Effects of Different Drying Methods on Volatile Components of Jasmine Tea
-
摘要: 为了研究不同干燥方式对茉莉花茶挥发成分的影响,本文采用顶空固相微萃取结合气相色谱-质谱联用(HS-SPME-GC-MS)的方法,结合电子鼻技术,对经过四种干燥方式包括热泵干燥、热风干燥、微波干燥和冷冻干燥等处理的茉莉花茶挥发组分进行定性、定量分析。结果表明,电子鼻传感器响应值排名前三的是W1W、W2W、W5S,在不同的干燥处理下,能较好地体现茉莉花茶的挥发性物质的差别。HS-SPME-GC-MS的分析结果显示,茉莉花茶在四种不同的干燥方式处理下,鉴定出包括烯烃类、醇类、酯类、醛类、酮类、其他类等96种挥发性组分,烯烃类种类最多可达37种。冷冻干燥的茉莉花茶挥发性成分含量的总量最高达到47.382 μg/g,其次是热泵干燥的44.429 μg/g,其中烯烃类和醇类成分含量较高。热泵干燥处理下茉莉花茶香气指数最高,达到4.766。因此,HS-SPME-GC-MS结合电子鼻技术可用于区分不同干燥方式下茉莉花茶品质的优劣,为茉莉花茶生产干燥方法选择提供理论参考。
-
关键词:
- 茉莉花茶 /
- 干燥方式 /
- 挥发性成分 /
- 顶空固相微萃取-气相色谱-质谱联用 /
- 电子鼻
Abstract: To study the effect of different drying methods on volatile components of jasmine tea, headspace solid phase microextraction combined with gas chromatography-mass spectrometry and electronic nose technology were used for quantitative and qualitative analysis of the volatile compounds in jasmine tea dried by four methods, including heat pump drying, hot air drying, microwave drying and vacuum-freeze drying. The results showed that, the top three response values of electronic nose sensors were W1W, W2W and W5S. Under different drying treatments, it can better reflect the differences in volatile substances in jasmine tea. The results of HS-SPME-GC-MS showed that a total of 96 volatile components (alcohol esters, aldehydes, ketones, olefins and other classes) were identified in jasmine tea by four different drying methods. Among these components, the species of olefin compounds were the most with the amount of 37. The total amounts of the volatile components in jasmine tea by freeze-drying were the most abundant with a relative content of 47.382 μg/g, followed by heat pump drying with a relative content of 44.429 μg/g. And the relative contents of olefin and alcohols were higher than other components. The JTF (jasmine tea fragrance) index of jasmine tea was the highest with a amount of 4.766 by heat pump drying. Therefore, HS-SPME-GC-MS combined with electronic nose technology could be used to distinguish the quality of jasmine tea by different drying methods, and would provide theoretical reference for the selection of drying methods in jasmine tea production. -
茉莉花茶是中国特有的再加工茶类,因其香气品质独特,对人体具有保健作用,深受广大消费者的喜爱[1−2]。窨制是形成茉莉花茶鲜灵醇爽花香品质的重要工序,不仅吸附了源自茉莉鲜花的香气,也吸收了水分。因此,茉莉花茶在保留茉莉花香气的同时,还需要通过烘焙将窨制后的多余水分蒸发掉。陈梅春等[3]对茉莉花茶窨坯经烘焙后发现香气浓度损失的约占总浓度的60%。
干燥过程伴随着热、质传递及物理、化学的变化,影响产品的特性和品质[4−5]。干燥方法不同,对茶叶的香气品质的影响至关重要[6]。林冬纯等[7]研究发现采用热风干燥80 ℃的白茶饼香气持久花香明显,二氢猕猴桃内酯等酯类物质显著高于其他处理。邓媛元等[8]应用热风干燥苦瓜茶,与微波干燥、真空干燥、真空冷冻干燥、日晒和热泵干燥相比,发现其感官品质最好,不仅含有苦瓜的特征香气,同时含有较丰富的焦糖香和酯类物质;而真空冷冻干燥苦瓜茶,也是香气种类最多的一种,与其它干燥方式的差异也是非常大的。Dong等[9]研究发现微波干燥对杜仲花茶风味和形态保留效果较佳。苏敏等[10]采用静电场干燥获得的桂花红绿茶的品质优于传统热风干燥法。微波-热风联合干燥茉莉花的水溶性浸出物、氨基酸、色泽、总挥发性成分含量较高,气味芳香褐变度低[11]。张凌云[12]采用低温真空干燥技术干燥桂花茶和茉莉花茶,发现各处理中55 ℃温度下的花茶品质更好。郭春雨[13]采用低温真空—热风联合烘干的方式,在窨花前对茶坯进行烘干,结果发现茉莉花茶的品质优于其他处理。综上,虽然茉莉花茶不同干燥方法已有一些研究,但大多仅限于茶坯或者茉莉花的理化成分和感官品质方面,而茉莉花茶生产上往往通过多次的窨制和烘干来完成茶与花的融合,在烘干的过程中造成了严重的香气损耗,从而造成茉莉花鲜花的浪费和生产成本的提高,目前针对窨制后的花茶湿坯的干燥方式对挥发性香气物质影响的研究仍较少。
对于茉莉花茶品质的评定,香气是重要的评价指标[14]。目前用于评价茶叶香气品质主要依赖于茶叶审评师的感官审评和电子鼻设备。电子鼻是一种快速无损检测的新型人工智能嗅觉装置[15],已应用于茶叶[16]、干枣[17]、黄花菜粉[18]等食品领域风味品质的评价。近几年来,有采用顶空固相微萃取气质谱联用(head-space solid phase mieroextraetion gas hromatography mass spectrometry,HS-SPME-GC-MS)与电子鼻相结合应用于茶叶香气品质的研究[16,19],具有很好的互补与校验作用,能对茶叶香气品质特征进行更好的分析。本研究运用闭式可循环热泵干燥(简称热泵干燥)、真空冷冻干燥(简称冷冻干燥)、微波干燥、热风干燥等4种不同干燥方法对茉莉花茶湿坯进行烘干,通过电子鼻与HS-SPME-GC-MS结合分析茉莉花茶挥发性物质的气味差异、种类及含量等变化规律,筛选出香气品质较好的干燥方式,为茉莉花茶烘干减少香气损耗、提高品质提供理论参考。
1. 材料与方法
1.1 材料与仪器
头窨后未烘干的茉莉银毫 配花量为1:0.55,窨堆高度300 mm,茶堆长×宽=500 mm×350 mm,取样重复3次,于福建春伦集团茶叶加工厂取样。
PEN3型电子鼻系统 德国AIRSENSE 公司;Agilent 6890N-5975B气相色谱-质谱联用仪 美国安捷伦科技公司;LGJ-100F真空冷冻干燥机 北京开元永盛冻干技术有限公司;6CHZ-10型低温热泵可循环干燥机 福建省亚热带植物研究所与驰春机械(厦门)有限公司联合开发;P70F23P-G5(S0)型微波炉 广东格兰仕微波生活电器制作有限公司;JY-6CHZ-1B型茶叶烘焙机 福建佳友茶叶机械智能科技股份有限公司。
