• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

泡沫分馏技术的过程强化策略及其在食品工业中的应用研究进展

程小东, 刘伟, 杨春燕, 殷昊, 卢珂

程小东,刘伟,杨春燕,等. 泡沫分馏技术的过程强化策略及其在食品工业中的应用研究进展[J]. 食品工业科技,2024,45(18):384−393. doi: 10.13386/j.issn1002-0306.2023100241.
引用本文: 程小东,刘伟,杨春燕,等. 泡沫分馏技术的过程强化策略及其在食品工业中的应用研究进展[J]. 食品工业科技,2024,45(18):384−393. doi: 10.13386/j.issn1002-0306.2023100241.
CHENG Xiaodong, LIU Wei, YANG Chunyan, et al. Process Intensification Strategies of Foam Fractionation and Its Applications in Food Industry[J]. Science and Technology of Food Industry, 2024, 45(18): 384−393. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100241.
Citation: CHENG Xiaodong, LIU Wei, YANG Chunyan, et al. Process Intensification Strategies of Foam Fractionation and Its Applications in Food Industry[J]. Science and Technology of Food Industry, 2024, 45(18): 384−393. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100241.

泡沫分馏技术的过程强化策略及其在食品工业中的应用研究进展

基金项目: 国家自然科学基金(22108059)。
详细信息
    作者简介:

    程小东(1998−),男,硕士研究生,研究方向:发酵与生物分离工程,E-mail:17320012556@163.com

    通讯作者:

    刘伟(1986−),男,博士,副教授,研究方向:发酵与生物分离工程,E-mail:liuw16018@hebut.edu.cn

  • 中图分类号: TS252.9

Process Intensification Strategies of Foam Fractionation and Its Applications in Food Industry

  • 摘要: 泡沫分馏是一项绿色、经济的初级分离技术,在食品工业领域具有良好的应用前景。然而,由于操作参数对界面吸附和泡沫排液具有截然相反的影响,泡沫分馏间歇操作很难同时获得较高的富集比和回收率。为了解决这一难题,研究者们开发了多种泡沫分馏过程强化策略。本文首先对近年来界面吸附和泡沫排液过程强化的相关研究进行概括总结,并分析了各种方法的优缺点。随后,综述了泡沫分馏在蛋白质、酶类、皂苷、多酚类物质和生物防腐剂的分离中的研究进展。基于文献梳理和问题分析,未来可开展以下三方面研究以促进泡沫分馏的工业应用:开发能够同时强化界面吸附和泡沫排液的新方法;开发能够特异结合非表面活性物质且可重复使用的新型捕收剂;抑制解吸过程中的蛋白质变性。
    Abstract: Foam fractionation is a green and economical primary separation technique and it has excellent application prospect in the field of food industry. However, it is difficult to simultaneously obtain the high values of enrichment ratio and recovery percentage in a batch operation of foam fractionation due to the opposite effects of operating parameters on interfacial adsorption and foam drainage. In order to solve this problem, multiple process intensification strategies of foam fractionation are developed. In this work, the current studies on the intensification methods of interfacial adsorption and foam drainage were firstly reviewed. The advantages and disadvantages of these methods are analyzed. Subsequently, the research progress of foam fractionation in the separation of proteins, enzymes, saponins, polyphenols and biological preservatives are summarized. Based on the literature review and problem analysis, three future research respects are proposed to promote the industrial application of foam fractionation: Developing new methods which would simultaneously improve interfacial adsorption and foam drainage, designing new collectors with strong binding specificity for non-surface-active materials and good reusability, and inhibiting protein denaturation during desorption process.
  • 泡沫分馏是近些年发展较快的一项初级分离技术,具有设备简单、能耗低、操作条件温和(室温、常压和惰性气体)、吸附介质无需再生等优点,其绿色、经济属性得到研究者们广泛认可[1]。泡沫分馏过程主要由界面吸附和泡沫排液两个阶段组成[2]。基于物质之间气-液界面吸附性能差异,泡沫分馏能够有效富集溶液中微量表面活性物质[3]。此外,一些非表面活性物质(例如,金属离子[4]、染料[5]和合成抗生素[6])通过与表面活性剂生成络合物或螯合物,也可以间接吸附在气泡表面,并利用泡沫分馏实现浓缩和分离。泡沫分馏的操作参数主要包括气体体积流率、装液量、溶液pH、表面活性剂浓度等[7]。然而,研究发现这些操作参数对界面吸附和泡沫排液通常具有截然相反的影响,很难通过条件优化获得最佳的分离效果[8]

    泡沫分馏已广泛应用于工业污水中洗涤剂的脱除和水产养殖系统废水的净化[910]。近年来,随着循环经济发展模式的全面推行,泡沫分馏在食品工业展现出独特的优势和应用潜力。食品工业主要以初级农副产品为原料,通过压榨、蒸煮、微生物发酵等工序制成各种高附加值产品。食品加工过程排放的工艺废水通常含有大量有机物(例如,蛋白质、脂肪和碳水化合物),能够产生丰富泡沫[11]。利用泡沫分馏分离这些有机物不仅可以实现资源回用,而且有利于简化废水处理工序[12]。本文旨对近年来泡沫分馏的过程强化策略和食品工业应用进行总结和分析,并在此基础上探讨未来研究趋势,以期为该技术的推广应用提供理论基础。

    泡沫分馏对目标溶质的分离效果可利用富集比(E)、回收率(R)和纯度比(P)进行评价,具体计算公式如下:

    E=CfC0
    (1)
    R(%)=CfVfC0V0×100
    (2)
    P = ηfη0
    (3)

    式中,C0和Cf分别为原料液和消泡液中目标溶质的浓度;V0和Vf分别为原料液和消泡液的体积;η0ηf分别为原料液和消泡液中目标溶质的纯度。

    E和R能够反映泡沫分馏对目标溶质的浓缩倍数和分离效率。P可用于评价分离过程对目标溶质的选择性。这些评价参数受到界面吸附和泡沫排液的显著影响[13]

    泡沫分馏过程中,气泡脱离主体液相后表面会形成表面活性剂分子定向吸附的双层液膜结构,即外膜来自溶液表层气-液界面,内膜来自气泡与溶液间气-液界面(图1)。由Gibbs吸附等温式可知,在一定温度下,表面活性剂在溶液表层气-液界面上的吸附量会随溶液内部表面活性剂浓度的降低而减小[14]。表面活性剂分子向气泡与溶液间气-液界面的传质速率则主要取决于表面活性剂分子与气-液界面的有效接触。表面活性剂在双层液膜上较高的界面吸附量有利于提高气泡表面电位和表面黏度,阻止液膜变薄或气体扩散,进而增强泡沫稳定性。因此,利用泡沫分馏处理稀料液时,目标溶质在气泡表面的高效吸附是获得高分离效率的关键。

    图  1  表面活性剂分子在气泡表面的吸附过程
    Figure  1.  Adsorption process of surfactant molecules on the bubble surface

    在一定的气体体积流率下,气泡的尺寸越小,生成数量越多,气液间传质接触面积越大[15]。根据斯托克斯定律,气泡在溶液中的上升速度与气泡直径的平方成正比,降低气泡尺寸有助于延长气液接触时间,进而强化吸附传质[16]。胡滨等[17]利用高分子膜材料制备了不同孔径的气体分布器,用以研究气泡尺寸对泡沫分馏过程中十二烷基硫酸钠(sodium dodecyl sulfate,SDS)在气泡表面吸附效率的影响。结果表明随着孔径由23 μm增大到165 μm,SDS的吸附质量流率由14.2×10−6 kg/(m2·s)减小到6.1×10−6 kg/(m2·s)。然而,小气泡群会夹带大量溶液进入泡沫相,并增大泡沫间隙液流动阻力,引起消泡液体积增大,降低泡沫分馏对目标溶质的浓缩效率。

    对于含有相同疏水基团的表面活性剂,亲水基团的亲水性越弱,其在气-液界面的吸附效率越高[18]。Zhang等[19]发现向离子型表面活性剂溶液中加入中性盐(例如,氯化钠、硫酸钠和硫酸铵)可以诱发离子效应,即极性基团的离子氛半径受到压缩,离子间的库仑力减小,这有利于表面活性剂分子更紧密地吸附在气-液界面上。随着盐离子化合价升高,离子型表面活性剂溶液表面张力达到平衡值的时间显著缩短。王梅等[20]发现随着氯化钠浓度的升高,菜籽分离蛋白分子结构的柔性增强,更多的疏水基团暴露提高了蛋白在气液界面的吸附效率。然而,大量使用中性盐不仅会增加泡沫分馏处理稀料液的操作成本,而且会引起蛋白质或酶等大分子活性物质发生聚集沉淀。

