Processing math: 100%
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

苦荞蛋白降血脂肽的酶解制备、氨基酸组成及活性研究

张笑莹, 钟婉滢, 马凤, 叶灏铎, 苗建银, 李静, 巩发永

张笑莹,钟婉滢,马凤,等. 苦荞蛋白降血脂肽的酶解制备、氨基酸组成及活性研究[J]. 食品工业科技,2024,45(21):129−139. doi: 10.13386/j.issn1002-0306.2023110029.
引用本文: 张笑莹,钟婉滢,马凤,等. 苦荞蛋白降血脂肽的酶解制备、氨基酸组成及活性研究[J]. 食品工业科技,2024,45(21):129−139. doi: 10.13386/j.issn1002-0306.2023110029.
ZHANG Xiaoying, ZHONG Wanying, MA Feng, et al. Preparation, Amino Acid Composition and Activity of Tartary Buckwheat Protein Lipid-lowering Peptide[J]. Science and Technology of Food Industry, 2024, 45(21): 129−139. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110029.
Citation: ZHANG Xiaoying, ZHONG Wanying, MA Feng, et al. Preparation, Amino Acid Composition and Activity of Tartary Buckwheat Protein Lipid-lowering Peptide[J]. Science and Technology of Food Industry, 2024, 45(21): 129−139. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110029.

苦荞蛋白降血脂肽的酶解制备、氨基酸组成及活性研究

基金项目: 攀西特色作物研究与利用四川省重点实验室资助课题(SZKF2206);广东省自然科学基金项目(2023A1515010006)。
详细信息
    作者简介:

    张笑莹(1999−),女,硕士研究生,研究方向:食品加工与安全,E-mail:gigle_1999@163.com

    通讯作者:

    苗建银(1981−),男,博士,副教授,研究方向:食品科学,E-mail:miaojy8181@scau.edu.cn

  • 中图分类号: TS201.1

Preparation, Amino Acid Composition and Activity of Tartary Buckwheat Protein Lipid-lowering Peptide

  • 摘要: 以苦荞麦为原料提取苦荞蛋白,以胰脂肪酶抑制率为指标,通过单因素和响应面优化试验筛选出苦荞蛋白降血脂肽的酶解条件,同时对苦荞蛋白降血脂肽的氨基酸组成和降血脂活性进行研究。结果表明,用菠萝蛋白酶酶解苦荞蛋白得到的降血脂肽对胰脂肪酶的抑制活性更高,其最佳酶解条件为酶解时间2.1 h,酶解温度62.0 ℃,底物浓度3.23%,pH7.0和酶底比0.4%,在此条件下酶解物的胰脂肪酶抑制率为81.22%±0.16%。氨基酸分析结果显示,苦荞蛋白降血脂肽中必需氨基酸占比27.82%,疏水性氨基酸占比32.11%,酸性氨基酸占比35.86%,精氨酸与赖氨酸的比值为2.28。苦荞蛋白肽显示出良好的体外降血脂活性,其牛磺胆酸钠结合率、胆固醇酯酶抑制率和胰脂肪酶抑制率的EC50/IC50值分别为9.136、3.902和0.051 mg/mL。研究结果为苦荞麦资源的高值化利用和苦荞蛋白活性肽的开发提供了新思路和理论依据。
    Abstract: Tartary buckwheat was used as raw material to extract tartary buckwheat protein, and the enzymatic hydrolysis conditions of tartary buckwheat protein lipid-lowering peptides were screened by single factor and response surface optimization experiments using the inhibition rate of pancreatic lipase as index. The amino acid composition and lipid lowering activity of lipid-lowering peptides were studied. The results showed that the lipid-lowering peptides obtained from tartary buckwheat protein with bromelain had higher inhibitory activity on pancreatic lipase. The optimal enzymatic hydrolysis conditions were hydrolysis time 2.1 h, hydrolysis temperature 62.0 ℃, substrate concentration 3.23%, pH7.0 and enzyme substrate ratio 0.4%. Under these conditions, the inhibitory rate of pancreatic lipase was 81.22%±0.16%. Amino acid analysis showed that essential amino acids, hydrophobic amino acids and acidic amino acids accounted for 27.82%, 32.11%, 35.86%, and the ratio of arginine to lysine was 2.28. The EC50/IC50 values of sodium taurine cholic acid binding rate, cholesterol esterase inhibition rate and pancreatic lipase inhibition rate were 9.136, 3.902 and 0.051 mg/mL, respectively. The results provided a new idea and theoretical basis for the high-value utilization of tartary buckwheat resources and the development of tartary buckwheat protein active peptides.
  • 高脂血症是一种由血脂异常导致的疾病[1],和肥胖有着直接关系,一般都是由于体内脂肪堆积引起脂代谢异常[2],主要表现为体内胆固醇和甘油三酯的水平过高[3]。近三十年来,我国高脂血症患病率逐年增加,据报道,我国成年人总体患病率达到35.6%[4],2017年全球约390万人死于高胆固醇血症[5]。当人体血脂水平过高时,会引发一系列心脑血管疾病,其中动脉粥样硬化是世界范围导致死亡的主要原因之一[67]。常见的高脂血症治疗药物有奥利司他(Orlistat)、辛伐他汀等。其中他汀类药物能够降低血液中的低密度脂蛋白浓度和降低胆固醇水平,但是会导致患者患糖尿病的风险 [89]。奥利司他能够有效抑制脂肪酸合成酶,降低机体对脂肪的吸收,但是服用奥利司他可能产生胃肠道功能紊乱、肝衰竭等副作用[1011]。其他一些降血脂药物也存在不同的副作用[12]。因此寻找天然来源的降血脂活性成分成为近年来的研究热点。目前,在茶叶蛋白肽[13]、油菜籽蛋白肽[12]、啤酒糟肽[14]的研究中,均发现了其良好的降血脂活性。

    苦荞又名万年荞、荞叶七,广泛种植在亚洲国家,我国是世界苦荞栽植面积最大和产量最多的国家[15],苦荞中独特的蛋白质组成和结构,使其具有一定的保健功能。研究表明苦荞蛋白具有抗疲劳[16]、降胆固醇[17]、抗氧化[18]、调节肠道菌群[1920]、抗乳腺肿瘤[21]、抗菌[22]等活性。近年来,也有关于苦荞抗氧化肽[2325]和抗菌肽[2627]等活性肽的研究。苦荞蛋白已被证明具有一定的降血脂能力,研究表明,苦荞蛋白能够降低大鼠血清低密度脂蛋白胆固醇水平,升高血清高密度脂蛋白胆固醇水平,且能够降低肝脏脂质积累[28];苦荞蛋白可通过吸附胆酸与胆固醇来调节血脂代谢[29];还被证明可通过改善高脂小鼠肠道菌群结构失衡,进而调节小鼠血脂代谢紊乱[30]。但对于进一步探究小分子苦荞降血脂肽的研究相对较少,因此探究最佳的苦荞降血脂肽制备工艺以及探究其降血脂功效十分必要。

    本研究以苦荞麦为原料,通过碱提酸沉法提取蛋白,并以胰脂肪酶抑制活性为检测指标,通过单因素、响应面法对苦荞蛋白降血脂肽的制备方法进行工艺优化,并分析最优条件下制备的苦荞蛋白降血脂肽的氨基酸组成以及对其降血脂活性进行评价。本研究将为苦荞蛋白的高值开发利用提供理论依据。

    西荞8号 西昌学院提供;木瓜蛋白酶(8×105 U/g)、胰蛋白酶(4000 U/g)、胃蛋白酶(3000NF U/g)、菠萝蛋白酶(6×105 U/g)、中性蛋白酶(2×105 U/g)、碱性蛋白酶(2×105 U/g) 南宁庞博生物工程有限公司;月桂酸-4-硝基苯酯 天津市富宇精细化工有限公司;4-硝基苯丁酸酯 西安市晶博生物科技有限公司;牛磺胆酸钠(STC)、胆固醇酯酶(15万 U/g) 上海源叶生物科技有限公司;胰脂肪酶(来自猪胰腺)(3~9万 U/g) 上海阿拉丁生物科技公司; Tris-HCl溶液(pH8.2,100 mmol/L) 广州亿涛生物科技有限公司;Triton X-100 北京索莱宝科技有限公司;其他试剂均属于分析纯。

    2300多功能酶标仪 PerkinElmer 公司;S-433D全自动氨基酸分析仪 塞卡姆公司;SC-3610低速离心机 安徽中科中佳科学仪器有限公司;DH5000BII电热恒温培养箱 天津泰斯特仪器有限公司;FD-1型冷冻干燥机 海门市其林贝尔仪器制造有限公司;PHS-3C pH计 上海力辰邦西仪器科技公司;DH9-9245A烘箱 广州市深华生物技术有限公司;HH-6数显恒温水浴锅 常州朗越仪器制造有限公司。

    苦荞麦粉碎,过100目筛,按照料液比1:5(g/mL)加入石油醚脱脂2 h,重复脱脂两次后,在通风橱中挥干得到苦荞脱脂粉备用。基于碱提酸沉的原理,参考钟婉滢等[31]的方法并作略微改动,苦荞粉与水的比例为1:10(g/mL),用0.1 mol/L NaOH溶液调节溶液的pH至9.0,45 ℃恒温水浴下搅拌提取2 h,以4000 r/min离心20 min,分离上清液,用0.1 mol/L HCl溶液调节上清液的pH至4.4,并在4 ℃静置2 h,使蛋白沉淀,4000 r/min离心20 min后,所得沉淀即为苦荞粗蛋白,并将沉淀冷冻干燥备用。

