Processing math: 100%
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

蝉花多糖酶法辅助双水相提取工艺优化及其抗氧化、降血糖和降血脂活性分析

李金婷, 钱心燚, 雍一丹, 吴萌萌, 孙华锴, 王雅楠, 陈安徽, 邵颖, 尼再中

李金婷,钱心燚,雍一丹,等. 蝉花多糖酶法辅助双水相提取工艺优化及其抗氧化、降血糖和降血脂活性分析[J]. 食品工业科技,2024,45(12):179−188. doi: 10.13386/j.issn1002-0306.2023070233.
引用本文: 李金婷,钱心燚,雍一丹,等. 蝉花多糖酶法辅助双水相提取工艺优化及其抗氧化、降血糖和降血脂活性分析[J]. 食品工业科技,2024,45(12):179−188. doi: 10.13386/j.issn1002-0306.2023070233.
LI Jinting, QIAN Xinyi, YONG Yidan, et al. Optimization of Enzymatic-assisted Aqueous Two-phase Extraction Conditions of Polysaccharides from Cordyceps cicadae and Analysis of Its Antioxidant, Hypoglycemic and Hypolipidemic Properties in Vitro[J]. Science and Technology of Food Industry, 2024, 45(12): 179−188. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070233.
Citation: LI Jinting, QIAN Xinyi, YONG Yidan, et al. Optimization of Enzymatic-assisted Aqueous Two-phase Extraction Conditions of Polysaccharides from Cordyceps cicadae and Analysis of Its Antioxidant, Hypoglycemic and Hypolipidemic Properties in Vitro[J]. Science and Technology of Food Industry, 2024, 45(12): 179−188. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023070233.

蝉花多糖酶法辅助双水相提取工艺优化及其抗氧化、降血糖和降血脂活性分析

基金项目: 徐州市政策引导类计划(产学研合作)项目(KC22477);江苏省大学生创新创业训练计划项目(202311998077Y)。
详细信息
    作者简介:

    李金婷(2002−),女,大学本科,研究方向:食品生物技术,E-mail:1219529172@qq.com

    通讯作者:

    尼再中(1986−),男,博士,讲师,研究方向:天然产物活性分析,E-mail:nizaizhong@163.com

  • 中图分类号: TS255.1

Optimization of Enzymatic-assisted Aqueous Two-phase Extraction Conditions of Polysaccharides from Cordyceps cicadae and Analysis of Its Antioxidant, Hypoglycemic and Hypolipidemic Properties in Vitro