    对于表面活性较弱的物质,可以通过引入强疏水基团增强其界面吸附性能。Gerken等[21]利用亚氨基二乙酸和N-辛基-2-二氯乙酰胺合成了一种“镊子”结构复合物,并将其用于强化泡沫分馏回收发酵液中的漆酶。复合物的两个羧基能够与漆酶活性中心的铜离子结合生成酶-“镊子”螯合物,而疏水的正辛基可以显著提高螯合物的疏水性。实验结果表明在泡沫分馏最佳操作条件下,向发酵液中添加65.0 g/L的复合物后,漆酶的E较对照组提高了3.6倍。

    对于非表面活性物质,强化界面吸附主要以提高泡沫分馏过程的选择性为目标。当以表面活性剂作为捕收剂时,非表面活性物质与捕收剂主要通过非共价相互作用(例如,氢键、静电作用力和疏水作用力)结合在一起[22]。这些普遍存在的弱作用力不足以在泡沫分馏过程中选择性分离同价态或配位能力相近的非表面活性物质。Liu等[23]以铜离子修饰的β-环糊精作为捕收剂,以山药粘液作为起泡剂,利用泡沫分馏从葛根提取液中选择性地分离葛根素。葛根提取液含有葛根素、大豆苷、染料木素、葛香豆雌酚、尿囊素等多种天然成分。β-环糊精的疏水空腔容积为0.262 m3,与葛根素分子的匹配程度较好,进而发挥空间筛选作用。经铜离子修饰后,β-环糊精可以与山药粘液以络合物形式吸附在气泡表面。该研究中葛根素与山药粘液之间并不存在相互作用,可见利用铜离子修饰的β-环糊精作为捕收剂能够扩大起泡剂的选择范围,从而降低操作成本。

    气泡离开气体分布器后会沿着分离塔的轴向作浮升运动,气液两相相对运动较小,而气液传质阻力较大,目标溶质在气-液界面上的吸附量小于Langmuir吸附等温方程计算得到的理论值[24]。因此,改变气泡在溶液中的运动和分布行为可以强化界面吸附。Bando等[25]开发了一种液相装有导流管的分离塔,诱导气泡在导流管与塔壁之间的空隙形成环流,进而延长气泡在塔内的停留时间。然而,该分离塔仅对夹带在环流液体中的少量微小气泡发挥作用,强化界面吸附效率并不显著;Wang等[26]开发了一种液相安装折流板内构件的分离塔(图2),强制气泡在分离塔内作径向运动,并加剧溶液湍流程度,近而提高大豆乳清蛋白在气-液界面上的吸附量;张哲等[27]设计了一种液相装有垂直筛板构件的分离塔(图3),通过减小气泡流动截面积来增加气泡,通过垂直筛帽表面的孔洞前后的压强差,并延长气泡在溶液中的浮升路径,从而强化气液间的相对运动和传质。虽然这两种内构件都能够显著提高目标溶质的界面吸附效率,但气泡容易在构件内部发生堆积,形成大量无效分离区域,分离塔的空间利用率较低。

    图  2  含有折流板构件的分离塔[25]
    Figure  2.  Schematic diagram of the foam fractionation column with internal baffles[25]
    图  3  含有垂直筛板构件的分离塔[26]
    Figure  3.  Schematic diagram of the foam fractionation column with vertical sieve tray internals[26]

    泡沫分馏过程中,泡沫在分离塔内向上运动,夹带液在重力的作用下流回主体液相。随着泡沫内液体含量持续降低,气泡由球形变为多面体,三个液膜的交界处形成普拉特奥边界[28]。由于普拉特奥边界压力大于液膜压力,液膜上的液体会自动流向普拉特奥边界。液体在重力和压力差的驱动下沿普拉特奥边界向下流动的现象称为泡沫排液。泡沫排液能够减小液膜厚度,并对泡沫稳定性产生显著影响[29]。目前,泡沫排液的强化策略主要包括以下几个方面。

    黏度是流体分子相互吸引所产生的阻碍分子间相对运动能力的量度,温度变化会对流体的黏度产生显著影响。Yan等[30]研究了温度对泡沫分馏法回收茶籽提取液中茶皂素效率的影响。实验结果表明,随着操作温度由45 ℃升高至65 ℃,茶籽提取液的黏度由1.50±0.01 MPa·s降低至0.885±0.01 MPa·s,茶皂素的E由1.52±0.03增大至3.18±0.05。然而,提高操作温度会引起气体膨胀,压强升高会加剧气泡聚并,进而降低泡沫稳定性。在他们的实验中,随着操作温度由45 ℃升高至65 ℃,茶皂素的R由58.5%±0.9%减小至49.3%±0.6%。此外,温度过高会引起蛋白质发生不可逆聚集或变性,影响分离产物的品质。

    当目标溶质的界面吸附效率足够高时,消泡液体积对E具有显著影响。因此,为了获得更大的E,泡沫分馏过程应尽可能多地排出普拉特奥边界内的间隙液以减小消泡液体积。在一定气体体积流率下,泡沫在分离塔内的停留时间主要由泡沫相的有效体积决定。基于此,研究人员尝试在分离塔的泡沫相引入内径较大的球形和椭球形通道,以增大泡沫相的有效体积,延长泡沫排液时间[3132]。虽然这些特殊通道能够有效强化泡沫排液,但其制造成本较高,且分离塔存在体积庞大、空间利用率低、占地面积大等问题。

    Koehler等[33]将泡沫中的普拉特奥边界分为内边界(三个相邻气泡液膜构成的普拉特奥边界)和外边界(两个相邻气泡液膜和塔壁构成的普拉特奥边界),并发现间隙液在外边界的流动速率是内边界的七倍。基于这一发现,河北工业大学吴兆亮教授团队开发了多种分离塔,试图从以下两个层面强化泡沫排液:改变泡沫在分离塔内的运动状态,强制更多间隙液流向外边界;利用内构件在分离塔内增加外边界数量。为了实现第一层面作用,他们开发了一种顶部通道,具有一定倾斜角度的斜臂分离塔和内部装有螺旋构件的分离塔[3435]。如图4A所示,泡沫沿着倾斜通道的轴向运动,倾斜角度会减小竖直方向上间隙液的流动阻力,并且间隙液仅需通过少量内边界就可以到达倾斜通道的壁面,这促进了间隙液向外边界的流动。螺旋内构件可以在分离塔内形成狭窄的盘旋上升通道,泡沫在通道内快速运动,其中的间隙液在离心作用下流向塔壁(图4B)。对于第二层面,他们尝试在分离塔内安装内套筒、十字型内构件及井字型内构件以增大壁面积,形成更多外边界[3637]。同时,他们还发现垂直交叉的壁面与气泡之间形成的外边界表现出更好的泡沫排液效果,并称之为“角效应”。这些分离塔和内构件的设计简单,易于加工,对于指导泡沫分馏技术的工业应用具有重要意义。此外,他们还尝试在十字型内构件的表面涂覆了一层超疏水材料,以降低间隙液流过外边界时的摩擦阻力,利用液体在壁面发生疏水滑移大幅提高泡沫排液速率[38]。然而,超疏水材料的稳定性差,容易从壁面脱落,引起内构件强化泡沫排液性能衰退。

    图  4  斜臂分离塔(A)和装有螺旋内构件的分离塔(B)[3435]
    Figure  4.  Inclined foam channel (A) and separation tower with spiral internal components (B)[3435]

    气泡尺寸对泡沫持液能力具有显著影响,即气泡尺寸越大,泡沫平衡持液率越小。泡沫分馏过程中,普拉特奥边界内间隙液含量降低到一定程度会引起液膜歧化和气泡聚并。虽然气泡聚能够进一步降低泡沫持液率,但气体快速膨胀与液膜拉伸形变会引起气泡破裂,甚至造成泡沫塌陷。因此,在泡沫持液率较高的情况下,增大气泡尺寸就可以强化泡沫排液。Wu等[39]开发了一种由截流板和导流筒组成的内构件(图5),并将其安装在分离塔的泡沫相用于强化泡沫排液。导流筒的顶端出口封闭,而侧壁均匀开设多个直径3 mm的小孔。当泡沫通过导流筒时,小孔的挤压和剐蹭作用强制气泡发生聚并,并且泡沫截流面的收缩和扩张会促进间隙液的排出,因此泡沫持液率显著降低。随后,Li等[40]设计了一种泡沫相装有垂直筛板构件的分馏塔,并将其用于处理高黏度山药淀粉加工废水。垂直筛板表面的小孔除了发挥挤压和剐蹭作用外,还能够将泡沫的运动方向由垂直变为倾斜,形成错流排液系统,显著降低高黏度间隙液的流动阻力,从而强化泡沫排液。然而,这些内构件的设计较为复杂,仅适用于处理气泡与小孔尺寸接近、持液率较小且未到平衡值的泡沫,且泡沫在内构件与塔壁之间的区域容易发生堆积,造成目标溶质浪费。

