蒡多糖傅里叶红外图谱
    Figure  9.  FT-IR spectra of Arctium lappa L. polysaccharides before and after improvement

    图10可知,牛蒡多糖粒径分布在80~110 nm范围内,改良后牛蒡多糖粒径在6~10 nm范围内,与响应面优化结果一致。表明Tween-80具有较高的表面活性,对牛蒡多糖粒径具有一定的优化作用,且改良后牛蒡多糖粒度分布较窄,说明改良后牛蒡多糖稳定性更好[22]

    图  10  牛蒡多糖(A)和改良后牛蒡多糖(B)的粒径分布谱
    Figure  10.  Particle size distribution spectrum of Arctium lappa L. polysaccharides (A) and improved Arctium lappa L. polysaccharides (B)

    改良前后的牛蒡多糖扫描电镜图像如图11所示。牛蒡多糖为堆积球状结构,但存在一定孔隙;而改良后多糖呈现出更为有序的球状结构,球状更加突出,孔隙减小,大小较均一,表面更加光滑。形态差异可能会影响物质的特性,球状结构更突出的改良后多糖与细胞表面的接触更多[37],有利于其作为靶向运输材料装载功能性成分。

    图  11  牛蒡多糖(A)和改良后牛蒡多糖(B)的电镜图
    Figure  11.  Electron microscope images of Arctium lappa L. polysaccharides (A) and improved Arctium lappa L. polysaccharides (B)

    在牛蒡多糖粒径的改良过程中,各因素对粒径的影响大小为:Tween-80浓度>涡旋时间>pH。通过响应面法优化后得到最佳制备工艺为:表面活性剂种类为Tween-80,浓度为0.5%,涡旋时间16 s,pH5.67,在此条件下得到牛蒡多糖粒径为6.19±0.14 nm。表面活性剂的加入并没有改变多糖的结构,但因为表面活性剂具有更高的表面活性,更容易在晶核表面作用,减少晶核聚集,从而形成较小的粒径,并使多糖具有更好的稳定性。研究表明表面活性剂可以显著减小牛蒡多糖粒径,为制备更小粒径的牛蒡多糖提供理论依据。

  • 图  1   牛蒡多糖(A)以及使用Tween-80(B)、Span-80(C)和SDS(D)改良后牛蒡多糖粒径

    Figure  1.   Particle size of Arctium lappa L. polysaccharides (A) and Arctium lappa L. polysaccharides improved by Tween-80 (B), Span-80 (C) and SDS (D)

    图  2   牛蒡多糖以及使用Tween-80、Span-80和SDS改良的牛蒡多糖电位

    注:不同字母表示差异性显著(P<0.05,n=3);图3~图5同。

    Figure  2.   Potential of Arctium lappa L. polysaccharides and Arctium lappa L. polysaccharides improved by Tween-80, Span-80 and SDS

    图  3   Tween-80浓度对牛蒡多糖粒径的影响

    Figure  3.   Effect of Tween-80 concentration on the particle size of Arctium lappa L. polysaccharides

    图  4   涡旋时间对牛蒡多糖粒径的影响

    Figure  4.   Effect of vortex time on the particle size of Arctium lappa L. polysaccharides

    图  5   pH对牛蒡多糖粒径的影响

    Figure  5.   Effect of pH on the particle size of Arctium lappa L. polysaccharides

    图  6   各因素交互作用对牛蒡多糖粒径影响的响应面图

    Figure  6.   Response surface diagram of the interaction of various factors on the particle size of Arctium lappa L. polysaccharides

    图  7   表面活性剂改良后牛蒡多糖粒径

    Figure  7.   Particle size of Arctium lappa L. polysaccharides improved by surfactant

    图  8   改良前后牛蒡多糖的紫外光谱

    Figure  8.   Ultraviolet spectra of Arctium lappa L. polysaccharides before and after improvement

    图  9   改良前后牛蒡多糖傅里叶红外图谱

    Figure  9.   FT-IR spectra of Arctium lappa L. polysaccharides before and after improvement

    图  10   牛蒡多糖(A)和改良后牛蒡多糖(B)的粒径分布谱

    Figure  10.   Particle size distribution spectrum of Arctium lappa L. polysaccharides (A) and improved Arctium lappa L. polysaccharides (B)