1.2 实验方法
1.2.1 样品制备
热风干燥:将样品放入60 ℃的烘焙机中烘干,厚度为3 mm,时间为39 min,含水率为6.25%;冷冻干燥:将样品铺于冻干盘上,厚度为3 mm,设置冻干过程中的物料升华干燥温度为45 ℃,冷冻时间7 h,含水率为6.60%;微波干燥:将样品铺于微波盘上,厚度为3 mm,设置低火,时间为25 min,含水率为6.42%;热泵干燥:将样品铺于物料盘上,厚度为3 mm,温度为60 ℃,湿度为20%,时间为20 min,含水率为6.70%。
1.2.2 电子鼻检测
称取样品3 g,加入150 mL沸水,浸泡5 min,滤去茶汤,将茶叶倒入100 mL烧杯中,用双层保鲜膜封口,放入电子鼻加热器中,加热温度80 ℃,加热时长(即电子鼻清洗时间)120 s。在装有试样的密封烧杯中插入进样针头,进行电子鼻测定。测定条件:采样时间为1 s/组;传感器自清洗时间为60 s;传感器归零时间为5 s;样品准备时间为5 s;进样流量为400 mL/min;分析采样时间为60 s。每个样品测定3次。10种传感器的敏感物质与参考文献[18]的一样。
1.2.3 挥发性香气成分测定
HS-SPME前处理:称取10.0 g磨碎茶样于150 mL锥形瓶中,加入10 μL浓度100 μg/mL的癸酸乙酯和100 mL沸腾蒸馏水,用具硅胶隔垫的顶空螺纹盖盖紧,放于磁力搅拌器上(搅拌速度:450 r/min),在50 ℃烘箱中平衡5 min后,将萃取头插入锥形瓶,于茶汤液面上空吸附40 min,最后在GC-MS进样口于220 ℃下解吸5 min[20]。
GC-MS条件:色谱柱:DB-5MS(60 m×0.25 mm ID×0.25 μm)。程序升温参数:初始温度50 ℃,保持2 min,以3 ℃/min升温至80 ℃保持2 min,以5 ℃/min升温至180 ℃保持1 min,以10 ℃/min升温至230 ℃保持5 min, 最后以20 ℃/min升温至250 ℃保持3 min。进样口温度:220 ℃。脉冲不分流,进样1 μL,载气为高纯氦气(99.999%),柱流速:1.5 mL/min。色谱-质谱接口温度:250 ℃。离子源温度:230 ℃。离子化方式:EI。电子能量:70 eV。扫描质量范围50~500 m/z[20]。
定性:各成分分别用NIST08标准谱库进行检索匹配,碎片比对,选用相似度85%以上并结合相关文献报道、各成分的相对保留时间等进行定性。
定量:根据癸酸乙酯的浓度以及各香气成分与内标的峰面积比值计算出各香气组分的含量。
1.2.4 茉莉花茶香气指数JTF的计算
根据林杰[21]提出的茉莉花茶香气指数JTF计算公式如下:
1.3 数据处理
采用Microsoft Excel 2016软件对数据进行计算并作图。采用PEN3型电子鼻配套软件WinMuster对数据进行主成分分析、负荷加载分析(loadings)和线性判别分析(linear discriminant analysis,LDA)。
2. 结果与分析
2.1 茉莉花茶电子鼻分析
不同干燥方法的茉莉花茶电子鼻感应值如图1所示。4种干燥方法中,冷冻干燥的电子鼻传感器响应值总量最高,说明茉莉花茶香气强度较高[22−23],这主要是因为冷冻干燥温度较低,尤其对茉莉花茶中热敏性成分能较好的保留。响应值排名前三的传感器是W1W(对无机硫化物敏感)、W2W(芳香成分、对有机硫化物敏感)和W5S(对氮氧化合物敏感),响应值分别为13.127~17.277、11.174~13.109、10.332~14.686,可以看出不同干燥方法处理下,茉莉花茶主要香气物质的种类具有相似性。
对不同干燥方法下茉莉花茶电子鼻传感器的响应值进行PCA分析,结果如图2所示。从图2可以看出,第一主成分PC1的贡献率达96.95%,第二主成分PC2贡献率达2.85%,二者之和接近99.80%,这说明了PC能较好地保留了原始数据的大部分信息[24]。微波干燥和真空冷冻干燥样品有重叠,表明其在香气物质上有一定的相似性。而热风干燥和热泵干燥与其他两个方法没有重叠,能较好地区分开,表明它们的香气物质存在一定的差异。
LDA是指从每个传感器收集信息,通过一个特殊的向量化,使得每个类别转化[25],从而达到减少组内差异和扩大组间差异的分析方法,为更好的比较不同处理间的差异,采用该法进行分析结果如图3所示。由图3可知,热泵干燥的气味与其他三种干燥方法的气味距离较远,表明不同样品可以被清晰的区分。
Loadings算法主要是对传感器进行研究,利用该方法可以确认特定实验样品下各传感器对样品区分的贡献率大小,结果如图4所示,对PC1贡献率最大的是W5S(对氮氧化合物很灵敏),二者呈明显的正相关关系;同样呈正相关的还有W1W和W2W,贡献于仅次于W5S,且这两个传感器主要对硫化物和芳香化合物敏感。而且W1W(对无机硫化物敏感)对PC2的贡献率也较大,呈明显的正相关。因此,不同的干燥方法下茉莉花茶的挥发性物质可用电子鼻的特征传感器进行区分。
2.2 不同干燥方法下茉莉花茶挥发性组分分析
2.2.1 挥发性组分总量分析
不同干燥方法对茉莉花茶香气品质产生不同的影响,将HS-SPME结合GC-MS对其挥发性物质进行分析,结果见表1。由表1可知,茉莉花茶湿坯经4种不同的干燥方法处理,鉴定出醇类、酯类、醛类、酮类、烯烃类、其他类等96种挥发性组分,其中烯烃类化合物种类数量最多达到37种,酯类物质(31种)和醇类物质(13种)次之。冷冻干燥的茉莉花茶挥发性成分含量的总量最高为47.382 μg/g,其次是热泵干燥的44.429 μg/g,最低的是热风干燥的为42.358 μg/g,因此冷冻干燥可使茶叶中的水分在较低温度下升华,避免了高温处理,能够最大程度地减少了挥发性成分在干燥过程的损耗[26−27]。热泵干燥对茉莉花茶挥发性物质的保留效果也优于其他两种干燥方法,热风干燥挥发性物质的损耗较大故含量最低,这主要是因为热泵干燥在低湿低温闭式可循环的干燥环境下,既可缩短干燥时间又可使花茶中的挥发性物质通过循环再次被茶叶吸附,从而减少了香气物质随着水蒸气蒸发向外排出。
表 1 不同干燥方法的茉莉花茶挥发性成分化学组成与含量Table 1. Chemical composition and content of volatile components of jasmine tea by different drying methods序号 保留时间(min) 挥发性成分 相对含量(μg/g) 热泵干燥 热风干燥 微波干燥 冷冻干燥 1 10.826 3-己烯醇 0.114 0.119 0.108 0.118 2 19.048 2-乙基-1-己醇 0.026 0.022 0.014 0.024 3 19.409 苯甲醇 0.509 0.532 0.526 0.491 4 21.638 α-松油醇 0.000 0.000 0.024 0.073 5 21.643 反式-氧化芳樟醇(呋喃型) 0.035 0.024 0.052 0.043 6 22.201 芳樟醇 4.082 4.251 4.283 4.384 7 36.189 反式-橙花叔醇 0.235 0.243 0.306 0.262 8 37.877 杜松烯醇 0.030 0.035 0.025 0.040 9 38.137 τ-杜松醇 0.150 0.167 0.195 0.162 10 38.413 α-荜澄茄醇 0.232 0.257 0.291 0.314 11 37.636 (+)-荜澄茄油烯醇 0.034 0.045 0.048 0.046 12 27.413 香叶醇 0.119 0.139 0.170 0.172 13 44.795 香叶基香叶醇 0.005 0.006 0.009 0.006 醇类总量 5.571 5.84 6.051 6.135 14 17.953 顺式-3-己烯-1-醇乙酸酯 0.993 1.005 0.928 1.035 15 18.274 乙酸己酯 0.003 0.001 0.001 0.004 16 18.381 反式-2-己烯-1-醇乙酸酯 0.005 0.003 0.004 0.005 17 21.988 苯甲酸甲酯 0.983 1.035 0.977 1.054 18 24.640 乙酸苄酯(乙酸苯甲酯) 6.053 4.675 5.695 4.943 19 24.865 苯甲酸乙酯 0.018 0.022 0.024 0.027 20 25.221 反式-丁酸-3-己烯酯 0.185 0.193 0.182 0.187 21 25.699 水杨酸甲酯 1.325 1.381 1.386 1.407 22 26.735 