    配制浓度为3%的苦荞粗蛋白溶液,用低浓度的盐酸和氢氧化钠溶液调节至最适pH,在水浴锅中孵育至最适温度后加入一定量的酶溶液启动酶解反应,在最适温度下恒温酶解后于95 ℃条件下灭酶,冷却后8000 r/min离心20 min,上清液即为含有苦荞蛋白降血脂肽的酶解液。

    参考叶灏铎等[32]的方法并略作修改,制备1 mg/mL含0.05 mol/L醋酸钠和1% Triton X-100的月桂酸-4-硝基苯酯溶液作为反应底物,配制好的溶液加热溶解,完全混匀后冷却至室温备用。于2 mL试管中依次加入反应底物、样品溶液、反应缓冲液(pH8.2,0.1 mol/L Tris-HCl缓冲液),最后加入胰脂肪酶溶液(5 mg/mL)启动反应,加样比例为5:2:4:3。在37 ℃下恒温孵育 2 h 后,420 nm波长下测吸光值。同时设置不含酶样品组和不含样品空白组。按下式计算胰脂肪酶抑制率:

    (%)=(1AA1A0)×100
    (1)

    式中:A为样品组的吸光值;A1为不含酶样品组的吸光值;A0为不含样品空白组的吸光值。

    分别选用胃蛋白酶、木瓜蛋白酶、菠萝蛋白酶、中性蛋白酶、胰蛋白酶和碱性蛋白酶对苦荞粗蛋白进行酶解,在3%的苦荞蛋白溶液中,以酶底比0.3%分别加入酶,并在各自酶的最适温度和pH下酶解3 h。以胰脂肪酶抑制率为检测指标,筛选出最优蛋白酶。各酶水解的条件见表1

    表  1  各酶最适的水解条件
    Table  1.  Suitable hydrolysis conditions for each enzyme
    酶的种类 pH 温度(℃) 时间(h)
    胃蛋白酶 2.0 40 3
    木瓜蛋白酶 6.0 55 3
    菠萝蛋白酶 7.0 55 3
    中性蛋白酶 7.0 55 3
    胰蛋白酶 8.0 50 3
    碱性蛋白酶 9.5 55 3
    下载: 导出CSV 
    | 显示表格

    选用菠萝蛋白酶进行酶解,考察酶解时间(1、2、3、4、5 h)对苦荞蛋白降血脂肽胰脂肪酶抑制活性的影响,同时固定酶解温度55 ℃,底物浓度3%,酶底比0.2%,pH7.0,确定酶解最佳时间。

    选用菠萝蛋白酶进行酶解,考察酶解温度(45、50、55、60、65 ℃)对苦荞蛋白降血脂肽胰脂肪酶抑制活性的影响,同时固定酶解时间3 h,底物浓度3%,酶底比0.2%,pH7.0,确定酶解最佳温度。

    选用菠萝蛋白酶进行酶解,考察酶解pH(6.0、6.5、7.0、7.5、8.0)对苦荞蛋白降血脂肽胰脂肪酶抑制活性的影响,同时固定酶解温度55 ℃,酶解时间3 h,底物浓度3%,酶底比0.2%,确定酶解最佳pH。

    选用菠萝蛋白酶进行酶解,考察酶底比(0.1%、0.2%、0.3%、0.4%、0.5%)对苦荞蛋白降血脂肽胰脂肪酶抑制活性的影响,同时固定酶解温度55 ℃,酶解时间3 h,底物浓度3%,pH7.0,确定酶解最佳酶底比。

    选用菠萝蛋白酶进行酶解,考察底物浓度(1%、2%、3%、4%、5%)对苦荞蛋白降血脂肽胰脂肪酶抑制活性的影响,同时固定酶解温度55 ℃,酶解时间3 h,酶底比0.2%, pH7.0,确定酶解最佳底物浓度。

    在单因素实验基础上,以胰脂肪酶抑制率为响应值,采用Box-Behnken试验设计,对酶解工艺进行三因素三水平的响应面试验设计,响应面试验因素与水平设计见表2

    表  2  响应面优化试验因素与水平设计
    Table  2.  Experimental factors and levels design of response surface optimization
    因素 水平
    −1 0 1
    A酶解时间(h) 1 2 3
    B酶解温度(℃) 55 60 65
    C底物浓度(%) 2 3 4
    下载: 导出CSV 
    | 显示表格

    制定牛磺胆酸钠标准曲线,分别取1 mmol/L牛磺胆酸钠溶液0、0.5、1.0、1.5、2.0、2.5 mL,用磷酸缓冲溶液(pH6.3)定容至2.5 mL,再加入60%的硫酸溶液,其比例为1:3(2.5 mL:7.5 mL),于70 ℃水浴30 min,取出后迅速冰浴冷却,并在387 nm波长处测定吸光值,绘出标准曲线,得出牛磺胆酸钠的标准曲线方程为y=0.1585x+0.0797(R2=0.992)。

    参考李成龙[33]的方法做出略微改动。分别取1 mL 0.01 mol/L HCl溶液和1 mL不同浓度的样品溶液(0.1、0.25、0.5、1、2、4 mg/mL)于10 mL离心管中,水浴37 ℃条件下振荡1 h,以模拟胃酸环境,后用低浓度的NaOH溶液调节pH至6.3,加入1 mmol/L牛磺胆酸钠标准溶液5 mL,37 ℃水浴1 h,4000 r/min离心20 min后,取2.5 mL上清液和7.5 mL 60%硫酸溶液在70 ℃下恒温水浴反应30 min,静置冷却,于387 nm波长处测定每组吸光值。根据制定的标准曲线,计算反应后牛磺胆酸钠的剩余量。胆酸盐结合率根据下式计算,并求出EC50

    (%)=ABA×100
    (2)

    式中:A 是胆酸盐加入量,μmol;B是胆酸盐剩余量,μmol。

    参考1.2.3中胰脂肪酶抑制率的测定方法,并计算IC50

    参照Baba等[34]的方法并略作改动。制备5 μg/mL的胆固醇酯酶溶液;用磷酸钠缓冲溶液(0.01 mol/L,pH7.0)配制成含有0.1 mol/L NaCl、5.16 mol/L牛磺胆酸钠的反应缓冲溶液;反应底物为用反应缓冲液配制成浓度为5 mmol/L的4-硝基苯丁酸酯溶液;用反应缓冲液配制不同浓度的样品溶液(0.1、0.25、0.5、1、2、4 mg/mL)。在96孔板中加入样品溶液和反应底物各50 μL,孵育后,加入胆固醇酯酶溶液50 μL启动反应,振摇5 min充分混匀后在37 ℃下反应30 min,在405 nm处测吸光值,空白管中的样品溶液、空白对照管中的酶液和样品溶液、样品对照管中的酶液均用缓冲溶液替代。根据下式计算胆固醇酯酶抑制率,并求出IC50

    (%)=(1CDAB)×100
    (3)

    式中:A为空白管的吸光值;B为空白对照管的吸光值;C为样品管的吸光值;D为样品对照管的吸光值。

    采用GB 5009.124-2016《食品安全国家标准 食品中氨基酸的测定》[35],测定最优苦荞蛋白降血脂肽中各种氨基酸的组成及含量。

    所得数据经Prism 8.0.2、Origin2019b软件进行绘图,经SPSS 21.0、Excel 2021软件进行统计处理,结果以平均数±标准差(SD)表示,使用ANOVA法分析样本之间的差异显著性(P<0.05)。每项实验重复3次。

    由于不同蛋白酶的酶切位点不同,酶解同一蛋白质所生成肽段的活性会有一定差异。此外,不同的酶解条件会对酶解效果产生较大的影响,因此可以通过筛选蛋白酶和控制酶解条件来提高酶法水解的效果[36]

    选用实验室常用的6种蛋白酶对苦荞蛋白进行水解,以胰脂肪酶抑制率作为降血脂活性指标来筛选出最优蛋白酶。结果如图1所示,经菠萝蛋白酶酶解后的苦荞蛋白降血脂肽的胰脂肪酶抑制活性显著高于其他五种蛋白酶(P<0.05),抑制率达到71.67%±0.74%,说明菠萝蛋白酶切割苦荞蛋白产生的多肽序列对胰脂肪酶有较强的抑制作用。这可能是由于不同的酶具有不同的专一性,酶的酶切位点不同,切割出来的肽段长度有差异,肽段中的氨基酸组成各异,对胰脂肪酶的抑制活性也就有差异[37]。后续将使用菠萝蛋白酶对苦荞蛋白进行酶解。

    图  1  不同酶对苦荞蛋白酶解物胰脂肪酶抑制率的影响
    注:不同字母表示组间存在显著性差异(P<0.05),图2~图6图8~图10同。
    Figure  1.  Effect of different enzymes on pancreatic lipase inhibition rate of tartary buckwheat protease hydrolysate