    图  5  含有截流板和导流筒组成内构件的分离塔[39]
    Figure  5.  Separation tower with internal components consisting of baffle plates and draft tubes[39]

    气泡的尺寸越大,液膜的曲率半径越大,内部气体压强越小。根据拉普拉斯方程(式4),曲率半径小的小气泡会把内部气体压进与其临近的曲率半径大的大气泡。因此,Jia等[41]在分离塔的底部安装了两个具有不同表面孔径的气体分布器来生成不同尺寸气泡,实验结果表明,在相同气体体积流率条件下,试验塔的气泡聚并和泡沫排液速率较单独安装了一个气体分布器的试验塔得到显著提高。同时,他们还提出了一种利用不同表面孔径的气体分布器在分离塔内构造不同气泡尺寸的泡沫层来强化泡沫排液的操作方案(图6[42]。首先,利用表面孔径较小的气体分布器生成小气泡,以强化界面吸附,降低溶液中目标溶质含量。随后,利用表面孔径较大的气体分布器在小气泡的泡沫层下方形成一层大气泡的泡沫层。由于大气泡的泡沫排液速率较快,下层泡沫会对上层泡沫产生毛细管力,促进上层泡沫中的间隙液流向下层泡沫。与引入异型通道和复杂内构件相比,在分离塔内多安装一个气体分布器的设计更为简单,可操作性更强。

    图  6  通过构造不同气泡尺寸泡沫层强化泡沫排液[42]
    注:A为仅含大气泡的泡沫层;B为仅含小气泡的泡沫层;C为同时含有大气泡和小气泡的泡沫层。
    Figure  6.  Photographs of three types of foam[42]
    ΔP=γ(1R1+1R2)
    (4)

    式中,ΔP为气泡液膜两侧压强差,Pa;γ为气泡液膜表面张力,mN·m−1;R1和R2分别为相邻两个气泡的曲率半径,m。

    蛋白质是一类重要的生物大分子,在维持机体新陈代谢和免疫调节方面发挥着关键作用。蛋白质的分离方法主要有酸(碱)化加热法、有机试剂沉淀法、发酵法、盐析法等,得到的产品存在灰分含量高、生物活性低、再加工性能差等问题[4344]。由于亲水和疏水氨基酸残基的存在,蛋白质分子在水溶液中也具有一定的两亲性,能够自发地吸附在气-液界面并形成高粘弹性薄膜[45]。相较于低分子质量的表面活性剂,蛋白质溶液体系形成的气-液界面更加稳定[46]。目前,研究者已利用泡沫分馏从天然材料或食品加工废水中成功分离出多种蛋白质(表1)。泡沫分馏的操作和设备简单,蛋白质的浓缩效率高,且能够有效脱除色素及胶质,大大降低了后续纯化工作的负荷。

    表  1  泡沫分馏提取蛋白质的研究进展
    Table  1.  Research progress of foam fractionation for protein extraction
    蛋白质种类 原材料 提取条件 提取效率 参考文献
    藜麦蛋白 藜麦种子 温度35 ℃,pH4.0,装液量260 mL和料液比0.3 g/L E=7.89,R=95.68% [47]
    牛乳清蛋白 奶酪加工副产物牛奶乳清 初始蛋白浓度870 mg/L、装液量250 mL、温度25 ℃、
    气体体积流率3.92 cm3/s和pH3.0
    R=90.92% [11]
    亚麻蛋白 未脱胶亚麻籽饼粕 料液浓度1.8 mg/mL,pH3.0,装液量190 mL和NaCl浓度0.75% E=9.8,R=95.8% [48]
    裸藻蛋白 裸藻 pH5.5,装液量300 mL,温度30 ℃和稀释倍数15倍 E=4.18,R=94.27% [49]
    苦荞叶蛋白 苦荞叶 pH5.0,离子浓度2.3 mol/kg,温度35 ℃和稀释倍数32倍 R=88.8% [50]
    杏仁蛋白 杏仁 pH4.0,进料浓度6.0 g/L,气速400 mL/min和鼓泡时间10 min R=71.19% [51]
    菠菜叶蛋白 菠菜叶 pH7.5,稀释倍数16倍,气速260 mL/min和温度40 ℃ E=14.94,R=81.56% [52]
    苜蓿叶蛋白 苜蓿叶 pH7.0,料液比87.5 mg/L,气体流率600 mL/min和装液量600 mL E=7.64,R=90.2% [53]
    紫苏籽蛋白 紫苏籽 甜菜碱浓度0.3 g/L,pH7.0,气体流速400 mL/min和装液量400 mL R=94.5±4.7% [13]
    酪蛋白 模拟乳品废水 酪蛋白和黄原胶质量比1:2,pH6.0,气体体积流速100 mL/min,
    气体分布器孔径0.18 mm和装液量400 mL
    E=16.81,R=86.51% [54]
    大豆乳清蛋白 大豆乳清废水 分离塔高度700 mm,温度60 ℃,气体分布器孔径120±20 μm,
    表观气体流速2.55 mm和分离时间5 h
    R=88.4%±3.9% [55]
    牦牛乳清蛋白 牦牛乳加工废水 蛋白浓度120 μg·mL,气速310 mL/min,温度41 ℃和pH3.8 E=9.25,R=88.3% [56]
    注:E为富集比;R为回收率。
    下载: 导出CSV 
    | 显示表格

    近年来,泡沫分馏也被用于从天然材料的提取液和发酵液中回收各种生物酶。Li等[57]利用泡沫分馏提取菠萝皮中的菠萝蛋白酶,并基于β-环糊精的包结作用来降低气-液界面吸附引起酶活性损失。在最佳的操作条件下,菠萝蛋白酶的R为45.2%。由于提取液中菠萝蛋白酶的浓度很低,且β-环糊精能与提取液中的多种物质形成包结复合物,大量投入β-环糊精会增加泡沫分馏的操作成本。此外,β-环糊精的加入会遮蔽菠萝蛋白酶分子表面的疏水基团,进而降低其界面吸附效率。Zhang等[58]采用泡沫分馏回收毛栓菌发酵液中的漆酶,由于以十六烷基三甲基溴化铵(cetyl trimethyl ammonium bromide,CTAB)作为捕收剂会引起漆酶变性,因此提出了一种β-环糊精和超声波辅助泡沫分馏的分离工艺以降低酶活损失。在pH6.0,气体体积流率60 mL/min,CTAB浓度0.4 g/L,消泡液中β-环糊精和CTAB的摩尔比1.6:1,超声功率50 W和超声温度20 ℃时,漆酶的E和R分别为11.9和73.4%,同时消泡液中漆酶的活性较对照组提高了230%。但是,他们并未阐明超声波对漆酶的分子结构的影响,漆酶中残留的CTAB也没有得到有效去除。高迎迎等[59]利用泡沫分馏从纳豆枯草芽孢杆菌的发酵液中回收纳豆激酶,他们开发了一种“沙漏型”分离塔,在温度25 ℃,气体体积流率150 mL/min,气体分布器孔径125 μm和装液体积150 mL的条件下,纳豆激酶的E和R分别为3.13和87.61%。然而,发酵液中剩余的蛋白胨、牛肉膏和豆饼粉也具有一定起泡性,他们的工作并没有研究泡沫分馏富集纳豆激酶的选择性。显然,泡沫分馏过程中酶的在气-液界面的高效吸附与活性保持仍是亟需解决的问题。

    多糖是一类广泛存在于动植物和微生物细胞中的高分子碳水化合物,其与蛋白质通过共价键生成蛋白聚糖后,能够表现出一定的表面活性[60]。陈亮等[61]采用泡沫分馏纯化枸杞多糖,在稀释倍数7.6、初始pH3.42、气体体积流率295 mL/min的条件下,枸杞多糖的E和R分别为2.57和57.31%。Zheng等[62]采用间歇式泡沫分馏从蛹虫草发酵液中提取胞外多糖,通过添加吐温80作为助表面活性剂,最佳操作条件下多糖的R为54%。与传统水提醇析法相比,泡沫分馏过程具有无有机试剂消耗且能够选择性分离多糖的操作优势,但多糖的分离效率较低。