α-甲基丁酸叶醇酯 0.028 0.029 0.029 0.028 23 27.606 乙酸苯乙酯 0.017 0.018 0.017 0.018 24 27.697 丙酸苯甲酯 0.001 0.003 0.002 0.002 25 26.894 正戊酸-(Z)-3-己烯酯 0.042 0.043 0.042 0.042 26 28.153 水杨酸乙酯 0.014 0.015 0.016 0.019 27 28.617 L-乙酸冰片酯 0.000 0.002 0.004 0.003 22 29.614 (E,Z)-2-甲基-2-丁烯酸-3-己烯酯 0.049 0.052 0.054 0.052 29 30.393 3-甲基丁酸苯甲酯 0.012 0.013 0.013 0.015 30 30.449 邻氨基苯甲酸甲酯 3.015 3.195 2.272 3.202 31 31.157 乙酸香叶酯 0.194 0.206 0.222 0.206 32 31.230 顺式-己酸-3-己烯酯 0.030 0.032 0.031 0.035 33 31.242 苯甲酸丁酯 0.053 0.049 0.053 0.047 34 31.343 顺-3-己烯酸-3-己烯酯 0.354 0.352 0.353 0.325 35 33.011 苯甲酸2-甲基丁基酯 0.010 0.004 0.008 0.010 36 35.736 二氢猕猴桃内酯 0.031 0.033 0.039 0.036 37 36.620 苯甲酸叶醇酯 4.383 4.710 4.756 4.691 38 36.683 苯甲酸己酯 0.229 0.256 0.323 0.233 39 36.838 反-2-苯甲酸己烯酯 0.074 0.082 0.092 0.078 40 38.571 顺式-3-柳酸叶醇酯 0.032 0.037 0.046 0.035 41 39.225 2-乙基己基苯甲酸酯 0.005 0.004 0.007 0.004 42 39.359 肉豆蔻酸甲酯 0.004 0.005 0.005 0.005 43 40.364 苯甲酸苄酯 0.235 0.278 0.317 0.263 44 44.017 棕榈酸乙酯 0.031 0.024 0.028 0.027 酯类总量 18.408 17.757 17.926 18.038 45 16.162 苯甲醛 0.022 0.019 0.017 0.028 46 20.176 2,6-二甲基-5-庚烯醛 0.015 0.015 0.018 0.016 47 22.316 壬醛 0.180 0.078 0.051 0.053 48 25.908 藏花醛 0.006 0.006 0.007 0.007 49 25.986 癸醛 0.010 0.000 0.000 0.000 50 26.576 β-环柠檬醛 0.028 0.028 0.031 0.033 51 27.759 β-环高柠檬醛 0.003 0.002 0.009 0.003 醛类总量 0.242 0.129 0.116 0.112 52 17.000 6-甲基-5-庚烯-2-酮 0.057 0.056 0.061 0.049 53 32.571 α-紫罗酮 0.021 0.023 0.031 0.031 54 33.122 香叶基丙酮 0.045 0.054 0.053 0.054 酮类总量 0.066 0.077 0.084 0.085 55 17.249 β-香叶烯 0.185 0.180 0.148 0.192 56 18.173 α-水芹烯 0.014 0.013 0.011 0.012 57 18.638 α-萜品烯 0.020 0.013 0.015 0.000 58 19.193 D-柠檬烯 0.382 0.396 0.295 3.362 59 19.864 3-蒈烯 0.276 0.282 0.252 0.244 60 20.453 γ-萜品烯 0.014 0.014 0.010 0.034 61 21.604 萜品油烯 0.054 0.040 0.031 0.032 62 22.604 反式-4,8-二甲基壬-1,3,7-三烯 0.017 0.017 0.016 0.015 63 25.451 [S-(E)]-2,6-二甲基-4-辛烯 0.004 0.004 0.005 0.006 64 29.836 γ-古芸烯 0.003 0.006 0.006 0.002 65 30.083 γ-榄香烯 0.024 0.026 0.030 0.027 66 30.521 α-荜澄茄油烯 0.141 0.160 0.192 0.147 67 31.404 古巴烯 0.134 0.149 0.159 0.129 68 31.724 β-榄香烯 0.175 0.192 0.236 0.205 69 31.888 顺-衣兰油-4(15),5-二烯 0.018 0.021 0.022 0.018 70 32.620 β-依兰烯 0.022 0.025 0.028 0.021 71 32.701 β-石竹烯 0.157 0.187 0.181 0.193 72 32.941 β-古巴烯 0.048 0.053 0.058 0.046 73 33.244 反式-β-法呢烯 0.139 0.150 0.156 0.141 74 33.667 α-石竹烯 0.192 0.198 0.230 0.223 75 33.806 (+)-表双环倍半水芹烯 0.115 0.130 0.149 0.126 76 34.008 β-荜澄茄烯 0.145 0.150 0.154 0.120 77 34.073 γ-衣兰油烯 0.336 0.369 0.384 0.358 78 34.241 顺式-α-香柑油烯 0.813 0.905 0.936 0.715 79 34.314 D-大根香叶烯 0.158 0.190 0.266 0.274 80 34.807 α-法呢烯 12.057 11.550 13.058 11.580 81 34.935 β-红没药烯 0.006 0.011 0.003 0.082 82 35.172 γ-荜澄茄烯 0.617 0.635 0.559 0.597 83 35.279 Δ-荜澄茄烯 1.174 1.264 1.536 1.204 84 35.407 菖蒲烯 0.062 0.054 0.037 0.050 85 35.677 荜澄茄油宁烯 0.099 0.102 0.081 0.091 86 35.771 (-)-α-荜澄茄烯 0.154 0.164 0.194 0.150 87 37.293 1,E-11,Z-13-十六烷三烯 0.005 0.004 0.026 0.000 88 37.414 (E)-γ-红没药烯 0.196 0.199 0.191 0.143 89 37.593 α-荜澄茄烯 0.003 0.002 0.001 0.002 90 38.935 8,9-脱氢环异长叶烯 0.140 0.149 0.153 0.122 烯烃类总量 18.099 18.004 19.089 20.663 91 17.284 2-戊基-呋喃 0.013 0.004 0.000 0.003 92 18.654 2-乙烯基-6-甲基-吡嗪 0.000 0.011 0.007 0.014 93 24.624 2,6-二甲基-吡嗪 1.812 0.321 0.263 2.034 94 30.610 丁香油酚 0.093 0.101 0.096 0.096 95 31.838 甲基丁香酚 0.125 0.114 0.198 0.202 其他类总量 2.043 0.551 0.564 2.349 总计 44.429 42.358 43.830 47.382 JTF 4.766 4.577 4.656 4.442 2.2.2 不同类别挥发性组分分析
由表1可知,烯烃类物质具有清香气味,不仅种类最多,而且含量也最高。冷冻干燥的烯烃类物质相对含量最高,达到20.663 μg/g,其中α-法呢烯(鲜花的清香气味)相对含量为11.580 μg/g、D-柠檬烯(清新的橙香和柠檬样香气)含量为3.362 μg/g、Δ-荜澄茄烯(柠檬香气)的相对含量为1.204 μg/g,这三种烯烃类组分相对含量较高。α-法呢烯是茉莉花茶窨制过程中主要的烯烃类物质,其含量明显高于其他碳氢化合物[28],采用130 ℃烘干发现α-法呢烯总浓度下降85%,丧失程度较大[3]。本研究中热风干燥处理的茉莉花茶中α-法呢烯含量低于其他处理,因此这与其干燥方式、时间较长存在一定关系。冷冻干燥处理后茉莉花茶中D-柠檬烯的含量高于其他3种干燥方法的近10倍,这与对芳烃化合物敏感的电子鼻传感器W2W高响应值相符合,且该组分主要存在于绿茶茶坯中[29],而不属于茉莉花茶的特征香气组分,说明茶坯中原有的香气组分在低温处理下能较好的保留下来,这可能会引起茉莉花茶形成透素的香气品质,而这也是区别于其他三种处理花茶香气品质的影响因素之一。这与真空冷冻干燥菊花茶中碳氢化合物含量尤为突出的结果相一致[30]。