    酶解时间的长短会影响蛋白的水解程度,水解度低可能导致切割的肽链过长,其生物活性无法表达出来;水解度过高可能导致活性肽段被进一步水解,降低其生物活性[38]图2显示的是苦荞蛋白降血脂肽在不同酶解时间下对胰脂肪酶抑制率的影响,可见,随着酶解时间的增加,酶解出的苦荞蛋白降血脂肽对胰脂肪酶的抑制作用呈现先增后减的趋势,当酶解时间为2 h时,胰脂肪酶抑制率达到73.68%±0.40%,显著高于其他处理组(P<0.05)。这可能是由于酶解2 h时,酶与底物反应更充分,此时切割出的高降血脂活性的多肽含量最多,但随着酶解时间增加,蛋白酶可能继续作用在高活性肽上,导致原有的高活性肽段结构被破坏,酶解液降血脂活性下降[39]。因此,选择酶解时间为2 h进行下一步酶解工艺优化试验。

    图  2  酶解时间对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响
    Figure  2.  Effect of enzymatic hydrolysis time on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    图3可知,温度过高或过低均不利于苦荞蛋白降血脂肽的胰脂肪酶抑制活性,其活性随温度的上升呈现先上升后下降的趋势,60 ℃达最高值,为74.63%±0.16%。可能是由于当温度达到60 ℃时,菠萝蛋白酶的酶解效率较大,在一定的时间内切割出更多的高活性肽段,而过高和过低的温度都会对酶活力产生不利影响,温度过低时分子扩散速率较慢,酶与底物不能充分作用,酶解速率较慢,一定时间内产生的高活性肽浓度较低;温度过高则可能导致酶活力下降,导致水解效果变差[40]。因此,选择酶解温度为60 ℃进行下一步酶解工艺优化试验。

    图  3  酶解温度对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响
    Figure  3.  Effect of enzymatic hydrolysis temperature on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    图4显示的是不同pH条件下酶解制备的苦荞蛋白降血脂肽胰脂肪酶抑制活性,pH在6.0~7.0之间时,随着pH的增大,其胰脂肪酶抑制率也增大,在pH达到7.0时抑制率为72.56%±0.41%,显著高于其他处理组(P<0.05)。说明在中性条件下最利于菠萝蛋白酶与底物的结合。当pH大于7.0时,随着pH的增大,胰脂肪酶抑制率逐渐减小,可见pH是影响酶活力的一个重要因素,pH过大过小都会影响酶活力[41]。因此,选择pH7.0为最佳酶解pH。

    图  4  酶解pH对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响
    Figure  4.  Effect of enzymatic hydrolysis pH on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    图5可见,酶底比越高,苦荞蛋白降血脂肽的胰脂肪酶抑制活性有着先增大后减小的趋势,其中当酶底比为0.4%时抑制率最高,达到73.21%±0.88%,继续增大酶底比,苦荞蛋白降血脂肽的活性略微下降。当加酶量较少时,酶解未达到饱和状态,底物不能被菠萝蛋白酶充分酶解,导致产生的活性多肽含量较低,但过量的酶可能会导致底物过度水解,降低多肽的活性[42]。因此,确定最佳酶底比为0.4%。

    图  5  酶底比对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响
    Figure  5.  Effect of enzyme to substrate ratio on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    图6可以看出,当底物浓度为1%~3%时,苦荞蛋白降血脂肽的胰脂肪酶抑制活性随着底物浓度的增大而增大,在3%~5%时开始逐渐下降,当底物浓度达到3%时,苦荞蛋白降血脂肽的活性最大,达到72.46%±0.20%。这可能是由于底物的量较少时,酶解作用后产生的高活性肽段数量少;当底物浓度过大时,可能会导致分子扩散受阻,酶解速率降低,所得活性产物浓度较低[4344],底物浓度过大也可能增大底物之间的相互作用,导致底物与酶的作用位点受阻,从而使酶促反应受到限制[45]。因此,选择底物浓度为3%进行后续酶解工艺优化试验。

    图  6  底物浓度对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响
    Figure  6.  Effect of substrate concentration on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    在单因素实验基础上,选取酶解时间、酶解温度、底物浓度三个因素,利用Design-expert 8.0软件中Box-Behnken试验设计原理,以胰脂肪酶抑制率为响应值,进行三因素三水平的响应面试验设计,并对响应值进行了回归分析。响应面试验分析结果见表3

    表  3  响应面设计方案及结果
    Table  3.  Scheme and results of the response surface experiment
    试验号 因素 Y:胰脂肪酶抑制率(%)
    A酶解时间 B酶解温度 C底物浓度
    1 0 −1 −1 78.252
    2 1 0 1 78.956
    3 0 0 0 80.952
    4 0 0 0 80.184
    5 0 0 0 80.261
    6 −1 0 −1 77.124
    7 0 0 0 80.879
    8 0 0 0 80.568
    9 −1 −1 0 77.671
    10 0 1 −1 79.597
    11 0 −1 1 80.136
    12 1 0 −1 77.189
    13 1 1 0 78.715
    14 −1 0 1 77.767
    15 −1 1 0 78.795
    16 1 −1 0 78.635
    17 0 1 1 79.732
    下载: 导出CSV 
    | 显示表格

    使用Design-Expert 8.0.6软件对表3中的数据进行多元回归拟合分析,得到胰脂肪酶抑制率Y对A、B、C三个因素的回归方程:Y=80.57+0.27A+0.27B+0.55C−0.26AB+0.28AC−0.44BC−1.89A2−0.22B2−0.92C2

    表4显示了对回归模型的方差分析和显著性检验。模型的显著性<0.0001,表示模型极显著,失拟项为0.9417不显著,表明该模型有效,试验方法合理,结果可靠[46]。其中F值为检验统计量,P值为显著性检验结果,F值的大小反映了变量对响应值的影响大小[47]。因此可知,该试验中,底物浓度对苦荞蛋白降血脂肽胰脂肪酶抑制作用的影响最大,酶解温度次之,最后是酶解时间。根据P值大小可知,酶解时间、酶解温度的一次项对样品的胰脂肪酶抑制率有显著影响(P<0.05),底物浓度对其有极显著影响(P<0.01)。

    表  4  回归模型方差分析
    Table  4.  Variance analysis for response surface quadratic model
    方差来源 平方和 自由度 均方 F P值(Prob>F 显著性
    模型 25 9 2.78 36.64 <0.0001 **
    A-酶解时间 0.57 1 0.57 7.54 0.0287 *
    B-酶解温度 0.58 1 0.58 7.59 0.0283 *
    C-底物浓度 2.45 1 2.45 32.34 0.0007 **
    AB 0.27 1 0.27 3.59 0.0998
    AC 0.32 1 0.32 4.17 0.0806
    BC 0.76 1 0.76 10.09 0.0156 *
    A2 15.08 1 15.08 198.9 <0.0001 **
    B2 0.21 1 0.21 2.74 0.1416
    C2 3.54 1 3.54 46.72 0.0002 **
    残差 0.53 7 0.076
    失拟项 0.045 3 0.015 0.12 0.9417 不显著
    纯误差 0.49 4 0.12
    总和 25.54 16
    注:P<0.05,差异显著,以*表示;P<0.01,差异极显著,以**表示。
    下载: 导出CSV 
    | 显示表格

    通过Design-Expert 8.0.6软件得到响应面曲线图,以评价因素的两两交互作用对胰脂肪酶抑制率的影响[48],从图7响应面曲线可以看出三个因素之间的交互作用对胰脂肪酶的抑制作用都是先上升后下降,说明在试验范围内存在最大值。BC两因素的两两交互作用的响应面投影中心为椭圆,说明两因素交互作用影响显著,AC两因素的响应面投影接近圆形,说明两因素交互作用不显著,与方差分析的结果一致。在一定的酶解时间下,随着底物浓度和酶解温度的增加,曲面颜色快速变化,说明底物浓度和酶解温度的交互作用对胰脂肪酶抑制率的影响较大。

    图  7  酶解时间、酶解温度、底物浓度对胰脂肪酶抑制率的影响
    Figure  7.  Effects of enzymolysis time, enzymolysis temperature and substrate concentration on pancreatic lipase inhibition rate

    通过对这一模型进行响应面分析,得出了最佳的酶解条件:酶解时间为2.06 h,酶解温度为61.7 ℃,底物浓度为3.23%,该条件下的胰脂肪酶抑制率的预测值为80.69%。结合实际条件,将工艺调整为酶解时间2.1 h,酶解温度为62.0 ℃,底物浓度3.23%,并同时在pH7.0,酶底比0.4%的条件下进行验证实验,得到苦荞蛋白降血脂肽的胰脂肪酶抑制率为81.22%±0.16%,与预测值接近,故得出此模型有较高的可行性。后续采用最优酶解工艺下制备的苦荞蛋白降血脂肽进行功能活性分析。

    脂质积累会导致肝脏中胆固醇增多,但当机体中的胆酸盐被物质结合后,会促进肝脏中的胆固醇向胆酸盐的转化,达到降脂效果[4951]。因牛磺胆酸钠是一类较难被吸附的结合型胆酸盐[52],因此选择其作为苦荞蛋白降血脂肽的降血脂能力指标更具有说服力。如图8所示,在浓度0.1~4 mg/mL的情况下,苦荞蛋白降血脂肽的牛磺胆酸钠结合率呈现出一种剂量效应依赖关系,当浓度为4 mg/mL时,其结合率达到48.79%±0.58%(P<0.05),计算得到其EC50值为9.136 mg/mL(表5)。相比汉麻籽多肽分子量<1 ku的组分在浓度为4 mg/mL时的牛磺胆酸钠结合率为27.12%±0.01%[53]、米糠多肽分子量<5 kDa时浓度在10 mg/mL的牛磺胆酸钠结合率为45.28%±1.39%[54],苦荞蛋白降血脂肽表现出更好的胆酸盐结合能力。