    皂苷是广泛存在于植物和海洋生物中的一类糖苷化合物,由于三萜或螺旋甾烷类化合物的苷元具有亲脂性,而糖链、糖醛酸或其他有机酸含有亲水基团,皂苷能够表现出强表面活性[63]。泡沫分馏可以高效富集溶液中的微量皂苷,从而大幅减少酸水解法制皂苷元的酸和有机溶剂的用量[64]。皂苷元可以用作食品添加剂,增加食品的营养价值和功能性[65]。泡沫分馏已用于多种皂苷的浓缩和分离,具体的操作条件和分离效果见表2

    表  2  泡沫分馏分离皂苷的研究进展
    Table  2.  Research progress of foam fractionation for saponin separation
    皂苷种类 原材料 提取条件 提取效率 参考文献
    芦笋皂苷 芦笋加工废水 pH7.0,SDS浓度0.1%和气体流速28 L/min R=81.8% [66]
    薯蓣皂苷 葫芦巴 皂苷浓度0.03 mg/mL,温度28 ℃,气速450 mL/min和装液量400 mL E=3.82,R=86.57% [67]
    桔梗皂苷 桔梗 皂苷浓度0.014 mg/mL,温度30 ℃,气速700 mL/min和表面活性剂用量(0.05 mg/mL)30 mL E=2.50,R=77.58% [68]
    薯蓣皂苷 黄姜 稀释倍数84倍,温度20 ℃和装液量436 mL E=7.53,R=91.08% [69]
    大豆皂苷 大豆粕饼 一级分离:气体体积流率200 mL/min,pH4.0,装液量300 mL,温度60 ℃和皂素浓度2.0 g/mL;
    二级分离:气体体积流率300 mL/min,pH4.5,装液量279 mL,温度30 ℃和皂素浓度2.17 g/mL
    R=74% [70]
    无患子皂苷 无患子果实 一级分离:气体体积流率200 mL/min,pH2.06,气体分布器孔径100 μm和温度25 ℃;
    二级分离:气体体积流率70 mL/min,装液量500 mL,气体分布器孔径400 μm和温度65 ℃
    E=133.4,R=90.3% [71]
    茶皂素 茶籽 一级分离:气体流率150 mL/min,pH2.06,装液量250 mL和温度65 ℃;
    二级分离:气体流率200 mL/min和温度30 ℃
    R=80.1% [30]
    下载: 导出CSV 
    | 显示表格

    多酚类物质是一类广泛存在于植物体内的多羟基化合物,能够捕捉自由基并降低氧化应激对人体的伤害,是重要的功能性食品添加剂[72]。Liu等[73]采用泡沫分馏与酸水解法从大豆乳清废水中回收大豆异黄酮苷元,研究结果表明,大豆异黄酮苷元能够与大豆蛋白以复合物的形式富集在消泡液中。随后,他们又在不同pH条件下利用泡沫分离实现大豆异黄酮苷元与大豆蛋白的分离[74]。Jiao等[75]以SDS作为增溶剂和捕收剂,强化泡沫分馏提取银杏叶中的黄酮物质。银杏叶黄酮通过氢键或静电作用与SDS形成络合物,从而通过泡沫分馏实现富集。在最佳操作添加下,银杏叶黄酮的R为76.25%。然而,SDS是一种具有刺激性的阴离子表面活性剂,食品加工前必须将其与银杏叶黄酮分离。Liu等[76]利用美拉德反应制备出一种大豆分离蛋白和葡聚糖的聚合物,并将其用于强化泡沫分馏选择性分离麝香葡萄皮提取液中的反式白藜芦醇。实验结果表明,大豆分离蛋白与葡聚糖的聚合物具有强表面活性,且能够与反式白藜芦醇特异结合。在温度30 ℃,气体体积流率150 mL/min,离子强度0.3 mol/kg和装液量400 mL的条件下,反式白藜芦醇的E和R分别为6.2和90.3%。泡沫分馏过程中,气液界面诱导大豆分离蛋白与葡聚糖的聚合物形成聚集体,可以有效避免反式白藜芦醇发生顺式异构。大豆分离蛋白与葡聚糖的美拉德反应聚合物具有食用安全性,泡沫分馏得到的含反式白藜芦醇聚合物产品可以直接用于食品加工[77]

    Matavos-Aramyan等[78]利用泡沫分馏处理橄榄油加工过程排放的酸性废水,通过向废水中添加少量十六烷基三甲基溴化铵作为捕收剂,抗菌多酚类物质(例如,没食子酸、橄榄苦苷和羟基酪醇)的去除率达到99%,出水化学需氧量稳定在3.5~10.0 mg/L。显然,减少抗菌多酚物质有利于微生物在废水中快速繁殖,从而缩短生物氧化法对该废水的处理时间。因此,泡沫分馏可以用作好氧/厌氧联用生物氧化法处理食品加工废水的前处理步骤,缓解其存在的启动/处理时间长、有机负荷高、污泥产生量大等问题。

    乳链菌肽是一种由乳酸乳球菌分泌的小分子肽,具有抑菌活性强、免疫原性低、在人体消化道降解率高等特点,是目前世界粮农组织和世界卫生组织唯一批准用于食品防腐的细菌素[79]。Wang等[80]采用间歇式泡沫分馏从发酵液中分离乳链菌肽,并研究了温度和海藻糖对乳链菌肽分离效果的影响。在温度50 ℃,气体体积流率150 mL/min,装液量400 mL和海藻糖浓度1 g/L的条件下,乳链菌肽的E和R分别为23.7和84.1%。海藻糖的加入能够显著提高泡沫的稳定性,同时降低乳链菌肽的失活率。Zheng等[81]开发了一种泡沫分馏与乳酸乳球菌发酵的耦合工艺,并用于乳链菌肽的原位分离。空气的持续鼓入不但提高了发酵系统的溶氧量,而且促进了营养物质与菌体细胞的接触。在发酵6~12 h时,以30 mL/min的气体体积流率向发酵系统鼓入无菌空气,发酵结束后乳链菌肽的总效价为4657 IU/mL较间歇式发酵提高了36.2%。

    本文介绍了泡沫分馏技术的过程强化策略及其在食品工业中的潜在应用。泡沫分馏过程中,气泡需要先后通过液相和泡沫相,充分的界面吸附和泡沫排液是获得目标溶质高浓缩效率的关键。研究者们开发了多种泡沫分馏过程强化方法,但是大多数方法并不能同时强化界面吸附和泡沫排液。然而,泡沫分馏的实际处理体系多为溶质浓度较低的水溶液。因此,大部分泡沫分馏过程强化方法的研究仍停留在实验室规模。近年来,泡沫分馏在食品工业展现出良好的应用前景。泡沫分馏不仅能够从天然材料或发酵液中提取多种食品原料,而且可以作为预处理单元强化食品加工废水的生物处理。然而,泡沫分馏过程中气-液界面的伸缩变形会引起表面活性物质发生解吸,并在溶液中生成聚集体,对于蛋白质而言分子聚集会诱发不可逆变性。因此,为了促进泡沫分馏技术的工业应用,未来的研究可以集中在以下三个方面:a.深入研究气泡在溶液中的吸附行为及其在泡沫排液过程中的变化规律,在不改变分离塔形态的前提下,开发能够同时强化界面吸附和泡沫排液的新方法;b.开发能够特异结合非表面活性物质且可重复使用的新型捕收剂,以降低泡沫分馏操作成本;c.利用分子模拟技术研究泡沫排液及消泡过程对蛋白质分子结构的影响,确定蛋白质分子聚集的内在机制,开发能够有效抑制蛋白质变性的新方法。

  • 图  1   表面活性剂分子在气泡表面的吸附过程

    Figure  1.   Adsorption process of surfactant molecules on the bubble surface

    图  2   含有折流板构件的分离塔[25]

    Figure  2.   Schematic diagram of the foam fractionation column with internal baffles[25]

    图  3   含有垂直筛板构件的分离塔[26]

    Figure  3.   Schematic diagram of the foam fractionation column with vertical sieve tray internals[26]

    图  4   斜臂分离塔(A)和装有螺旋内构件的分离塔(B)[3435]

    Figure  4.   Inclined foam channel (A) and separation tower with spiral internal components (B)[3435]