酯类物质具有强烈的花香,是构成茉莉花茶浓郁香气品质特征的主要香气组分。酯类物质的种类和含量仅次于烯烃类。热泵干燥处理的酯类物质相对含量最高为18.408 μg/g,其次是冷冻干燥(18.038 μg/g)和微波干燥(17.926 μg/g),热风干燥的相对含量最低为17.757 μg/g。热泵干燥处理下,乙酸苄酯含量最高为6.053 μg/g、具有梨样的果香与清香,高出热风干燥(4.675 μg/g)的30%左右。其次为苯甲酸叶醇酯(4.383 μg/g)、具有青香且持久性好[31],邻氨基苯甲酸甲酯(3.015 μg/g)、具有葡萄样香气[32],水杨酸甲酯(1.325 μg/g)、具有冬青叶和薄荷的香气,这些挥发性组分在其他三种干燥方法中均有检出,它们属于茉莉花茶主要赋香组分,有利于形成茉莉花茶浓郁的花香、果香风味特征[33]。对福州8种主要茉莉花茶香气组分分析发现邻氨基苯甲酸甲酯、苯甲酸叶醇酯和乙酸苄酯在各茶样中是含量较高的酯类物质[34],对市售的10种茉莉花茶挥发性成分分析发现乙酸苄酯、水杨酸甲酯和顺式-3-己烯醇苯甲酸酯是形成茉莉花茶香气主要酯类物质[35],这与本研究结果相一致。酯类物质是醇、羧酸与酰基辅酶A在醇酰基转移酶作用下酯化生成的[36],而相对于热风干燥法采用温度为60 ℃热泵干燥对红枣中的己酸、乙酸、丁酸等香气化合物具有较好的保留效果[37]。因此,采用热泵干燥茉莉花茶的酯类物质能较好的保留下来,可能与其干燥条件温和、稳定减少羧酸类化合物挥发从而减少酯类物质的挥发有关。
醇类物质具有较强的挥发性,一般以清新的花香为主要香气特点。冷冻干燥的醇类物质相对含量最高,达到6.135 μg/g,微波干燥、热风干燥、热泵干燥次之。芳樟醇(铃兰花香)属于链状萜烯醇类[37],是茉莉花茶主要的特征香气组分,也是4种干燥方法中含量最高的醇类物质,冷冻干燥的芳樟醇相对含量最高为4.384 μg/g,占醇类物质总量的50%以上。其次是苯甲醇,来源于茶坯和茉莉花,具有提高茉莉花茶甜香和烘焙香的作用[38−39]。芳樟醇和苯甲醇是茉莉花茶中含量较高的醇类物质[34],且芳樟醇是主要的特征香气组分,在烘干过程中较其他类别香气物质下降幅度低,这与陈梅春等[3]研究结果一致。真空冷冻干燥的温度较其他处理低,虽然样品在长时间真空状态下挥发,但能更好的保存香气物质[40],且对香芹萜烯类物质的保留效果优于热风干燥[41]。
醛类物质是茉莉花茶挥发性组分中含量较低的一类香气物质,热泵干燥的醛类物质相对含量最高为0.242 μg/g,含量较高的组分有壬醛(玫瑰、柑橘等香气),苯甲醛(强烈的苦杏仁气味)[39]、β-环柠檬醛(柠檬香气)等化合物,可对茉莉花茶的青香、果香起到辅助作用。苯甲醛和β-环柠檬醛在福州和横县的茉莉花茶中均有发现[15],苯甲醛是茉莉花茶中含量较高的醛类物质,但属于微量组分[34]。
酮类物质含量最低,只有3种化合物,分别为6-甲基-5-庚烯-2-酮、α-紫罗酮和香叶基丙酮。其它类物质主要包括吡嗪、吡喃及丁香油酚等,冷冻干燥和热泵干燥的含量较高,为其他两种干燥方法含量4倍左右。其中相对含量较高的是2,6-二甲基-吡嗪,分别为2.034、1.812 μg/g,该物质属于杂环化合物,具有强烈的烤香气味,茶叶中含氮化合物大多是由脱水法和降解产生的糖胺类化合物(如杀青、干燥等过程),是由氨基酸或氨基酸和糖缩在热化学作用下合成的成分[42],该组分可能是来自茶坯中的香气物质,表明真空冷冻干燥过程中物料所处环境温度较低且为真空环境,而热泵干燥的条件较为温和,因此更易于保留来自茶坯中的这类香气物质。
2.2.3 JTF指数分析
为更好地比较不同干燥方法下茉莉花茶品质的高低,采用林杰等[21]提出的茉莉花茶香气指数(JTF)进行评价。茉莉花茶等级质量越高,其JTF指数越大。由表1可以看出,4种干燥方法中以热泵干燥的JTF值最高,达到4.766,其次为微波干燥的4.656、热风干燥的4.577、冷冻干燥的4.442,说明了热泵干燥的茉莉花茶香气品质优于其他处理组,该法既能较好的保持茉莉花的鲜灵度又具有较强烈的花果香,也与电子鼻检测发现热泵干燥的茉莉花茶气味与其他3种干燥方式的能很好区分开相一致。而冷冻干燥的JTF值最低,这表明了该法对茉莉花茶主要的特征香气组分的保留效果略差,导致该处理下茉莉花茶香气品质较低。
综上,冷冻干燥处理后的茉莉花茶挥发性物质的总量较高,说明其香气浓度较高,能较好的保留源自茉莉花的香气物质也能较好的保留来自绿茶坯的香气物质如烯烃类物质,且JTF值较低,茉莉花特征香气品质不高,容易造成透素的品质。采用热泵干燥法的茉莉花茶挥发性物质含量也较高,且JTF指数也较高,说明该法可较好的保留源自茉莉鲜花的芳香物质,具有明显的特征香气,适合应用于茉莉花茶湿坯的干燥。
3. 结论
本研究采用热泵干燥、热风干燥、微波干燥、冷冻干燥等4种不同干燥方式对茉莉花茶湿坯进行干燥,对比其对茉莉花茶挥发性组分的影响。结果表明:采用电子鼻可以较好地区分不同干燥方法茉莉花茶的气味,且冷冻干燥的电子鼻传感器响应值总量最高,但经过LDA分析发现热泵干燥的茉莉花茶气味与其他三种干燥方法的气味距离较远,能较好地与其他干燥方法区分开。采用HS-SPME-GC-MS分析结果发现,采用冷冻干燥的茉莉花茶挥发性成分相对含量的总量最高,其次是热泵干燥的。冷冻干燥法的茉莉花茶中烯烃类物质和醇类物质相对含量较高,能较好地保留绿茶坯中的热敏性组分;而热泵干燥则对来自茉莉花的酯类物质具有较好的保留作用。采用JTF指数对不同干燥方式的茉莉花茶品质进行评价发现,热泵干燥的JTF值最高,具有较佳的茉莉花茶特征香气品质。综上,热泵干燥法对茉莉花茶香气浓度及特征香气组分均具有较好的保留作用,但对其香气总浓度的保留效果仍低于冷冻干燥法的,今后可在热泵干燥机的气体循环系统进一步改善,特别是茉莉花茶主要的特征香气组分保留效率的提高,该法可为茉莉花茶干燥方式提供参考。
-
表 1 不同干燥方法的茉莉花茶挥发性成分化学组成与含量
Table 1 Chemical composition and content of volatile components of jasmine tea by different drying methods
序号 保留时间(min) 挥发性成分 相对含量(μg/g) 热泵干燥 热风干燥 微波干燥 冷冻干燥 1 10.826 3-己烯醇 0.114 0.119 0.108 0.118 2 19.048 2-乙基-1-己醇 0.026 0.022 0.014 0.024 3 19.409 苯甲醇 0.509 0.532 0.526 0.491 4 21.638 α-松油醇 0.000 0.000 0.024 0.073 5 21.643 反式-氧化芳樟醇(呋喃型) 0.035 0.024 0.052 0.043 6 22.201 芳樟醇 4.082 4.251 4.283 4.384 7 36.189 反式-橙花叔醇 0.235 0.243 0.306 0.262 8 37.877 杜松烯醇 0.030 0.035 0.025 0.040 9 38.137 τ-杜松醇 0.150 0.167 0.195 0.162 10 38.413 α-荜澄茄醇 0.232 0.257 0.291 0.314 11 37.636 (+)-荜澄茄油烯醇 0.034 0.045 0.048 0.046 12 27.413 香叶醇 0.119 0.139 0.170 0.172 13 44.795 香叶基香叶醇 0.005 0.006 0.009 0.006 醇类总量 5.571 5.84 6.051 6.135 14 17.953 顺式-3-己烯-1-醇乙酸酯 0.993 1.005 0.928 1.035 15 18.274 乙酸己酯 0.003 0.001 0.001 0.004 16 18.381 反式-2-己烯-1-醇乙酸酯 0.005 0.003 0.004 0.005 17 21.988 苯甲酸甲酯 0.983 1.035 0.977 1.054 18 24.640 乙酸苄酯(乙酸苯甲酯) 6.053 4.675 5.695 4.943 19 24.865 苯甲酸乙酯 0.018 0.022 0.024 0.027 20 25.221 反式-丁酸-3-己烯酯 0.185 0.193 