    图  8  不同浓度苦荞蛋白降血脂肽的牛磺胆酸钠结合率
    Figure  8.  Sodium taurocholate binding rate of different concentrations of tartary buckwheat protein lipid-lowering peptide
    表  5  苦荞蛋白降血脂肽降血脂活性评价
    Table  5.  Evaluation of lipid-lowering activity of tartary buckwheat protein lipid-lowering peptide
    活性指标EC50/IC50(mg/mL)
    牛磺胆酸钠结合率9.136
    胰脂肪酶抑制率0.051
    胆固醇酯酶抑制率3.902
    下载: 导出CSV 
    | 显示表格

    膳食脂肪摄入人体后,需要被脂肪酶水解才能被人体吸收,而胰脂肪酶在脂代谢中起关键作用[55]。对胰脂肪酶进行抑制可进一步抑制人体对脂肪的吸收[56]。如图9所示,当苦荞蛋白降血脂肽的浓度不断增加,其对胰脂肪酶的抑制作用随之上升。当苦荞蛋白降血脂肽的浓度为4 mg/mL时,对胰脂肪酶的抑制率最高,为66.31%±0.60%(P<0.05),并计算出其IC50为0.051 mg/mL(表5)。相比燕麦麸皮肽的胰脂肪酶抑制率IC50为0.085 mg/mL[57]和苋菜蛋白酶解物的胰脂肪酶抑制率IC50为0.38~0.66 mg/mL[58],苦荞蛋白降血脂肽的胰脂肪酶抑制活性更高。

    图  9  不同浓度苦荞蛋白降血脂肽的胰脂肪酶抑制率
    Figure  9.  Pancreatic lipase inhibition rate of different concentrations of tartary buckwheat protein lipid-lowering peptide

    胆固醇酯酶将膳食胆固醇转化为胆固醇并储藏在肝脏中,通过抑制胆固醇酯酶,可以减少人体对胆固醇的吸收[34]图10为不同浓度的苦荞蛋白降血脂肽对胆固醇酯酶的抑制结果,随着苦荞蛋白降血脂肽浓度的增加,对胆固醇酯酶的抑制能力显著增加,在4 mg/mL时,对胆固醇酯酶的抑制率最高,达到52.22%±1.10%(P<0.05)。经计算其IC50值为3.902 mg/mL(表5),低于亚麻籽降血脂肽的IC50为4.57 mg/mL[59]和藜麦多肽的IC50为4.73 mg/mL[31],表明苦荞蛋白降血脂肽具有较好的胆固醇酯酶抑制能力。

    图  10  不同浓度苦荞蛋白降血脂肽的胆固醇酯酶抑制率
    Figure  10.  Cholesterol esterase inhibition rate of different concentrations of tartary buckwheat protein lipid-lowering peptide

    苦荞蛋白降血脂肽的氨基酸分析色谱图如图11所示,氨基酸组成分析结果如表6所示。采用酸水解法处理样品,除色氨酸被全部破坏外,共检测出17种氨基酸,其总量为74.09 g/100 g。苦荞蛋白降血脂肽具有丰富的氨基酸组成,其中必需氨基酸占比27.82%,疏水性氨基酸占比32.11%,酸性氨基酸占比35.86%。大量的研究证实,疏水性氨基酸对降胆固醇活性有着显著的影响,对于胆酸盐的结合能力也发挥着重要的作用[60]。苦荞蛋白降血脂肽中含有大量疏水氨基酸,其对牛磺胆酸钠的结合和对胆固醇酯酶的抑制有着良好效果(表5)可能与之有一定关系。有研究指出,在具有降血脂功能的多肽中,酸性氨基酸的含量较多[61],本研究中酸性氨基酸Asp和Glu分别占比10.36%和25.51%。一些研究发现,精氨酸与赖氨酸的比值提高会使血清中胆固醇的水平降低[62],在苦荞蛋白降血脂肽中,Arg/Lys的值为2.28,这在一定程度上促进了其降血脂作用。综上,本研究所发现的苦荞蛋白降血脂肽具有多层面的降脂潜能,但其特定的多肽组成及氨基酸序列仍需进一步解析。

    图  11  苦荞蛋白降血脂肽氨基酸分析色谱图
    Figure  11.  Amino acid chromatogram of tartary buckwheat protein lipid-lowering peptide
    表  6  苦荞蛋白降血脂肽的氨基酸组成
    Table  6.  Amino acid composition of tartary buckwheat protein lipid-lowering peptide
    氨基酸名称 含量(g/100 g) 相对百分含量(%)
    天冬氨酸(Asp) 7.67±0.93 10.36
    苏氨酸(Thr)* 2.49±0.48 3.36
    丝氨酸(Ser) 3.83±0.31 5.17
    谷氨酸(Glu) 18.90±0.88 25.51
    甘氨酸(Gly)# 4.00±0.06 5.40
    丙氨酸(Ala)# 3.31±0.18 4.46
    半胱氨酸(Cys) 1.48±0.76 1.99
    缬氨酸(Val)*# 3.77±0.30 5.09
    甲硫氨酸(Met)*# 0.70±0.77 0.94
    异亮氨酸(Ile)*# 2.72±0.67 3.67
    亮氨酸(Leu)*# 4.25±0.96 5.74
    酪氨酸(Tyr) 2.38±0.53 3.21
    苯丙氨酸(Phe)*# 3.11±0.13 4.20
    组氨酸(His) 1.87±0.20 2.52
    赖氨酸(Lys)* 3.57±0.98 4.81
    精氨酸(Arg) 8.13±0.04 10.97
    脯氨酸(Pro)# 1.93±0.16 2.60
    必需氨基酸(*EAA) 20.61 27.82
    疏水性氨基酸(#HAA) 23.79 32.11
    酸性氨基酸 (AAA) 26.57 35.86
    注:*EAA:必需氨基酸;#HAA:疏水性氨基酸;AAA:酸性氨基酸(Asp、Glu)。
    下载: 导出CSV 
    | 显示表格

    本研究以苦荞麦作为原料提取苦荞蛋白,并利用单因素和响应面试验,以胰脂肪酶抑制活性为主要检测指标,筛选出制备苦荞蛋白降血脂肽的最佳酶解工艺:酶解时间2.1 h,酶解温度为62.0 ℃,底物浓度3.23%,pH7.0,酶底比0.4%,此条件下制备的苦荞蛋白降血脂肽的胰脂肪酶抑制率达到81.22%±0.16%。苦荞蛋白降血脂肽表现出良好的牛磺胆酸钠结合能力、胰脂肪酶抑制能力和胆固醇酯酶抑制能力,显示出其良好的降血脂活性。苦荞蛋白降血脂肽含有丰富的疏水性氨基酸(32.11%)和酸性氨基酸(35.86%),这对其降胆固醇和结合胆酸盐的能力有积极作用,Arg/Lys的比值为2.28,也在一定程度上促进了苦荞蛋白降血脂肽的降血脂能力。本研究为苦荞麦资源的高值化利用提供了新思路,后续将进一步对苦荞降血脂肽的分离纯化、结构鉴定和降脂作用机制方面展开深入研究。

  • 图  1   不同酶对苦荞蛋白酶解物胰脂肪酶抑制率的影响

    注:不同字母表示组间存在显著性差异(P<0.05),图2~图6图8~图10同。

    Figure  1.   Effect of different enzymes on pancreatic lipase inhibition rate of tartary buckwheat protease hydrolysate

    图  2   酶解时间对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响

    Figure  2.   Effect of enzymatic hydrolysis time on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    图  3   酶解温度对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响

    Figure  3.   Effect of enzymatic hydrolysis temperature on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    图  4   酶解pH对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响

    Figure  4.   Effect of enzymatic hydrolysis pH on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    图  5   酶底比对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响

    Figure  5.   Effect of enzyme to substrate ratio on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    图  6   底物浓度对苦荞蛋白降血脂肽胰脂肪酶抑制率的影响

    Figure  6.   Effect of substrate concentration on pancreatic lipase inhibition rate of tartary buckwheat protein lipid-lowering peptide

    图  7   酶解时间、酶解温度、底物浓度对胰脂肪酶抑制率的影响

    Figure  7.   Effects of enzymolysis time, enzymolysis temperature and substrate concentration on pancreatic lipase inhibition rate

    图  8   不同浓度苦荞蛋白降血脂肽的牛磺胆酸钠结合率

    Figure  8.   Sodium taurocholate binding rate of different concentrations of tartary buckwheat protein lipid-lowering peptide

    图  9   不同浓度苦荞蛋白降血脂肽的胰脂肪酶抑制率

    Figure  9.   Pancreatic lipase inhibition rate of different concentrations of tartary buckwheat protein lipid-lowering peptide

    图  10   不同浓度苦荞蛋白降血脂肽的胆固醇酯酶抑制率

    Figure  10.   Cholesterol esterase inhibition rate of different concentrations of tartary buckwheat protein lipid-lowering peptide

    图  11   苦荞蛋白降血脂肽氨基酸分析色谱图

    Figure  11.   Amino acid chromatogram of tartary buckwheat protein lipid-lowering peptide