    图  5   含有截流板和导流筒组成内构件的分离塔[39]

    Figure  5.   Separation tower with internal components consisting of baffle plates and draft tubes[39]

    图  6   通过构造不同气泡尺寸泡沫层强化泡沫排液[42]

    注:A为仅含大气泡的泡沫层;B为仅含小气泡的泡沫层;C为同时含有大气泡和小气泡的泡沫层。

    Figure  6.   Photographs of three types of foam[42]

    表  1   泡沫分馏提取蛋白质的研究进展

    Table  1   Research progress of foam fractionation for protein extraction

    蛋白质种类 原材料 提取条件 提取效率 参考文献
    藜麦蛋白 藜麦种子 温度35 ℃,pH4.0,装液量260 mL和料液比0.3 g/L E=7.89,R=95.68% [47]
    牛乳清蛋白 奶酪加工副产物牛奶乳清 初始蛋白浓度870 mg/L、装液量250 mL、温度25 ℃、
    气体体积流率3.92 cm3/s和pH3.0
    R=90.92% [11]
    亚麻蛋白 未脱胶亚麻籽饼粕 料液浓度1.8 mg/mL,pH3.0,装液量190 mL和NaCl浓度0.75% E=9.8,R=95.8% [48]
    裸藻蛋白 裸藻 pH5.5,装液量300 mL,温度30 ℃和稀释倍数15倍 E=4.18,R=94.27% [49]
    苦荞叶蛋白 苦荞叶 pH5.0,离子浓度2.3 mol/kg,温度35 ℃和稀释倍数32倍 R=88.8% [50]
    杏仁蛋白 杏仁 pH4.0,进料浓度6.0 g/L,气速400 mL/min和鼓泡时间10 min R=71.19% [51]
    菠菜叶蛋白 菠菜叶 pH7.5,稀释倍数16倍,气速260 mL/min和温度40 ℃ E=14.94,R=81.56% [52]
    苜蓿叶蛋白 苜蓿叶 pH7.0,料液比87.5 mg/L,气体流率600 mL/min和装液量600 mL E=7.64,R=90.2% [53]
    紫苏籽蛋白 紫苏籽 甜菜碱浓度0.3 g/L,pH7.0,气体流速400 mL/min和装液量400 mL R=94.5±4.7% [13]
    酪蛋白 模拟乳品废水 酪蛋白和黄原胶质量比1:2,pH6.0,气体体积流速100 mL/min,
    气体分布器孔径0.18 mm和装液量400 mL
    E=16.81,R=86.51% [54]
    大豆乳清蛋白 大豆乳清废水 分离塔高度700 mm,温度60 ℃,气体分布器孔径120±20 μm,
    表观气体流速2.55 mm和分离时间5 h
    R=88.4%±3.9% [55]
    牦牛乳清蛋白 牦牛乳加工废水 蛋白浓度120 μg·mL,气速310 mL/min,温度41 ℃和pH3.8 E=9.25,R=88.3% [56]
    注:E为富集比;R为回收率。
    下载: 导出CSV

    表  2   泡沫分馏分离皂苷的研究进展

    Table  2   Research progress of foam fractionation for saponin separation

    皂苷种类 原材料 提取条件 提取效率 参考文献
    芦笋皂苷 芦笋加工废水 pH7.0,SDS浓度0.1%和气体流速28 L/min R=81.8% [66]
    薯蓣皂苷 葫芦巴 皂苷浓度0.03 mg/mL,温度28 ℃,气速450 mL/min和装液量400 mL E=3.82,R=86.57% [67]
    桔梗皂苷 桔梗 皂苷浓度0.014 mg/mL,温度30 ℃,气速700 mL/min和表面活性剂用量(0.05 mg/mL)30 mL E=2.50,R=77.58% [68]
    薯蓣皂苷 黄姜 稀释倍数84倍,温度20 ℃和装液量436 mL E=7.53,R=91.08% [69]
    大豆皂苷 大豆粕饼 一级分离:气体体积流率200 mL/min,pH4.0,装液量300 mL,温度60 ℃和皂素浓度2.0 g/mL;
    二级分离:气体体积流率300 mL/min,pH4.5,装液量279 mL,温度30 ℃和皂素浓度2.17 g/mL
    R=74% [70]
    无患子皂苷 无患子果实 一级分离:气体体积流率200 mL/min,pH2.06,气体分布器孔径100 μm和温度25 ℃;
    二级分离:气体体积流率70 mL/min,装液量500 mL,气体分布器孔径400 μm和温度65 ℃
    E=133.4,R=90.3% [71]
    茶皂素 茶籽 一级分离:气体流率150 mL/min,pH2.06,装液量250 mL和温度65 ℃;
    二级分离:气体流率200 mL/min和温度30 ℃
    R=80.1% [30]
    下载: 导出CSV
  • [1]

    BUCKLEY T, KARANAM K, XU X, et al. Effect of mono-and di-valent cations on PFAS removal from water using foam fractionation-A modelling and experimental study[J]. Separation and Purification Technology,2022,286:120508. doi: 10.1016/j.seppur.2022.120508

    [2]

    KESHAVARZI B, KRAUSE T, SIKANDAR S, et al. Protein enrichment by foam fractionation:Experiment and modeling[J]. Chemical Engineering Science,2022,256:117715. doi: 10.1016/j.ces.2022.117715

    [3]

    KUMAR A K, GHOSH P. Removal and recovery of an anionic surfactant in the presence of alcohol by foam fractionation[J]. Industrial & Engineering Chemistry Research,2022,61(21):7349−7360.

    [4]

    GHOSH R, SAHU A, PUSHPAVANAM S. Removal of trace hexavalent chromium from aqueous solutions by ion foam fractionation[J]. Journal of Hazardous Materials,2019,367:589−598. doi: 10.1016/j.jhazmat.2018.12.105

    [5]

    AMBREEN R, SARFRAZ S, QAMAR F, et al. The use of surface active agents for effective removal of dyes/pigments:A perspective review on solubilization and foam fractionation[J]. Journal of Innovative Sciences,2021,7(2):222−228.

    [6]

    GHOSH R, HAREENDRAN H, SUBRAMANIAM P. Adsorption of fluoroquinolone antibiotics at the gas-liquid interface using ionic surfactants[J]. Langmuir,2019,35(39):12839−12850. doi: 10.1021/acs.langmuir.9b02431

    [7]

    SMITH S J, WIBERG K, MCCLEAF P, et al. pilot-scale continuous foam fractionation for the removal of per-and polyfluoroalkyl substances (PFAS) from landfill leachate[J]. ACS Es&t Water,2022,2(5):841−851.

    [8] 刘丹宇, 张怡, 刘伟, 等. 超声波辅助泡沫分离回收溶液中牛血清白蛋白的性质研究[J]. 食品工业科技,2021,42(6):67−72,87. [LIU D Y, ZHANG Y, LIU W, et al. Recovery of bovine serum albumin from its aqueous solution by ultrasonic assisted foam separation[J]. Science and Technology of Food Industry,2021,42(6):67−72,87.]

    LIU D Y, ZHANG Y, LIU W, et al. Recovery of bovine serum albumin from its aqueous solution by ultrasonic assisted foam separation[J]. Science and Technology of Food Industry, 2021, 42(6): 67−72,87.

    [9]

    SRINET S S, BASAK A, GHOSH P, et al. Separation of anionic surfactant in paste form from its aqueous solutions using foam fractionation[J]. Journal of Environmental Chemical Engineering,2017,5(2):1586−1598. doi: 10.1016/j.jece.2017.02.008

    [10]

    JI Mingdong, LI Haijun, LI Jianping, et al. Effect of mesh size on microscreen filtration combined with foam fractionation for solids removal in recirculating aquacultural seawater[J]. North American Journal of Aquaculture,2020,82(2):215−223. doi: 10.1002/naaq.10147

    [11]

    SUNKESULA V, KOMMINENI A, MARELLA C, et al. Foam fractionation technology for enrichment and recovery of cheese whey proteins[J]. Asian Journal of Dairy and Food Research,2020,39(3):187−194.