0.182 0.187 21 25.699 水杨酸甲酯 1.325 1.381 1.386 1.407 22 26.735 α-甲基丁酸叶醇酯 0.028 0.029 0.029 0.028 23 27.606 乙酸苯乙酯 0.017 0.018 0.017 0.018 24 27.697 丙酸苯甲酯 0.001 0.003 0.002 0.002 25 26.894 正戊酸-(Z)-3-己烯酯 0.042 0.043 0.042 0.042 26 28.153 水杨酸乙酯 0.014 0.015 0.016 0.019 27 28.617 L-乙酸冰片酯 0.000 0.002 0.004 0.003 22 29.614 (E,Z)-2-甲基-2-丁烯酸-3-己烯酯 0.049 0.052 0.054 0.052 29 30.393 3-甲基丁酸苯甲酯 0.012 0.013 0.013 0.015 30 30.449 邻氨基苯甲酸甲酯 3.015 3.195 2.272 3.202 31 31.157 乙酸香叶酯 0.194 0.206 0.222 0.206 32 31.230 顺式-己酸-3-己烯酯 0.030 0.032 0.031 0.035 33 31.242 苯甲酸丁酯 0.053 0.049 0.053 0.047 34 31.343 顺-3-己烯酸-3-己烯酯 0.354 0.352 0.353 0.325 35 33.011 苯甲酸2-甲基丁基酯 0.010 0.004 0.008 0.010 36 35.736 二氢猕猴桃内酯 0.031 0.033 0.039 0.036 37 36.620 苯甲酸叶醇酯 4.383 4.710 4.756 4.691 38 36.683 苯甲酸己酯 0.229 0.256 0.323 0.233 39 36.838 反-2-苯甲酸己烯酯 0.074 0.082 0.092 0.078 40 38.571 顺式-3-柳酸叶醇酯 0.032 0.037 0.046 0.035 41 39.225 2-乙基己基苯甲酸酯 0.005 0.004 0.007 0.004 42 39.359 肉豆蔻酸甲酯 0.004 0.005 0.005 0.005 43 40.364 苯甲酸苄酯 0.235 0.278 0.317 0.263 44 44.017 棕榈酸乙酯 0.031 0.024 0.028 0.027 酯类总量 18.408 17.757 17.926 18.038 45 16.162 苯甲醛 0.022 0.019 0.017 0.028 46 20.176 2,6-二甲基-5-庚烯醛 0.015 0.015 0.018 0.016 47 22.316 壬醛 0.180 0.078 0.051 0.053 48 25.908 藏花醛 0.006 0.006 0.007 0.007 49 25.986 癸醛 0.010 0.000 0.000 0.000 50 26.576 β-环柠檬醛 0.028 0.028 0.031 0.033 51 27.759 β-环高柠檬醛 0.003 0.002 0.009 0.003 醛类总量 0.242 0.129 0.116 0.112 52 17.000 6-甲基-5-庚烯-2-酮 0.057 0.056 0.061 0.049 53 32.571 α-紫罗酮 0.021 0.023 0.031 0.031 54 33.122 香叶基丙酮 0.045 0.054 0.053 0.054 酮类总量 0.066 0.077 0.084 0.085 55 17.249 β-香叶烯 0.185 0.180 0.148 0.192 56 18.173 α-水芹烯 0.014 0.013 0.011 0.012 57 18.638 α-萜品烯 0.020 0.013 0.015 0.000 58 19.193 D-柠檬烯 0.382 0.396 0.295 3.362 59 19.864 3-蒈烯 0.276 0.282 0.252 0.244 60 20.453 γ-萜品烯 0.014 0.014 0.010 0.034 61 21.604 萜品油烯 0.054 0.040 0.031 0.032 62 22.604 反式-4,8-二甲基壬-1,3,7-三烯 0.017 0.017 0.016 0.015 63 25.451 [S-(E)]-2,6-二甲基-4-辛烯 0.004 0.004 0.005 0.006 64 29.836 γ-古芸烯 0.003 0.006 0.006 0.002 65 30.083 γ-榄香烯 0.024 0.026 0.030 0.027 66 30.521 α-荜澄茄油烯 0.141 0.160 0.192 0.147 67 31.404 古巴烯 0.134 0.149 0.159 0.129 68 31.724 β-榄香烯 0.175 0.192 0.236 0.205 69 31.888 顺-衣兰油-4(15),5-二烯 0.018 0.021 0.022 0.018 70 32.620 β-依兰烯 0.022 0.025 0.028 0.021 71 32.701 β-石竹烯 0.157 0.187 0.181 0.193 72 32.941 β-古巴烯 0.048 0.053 0.058 0.046 73 33.244 反式-β-法呢烯 0.139 0.150 0.156 0.141 74 33.667 α-石竹烯 0.192 0.198 0.230 0.223 75 33.806 (+)-表双环倍半水芹烯 0.115 0.130 0.149 0.126 76 34.008 β-荜澄茄烯 0.145 0.150 0.154 0.120 77 34.073 γ-衣兰油烯 0.336 0.369 0.384 0.358 78 34.241 顺式-α-香柑油烯 0.813 0.905 0.936 0.715 79 34.314 D-大根香叶烯 0.158 0.190 0.266 0.274 80 34.807 α-法呢烯 12.057 11.550 13.058 11.580 81 34.935 β-红没药烯 0.006 0.011 0.003 0.082 82 35.172 γ-荜澄茄烯 0.617 0.635 0.559 0.597 83 35.279 Δ-荜澄茄烯 1.174 1.264 1.536 1.204 84 35.407 菖蒲烯 0.062 0.054 0.037 0.050 85 35.677 荜澄茄油宁烯 0.099 0.102 0.081 0.091 86 35.771 (-)-α-荜澄茄烯 0.154 0.164 0.194 0.150 87 37.293 1,E-11,Z-13-十六烷三烯 0.005 0.004 0.026 0.000 88 37.414 (E)-γ-红没药烯 0.196 0.199 0.191 0.143 89 37.593 α-荜澄茄烯 0.003 0.002 0.001 0.002 90 38.935 8,9-脱氢环异长叶烯 0.140 0.149 0.153 0.122 烯烃类总量 18.099 18.004 19.089 20.663 91 17.284 2-戊基-呋喃 0.013 0.004 0.000 0.003 92 18.654 2-乙烯基-6-甲基-吡嗪 0.000 0.011 0.007 0.014 93 24.624 2,6-二甲基-吡嗪 1.812 0.321 0.263 2.034 94 30.610 丁香油酚 0.093 0.101 0.096 0.096 95 31.838 甲基丁香酚 0.125 0.114 0.198 0.202 其他类总量 2.043 0.551 0.564 2.349 总计 44.429 42.358 43.830 47.382 JTF 4.766 4.577 4.656 4.442 -
[1] INOUE N, KURODA K, SUGIMOTO A, et al. Autonomic nervous responses according to preference for the odor of jasmine tea[J]. Biosci Biotechnol Biochem,2003,67:1206−1214.
[2] TIAN J, SEO H S. A study on the preference degree of jasmine tea package design in China:Focused on China’s top 10 jasmine tea brands[J]. J Korea Contents Assoc,2019,19:304−313.