    图  11   牛蒡多糖(A)和改良后牛蒡多糖(B)的电镜图

    Figure  11.   Electron microscope images of Arctium lappa L. polysaccharides (A) and improved Arctium lappa L. polysaccharides (B)

    表  1   响应面试验因素与水平

    Table  1   Factors and levels of response surface experiment

    水平 因素
    A Tween-80浓度(%) B涡旋时间(s) C pH
    −1 0.3 10 5
    0 0.5 15 6
    1 0.7 20 7
    下载: 导出CSV

    表  2   响应面试验结果

    Table  2   Response surface test results

    试验号A Tween-80浓度(%)B涡旋时间(s)C pH粒径(nm)
    10.5010718.2
    20.7015515.02
    30.3020625
    40.501567.2
    50.501568.2
    60.3010641.7
    70.3015739
    80.3015531.8
    90.501568.1
    100.7020620.02
    110.501567.7
    120.501566.91
    130.7015717.02
    140.5010510.4
    150.502059.85
    160.5020710.06
    170.7010614.42
    下载: 导出CSV

    表  3   回归模型方差分析

    Table  3   Analysis of variance of regression model

    来源平方和自由度均方FP差异性
    模型1974.519219.39206.47<0.0001极显著
    A630.481630.48593.36<0.0001**
    B48.96148.9646.070.0003**
    C37.02137.0234.840.0006**
    AB124.321124.32117.00<0.0001**
    AC6.7616.766.360.0397*
    BC14.40114.4013.550.0078**
    A21027.6611027.66967.15<0.0001**
    B217.53117.5316.490.0048**
    C225.59125.5924.080.0017**
    总残差7.4471.06
    失拟项6.1832.066.580.0502不显著
    绝对误差1.2540.31
    总和1981.9516
    R2=0.9962R2Adj=0.9914
    注:**表示P<0.01,差异极显著;*表示P<0.05,差异显著。
    下载: 导出CSV
  • [1]

    GU Y, QI C, SUN X, et al. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism[J]. Biochemical Pharmacology,2012,849(4):468−476.

    [2] 魏东. 牛蒡抗氧化、降血脂保健功能研究[J]. 食品科学,2008,29(2):380−382. [WEI D. Study of health protection on antioxidation and reducing blood lipid of Arctium lappa L

    J]. Food Science,2008,29(2):380−382.

    [3]

    KARDOŠOVÁ A, EBRINGEROVÁ A, ALFÖLDI J, et al. A biologically active fructan from the roots of Arctium lappa L., var. Herkules[J]. International Journal of Biological Macromolecules,2003,33(1-3):135−140.

    [4] 魏东. 牛蒡多糖对小鼠免疫调节作用的研究[J]. 安徽农业科学,2006,34(9):1892−1893. [WEI D. Effect of Arctium lappa L. polysaccharide on mice immune modulation[J]. Journal of Anhui Agriculture,2006,34(9):1892−1893.] doi: 10.3969/j.issn.0517-6611.2006.09.066

    WEI D. Effect of Arctium lappa L. polysaccharide on mice immune modulation[J]. Journal of Anhui Agriculture, 2006, 34(9): 1892−1893. doi: 10.3969/j.issn.0517-6611.2006.09.066

    [5] 张波, 徐永杰. 牛蒡菊糖对亚慢性酒精肝损伤作用的研究[J]. 食品工业科技,2010,31(8):329−331. [ZHANG B, XU Y J. Preventive effects of burdock oligo-saccharide on alcoholic liver injury[J]. Science and Technology of Food Industry,2010,31(8):329−331.]

    ZHANG B, XU Y J. Preventive effects of burdock oligo-saccharide on alcoholic liver injury[J]. Science and Technology of Food Industry, 2010, 31(8): 329−331.

    [6] 鲁政, 张静, 高兆兰, 等. 牛蒡菊糖和菊芋菊糖对酒精诱导大鼠慢性氧化损伤的防治作用[J]. 食品科学,2010,31(5):270−273. [LU Z, ZHANG J, GAO Z L, et al. Protective effect of burdock inulin and jerusalem artichoke inulin against chronic alcohol-induced oxidative injury in mice[J]. Food Science,2010,31(5):270−273.]

    LU Z, ZHANG J, GAO Z L, et al. Protective effect of burdock inulin and jerusalem artichoke inulin against chronic alcohol-induced oxidative injury in mice[J]. Food Science, 2010, 31(5): 270−273.