    [12]

    BLESKEN C C, STRÜMPFLER T, TISO T, et al. (2020). Uncoupling foam fractionation and foam adsorption for enhanced biosurfactant synthesis and recovery[J]. Microorganisms,2020,8(12):2029−2052. doi: 10.3390/microorganisms8122029

    [13]

    HU Nan, ZHANG Keke, LI Yanfei, et al. Glycine betaine enhanced foam separation for recovering and enriching protein from the crude extract of perilla seed meal[J]. Separation and Purification Technology,2021,276:118712. doi: 10.1016/j.seppur.2021.118712

    [14]

    DOMĺNGUEZ-ARCA V, SABĺN J, TABOADA P, et al. Micellization thermodynamic behavior of gemini cationic surfactants. Modeling its adsorption at air/water interface[J]. Journal of Molecular Liquids,2020,308:113100. doi: 10.1016/j.molliq.2020.113100

    [15]

    GRASSIA P, TORRES-ULLOA C. A model for foam fractionation with spatially varying bubble size[J]. Chemical Engineering Science,2023,281:119163. doi: 10.1016/j.ces.2023.119163

    [16]

    GHARBI N, LABBAFI M. Influence of treatment-induced modification of egg white proteins on foaming properties[J]. Food Hydrocolloids,2019,90:72−81. doi: 10.1016/j.foodhyd.2018.11.060

    [17] 胡滨, 朱海兰, 吴兆亮. 气体分布器孔径对泡沫分离过程影响的研究[J]. 高校化学工程学报,2014,28(2):246−251. [HU B, ZHU H L, WU Z L. The effect of pore size of gas distributor on foam separation process[J]. Journal of Chemical Engineering of Chinese Universities,2014,28(2):246−251.] doi: 10.3969/j.issn.1003-9015.2014.02.008

    HU B, ZHU H L, WU Z L. The effect of pore size of gas distributor on foam separation process[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2): 246−251. doi: 10.3969/j.issn.1003-9015.2014.02.008

    [18]

    MA Shuren, HAN Yong, ZHANG Ying, et al. Electrically enhanced activity of cationic surfactant for the bubble surface modification of solvent sublation to remove acetaminophen from water[J]. Journal of Molecular Liquids,2022,362:119700. doi: 10.1016/j.molliq.2022.119700

    [19]

    ZHANG Pan, CAO Xuewen, LI Xiang, et al. Microscopic mechanisms of inorganic salts affecting the performance of aqueous foams with sodium dodecyl sulfate:View from the gas-liquid interface[J]. Journal of Molecular Liquids,2021,343:117488. doi: 10.1016/j.molliq.2021.117488

    [20] 王梅, 姚轶俊, 刘昆仑, 等. 离子强度对菜籽分离蛋白气液界面行为及泡沫特性的影响[J]. 中国粮油学报,2021,36(3):28−34. [WANG M, YAO Y J, LIU K L, et al. Effects of ionic strength on gas-liquid interface behavior and foam characteristics of rapeseed protein isolate[J]. Journal of the Chinese Cereals and Oils Association,2021,36(3):28−34.] doi: 10.3969/j.issn.1003-0174.2021.03.006

    WANG M, YAO Y J, LIU K L, et al. Effects of ionic strength on gas-liquid interface behavior and foam characteristics of rapeseed protein isolate[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(3): 28−34. doi: 10.3969/j.issn.1003-0174.2021.03.006

    [21]

    GERKEN B M, WATTENBACH C, LINKE D, et al. Tweezing-adsorptive bubble separation. Analytical method for the selective and high enrichment of metalloenzymes[J]. Analytical Chemistry,2005,77(19):6113−6117. doi: 10.1021/ac050977s

    [22]

    ZHANG Yi, DI Ruipeng, ZHANG Huixin, et al. Effective recovery of casein from its aqueous solution by ultrasonic treatment assisted foam fractionation:Inhibiting molecular aggregation[J]. Journal of Food Engineering,2020,284:110042. doi: 10.1016/j.jfoodeng.2020.110042

    [23]

    LIU Wei, WU Zhaoliang, WANG Yanji, et al. Modified β-CD-Cu ion complex and yam mucilage assisted batch foam fractionation for separating puerarin from Ge-gen (Radix puerariae)[J]. Separation and Purification Technology,2017,175:194−202. doi: 10.1016/j.seppur.2016.11.039

    [24]

    KUMAR A K, RAWAT N, GHOSH P. Removal and recovery of a cationic surfactant from its aqueous solution by foam fractionation[J]. Journal of Environmental Chemical Engineering,2020,8(2):103555. doi: 10.1016/j.jece.2019.103555

    [25]

    BANDO Y, KUZE T, SUGIMOTO T, et al. Development of bubble column for foam separation[J]. Korean Journal of Chemical Engineering,2000,17:597−599. doi: 10.1007/BF02707173

    [26]

    WANG Lianjie, WU Zhaoliang, ZHAO Bin, et al. Enhancing the adsorption of the proteins in the soy whey wastewater using foam separation column fitted with internal baffles[J]. Journal of Food Engineering,2013,119(2):377−384. doi: 10.1016/j.jfoodeng.2013.06.004

    [27] 张哲, 吴兆亮, 龙延, 等. 垂直筛板构件强化SDS在泡沫分离液相吸附的研究[J]. 高校化学工程学报,2015,29(3):538−543. [ZHANG Z, WU Z L, LONG Y, et al. Enhancement of interfacial adsorption of SDS in foam separation columns with vertical sieve tray internal[J]. Journal of Chemical Engineering of Chinese Universities,2015,29(3):538−543.] doi: 10.3969/j.issn.1003-9015.2015.03.006

    ZHANG Z, WU Z L, LONG Y, et al. Enhancement of interfacial adsorption of SDS in foam separation columns with vertical sieve tray internal[J]. Journal of Chemical Engineering of Chinese Universities, 2015, 29(3): 538−543. doi: 10.3969/j.issn.1003-9015.2015.03.006

    [28]

    DUIGNAN T T. The surface potential explains ion specific bubble coalescence inhibition[J]. Journal of Colloid and Interface Science,2021,600:338−343. doi: 10.1016/j.jcis.2021.04.144

    [29]

    SAINT-JALMES A, TRÉGOUËT C. Foam coarsening under a steady shear:interplay between bubble rearrangement and film thinning dynamics[J]. Soft Matter,2023,19(11):2090−2098. doi: 10.1039/D2SM01618D

    [30]

    Yan Jin, Wu Zhaoliang, Zhao Yanli, et al. Separation of tea saponin by two-stage foam fractionation[J]. Separation and Purification Technology,2011,80(2):300−305. doi: 10.1016/j.seppur.2011.05.010

    [31]

    LINK D, ZORN H, GERKEN B, et al. Foam fractionation of exo-lipases from a growing fungus (Pleurotus sapidus)[J]. Lipids,2005,40(3):323−327. doi: 10.1007/s11745-005-1389-x

    [32]

    LI Juan, WU Zhaoliang, LI Rui. Technology of streptomycin sulfate separation by two-stage foam separation[J]. Biotechnology Progress,2012,28(3):733−739. doi: 10.1002/btpr.1543

    [33]

    KOEHLER S A, HILGENFELDT S, STONE H A. Foam drainage on the microscale:I. Modeling flow through single Plateau borders[J]. Journal of Colloid and Interface Science,2004,276(2):420−438. doi: 10.1016/j.jcis.2003.12.061

    [34]

    WANG Yong, WU Zhaoliang, LI Rui, et al. Enhancing foam drainage using inclined foam channels of different angles for recovering the protein from whey wastewater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2013,419:28−36.