[3] 陈梅春, 张海峰, 朱育菁, 等. 茉莉花茶窨制过程香气形成机制的研究[J]. 食品安全质量检测学报,2016(4):1546−1553. [CHEN M C, ZHANG H F, ZHU Y J, et al. Formation of aroma compounds in jasmine tea during scenting process[J]. Journal of Food Safety and Quality,2016(4):1546−1553.] CHEN M C, ZHANG H F, ZHU Y J, et al. Formation of aroma compounds in jasmine tea during scenting process[J]. Journal of Food Safety and Quality, 2016(4): 1546−1553.
[4] BASSEY E J, CHENG J H, SUN D W. Novel nonthermal and thermal pretreatments for enhancing drying performance and improving qua lity of fruits and vegetables[J]. Trends in Food Science & Technology,2021,112:137−148.
[5] QIU Y, BI J F, JIN X, et al. Investigation on the rehydration mechanism of freeze-dried and hot-air dried shiitake mushrooms from pores and cell wall fibrous material[J]. Food Chemistry,2022,383:132360−132368.
[6] 黄刚骅, 李沅达, 邓秀娟, 等. 四种干燥方式云南白茶的香气组分分析[J]. 食品工业科技,2022,43(18):283−292. [HUANG G H, LI Y D, DENG X J, et al. Analysis of aroma compounds of yunnan white tea by four drying methods[J]. Science and Technology of Food Industry,2022,43(18):283−292.] HUANG G H, LI Y D, DENG X J, et al. Analysis of aroma compounds of yunnan white tea by four drying methods[J]. Science and Technology of Food Industry, 2022, 43(18): 283−292.
[7] 林冬纯, 林宏政, 魏子淳, 等. 不同干燥温度对萎凋叶压制白茶饼品质的影响[J]. 食品科学,2022,43(15):109−116. [LIN D C, LIN H Z, WEI Z C, et al. Effect of different drying temperature on the quality of white tea cake pressed with withered leaves[J]. Food Science,2022,43(15):109−116.] LIN D C, LIN H Z, WEI Z C, et al. Effect of different drying temperature on the quality of white tea cake pressed with withered leaves[J]. Food Science, 2022, 43(15): 109−116.
[8] 邓媛元, 张雁, 汤琴, 等. 干燥方式对苦瓜茶感官品质及挥发性物质的影响[J]. 中国食品学报,2019,19(2):173−184. [DENG Y Y, ZHANG Y, TANG Q, et al. Effects of drying methods on sensory quality and volatile substances of bitter melon tea[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(2):173−184.] DENG Y Y, ZHANG Y, TANG Q, et al. Effects of drying methods on sensory quality and volatile substances of bitter melon tea[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(2): 173−184.
[9] DONG J, MA X H, FU Z R, et al. Effects of microwave drying on the contents of functional constituents of eucommia ulmoides flower tea[J]. Industrial Crops & Products,2011,34(1):1102−1110.
[10] 苏敏, 韦柳花, 张凌云, 等. 新型静电场干燥工艺在桂花茶加工上的应用试验[J]. 南方农业,2021,15(10):64−66. [SU M, WEI L H, ZHANG L Y, et al. Application test of the new electrostatic field drying process in osmanthus tea processing[J]. South China Agriculture,2021,15(10):64−66.] SU M, WEI L H, ZHANG L Y, et al. Application test of the new electrostatic field drying process in osmanthus tea processing[J]. South China Agriculture, 2021, 15(10): 64−66.
[11] 盛金凤, 陈坤, 雷雅雯, 等. 微波-热风联合干燥茉莉花干燥特性及品质分析[J]. 食品工业科技,2022,43(11):126−135. [SHENG J F, CHEN K, LEI Y W, et al. Drying characteristics and quality analysis of jasmine with combined microwave and hot air drying[J]. Science and Technology of Food Industry,2022,43(11):126−135.] SHENG J F, CHEN K, LEI Y W, et al. Drying characteristics and quality analysis of jasmine with combined microwave and hot air drying[J]. Science and Technology of Food Industry, 2022, 43(11): 126−135.
[12] 张凌云. 低温真空干燥技术在花茶加工上的应用研究[J]. 现代农业科技,2013(2):284−285. [ZHANG L Y. Study on the application of low temperature vacuum drying technology in the processing of scented tea[J]. Modern Agricultural Science and Technology,2013(2):284−285.] ZHANG L Y. Study on the application of low temperature vacuum drying technology in the processing of scented tea[J]. Modern Agricultural Science and Technology, 2013(2): 284−285.