    表  1   各酶最适的水解条件

    Table  1   Suitable hydrolysis conditions for each enzyme

    酶的种类 pH 温度(℃) 时间(h)
    胃蛋白酶 2.0 40 3
    木瓜蛋白酶 6.0 55 3
    菠萝蛋白酶 7.0 55 3
    中性蛋白酶 7.0 55 3
    胰蛋白酶 8.0 50 3
    碱性蛋白酶 9.5 55 3
    下载: 导出CSV

    表  2   响应面优化试验因素与水平设计

    Table  2   Experimental factors and levels design of response surface optimization

    因素 水平
    −1 0 1
    A酶解时间(h) 1 2 3
    B酶解温度(℃) 55 60 65
    C底物浓度(%) 2 3 4
    下载: 导出CSV

    表  3   响应面设计方案及结果

    Table  3   Scheme and results of the response surface experiment

    试验号 因素 Y:胰脂肪酶抑制率(%)
    A酶解时间 B酶解温度 C底物浓度
    1 0 −1 −1 78.252
    2 1 0 1 78.956
    3 0 0 0 80.952
    4 0 0 0 80.184
    5 0 0 0 80.261
    6 −1 0 −1 77.124
    7 0 0 0 80.879
    8 0 0 0 80.568
    9 −1 −1 0 77.671
    10 0 1 −1 79.597
    11 0 −1 1 80.136
    12 1 0 −1 77.189
    13 1 1 0 78.715
    14 −1 0 1 77.767
    15 −1 1 0 78.795
    16 1 −1 0 78.635
    17 0 1 1 79.732
    下载: 导出CSV

    表  4   回归模型方差分析

    Table  4   Variance analysis for response surface quadratic model

    方差来源 平方和 自由度 均方 F P值(Prob>F 显著性
    模型 25 9 2.78 36.64 <0.0001 **
    A-酶解时间 0.57 1 0.57 7.54 0.0287 *
    B-酶解温度 0.58 1 0.58 7.59 0.0283 *
    C-底物浓度 2.45 1 2.45 32.34 0.0007 **
    AB 0.27 1 0.27 3.59 0.0998
    AC 0.32 1 0.32 4.17 0.0806
    BC 0.76 1 0.76 10.09 0.0156 *
    A2 15.08 1 15.08 198.9 <0.0001 **
    B2 0.21 1 0.21 2.74 0.1416
    C2 3.54 1 3.54 46.72 0.0002 **
    残差 0.53 7 0.076
    失拟项 0.045 3 0.015 0.12 0.9417 不显著
    纯误差 0.49 4 0.12
    总和 25.54 16
    注:P<0.05,差异显著,以*表示;P<0.01,差异极显著,以**表示。
    下载: 导出CSV

    表  5   苦荞蛋白降血脂肽降血脂活性评价

    Table  5   Evaluation of lipid-lowering activity of tartary buckwheat protein lipid-lowering peptide

    活性指标EC50/IC50(mg/mL)
    牛磺胆酸钠结合率9.136
    胰脂肪酶抑制率0.051
    胆固醇酯酶抑制率3.902
    下载: 导出CSV

    表  6   苦荞蛋白降血脂肽的氨基酸组成

    Table  6   Amino acid composition of tartary buckwheat protein lipid-lowering peptide

    氨基酸名称 含量(g/100 g) 相对百分含量(%)
    天冬氨酸(Asp) 7.67±0.93 10.36
    苏氨酸(Thr)* 2.49±0.48 3.36
    丝氨酸(Ser) 3.83±0.31 5.17
    谷氨酸(Glu) 18.90±0.88 25.51
    甘氨酸(Gly)# 4.00±0.06 5.40
    丙氨酸(Ala)# 3.31±0.18 4.46
    半胱氨酸(Cys) 1.48±0.76 1.99
    缬氨酸(Val)*# 3.77±0.30 5.09
    甲硫氨酸(Met)*# 0.70±0.77 0.94
    异亮氨酸(Ile)*# 2.72±0.67 3.67
    亮氨酸(Leu)*# 4.25±0.96 5.74
    酪氨酸(Tyr) 2.38±0.53 3.21
    苯丙氨酸(Phe)*# 3.11±0.13 4.20
    组氨酸(His) 1.87±0.20 2.52
    赖氨酸(Lys)* 3.57±0.98 4.81
    精氨酸(Arg) 8.13±0.04 10.97
    脯氨酸(Pro)# 1.93±0.16 2.60
    必需氨基酸(*EAA) 20.61 27.82
    疏水性氨基酸(#HAA) 23.79 32.11
    酸性氨基酸 (AAA) 26.57 35.86
    注:*EAA:必需氨基酸;#HAA:疏水性氨基酸;AAA:酸性氨基酸(Asp、Glu)。
    下载: 导出CSV
  • [1]

    SUNGMIN L, BUHYUN Y. Hypolipidemic roles of casein-derived peptides by regulation of trans-intestinal cholesterol excretion and bile acid synthesis[J]. Nutrients,2020,12(10):3058−3058. doi: 10.3390/nu12103058

    [2]

    XIANG H, WATERHOUSE D, LIU P, et al. Pancreatic lipase-inhibiting protein hydrolysate and peptides from seabuckthorn seed meal:preparation optimization and inhibitory mechanism[J]. LWT-Food Science and Technology,2020,134:109870−109870. doi: 10.1016/j.lwt.2020.109870

    [3] 侯珮琳, 赵肖通, 张彦青, 等. 绿豆蛋白降血脂水解物的制备及纯化工艺[J]. 食品工业科技,2020,41(9):186−192. [HOU Peilin, ZHAO Xiaotong, ZHANG Yanqing, et al. Preparation and purification of hydrolysate of mung bean protein for reducing blood lipids[J]. Science and Technology of Food Industry,2020,41(9):186−192.]

    HOU Peilin, ZHAO Xiaotong, ZHANG Yanqing, et al. Preparation and purification of hydrolysate of mung bean protein for reducing blood lipids[J]. Science and Technology of Food Industry, 2020, 41(9): 186−192.

    [4] 成人高脂血症食养指南[J]. 2023年版. 全科医学临床与教育,2023,21(7):581-583. [Dietary guidelines for adults with hyperlipidemia [J]. 2023 edition. General Medicine Clinical and Education,2023,21(7):581-583.]

    Dietary guidelines for adults with hyperlipidemia [J]. 2023 edition. General Medicine Clinical and Education, 2023, 21(7): 581-583.

    [5]

    TADDEI C, ZHOU B, BIXBY H, et al. Repositioning of the global epicentre of non-optimal cholesterol[J]. Nature,2020,582(7810):73−77. doi: 10.1038/s41586-020-2338-1

    [6] 夏峰. 浅析高血脂可诱发多种疾病对人体的危害[J]. 医学信息(中旬刊),2011,24(9):4341−4342. [XIA Feng. Analysis on the harm of hyperlipidemia inducing various diseases to human body[J]. Medical Information (Mid-Day),2011,24(9):4341−4342.]

    XIA Feng. Analysis on the harm of hyperlipidemia inducing various diseases to human body[J]. Medical Information (Mid-Day), 2011, 24(9): 4341−4342.

    [7]

    CASSAR A, HOLMES D R, RIHAL C S, et al. Chronic coronary artery disease:Diagnosis and management[J]. Mayo Clinic Proceedings,2009,84(12):1130−1146. doi: 10.4065/mcp.2009.0391

    [8] 李建飞, 王智勇, 宋明哲, 等. 不同剂量阿托伐他汀钙治疗老年不稳定型心绞痛并高脂血症患者的治疗效果分析[J]. 中国实用医药,2020,15(7):123−125. [LI Jianfei, WANG Zhiyong, SONG Mingzhe, et al. Analysis of effect of different doses of atorvastatin calcium on elderly patients with unstable angina pectoris and hyperlipidemia[J]. China Practical Medicine,2020,15(7):123−125.]

    LI Jianfei, WANG Zhiyong, SONG Mingzhe, et al. Analysis of effect of different doses of atorvastatin calcium on elderly patients with unstable angina pectoris and hyperlipidemia[J]. China Practical Medicine, 2020, 15(7): 123−125.

    [9]

    LIN P, SHEN N, YIN F, et al. Sea cucumber-derived compounds for treatment of dyslipidemia:A review[J]. Frontiers in Pharmacology,2022,13:1000315−1000315. doi: 10.3389/fphar.2022.1000315

    [10] 蒋琪, 贺婷婷, 石玉华. 奥利司他治疗肥胖型多囊卵巢综合征的研究进展[J]. 中华生殖与避孕杂志,2019,39(9):5. [JIANG Qi, HE Tingting, SHI Yuhua. Research progress of orlistat in treatment of obese polycystic ovary syndrome[J]. Chinese Journal of Reproduction and Contraception,2019,39(9):5.]

    JIANG Qi, HE Tingting, SHI Yuhua. Research progress of orlistat in treatment of obese polycystic ovary syndrome[J]. Chinese Journal of Reproduction and Contraception, 2019, 39(9): 5.