    [35]

    LIU Zongmin, WU Zhaolaing, LI Rui, et al. Two-stage foam separation technology for recovering potato protein from potato processing wastewater using the column with the spiral internal component[J]. Journal of Food Engineering,2013,114(2):192−198. doi: 10.1016/j.jfoodeng.2012.08.011

    [36]

    LU Ke, LI Rui, WU Zhaoliang, et al. Wall effect on rising foam drainage and its application to foam separation[J]. Separation and Purification Technology,2013,118:710−715. doi: 10.1016/j.seppur.2013.07.024

    [37]

    LI Na, LIU Wei, WU Zhaoliang, et al. Recovery of silk sericin from the filature wastewater by using a novel foam fractionation column[J]. Chemical Engineering and Processing-Process Intensification,2018,129:37−42. doi: 10.1016/j.cep.2018.04.027

    [38]

    LIU Wei, ZHANG Mengwei, LÜ Yanyan, et al. Foam fractionation for recovering whey soy protein from whey wastewater:Strengthening foam drainage using a novel internal component with superhydrophobic surface[J]. Journal of the Taiwan Institute of Chemical Engineers,2017,78:39−44. doi: 10.1016/j.jtice.2017.05.027

    [39]

    WU Zhaoliang, QIAN Shaoyu, ZHENG Huijie, et al. A drainage-enhancing device for foam fractionation of proteins[J]. Chinese Science Bulletin,2010,55:1213−1220. doi: 10.1007/s11434-010-0110-x

    [40]

    LI Hongzhen, WU Zhaoliang, LIU Wei, et al. Recovery of yam mucilage from the yam starch processing wastewater by using a novel foam fractionation column[J]. Separation and Purification Technology,2016,171:26−33. doi: 10.1016/j.seppur.2016.07.005

    [41]

    JIA Lei, LIU Wei, CAO Jilin, et al. Recovery of nanoparticles from wastewater by foam fractionation:Regulating bubble size distribution for strengthening foam drainage[J]. Journal of Environmental Chemical Engineering,2021,9(4):105383. doi: 10.1016/j.jece.2021.105383

    [42]

    JIA Lei, LIU Wei, CAO Jilin, et al. Multi-walled carbon nanotubes as collector for the removal of cationic red X-GRL from wastewater by foam fractionation:shortcoming and remedy[J]. Journal of Environmental Chemical Engineering,2022,10(3):107659. doi: 10.1016/j.jece.2022.107659

    [43]

    LIU Shixiang, LI Zhihua, YU Bing, et al. Recent advances on protein separation and purification methods[J]. Advances in Colloid and Interface Science,2020,284:102254. doi: 10.1016/j.cis.2020.102254

    [44]

    SHRESTHA S, VAN'T HAG L, HARITOS V S, et al. Lentil and mungbean protein isolates:Processing, functional properties, and potential food applications[J]. Food Hydrocolloids,2023,135:108142. doi: 10.1016/j.foodhyd.2022.108142

    [45]

    DACHMANN E, NOBIS V, KULOZIK U, et al. Surface and foaming properties of potato proteins:Impact of protein concentration, pH value and ionic strength[J]. Food Hydrocolloids,2020,107:105981. doi: 10.1016/j.foodhyd.2020.105981

    [46]

    VARGO K B, STAHL P, HWANG B, et al. Surfactant impact on interfacial protein aggregation and utilization of surface tension to predict surfactant requirements for biological formulations[J]. Molecular Pharmaceutics,2020,18(1):148−157.

    [47] 隋成博, 张炜, 乜世成, 等. 藜麦蛋白泡沫分离工艺的优化及功能特性分析[J]. 精细化工,2022,39(11):2312−2320. [SUI C B, ZHANG W, NIE S C, et al. Optimization and function characteristics analysis of foam fractionation of quinoa protein[J]. Fine Chemicals,2022,39(11):2312−2320.]

    SUI C B, ZHANG W, NIE S C, et al. Optimization and function characteristics analysis of foam fractionation of quinoa protein[J]. Fine Chemicals, 2022, 39(11): 2312−2320.

    [48] 李领轩, 张炜, 陈元涛, 等. 亚麻籽饼粕中亚麻蛋白的初步泡沫分离[J]. 河南工业大学学报,2015,36(1):55−61. [LI L X, ZHANG W, CHEN Y T, et al. Preliminary separation of flaxseed protein from flaxseed meal[J]. Journal of Henan University of Technology,2015,36(1):55−61.]

    LI L X, ZHANG W, CHEN Y T, et al. Preliminary separation of flaxseed protein from flaxseed meal[J]. Journal of Henan University of Technology, 2015, 36(1): 55−61.

    [49] 宋林, 张炜, 荆永康, 等. 裸藻蛋白泡沫分离的工艺优化及功能特性分析[J]. 精细化工,2023,40(6):1340−1349. [SONG L, ZHANG W, JING Y K, et al. Process optimization and functional characteristics analysis of Euglena protein foam separation[J]. Fine Chemicals,2023,40(6):1340−1349.]

    SONG L, ZHANG W, JING Y K, et al. Process optimization and functional characteristics analysis of Euglena protein foam separation[J]. Fine Chemicals, 2023, 40(6): 1340−1349.

    [50] 王珊珊. 泡沫法分离纯化苦荞叶蛋白工艺研究[J]. 食品工业,2018,39(2):88−91. [WANG S S. Research on isolate and purify process of protein from buckwheat leaf by foam method[J]. The Food Industry,2018,39(2):88−91.]

    WANG S S. Research on isolate and purify process of protein from buckwheat leaf by foam method[J]. The Food Industry, 2018, 39(2): 88−91.

    [51] 路帅, 孙培冬, 季晓彤, 等. 杏仁蛋白的两级泡沫分离工艺优化[J]. 食品工业科技,2018,39(12):200−204. [LU S, SUN P D, JI X T, et al. Optimization of two-stage foam separation of almond protein[J]. Science and Technology of Food Industry,2018,39(12):200−204.]

    LU S, SUN P D, JI X T, et al. Optimization of two-stage foam separation of almond protein[J]. Science and Technology of Food Industry, 2018, 39(12): 200−204.

    [52] 刘龙, 张炜, 陈元涛, 等. 菠菜叶蛋白泡沫法分离工艺的优化[J]. 食品与机械,2017,33(6):169−175. [LIU L, ZHANG W, CHEN Y T, et al. Optimization on foam separation process for spinach leaf protein[J]. Food & Machinery,2017,33(6):169−175.]

    LIU L, ZHANG W, CHEN Y T, et al. Optimization on foam separation process for spinach leaf protein[J]. Food & Machinery, 2017, 33(6): 169−175.

    [53] 刘海彬, 张炜, 陈元涛, 等. 泡沫法分离苜蓿叶蛋白工艺优化[J]. 农业工程学报,2016,32(9):271−276. [LIU H B, ZHANG W, CHEN Y T, et al. Technology optimization of Medicago sativa leaf protein separation with foam fractionation[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(9):271−276.] doi: 10.11975/j.issn.1002-6819.2016.09.038

    LIU H B, ZHANG W, CHEN Y T, et al. Technology optimization of Medicago sativa leaf protein separation with foam fractionation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(9): 271−276. doi: 10.11975/j.issn.1002-6819.2016.09.038

    [54]

    WU Zhaoliang, YIN Hao, LIU Wei, et al. Xanthan gum assisted foam fractionation for the recovery of casein from the dairy wastewater[J]. Preparative Biochemistry & Biotechnology,2020,50(1):37−46.

    [55]

    LI Rui, JI Xintong, ZHU Youshuang, et al. Precipitation of proteins from soybean whey wastewater by successive foaming and defoaming[J]. Chemical Engineering and Processing-Process Intensification,2018,128:124−131. doi: 10.1016/j.cep.2018.04.012

    [56]

    LIU Long, ZHANG Wei, YU Xiaodong, et al. Process optimization for foam separation of yak whey protein by response surface methodology[J]. Separation Science and Technology,2018,53(14):2327−2337. doi: 10.1080/01496395.2018.1447581

    [57]

    LI Rui, Ding Linlin, Wu Zhaoliang, et al. β-cyclodextrin assisted two-stage foam fractionation of bromelain from the crude extract of pineapple peels[J]. Industrial Crops and Products,2016,94:233−239. doi: 10.1016/j.indcrop.2016.08.046

    [58]

    ZHANG Yuran, ZHU Youshuang, LIU Zhanyan, et al. (2020). β-Cyclodextrin and ultrasound-assisted enzyme renaturation for foam fractionation of laccase from fermentation broth of Trametes hirsuta 18[J]. Journal of Molecular Liquids,2020,298:112028. doi: 10.1016/j.molliq.2019.112028

    [59] 高迎迎, 龚菊梅, 付恩桃, 等. “沙漏型”泡沫塔分离纳豆激酶的工艺研究[J]. 新乡学院学报,2021,38(12):13−18. [GAO Y Y, GONG J M, FU E T, et al. Technical study on foam separation of nattokinase by the hourglass-shaped column[J]. Journal of Xinxiang University,2021,38(12):13−18.] doi: 10.3969/j.issn.1674-3326.2021.12.004

    GAO Y Y, GONG J M, FU E T, et al. Technical study on foam separation of nattokinase by the hourglass-shaped column[J]. Journal of Xinxiang University, 2021, 38(12): 13−18. doi: 10.3969/j.issn.1674-3326.2021.12.004

    [60]

    PAN Deng, WANG Linqiang, CHEN Congheng, et al. Isolation and characterization of a hyperbranched proteoglycan from Ganoderma lucidum for anti-diabetes[J]. Carbohydrate Polymers,2015,117:106−114. doi: 10.1016/j.carbpol.2014.09.051