[13] 郭春雨. 不同干燥方式茶坯窨制茉莉花茶的研究[J]. 现代农业科技,2013(24):279−280. [GUO C Y. Research on Jasmine tea scented by green tea with different drying methods[J]. Modern Agricultural Science and Technology,2013(24):279−280.] GUO C Y. Research on Jasmine tea scented by green tea with different drying methods[J]. Modern Agricultural Science and Technology, 2013(24): 279−280.
[14] SHEN J X, RANA M M, LIU G F, et al. Differential contribution of jasmine floral volatiles to the aroma of scented green tea[J]. Journal of Food Quality,2017,2017:1−10.
[15] 王淑燕, 赵峰, 饶耿慧, 等. 基于电子鼻和ATD-GC-MS技术分析茉莉花茶香气成分的产地差异[J]. 食品工业科技,2021,42(15):234−239. [WANG S Y, ZHAO F, RAO G H, et al. Origin difference analysis of aroma components in jasmine tea based on electronic nose and ATD-GC-MS[J]. Science and Technology of Food Industry,2021,42(15):234−239.] WANG S Y, ZHAO F, RAO G H, et al. Origin difference analysis of aroma components in jasmine tea based on electronic nose and ATD-GC-MS[J]. Science and Technology of Food Industry, 2021, 42(15): 234−239.
[16] 颜廷宇, 林洁鑫, 朱建新, 等. 电子鼻和GC-MS结合化学计量学应用于高香红茶与传统工夫红茶香气特征的研究[J]. 食品工业科技,2022,43(18):252−261. [YAN T Y, LIN J X, ZHU J X, et al. Analysis of e-nose and GC-MS combined with chemometrics applied to the aroma characteristics of high aroma black tea and traditionalcongou black tea[J]. Science and Technology of Food Industry,2022,43(18):252−261.] YAN T Y, LIN J X, ZHU J X, et al. Analysis of e-nose and GC-MS combined with chemometrics applied to the aroma characteristics of high aroma black tea and traditionalcongou black tea[J]. Science and Technology of Food Industry, 2022, 43(18): 252−261.
[17] 黄贵元, 赵海娟, 高阳, 等. 基于HS-SPME-GC-MS和电子鼻技术对干枣及其不同提取物挥发性成分分析[J]. 食品科学,2022,43(10):255−262. [HUANG G Y, ZHAO H J, GAO Y. et al. Analysis of volatile components in dried jujube and its different extracts by headspace solid phase microextraction-gas chromatography-mass spectrometry and electronic nose[J]. Food Science,2022,43(10):255−262.] HUANG G Y, ZHAO H J, GAO Y. et al. Analysis of volatile components in dried jujube and its different extracts by headspace solid phase microextraction-gas chromatography-mass spectrometry and electronic nose[J]. Food Science, 2022, 43(10): 255−262.
[18] 马尧, 郝慧慧, 张海红, 等. GC-MS结合电子鼻分析不同干燥方式对黄花菜粉挥发性物质的影响[J]. 食品科学,2022,43(6):324−330. [MA Y, HAO H H, ZHANG H H, et al. Effects of different drying methods on volatile flavor components of daylily powder analyzed by gas chromatography-mass spectrometry combined with electronic nose[J]. Food Science,2022,43(6):324−330.] MA Y, HAO H H, ZHANG H H, et al. Effects of different drying methods on volatile flavor components of daylily powder analyzed by gas chromatography-mass spectrometry combined with electronic nose[J]. Food Science, 2022, 43(6): 324−330.
[19] 邵淑贤, 金珊, 叶乃兴, 等. 基于电子鼻与 HS-SPME-GC-MS 技术对不同产地黄观音乌龙茶香气的差异分析[J]. 食品科学,2023,44(4):232−239. [SHAO S Y, JIN S, YE N X, et al. Differential analysis of aroma components of huangguanyin oolong tea from different geographical origins using electronic nose and headspace solid-phase microextraction-gas chromatography-mass spectrometry[J]. Food Science,2023,44(4):232−239.] SHAO S Y, JIN S, YE N X, et al. Differential analysis of aroma components of huangguanyin oolong tea from different geographical origins using electronic nose and headspace solid-phase microextraction-gas chromatography-mass spectrometry[J]. Food Science, 2023, 44(4): 232−239.
[20] 叶秋萍, 余雯, 郑世仲, 等. 茉莉花茶窨制过程水分变化与香气品质变化的相关性分析[J]. 食品科学,2022,43(24):266−272. [YE Q P, YU W, ZHENG S Z, et al. Correlation analysis of moisture content and aroma quality in the scenting process of jasmine tea[J]. Food Science,2022,43(24):266−272.] YE Q P, YU W, ZHENG S Z, et al. Correlation analysis of moisture content and aroma quality in the scenting process of jasmine tea[J]. Food Science, 2022, 43(24): 266−272.
[21] 林杰. 茶叶香气的图谱分析及在茶叶品质真实性鉴定中的应用[D]. 杭州:浙江大学, 2013. [LIN J. Analysis of aromatic profile and application on product quality authentification of tea[D]. Hangzhou:Zhejiang University, 2013.] LIN J. Analysis of aromatic profile and application on product quality authentification of tea[D]. Hangzhou: Zhejiang University, 2013.
[22] 吴亮亮, 张丹丹, 叶小辉, 等. 电子鼻在对名优茉莉花茶香气评价中的应用[J]. 福建茶叶,2016,38(6):5−6. [WU L L, ZHANG D D, YE X H, et al. Application of electronic nose in aroma evaluation of famous jasmine tea[J]. Tea in Fujian,2016,38(6):5−6.] doi: 10.3969/j.issn.1005-2291.2016.06.003 WU L L, ZHANG D D, YE X H, et al. Application of electronic nose in aroma evaluation of famous jasmine tea[J]. Tea in Fujian, 2016, 38(6): 5−6. doi: 10.3969/j.issn.1005-2291.2016.06.003
[23] WANG S Y, ZHAO F, WU W X, et al. Comparison of volatiles in different jasmine tea grade samples using electronic nose and automatic thermal desorption-gas chromatography-mass spectrometry followed by multivariate statistical analysis[J]. Molecules,2020,25(2):380−395. doi: 10.3390/molecules25020380
[24] 吴玉珍, 郁志芳. 基于HS-SPME-GC-MS和OAV值分析不同干燥方式菊花脑的挥发性物质差异[J]. 食品科学,2023,44(8):228−237. [WU Y Z, YU Z F. Analysis of volatile components in chrysanthemum nankingense leaves dried by different methods by headspace solid phase microextraction-gas chromatography-mass spectrometry and calculation of odor activity value[J]. Food Science,2023,44(8):228−237.] doi: 10.7506/spkx1002-6630-20220328-350 WU Y Z, YU Z F. Analysis of volatile components in chrysanthemum nankingense leaves dried by different methods by headspace solid phase microextraction-gas chromatography-mass spectrometry and calculation of odor activity value[J]. Food Science, 2023, 44(8): 228−237. doi: 10.7506/spkx1002-6630-20220328-350
[25] NIU Y S, HAO N, DONG B. A new reduced-rank linear discriminant analysis method and its applications[J]. Statistica Sinica, 2018:189-202.
[26] 苏倩, 谭艳妮, 纪宏. 真空冷冻干燥技术在食品方面的应用[J]. 品牌与标准化,2018(6):71−74. [SU Q, TAN Y N, JI H. Application of vacuum freeze drying technology on food[J]. Brand & Standardization,2018(6):71−74.] SU Q, TAN Y N, JI H. Application of vacuum freeze drying technology on food[J]. Brand & Standardization, 2018(6): 71−74.