    [11]

    PRITI M, N B W, HINA K, et al. A comparative investigation into novel cholesterol esterase and pancreatic lipase inhibitory peptides from cow and camel casein hydrolysates generated upon enzymatic hydrolysis and in-vitro digestion[J]. Food Chemistry,2022,367:130661. doi: 10.1016/j.foodchem.2021.130661

    [12]

    YANG F Y, HUANG J Q, HE H Y, et al. Study on the hypolipidemic activity of rapeseed protein-derived peptides[J]. Food Chemistry,2023,423:136315. doi: 10.1016/j.foodchem.2023.136315

    [13]

    YE H D, XU Y, SUN Y N, et al. Purification, identification and hypolipidemic activities of three novel hypolipidemic peptides from tea protein[J]. Food Research International,2023,165:112450−112450. doi: 10.1016/j.foodres.2022.112450

    [14]

    FERREIRA M R, GARZÓN A G, OLIVA M E, et al. Lipid-lowering effect of microencapsulated peptides from brewer's spent grain in high-sucrose diet-fed rats[J]. Food Bioscience,2022,49:101981−101981. doi: 10.1016/j.fbio.2022.101981

    [15] 范昱. 中国苦荞种质资源性状评价和荞麦属植物亲缘关系分析[D]. 成都:成都大学, 2019. [FAN Yu. Evaluation of tartary buckwheat germplasm resources in China and genetic relationship analysis of Fagopyrum mill genus plants[D]. Chengdu:Chengdu University, 2019.]

    FAN Yu. Evaluation of tartary buckwheat germplasm resources in China and genetic relationship analysis of Fagopyrum mill genus plants[D]. Chengdu: Chengdu University, 2019.

    [16] 张超, 卢艳, 郭贯新, 等. 苦荞麦蛋白质抗疲劳功能机理的研究[J]. 食品与生物技术学报,2005(6):78−82. [ZHANG Chao, LU Yan, GUO Guanxin, et al. Study on antifatigue of buckwheat protein[J]. Journal of Food Science and Biotechnology,2005(6):78−82.] doi: 10.3321/j.issn:1673-1689.2005.06.017

    ZHANG Chao, LU Yan, GUO Guanxin, et al. Study on antifatigue of buckwheat protein[J]. Journal of Food Science and Biotechnology, 2005(6): 78−82. doi: 10.3321/j.issn:1673-1689.2005.06.017

    [17]

    TOMOTAKE H, SHIMAOKA I, KAYASHITA J, et al. Stronger suppression of plasma cholesterol and enhancement of the fecal excretion of steroids by a buckwheat protein product than by a soy protein isolate in rats fed on a cholesterol-free diet[J]. Bioscience, Biotechnology, and Biochemistry,2001,65(6):1412−1414. doi: 10.1271/bbb.65.1412

    [18] 何晓兰, 雷霆雯, 许庆忠, 等. 不同方法提取苦荞蛋白的体外抗氧化活性研究[J]. 安徽农业科学,2017,45(25):134−135. [HE Xiaolan, LEI Tingwen, XU Qingzhong, et al. Study on antioxidant activity in vitro of tartary buckwheat proteins extracted by different methods[J]. Journal of Anhui Agricultural Sciences,2017,45(25):134−135.] doi: 10.3969/j.issn.0517-6611.2017.25.042

    HE Xiaolan, LEI Tingwen, XU Qingzhong, et al. Study on antioxidant activity in vitro of tartary buckwheat proteins extracted by different methods[J]. Journal of Anhui Agricultural Sciences, 2017, 45(25): 134−135. doi: 10.3969/j.issn.0517-6611.2017.25.042

    [19] 李恩伟. 苦荞蛋白对肠道有害菌生长抑制机理研究[J]. 食品工业科技,2017,38(15):306−310. [LI Enwei. Effect of tartary buckwheat protein on the growth of harmful bacteria in intestinal[J]. Science and Technology of Food Industry,2017,38(15):306−310.]

    LI Enwei. Effect of tartary buckwheat protein on the growth of harmful bacteria in intestinal[J]. Science and Technology of Food Industry, 2017, 38(15): 306−310.

    [20] 周小理, 路远, 周一鸣, 等. 苦荞蛋白对益生菌生长及其胆酸盐耐受能力的影响[J]. 现代食品科技,2016,32(9):121−126. [ZHOU Xiaoli, LU Yuan, ZHOU Yiming, et al. Effects of tartary buckwheat protein on the growth and bile salts tolerance of probiotics[J]. Modern Food Science and Technology,2016,32(9):121−126.]

    ZHOU Xiaoli, LU Yuan, ZHOU Yiming, et al. Effects of tartary buckwheat protein on the growth and bile salts tolerance of probiotics[J]. Modern Food Science and Technology, 2016, 32(9): 121−126.

    [21]

    GUO X, YAO H. Fractionation and characterization of tartary buckwheat flour proteins[J]. Food Chemistry,2005,98(1):90−94.

    [22] 陈英娇. 苦荞蛋白酶解物的制备及抗菌活性的研究[D]. 上海:上海师范大学, 2015. [CHEN Yingjiao. Enzymatic preparation and research on the antibacterial activity of tartary buckwheat protein hydrolysates[D]. Shanghai:Shanghai Normal University, 2015.]

    CHEN Yingjiao. Enzymatic preparation and research on the antibacterial activity of tartary buckwheat protein hydrolysates[D]. Shanghai: Shanghai Normal University, 2015.

    [23] 江含秀, 曾芳, 邬晓霞, 等. 不同品种苦荞蛋白的复合酶解及其多肽抗氧化活性[J]. 食品研究与开发,2023,44(9):43−51. [JIANG Hanxiu, ZENG Fang, WU Xiaoxia, et al. Doble enzymatic hydrolysis of tartary buckwheat proteins of different varieties and the antioxidant activity of the polypeptides[J]. Food Research and Development,2023,44(9):43−51.] doi: 10.12161/j.issn.1005-6521.2023.09.007

    JIANG Hanxiu, ZENG Fang, WU Xiaoxia, et al. Doble enzymatic hydrolysis of tartary buckwheat proteins of different varieties and the antioxidant activity of the polypeptides[J]. Food Research and Development, 2023, 44(9): 43−51. doi: 10.12161/j.issn.1005-6521.2023.09.007

    [24] 马萌, 陶婷, 马挺军. 苦荞多肽的纯化、结构与体外抗氧化活性研究[J]. 天然产物研究与开发,2022,34(12):2011−2017. [MA Meng, TAO Ting, MA Tingjun. Study on purification, structure and in vitro antioxidant activity of buckwheat peptides[J]. Natural Product Research and Development,2022,34(12):2011−2017.]

    MA Meng, TAO Ting, MA Tingjun. Study on purification, structure and in vitro antioxidant activity of buckwheat peptides[J]. Natural Product Research and Development, 2022, 34(12): 2011−2017.

    [25] 蒋彤, 王亚雯, 李裕倩, 等. 苦荞低聚肽体外抗氧化活性及其对运动小鼠自由基代谢与疲劳恢复的影响[J]. 营养学报,2022,44(1):79−85. [JIANG Tong, WANG Yawen, LI Yuqian, et al. Antioxidant capacity of tartary buckwheat oligopeptides and its effect on free radical metabolism and fatigue recovery in exercise training mice[J]. Acta Nutrimenta Sinica,2022,44(1):79−85.] doi: 10.3969/j.issn.0512-7955.2022.01.015

    JIANG Tong, WANG Yawen, LI Yuqian, et al. Antioxidant capacity of tartary buckwheat oligopeptides and its effect on free radical metabolism and fatigue recovery in exercise training mice[J]. Acta Nutrimenta Sinica, 2022, 44(1): 79−85. doi: 10.3969/j.issn.0512-7955.2022.01.015

    [26] 杜晶晶. 苦荞抗菌肽FtAMP的分子特征及抗菌活性的研究[D]. 太原:山西大学, 2018. [DU Jingjing. Study on molecular characteristics and antibacterial activity of buckwheat antimicrobial peptide-FtAMP[D]. Taiyuan:Shanxi University, 2018.]

    DU Jingjing. Study on molecular characteristics and antibacterial activity of buckwheat antimicrobial peptide-FtAMP[D]. Taiyuan: Shanxi University, 2018.

    [27] 陈旋, 杨国琴, 高书彦, 等. 响应曲面优化苦荞多肽固态发酵工艺及其抗菌活性研究[J]. 食品与发酵科技,2018,54(1):30−38. [CHEN Xuan, YANG Guoqin, GAO Shuyan, et al. Preparation optimization of tartary buckwheat peptide by solidstate fermentation using response surface methodology and antimicrobial activity[J]. Food and Fermentation Science & Technology,2018,54(1):30−38.]

    CHEN Xuan, YANG Guoqin, GAO Shuyan, et al. Preparation optimization of tartary buckwheat peptide by solidstate fermentation using response surface methodology and antimicrobial activity[J]. Food and Fermentation Science & Technology, 2018, 54(1): 30−38.

    [28] 刘靖. 苦荞蛋白对脂质代谢的调控作用及其作用机制研究[D]. 成都:成都大学, 2022. [LIU Jing. Effects of tartary buckwheat protein onlipid metabolism and its mechanism[D]. Chengdu:Chengdu University, 2022.]

    LIU Jing. Effects of tartary buckwheat protein onlipid metabolism and its mechanism[D]. Chengdu: Chengdu University, 2022.

    [29] 王宏. 苦荞蛋白对小鼠血脂代谢紊乱与肠道菌群调节作用的研究[D]. 上海:上海应用技术大学, 2016. [WANG Hong. Preventive effect of tartary buckwheat protein on the dyslipidemia and intestinal flora in mouse[D]. Shanghai:Shanghai University of Applied Technology, 2016.]