    [61] 陈亮, 张炜, 陈元涛, 等. 泡沫分离法纯化枸杞多糖及其动力学过程分析[J]. 食品科学,2015,36(8):29−36. [CHEN L, ZHANG W, CHEN Y T, et al. Purification of Lycium barbarum polysaccharides by foam separation and kinetic analysis of the process[J]. Food Science,2015,36(8):29−36.] doi: 10.7506/spkx1002-6630-201508006

    CHEN L, ZHANG W, CHEN Y T, et al. Purification of Lycium barbarum polysaccharides by foam separation and kinetic analysis of the process[J]. Food Science, 2015, 36(8): 29−36. doi: 10.7506/spkx1002-6630-201508006

    [62]

    ZHENG Huijie, HAO Mengmeng, LIU Wei, et al. Foam fractionation for the concentration of exopolysaccharides produced by repeated batch fermentation of Cordyceps militaris[J]. Separation and Purification Technology,2019,210:682−689. doi: 10.1016/j.seppur.2018.08.063

    [63]

    GÓRAL I, WOJCIECHOWSKI K. Surface activity and foaming properties of saponin-rich plants extracts[J]. Advances in Colloid and Interface Science,2020,279:102145. doi: 10.1016/j.cis.2020.102145

    [64]

    HERRERA T, NAVARRO DEL HIERRO J, FORNARI T, et al. Acid hydrolysis of saponin-rich extracts of quinoa, lentil, fenugreek and soybean to yield sapogenin-rich extracts and other bioactive compounds[J]. Journal of the Science of Food and Agriculture,2019,99(6):3157−3167. doi: 10.1002/jsfa.9531

    [65]

    CHEN Xiaowei, YIN Wenjun, YANG Danxia, et al. One-pot ultrasonic cavitational emulsification of phytosterols oleogel-based flavor emulsions and oil powder stabilized by natural saponin[J]. Food Research International,2021,150:110757. doi: 10.1016/j.foodres.2021.110757

    [66] 于素素, 马迪, 曹宁, 等. 响应面法优化泡沫分离芦笋加工废水中皂苷工艺[J]. 食品工业,2023,44(9):6−11. [YU S S, MA D, CAO N, et al. Optimization of foam separation of saponins from asparagus processing wastewater by response surface methodology[J]. Food Industry,2023,44(9):6−11.]

    YU S S, MA D, CAO N, et al. Optimization of foam separation of saponins from asparagus processing wastewater by response surface methodology[J]. Food Industry, 2023, 44(9): 6−11.

    [67] 王志娟, 张炜, 甘文梅, 等. 泡沫分离法纯化葫芦巴中属于皂苷及抗氧化性的研究[J]. 中国粮油学报,2021,36(11):144−150,161. [WANG Z J, ZHANG W, GAN W M, et al. Foam fractionation optimization and antioxidant activity studies of dioscin from trigonella foenum-graecum[J]. Journal of the Chinese Cereals and Oils Association,2021,36(11):144−150,161.] doi: 10.3969/j.issn.1003-0174.2021.11.022

    WANG Z J, ZHANG W, GAN W M, et al. Foam fractionation optimization and antioxidant activity studies of dioscin from trigonella foenum-graecum[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(11): 144−150,161. doi: 10.3969/j.issn.1003-0174.2021.11.022

    [68] 赵悦, 史攀恒, 杨飞. 泡沫分离法分离桔梗皂苷的工艺研究[J]. 广东化工,2016,43(15):51−53,59. [ZHAO Y, SHI P H, YANG F. Study on separation conditions of platycodins by foam fractionation[J]. Guangdong Chemical Industry,2016,43(15):51−53,59.] doi: 10.3969/j.issn.1007-1865.2016.15.024

    ZHAO Y, SHI P H, YANG F. Study on separation conditions of platycodins by foam fractionation[J]. Guangdong Chemical Industry, 2016, 43(15): 51−53,59. doi: 10.3969/j.issn.1007-1865.2016.15.024

    [69] 高中超, 张炜, 陈元涛, 等. 响应面试验优化泡沫分离黄姜中薯蓣皂苷工艺[J]. 食品科学,2016,37(8):26−31. [GAO Z C, ZHANG W, CHEN Y T, et al. Optimization of foam separation of dioscin from Dioscorea zingiberensis C. H. wright by response surface methodology[J]. Food Science,2016,37(8):26−31.] doi: 10.7506/spkx1002-6630-201608005

    GAO Z C, ZHANG W, CHEN Y T, et al. Optimization of foam separation of dioscin from Dioscorea zingiberensis C. H. wright by response surface methodology[J]. Food Science, 2016, 37(8): 26−31. doi: 10.7506/spkx1002-6630-201608005

    [70]

    JIANG Jianxing, WU Zhaoliang, LIU Wei, et al. Separation of soybean saponins from soybean meal by a technology of foam fractionation and resin adsorption[J]. Preparative Biochemistry and Biotechnology,2016,46(4):346−353. doi: 10.1080/10826068.2015.1031394

    [71]

    LI Rui, WU Zhao Liang, WANG Yan Ji, et al. Separation of total saponins from the pericarp of Sapindus mukorossi Gaerten. by foam fractionation[J]. Industrial Crops and Products,2013,51:163−170. doi: 10.1016/j.indcrop.2013.08.079

    [72]

    MAHFUZ S, SHANG Q, PIAO X. Phenolic compounds as natural feed additives in poultry and swine diets:A review[J]. Journal of Animal Science and Biotechnology,2021,12(1):1−18. doi: 10.1186/s40104-020-00531-5

    [73]

    LIU Wei, ZHANG Hui Xin, WU Zhao Liang, et al. Recovery of isoflavone aglycones from soy whey wastewater using foam fractionation and acidic hydrolysis[J]. Journal of Agricultural and Food Chemistry,2013,61(30):7366−7372. doi: 10.1021/jf401693m

    [74]

    LIU Wei, WU Zhaoliang, WANG Yanji, et al. Isolation of soy whey proteins from isoflavones in the concentrated solution using foam fractionation[J]. Separation and Purification Technology,2015,149:31−37. doi: 10.1016/j.seppur.2015.05.010

    [75]

    JIAO Meng, WU Zhao Liang, LIU Yan, et al. Surfactant‐assisted separation of ginkgo flavonoids from Ginkgo biloba leaves using leaching and foam fractionation[J]. Asia-Pacific Journal of Chemical Engineering,2016,11(5):664−672.

    [76]

    LIU Wei, HE Zhen, YIN Hao, et al. Maillard reaction products for strengthening the recovery of trans-resveratrol from the muscat grape pomace by alkaline extraction and foam fractionation[J]. Separation and Purification Technology,2021,256:117754. doi: 10.1016/j.seppur.2020.117754

    [77]

    ZHONG Lei, MA Ning, WU Yiliang, et al. Characterization and functional evaluation of oat protein isolate-Pleurotus ostreatus β-glucan conjugates formed via Maillard reaction[J]. Food Hydrocolloids,2019,87:459−469. doi: 10.1016/j.foodhyd.2018.08.034

    [78]

    MATAVOS-ARAMYAN S, GHAZI-MIRSAEED M, SAEEDI-EMADI A, et al. Influence of the process parameters on the foam fractionation treatment of olive mill wastewater[J]. Scientia Iranica,2016,23(6):2820−2827. doi: 10.24200/sci.2016.3992

    [79]

    KHELISSA S, CHIHIB N E, GHARSALLAOUI A. Conditions of nisin production by Lactococcus lactis subsp. lactis and its main uses as a food preservative[J]. Archives of Microbiology,2021,203:465−480. doi: 10.1007/s00203-020-02054-z

    [80]

    WANG Yinfeng, NAN Fangfang, ZHENG Huijie, et al. Effects of temperature and trehalose on foam separation of nisin from the culture broth produced by Lactococcus lactis subspecies lactis W28[J]. Journal of Dairy Science,2012,95(10):5588−5596. doi: 10.3168/jds.2012-5709

    [81]

    ZHENG Huijie, ZHANG Da, GUO Kaimin, et al. Online recovery of nisin during fermentation coupling with foam fractionation[J]. Journal of Food Engineering,2015,162:25−30. doi: 10.1016/j.jfoodeng.2015.04.006

  • 其他相关附件

图(6)  /  表(2)
计量
  • 文章访问数:  96
  • HTML全文浏览量:  22
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 网络出版日期:  2024-07-23
  • 刊出日期:  2024-09-14

目录

/

返回文章
返回
x 关闭 永久关闭