[27] 陈瑞瑞, 谢婵媛, 柴燃, 等. 真空冷冻联合干燥技术在食品工业中的研究进展[J]. 保鲜与加工,2023,23(3):62−69. [CHEN R R, XIE C Y, CAI R, et al. Research progress of vacuum freezing combined drying technologies in food industry[J]. Storage and Process,2023,23(3):62−69.] doi: 10.3969/j.issn.1009-6221.2023.03.010 CHEN R R, XIE C Y, CAI R, et al. Research progress of vacuum freezing combined drying technologies in food industry[J]. Storage and Process, 2023, 23(3): 62−69. doi: 10.3969/j.issn.1009-6221.2023.03.010
[28] 安会敏, 欧行畅, 熊一帆, 等. 茉莉花茶挥发性成分在窨制过程中的变化研究[J]. 茶叶通讯,2020,47(1):67−74. [AN H M, OU H C, XIONG Y F, et al. Study on the changes of volatile components in jasmine tea during the scenting process[J]. Journal of Tea Communication,2020,47(1):67−74.] doi: 10.3969/j.issn.1009-525X.2020.01.013 AN H M, OU H C, XIONG Y F, et al. Study on the changes of volatile components in jasmine tea during the scenting process[J]. Journal of Tea Communication, 2020, 47(1): 67−74. doi: 10.3969/j.issn.1009-525X.2020.01.013
[29] 乔如颖, 郑新强, 李清声, 等. 茶叶挥发性香气化合物研究进展[J]. 茶叶, 2016, 42(3):135-142. [QIAO R Y, ZHENG X Q, LI Q S, et al. Research advances in aromatic volatiles of various teas[J]. Journal of Tea 2016, 42( 3):135-142.] QIAO R Y, ZHENG X Q, LI Q S, et al. Research advances in aromatic volatiles of various teas[J]. Journal of Tea 2016, 42( 3): 135-142.
[30] 卢琪, 薛淑静, 杨德, 等. 不同干燥条件下福白菊菊花茶风味品质的比较分析[J]. 食品科学,2020,41(20):249−255. [LU Q, XUE S J, YANG D, et al. Comparative analysis of flavor quality of chrysanthemum tea (Chrysanthemum morifolium cv. ‘fubaiju’) processed by different drying methods[J]. Food Science,2020,41(20):249−255.] doi: 10.7506/spkx1002-6630-20190823-249 LU Q, XUE S J, YANG D, et al. Comparative analysis of flavor quality of chrysanthemum tea (Chrysanthemum morifolium cv. ‘fubaiju’) processed by different drying methods[J]. Food Science, 2020, 41(20): 249−255. doi: 10.7506/spkx1002-6630-20190823-249
[31] CHEN X H, CHEN D J, JIANG H, et al. Aroma characterization of hanzhong black tea (Camellia sinensis) using solid phase extraction coupled with gas chromatography-mass spectrometry and olfactometry and sensory analysis[J]. Food Chemistry,2019,274:130−136. doi: 10.1016/j.foodchem.2018.08.124
[32] ITO Y, SUGIMOTO A, KAKUDA T, et al. Identification of potent odorants in Chinese jasmine green tea scented with flowers of Jasminum sambac[J]. Journal of agricultural and food chemistry,2002,50(17):4878−4884. doi: 10.1021/jf020282h
[33] FARAHMANDFAR R, TIRGARIAN B, DEHGHAN B, et al. Comparison of different drying methods on bitter orange (Citrus aurantium L.) peel waste:changes in physical (density and color) and essential oil (yield, composition, antioxidant and antibacterial) properties of powders[J]. Journal of Food Measurement and Characterization,2020,14(4):862−875.
[34] 傅天龙, 郭晨, 傅天甫, 等. 福州8种主要茉莉花茶特征香气成分比较与分析[J]. 茶叶科学,2020,40(5):656−664. [FU T L, GUO C, FU T P, et al. Comparison and analysis of characteristic aroma components of eight main jasmine teas in fuzhou[J]. Journal of Tea Science,2020,40(5):656−664.] FU T L, GUO C, FU T P, et al. Comparison and analysis of characteristic aroma components of eight main jasmine teas in fuzhou[J]. Journal of Tea Science, 2020, 40(5): 656−664.
[35] 施梦南, 唐德松, 龚淑英, 等. SPME-GC-MS联用技术分析茉莉花茶的挥发性成分[J]. 中国食品学报,2013,13(6):234−239. [SHI M N, TANG D S, GONG S Y, et al. Analysis on volatile components of jasmine tea using SPME-GC-MS method[J]. J Chin Inst Food Sci Technol,2013,13(6):234−239.] SHI M N, TANG D S, GONG S Y, et al. Analysis on volatile components of jasmine tea using SPME-GC-MS method[J]. J Chin Inst Food Sci Technol, 2013, 13(6): 234−239.
[36] 潘年龙, 王孝荣 , 吴凯, 等. 黄花菜热泵干燥前后香气成分分析[J]. 食品科学, 2013, 34(18):258-262. [PAN N L, WANG X R, WU K, et al. Aroma components analysis of daylily dried by heat pump[J]. Food Science, 2013, 34(18):258-262.] PAN N L, WANG X R, WU K, et al. Aroma components analysis of daylily dried by heat pump[J]. Food Science, 2013, 34(18): 258-262.
[37] SONG J X, HAN J, FU L, et al. Assessment of characteristics aroma of heat pump drying (HPD) jujube based on HS-SPME/GC-MS and e-nose[J]. Journal of Food Composition and Analysis,2022,110(7):1−7.
[38] XU Y Q, WANG C, LI C W, et al. Characterization of aroma active compounds of pu-erh tea by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation-extraction (SDE) coupled with GC-Olfactometry and GC-MS[J]. Food Analytical Methods,2016,9(5):1188−1198. doi: 10.1007/s12161-015-0303-7
[39] YANG Y Q, ZHANG M M, YIN H X, et al. Rapid profiling of volatile compounds in green teas using micro-chamber/thermal extractor combined with thermal desorption coupled to gas chromatography-mass spectrometry followed by multivariate statistical analysis[J]. LWT-Food Science and Technology,2018,96:42−50. doi: 10.1016/j.lwt.2018.04.091
[40] 胡梓妍, 刘伟, 何双, 等. 基于HS-SPME-GC-MS法分析3 种金橘的香气挥发性成分[J]. 食品科学,2021,42(16):176−184. [HU Z Y, LIU W, HE S, et al. Analysis of volatile components in three varieties of kumquat by headspace solid phase microextraction-gas chromatography-mass spectrometry[J]. Food Science,2021,42(16):176−184.] HU Z Y, LIU W, HE S, et al. Analysis of volatile components in three varieties of kumquat by headspace solid phase microextraction-gas chromatography-mass spectrometry[J]. Food Science, 2021, 42(16): 176−184.
[41] Characterization of the key odorants and investigation of the effects of drying methods on the aroma, taste, color and volatile profiles of the fruit of Clausena anisum-olens (Blanco) Merr.[J]. LWT-Food Science and Technology, 2023, 175(2):1−7.
[42] 舒畅. 龙井茶特征香气成分分析及鉴定研究[D]. 上海:上海应用技术学院, 2016. [SHU C. Analysis and identification of characteristic aroma components of longjing tea[D]. Shanghai:Shanghai Institute of Technology, 2016.] SHU C. Analysis and identification of characteristic aroma components of longjing tea[D]. Shanghai: Shanghai Institute of Technology, 2016.
-
期刊类型引用(0)
其他类型引用(1)