    WANG Hong. Preventive effect of tartary buckwheat protein on the dyslipidemia and intestinal flora in mouse[D]. Shanghai: Shanghai University of Applied Technology, 2016.

    [30] 刘泰驿. 基于代谢组学与微生物组学的苦荞蛋白降脂机理的研究[D]. 上海:上海应用技术大学, 2017. [LIU Taiyi. Study on lipid lowering mechanism of tartary buckwheat protein based on intestinal flora and metabolomics abstract[D]. Shanghai:Shanghai University of Applied Technology, 2017.]

    LIU Taiyi. Study on lipid lowering mechanism of tartary buckwheat protein based on intestinal flora and metabolomics abstract[D]. Shanghai: Shanghai University of Applied Technology, 2017.

    [31] 钟婉滢, 苗建银, 叶灏铎, 等. 藜麦蛋白肽的酶解制备及体外降血脂与降尿酸活性研究[J]. 食品工业科技,2023,44(23):156−166. [ZHONG Wanying, MIAO Jianyin, YE Haoduo, et al. Enzymatic preparation of quinoa protein peptides and its lipid-lowering and uric acid-lowering activity in vitro[J]. Science and Technology of Food Industry,2023,44(23):156−166.]

    ZHONG Wanying, MIAO Jianyin, YE Haoduo, et al. Enzymatic preparation of quinoa protein peptides and its lipid-lowering and uric acid-lowering activity in vitro[J]. Science and Technology of Food Industry, 2023, 44(23): 156−166.

    [32] 叶灏铎, 苗建银, 李龙星, 等. 勐库大叶茶蛋白降血脂肽的酶解制备及活性分析[J]. 食品工业科技,2022,43(9):212−221. [YE Haoduo, MIAO Jianyin, LI Longxing, et al. Preparation and activity of hypolipidemic peptides from Mengkudayecha protein by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2022,43(9):212−221.]

    YE Haoduo, MIAO Jianyin, LI Longxing, et al. Preparation and activity of hypolipidemic peptides from Mengkudayecha protein by enzymatic hydrolysis[J]. Science and Technology of Food Industry, 2022, 43(9): 212−221.

    [33] 李成龙. 发酵酸肉降血脂肽的分离纯化、特性研究及其对血管内皮细胞的影响[D]. 重庆:西南大学, 2016. [LI Chenglong. Purification of blood lipid lowering peptides from fermented sour meat and studing of physicochemical properties and its effects on vascular endothelial cells[J]. Chongqing:Southwest University, 2016.]

    LI Chenglong. Purification of blood lipid lowering peptides from fermented sour meat and studing of physicochemical properties and its effects on vascular endothelial cells[J]. Chongqing: Southwest University, 2016.

    [34]

    BABA W N, PRITI M, BINCY B, et al. New insights into the cholesterol esterase- and lipase-inhibiting potential of bioactive peptides from camel whey hydrolysates:Identification, characterization, and molecular interaction[J]. Journal of Dairy Science,2021,104(7):7393−7405. doi: 10.3168/jds.2020-19868

    [35] 国家卫生和计划生育委员会, 国家食品药品监督管理总局. 食品安全国家标准 食品中氨基酸的测定 GB 5009.124-2016[S]. 北京:中国标准出版社, 2016. [National Health and Family Planning Commission, State Food and Drug Administration. Determination of amino acids in food of national standard for food safety GB 5009.124-2016[S]. Beijing:Standards Press of China, 2016.]

    National Health and Family Planning Commission, State Food and Drug Administration. Determination of amino acids in food of national standard for food safety GB 5009.124-2016[S]. Beijing: Standards Press of China, 2016.

    [36] 拉升·再尼西, 李伟, 敬思群, 等. 酶解法制备葵花籽粕ACE抑制肽[J]. 食品工业,2018,39(9):32−35. [LASHENG·Zainixi, LI Wei, JING Siqun, et al. Preparation of ACE inhibitory peptides from sunflower seed meal by enzymolysis method[J]. Food Industry,2018,39(9):32−35.]

    LASHENG·Zainixi, LI Wei, JING Siqun, et al. Preparation of ACE inhibitory peptides from sunflower seed meal by enzymolysis method[J]. Food Industry, 2018, 39(9): 32−35.

    [37] 徐倩, 戴遥, 赵永慧, 等. 酶法制备鱼降血压肽的工艺优化及其组分分析[J]. 食品工业科技,2018,39(20):151−157. [XU Qian, DAI Yao, ZHAO Yonghui, et al. Optimization of preparation of hypotensive peptide from platycephalus indicus by enzymatic method and its component analysis[J]. Science and Technology of Food Industry,2018,39(20):151−157.]

    XU Qian, DAI Yao, ZHAO Yonghui, et al. Optimization of preparation of hypotensive peptide from platycephalus indicus by enzymatic method and its component analysis[J]. Science and Technology of Food Industry, 2018, 39(20): 151−157.

    [38] 许春平, 姜宇, 曾颖, 等. 不同酶解条件对烟叶蛋白水解度和抗氧化性的影响[J]. 轻工学报,2017,32(6):56−62. [XU Chunping, JIANG Yu, ZENG Ying, et al. Effects of different enzymolysis conditions on the protein degree and antioxidant activity of tobacco leaf[J]. Journal of Light Industry,2017,32(6):56−62.]

    XU Chunping, JIANG Yu, ZENG Ying, et al. Effects of different enzymolysis conditions on the protein degree and antioxidant activity of tobacco leaf[J]. Journal of Light Industry, 2017, 32(6): 56−62.

    [39] 周丽丽, 吴跃梅, 王素英. 响应面法优化酶解藻蓝蛋白制备抗肥胖肽[J]. 中国食品学报,2017,17(5):99−107. [ZHOU Lili, WU Yuemei, WANG Suying. Optimization of enayme of anti-obesity from phycocyanin by response surface methodology[J]. Chinese Journal of Food Science,2017,17(5):99−107.]

    ZHOU Lili, WU Yuemei, WANG Suying. Optimization of enayme of anti-obesity from phycocyanin by response surface methodology[J]. Chinese Journal of Food Science, 2017, 17(5): 99−107.

    [40] 罗小雨, 周仿, 费烨, 等. 响应面法优化苦荞水溶性清蛋白水解工艺及其抗氧化活性研究[J]. 食品科技,2019,44(3):239−244. [LUO Xiaoyu, ZHOU Fang, FEI Ye, et al. Optimization for hydrolysis of tartary buckwheat water-soluble albumin by response surface methodology and its antioxidant activity[J]. Food Science and Technology,2019,44(3):239−244.]

    LUO Xiaoyu, ZHOU Fang, FEI Ye, et al. Optimization for hydrolysis of tartary buckwheat water-soluble albumin by response surface methodology and its antioxidant activity[J]. Food Science and Technology, 2019, 44(3): 239−244.

    [41] 黄文, 余可楠, 廖婉雯, 等. 响应面法优化罗非鱼鳞钙结合肽酶解工艺及其特性表征[J]. 食品工业科技,2021,42(21):190−196. [HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of enzymatic hydrolysis of tilapia scale calcium binding peptides by response surface methodology and its structural characterization[J]. Science and Technology of Food Industry,2021,42(21):190−196.]

    HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of enzymatic hydrolysis of tilapia scale calcium binding peptides by response surface methodology and its structural characterization[J]. Science and Technology of Food Industry, 2021, 42(21): 190−196.

    [42]

    KARANGWA E, ZHANG X, MUREKATETE N, et al. Effect of substrate type on sensory characteristics and antioxidant capacity of sunflower Maillard reaction products[J]. European Food Research and Technology,2015,240(5):939−960. doi: 10.1007/s00217-014-2398-2

    [43] 杨晓月. 核桃粕降血脂肽的制备及其降血脂作用研究[D]. 西安:陕西师范大学, 2021. [YANG Xiaoyue. Preparation of hypolipidemic peptide from walnut meal and its hypolipidemic effect[D]. Xi'an:Shaanxi Normal University, 2021.]

    YANG Xiaoyue. Preparation of hypolipidemic peptide from walnut meal and its hypolipidemic effect[D]. Xi'an: Shaanxi Normal University, 2021.

    [44] 唐诵泽. 降胆固醇核桃多肽的制备及其活性研究[D]. 晋中:山西农业大学, 2020. [TANG Songze. Study on the preparation and activity of hypocholesterolemic peptide from walnut[D]. Jinzhong:Shanxi Agricultural University, 2020.]

    TANG Songze. Study on the preparation and activity of hypocholesterolemic peptide from walnut[D]. Jinzhong: Shanxi Agricultural University, 2020.

    [45] 宁诗文, 崔珊珊, 尚宏丽. 响应面法优化大黄花鱼肉蛋白水解工艺及多肽抗氧化性研究[J]. 食品工业科技,2020,41(13):219−226. [NING Shiwen, CUI Shanshan, SHANG Hongli. Optimization of the protein hydrolysis process by response surface method and the antioxidant properties of polypeptides in largy yellow croaker[J]. Science and Technology of Food Industry,2020,41(13):219−226.]

    NING Shiwen, CUI Shanshan, SHANG Hongli. Optimization of the protein hydrolysis process by response surface method and the antioxidant properties of polypeptides in largy yellow croaker[J]. Science and Technology of Food Industry, 2020, 41(13): 219−226.