    [7] 刘欣欣, 左翠玲, 孙丽娜, 等. 天然多糖做为纳米载体用于治疗炎症性肠病的研究进展[J]. 现代食品科技,2023,39(10):1−10. [LIU X X, ZUO C L, SUN L N, et al. Research progress on the use of natural polysaccharides as nanocarriers in the treatment of inflammatory bowel disease[J]. Modern Food Science and Technology,2023,39(10):1−10.]

    LIU X X, ZUO C L, SUN L N, et al. Research progress on the use of natural polysaccharides as nanocarriers in the treatment of inflammatory bowel disease[J]. Modern Food Science and Technology, 2023, 39(10): 1−10.

    [8]

    KHARE T, PALAKURTHI S S, SHAH B M, et al. Natural product-based nanomedicine in treatment of inflammatory bowel disease[J]. International Journal of Molecular Sciences,2020,21(11):3956.

    [9] 张永威, 易成林, 江金强, 等. 大分子颗粒乳化剂研究进展[J]. 高分子通报,2011(12):73−86. [ZHANG Y W, YI C L, JIANG J Q, et al. Progress in the studies of macromolecular particulate emulsifiers[J]. Polymer Bulletin,2011(12):73−86.]

    ZHANG Y W, YI C L, JIANG J Q, et al. Progress in the studies of macromolecular particulate emulsifiers[J]. Polymer Bulletin, 2011(12): 73−86.

    [10] 褚翔宇, 王小永. 玉米蛋白/吐温-20复合纳米颗粒对姜黄素的包载作用[J]. 化学通报,2018,81(7):625−629. [CHU X Y, WANG X Y. Effect of zein/Tween-20 composite nanoparticles on the properties of encapsulated curcumin[J]. Chemistry Bulletin,2018,81(7):625−629.]

    CHU X Y, WANG X Y. Effect of zein/Tween-20 composite nanoparticles on the properties of encapsulated curcumin[J]. Chemistry Bulletin, 2018, 81(7): 625−629.

    [11]

    RENGIFO A F C, SANTOS S C, LIMA V R, et al. Aggregation behavior of self-assembled nanoparticles made from carboxymethyl-hexanoyl chitosan and sodium dodecyl sulphate surfactant in water[J]. Journal of Molecular Liquids,2019,278:253−261.

    [12] 周紫薇, 项郑昊, 周化岚, 等. 乳化法制备毕赤酵母微胶囊的条件优化[J]. 工业微生物,2021,51(6):14−22. [ZHOU Z W, XIANG Z H, ZHOU H L, et al. Optimization conditions for preparation of Komagataella phaffii microcapsule by emulsificaton[J]. Industrial Microbiology,2021,51(6):14−22.] doi: 10.3969/j.issn.1001-6678.2021.06.003

    ZHOU Z W, XIANG Z H, ZHOU H L, et al. Optimization conditions for preparation of Komagataella phaffii microcapsule by emulsificaton[J]. Industrial Microbiology, 2021, 51(6): 14−22. doi: 10.3969/j.issn.1001-6678.2021.06.003

    [13]

    ZHAO S F, WEI Y M, YU P J, et al. High throughput preparation and particle size control strategy of nano apigenin by a scale-up microreactor[J]. Journal of Industrial and Engineering Chemistry,2024,133:207−218.

    [14]

    CHU Y F, JO Y J, CHEN L Y. Size-controllable core/shell whey protein microgels with narrow particle size distribution fabricated by a facile method[J]. Food Hydrocolloids,2022,124:107316.

    [15] 陈晓乐, 李文文, 陈锵, 等. 牛蒡中性多糖结构分析与抗炎活性评价[J]. 食品工业科技,2023,44(12):45−54. [CHEN X L, LI W W, CHEN Q, et al. Structure analysis and anti-inflammatory activity evaluation of neutral polysaccharides from Arctium lappa L

    J]. Science and Technology of Food Industry,2023,44(12):45−54.

    [16]

    LI X J, QIN Y, LIU C Z, et al. Size-controlled starch nanoparticles prepared by self-assembly with different green surfactant:The effect of electrostatic repulsion or steric hindrance[J]. Food Chemistry,2016,199:356−363.

    [17] 汤陈鹏, 吕峰, 王蓉琳. 孔石莼多糖锌结构表征与体外降血糖活性[J]. 食品科学,2020,41(7):52−58. [TANG C P, LÜ F, WANG R L. Structural characterization and hypoglycemic activity in vitro of Ulva pertusa polysaccharides-zinc complex[J]. Food Science,2020,41(7):52−58.]