    [46] 张可欣, 屠康, 李心悦. 响应面法优化荸荠山药猪肉丸配方[J]. 食品工业,2023,44(5):47−51. [ZHANG Kexin, TU Kang, LI Xinyue. Optimization of formulation of water chestnut, yam and pork balls by response surface methodology[J]. Food Industry,2023,44(5):47−51.]

    ZHANG Kexin, TU Kang, LI Xinyue. Optimization of formulation of water chestnut, yam and pork balls by response surface methodology[J]. Food Industry, 2023, 44(5): 47−51.

    [47] 伦琦, 乔镜澄, 杨江南, 等. 响应面分析法优化银杏叶黄酮类化合物的提取工艺[J]. 食品安全导刊,2023(12):137−140. [LUN Qi, QIAO Jingcheng, YANG Jiangnan, et al. Study on optimization of extraction technology by response surface methodology of flavonoids from Ginkgo biloba leaves[J]. China Food Safety Magazine,2023(12):137−140.]

    LUN Qi, QIAO Jingcheng, YANG Jiangnan, et al. Study on optimization of extraction technology by response surface methodology of flavonoids from Ginkgo biloba leaves[J]. China Food Safety Magazine, 2023(12): 137−140.

    [48] 唐杏雨, 理俊霞, 王浩琳, 等. 响应面法优化黑水虻幼虫蛋白肽的制备工艺[J]. 现代畜牧科技,2023(4):6−11. [TANG Xingyu, LI Junxia, WANG Haolin, et al. Optimization of preparation process of black soldier fly larval protein peptides by response surface method[J]. Modern Animal Husbandry Science & Technology,2023(4):6−11.]

    TANG Xingyu, LI Junxia, WANG Haolin, et al. Optimization of preparation process of black soldier fly larval protein peptides by response surface method[J]. Modern Animal Husbandry Science & Technology, 2023(4): 6−11.

    [49] 孟晓雪, 卫育良, 梁萌青, 等. 鱼类胆固醇营养需求研究进展[J]. 动物营养学报,2021,33(2):719−728. [MENG Xiaoxue, WEI Yuliang, LIANG Mengqing, et al. Progress in cholesterol nutritional requirements of fish[J]. Chinese Journal of Animal Nutrition,2021,33(2):719−728.] doi: 10.3969/j.issn.1006-267x.2021.02.013

    MENG Xiaoxue, WEI Yuliang, LIANG Mengqing, et al. Progress in cholesterol nutritional requirements of fish[J]. Chinese Journal of Animal Nutrition, 2021, 33(2): 719−728. doi: 10.3969/j.issn.1006-267x.2021.02.013

    [50]

    XUE Z H, GAO X D, JIA Y J, et al. Structure characterization of high molecular weight soluble dietary fiber from mushroom Lentinula edodes (Berk.) Pegler and its interaction mechanism with pancreatic lipase and bile salts[J]. International Journal of Biological Macromolecules,2020,153(15):1281−1290.

    [51] 胡凯, 黄惠华. 不同茶浸提液对胆酸盐的结合及其降血脂机理的研究[J]. 食品工业科技,2011,32(8):105−107. [HU Kai, HUANG Huihua. Study on the ability of bile salt-binding among different tea extracts in vitro[J]. Science and Technology of Food Industry,2011,32(8):105−107.]

    HU Kai, HUANG Huihua. Study on the ability of bile salt-binding among different tea extracts in vitro[J]. Science and Technology of Food Industry, 2011, 32(8): 105−107.

    [52]

    DEBRUYNE P R, BRUYNEEL E A, LI X, et al. The role of bile acids in carcinogenesis[J]. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2001,480:359−369.

    [53] 魏连会, 宋淑敏, 董艳, 等. 汉麻籽多肽的氨基酸营养组成与体外结合胆酸盐能力的研究[J]. 中国粮油学报,2020,35(1):62−66. [WEI Lianhui, SONG Shumin, DONG Yan, et al. Evaluation of amino acid nutritional composition and in vitro binding of bile salts power of hemp seed polypeptide[J]. Journal of the Chinese Cereals and Oils Association,2020,35(1):62−66.] doi: 10.3969/j.issn.1003-0174.2020.01.011

    WEI Lianhui, SONG Shumin, DONG Yan, et al. Evaluation of amino acid nutritional composition and in vitro binding of bile salts power of hemp seed polypeptide[J]. Journal of the Chinese Cereals and Oils Association, 2020, 35(1): 62−66. doi: 10.3969/j.issn.1003-0174.2020.01.011

    [54] 吴章毅, 乔惠钰, 陈红. 米糠多肽的制备和体外降血脂、降血糖活性分析及结构鉴定[J]. 粮食与油脂,2023,36(7):54−59. [WU Zhangyi, QIAO Huiyu, CHEN Hong. Preparation of rice bran polypeptide and in vitro hypolipidemic and hypoglycemic activity analysis and structure identification[J]. Cereals & Oils,2023,36(7):54−59.] doi: 10.3969/j.issn.1008-9578.2023.07.013

    WU Zhangyi, QIAO Huiyu, CHEN Hong. Preparation of rice bran polypeptide and in vitro hypolipidemic and hypoglycemic activity analysis and structure identification[J]. Cereals & Oils, 2023, 36(7): 54−59. doi: 10.3969/j.issn.1008-9578.2023.07.013

    [55] 孙茹欣. 驼血降血脂生物活性肽的制备与鉴定[D]. 呼和浩特:内蒙古农业大学, 2021. [SUN Ruxin. Preparation and identification of lipid-lowering bioactive peptides in camel blood[D]. Hohhot:Inner Mongolia Agricultural University, 2021.]

    SUN Ruxin. Preparation and identification of lipid-lowering bioactive peptides in camel blood[D]. Hohhot: Inner Mongolia Agricultural University, 2021.

    [56] 龚受基, 滕翠琴, 梁东姨, 等. 六堡茶茶褐素体外降脂功效研究[J]. 茶叶科学,2020,40(4):536−543. [GONG Shouji, TENG Cuiqin, LIANG Dongyi, et al. In vitro study on hypolipidemic effect of heabrownins Liupao tea[J]. Journal of Tea Science,2020,40(4):536−543.] doi: 10.3969/j.issn.1000-369X.2020.04.012

    GONG Shouji, TENG Cuiqin, LIANG Dongyi, et al. In vitro study on hypolipidemic effect of heabrownins Liupao tea[J]. Journal of Tea Science, 2020, 40(4): 536−543. doi: 10.3969/j.issn.1000-369X.2020.04.012

    [57]

    RAMAK E, ISSAKA S, WILLIAM W, et al. Antioxidant, pancreatic lipase, and α-amylase inhibitory properties of oat bran hydrolyzed proteins and peptides[J]. Journal of Food Biochemistry,2021,46(4):e13762−e13762.

    [58]

    FEYISOLA F A, PRITI M, CHEE-YUEN G, et al. Identification and characterization of cholesterol esterase and lipase inhibitory peptides from amaranth protein hydrolysates[J]. Food Chemistry:X,2021,12:100165.

    [59] 刘晓静. 亚麻籽肽降胆固醇作用的研究[D]. 呼和浩特:内蒙古农业大学, 2020. [LIU Xiaojing. Study on cholesterol-lowering effect of flaxseed peptide[D]. Hohhot:Inner Mongolia Agricultural University, 2020.]

    LIU Xiaojing. Study on cholesterol-lowering effect of flaxseed peptide[D]. Hohhot: Inner Mongolia Agricultural University, 2020.

    [60]

    PRADOS I M, MARINA M L, GARCIA M C. Isolation and identification by high resolution liquid chromatography tandem mass spectrometry of novel peptides with multifunctional lipid-lowering capacity[J]. Food Research International,2018,111:77−86. doi: 10.1016/j.foodres.2018.05.009

    [61]

    GUADALUPE G A, ESTEBAN C R, ESTEFANIA A M, et al. Isolation and identification of cholesterol esterase and pancreatic lipase inhibitory peptides from brewer's spent grain by consecutive chromatography and mass spectrometry[J]. Food & Function,2020,11(6):4994−5003.

    [62]

    YANG X Y, ZHONG D Y, WANG G L, et al. Effect of walnut meal peptides on hyperlipidemia and hepatic lipid metabolism in rats fed a high-fat diet[J]. Nutrients,2021,13(5):1410. doi: 10.3390/nu13051410

  • 期刊类型引用(2)

    1. 尹浩,朱将雄,赵海云,钟宇,王丹凤,邓云. 汉麻籽多肽靶向抑制胰脂肪酶/胆固醇酯酶的分子作用机制. 食品科学. 2025(02): 38-49 . 百度学术
    2. 孙菁茹,孙铭爽,吕文庆,曹荣安,刁静静,王长远. 黑豆黄嘌呤氧化酶抑制肽的制备及体外降尿酸活性. 食品科学. 2024(23): 2372-2380 . 百度学术

    其他类型引用(0)

  • 其他相关附件

图(11)  /  表(6)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  23
  • PDF下载量:  17
  • 被引次数: 2
出版历程
  • 收稿日期:  2023-11-05
  • 网络出版日期:  2024-08-27
  • 刊出日期:  2024-10-31

目录

/

返回文章
返回
x 关闭 永久关闭