    TANG C P, LÜ F, WANG R L. Structural characterization and hypoglycemic activity in vitro of Ulva pertusa polysaccharides-zinc complex[J]. Food Science, 2020, 41(7): 52−58.

    [18] 李玲玉, 邱志常, 朱姗姗, 等. 响应面法优化牛蒡多糖超声辅助提取工艺与抗氧化活性评价[J]. 食品科技,2020,45(11):197−204, 211. [LI L Y, QIU Z C, ZHU S S, et al. Optimization of polysaccharides from Arctium lappa L. by ultrasound-assisted extraction using response surface methodology and its antioxidant activities[J]. Food Science and Technology,2020,45(11):197−204, 211.]

    LI L Y, QIU Z C, ZHU S S, et al. Optimization of polysaccharides from Arctium lappa L. by ultrasound-assisted extraction using response surface methodology and its antioxidant activities[J]. Food Science and Technology, 2020, 45(11): 197−204, 211.

    [19] 侯惠静, 张晓燕, 陈建波, 等. BSA-葡聚糖-叶黄素纳米颗粒的制备及其抗氧化活性[J]. 食品研究与开发,2020,41(20):137−145. [HOU H J, ZHANG X Y, CHEN J B, et al. Preparation of BSA-dextran-lutein nanoparticle and its anti-oxidative properties[J]. Food Research and Development,2020,41(20):137−145.]

    HOU H J, ZHANG X Y, CHEN J B, et al. Preparation of BSA-dextran-lutein nanoparticle and its anti-oxidative properties[J]. Food Research and Development, 2020, 41(20): 137−145.

    [20]

    YIN J Y, CHAN B C, YU H, et al. Separation, structure characterization, conformation and immunomodulating effect of a hyperbranched heteroglycan from Radix Astragali[J]. Carbohydrate Polymers,2012,87(1):667−675.

    [21]

    HU K, MCCLEMENTS D J. Fabrication of surfactant-stabilized zein nanoparticles:A pH modulated antisolvent precipitation method[J]. Food Research International,2014,64:329−335.

    [22]

    WALIA N, ZHANG S T, WISMER W, et al. A low energy approach to develop nanoemulsion by combining pea protein and Tween 80 and its application for vitamin D delivery[J]. Food Hydrocolloids for Health,2022,2:100078.

    [23] 董琰. 直链淀粉纳米颗粒的制备及性质研究[D]. 长春:吉林大学, 2014. [DONG Y. Preparation and properties of amylose nanoparticles[D]. Changchun:Jilin University, 2014.]

    DONG Y. Preparation and properties of amylose nanoparticles[D]. Changchun: Jilin University, 2014.

    [24] 葛艳争, 石爱民, 冯新玥, 等. 加工条件对食品级Pickering乳液稳定性的影响[J]. 中国食品学报,2021,21(11):280−289. [GE Y Z, SHI A M, FENG X Y, et al. The effect of processing conditions on the stability of food-grade Pickering emulsion[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(11):280−289.]

    GE Y Z, SHI A M, FENG X Y, et al. The effect of processing conditions on the stability of food-grade Pickering emulsion[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(11): 280−289.

    [25] 杨琳, 郑华, 江伟烽, 等. 鸡肉蛋白水解物Pickering乳液凝胶制备技术及特性分析[J]. 肉类研究,2023,37(7):8−16. [YANG L, ZHENG H, JIANG W F, et al. Preparation and characterization of chicken breast protein hydrolysate-stabilized Pickering emulsion gel[J]. Meat Research,2023,37(7):8−16.]

    YANG L, ZHENG H, JIANG W F, et al. Preparation and characterization of chicken breast protein hydrolysate-stabilized Pickering emulsion gel[J]. Meat Research, 2023, 37(7): 8−16.

    [26] 冯孟熙, 汪兰. 不同pH溶液制备亚麻籽胶组成和功能特性的差异比较[J]. 中国调味品,2023,48(9):197−202. [FENG M X, WANG L. Difference comparison of composition and functional properties of flaxseed gum prepared with solutions at different pH values[J]. China Condiment,2023,48(9):197−202.]

    FENG M X, WANG L. Difference comparison of composition and functional properties of flaxseed gum prepared with solutions at different pH values[J]. China Condiment, 2023, 48(9): 197−202.

    [27] 姜婷婷, 郑丽丽, 艾斌凌, 等. β-乳球蛋白-多酚纳米颗粒稳定的百香果籽油Pickering乳液及其性质[J]. 食品科学,2024,45(10):80−88. [JIANG T T, ZHENG L L, AI B L, et al. Preparation and properties of passion fruit seed oil Pickering emulsion by β-lactoglobulin polyphenols nanoparticles[J]. Food Science,2024,45(10):80−88.]

    JIANG T T, ZHENG L L, AI B L, et al. Preparation and properties of passion fruit seed oil Pickering emulsion by β-lactoglobulin polyphenols nanoparticles[J]. Food Science, 2024, 45(10): 80−88.

    [28] 任洪飞, 逄梦玉, 隋昕怡, 等. 反复冻融法制备灵芝多糖工艺优化、结构表征及抗氧化活性分析[J]. 食品工业科技,2024,45(8):11−20. [REN H F, PANG M Y, SUI X Y, et al. Freeze-thaw extraction optimization, structural features and antioxidant activity of polysaccharides from Ganoderma lucidum[J]. Science and Technology of Food Industry,2024,45(8):11−20.]

    REN H F, PANG M Y, SUI X Y, et al. Freeze-thaw extraction optimization, structural features and antioxidant activity of polysaccharides from Ganoderma lucidum[J]. Science and Technology of Food Industry, 2024, 45(8): 11−20.

    [29]

    TIAN R, ZHANG Y Z, CHENG X B, et al. Structural characterization, and in vitro hypoglycemic activity of a polysaccharide from the mushroom Cantharellus yunnanensis[J]. International Journal of Biological Macromolecules,2023(253):127200.

    [30]

    PENG Y Q, ZHANG Z H, CHEN W Y, et al. Structure characterization, α-glucosidase inhibitory activity and antioxidant activity of neutral polysaccharide from apricot (Armeniaca Sibirica L. Lam) kernels[J]. International Journal of Biological Macromolecules,2023(238):124109.

    [31]

    ZOU S, ZHANG X, YAO W B, et al. Structure characterization and hypoglycemic activity of a polysaccharide isolated from the fruit of Lycium barbarum L.[J]. Carbohydrate Polymers,2010,80(4):1161−1167.

    [32]

    XIA F, CAO S L, WANG M W, et al. Optimizing extraction, structural characterization, and in vitro hypoglycemic activity of a novel polysaccharide component from Lentinus edodes[J]. Food Bioscience,2023(55):103007.

    [33]

    YUAN L L, QIU Z C, YANG Y M, et al. Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from backened jujube by an activity-oriented approach[J]. Food Chemistry,2022(385):132637.

    [34]

    ZOU M, CHEN Y L, SUN-WATERHOUSE D X, et al. Immunomodulatory acidic polysaccharides form Zizyphus jujuba cv. Huizao:Insights into their chemical characteristics and modes of action[J]. Food Chemistry,2018(258):35−42.

    [35] 胡彦波, 翟丽媛, 刘扬, 等. 薇菜多糖的分离纯化及体外抗氧化活性[J]. 食品科学,2022,43(1):59−66. [HU Y B, ZHAI L Y, LIU Y, et al. Isolation, purification and antioxidant activity of polysaccharides from Osmunda japonica[J]. Food Science,2022,43(1):59−66.]

    HU Y B, ZHAI L Y, LIU Y, et al. Isolation, purification and antioxidant activity of polysaccharides from Osmunda japonica[J]. Food Science, 2022, 43(1): 59−66.

    [36]

    ZHENG D T, HUANG C X, LI B, et al. Effect of a novel shell material-Starch-protein-fatty acid ternary nanoparticles on loading levels and in vitro release of curcumin[J]. International Journal of Biological Macromolecules,2021,192:471−478.

    [37]

    PETKOVA N T, SHEROVA G, DENEV P P. Characterization of inulin from dahlia tubers isolated by microwave and ultrasound-assisted extractions[J]. International Food Research Journal,2018,25(5):1876−1884.

  • 其他相关附件

图(11)  /  表(3)
计量
  • 文章访问数:  83
  • HTML全文浏览量:  11
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-05
  • 网络出版日期:  2024-08-23
  • 刊出日期:  2024-10-31

目录

/

返回文章
返回
x 关闭 永久关闭