  • 摘要: 蝉花多糖是蝉花主要成分之一,具有多种生物活性。本研究以蝉花子实体为原料,采用纤维素酶和果胶酶辅助双水相体系提取蝉花多糖,以期为蝉花多糖的进一步开发利用和深入研究提供参考。通过单因素实验分析了纤维素酶添加量、果胶酶添加量、(NH42SO4质量分数以及聚乙二醇(polyethylene glycol,PEG)质量分数对蝉花多糖得率的影响。采用响应面法优化了蝉花多糖的提取工艺,并对其体外抗氧化、降血糖和降血脂生物活性进行了研究。结果表明,蝉花多糖的最优提取条件为:纤维素酶添加量2.01%,果胶酶添加量2.07%,(NH42SO4质量分数17.72%,PEG质量分数20.87%,此条件下蝉花多糖得率达到25.34%。在1.0~5.0 mg/mL浓度范围内,蝉花多糖的Fe2+螯合率和ABTS+自由基清除率最大值分别为16.33%±1.68%和17.38%±3.07%。总还原力测定表明蝉花多糖吸光度最大值为0.53±0.005。另外,蝉花多糖对α-葡萄糖苷酶和α-淀粉酶活性的最大抑制率分别为30.96%±4.53%和49.40%±1.30%。对胆酸钠、牛磺胆酸钠和胆固醇的最大吸附率分别为47.24%±1.89%,44.88%±0.82%和70.19%±2.54%。综上,蝉花多糖具有显著的抗氧化、降血糖和降血脂活性。本研究将为蝉花多糖相关产品的开发,特别是临床应用提供一定的理论依据。
    Abstract: Polysaccharides are one of the main constituents of Cordyceps cicadae (C. cicadae), and they show various biological activities. In the present study, C. cicadae fruiting bodies were used as raw materials to extract polysaccharides using an aqueous two-phase system, along with cellulase and pectinase, aiming to provide references for the further development, utilization, and in-depth research of C. cicadae polysaccharides. Effects of cellulase and pectinase addition amounts and (NH4)2SO4 and polyethylene glycol (PEG) mass fractions on the polysaccharide-extraction rates were analyzed by single-factor experiments. The conditions for C. cicadae polysaccharide extraction were optimized by response-surface methodology, and the antioxidant, hypoglycemic, and hypolipidemic properties of the polysaccharides were evaluated in vitro. The optimal conditions for C. cicadae polysaccharide extraction were as follows: Cellulase addition amount 2.01%, pectinase addition amount 2.07%, (NH4)2SO4 mass fraction 17.72%, and PEG mass fraction 20.87%, the polysaccharide-extraction rate reached 25.34% under these conditions. When the C. cicadae polysaccharide concentration was 1.0~5.0 mg/mL, the maximum Fe2+-chelating and ABTS+ radical-clearance abilities were 16.33%±1.68% and 17.38%±3.07%, respectively. The determination of total reducing power showed that the maximum absorbance of C. cicadae polysaccharides was 0.53±0.005. The maximum inhibitory rates of C. cicadae polysaccharides for α-amylase and α-glucosidase activities were 30.96%±4.53% and 49.40%±1.30% respectively, the maximum adsorption rates of C. cicadae polysaccharides for sodium cholate, sodium taurocholate, and cholesterol were 47.24%±1.89%, 44.88%±0.82%, and 70.19%±2.54% respectively. The results indicated that C. cicadae polysaccharides demonstrate effective antioxidant, hypoglycemic, and hypolipidemic abilities in vitro. This study will provide a theoretical basis for developing C. cicadae polysaccharide-related products, especially for clinical applications.
  • 蝉花(Cordyceps cicadae),又名蝉茸、金蝉花,是蝉若虫被麦角菌科虫草属真菌蝉拟青霉(Paecilomyces cicadae)感染后形成的真菌-虫体复合物[12]。蝉花是著名的药食两用真菌之一[3]。研究表明,蝉花营养价值极高,含有虫草素、N-(2-羟乙基)腺苷、多糖、虫草酸、蛋白质以及生物碱等多种生物活性成分,其中多糖是蝉花的主要活性成分之一[45]。现代医学研究证实,蝉花具有提高免疫力、改善肾衰竭,补肝明目、镇静催眠、抗肿瘤、抗病毒、抗辐射、抗抑郁以及抗疲劳等多重功能[68]。目前,蝉花虫草资源已得到了较广泛的开发利用。2020年12月,国家卫健委批准蝉花子实体(人工培植)正式成为新食品原料[9]。国内蝉花虫草已逐步实现工厂化培育,多款蝉花虫草健康产品和饮品陆续被开发[1012]

    真菌多糖的提取方法通常包括溶剂浸提法、酸碱法、微波法、热水法等[1314],这些方法存在能耗高、得率低、环境污染重等问题[1516]。双水相法提取法操作简单,条件温和、提取过程污染较低[17],尤其适用于活性要求高、产物浓度高的天然产物的分离[18]。段鸿斌等[19]采用双水相对花椒叶多糖的提取工艺参数进行了优化,能更大程度地提取多糖,提高花椒叶的利用率。酶法提取多糖效率高,纯度好,产品无化学试剂残留[20]。周芷冉等[21]采用复合酶法提取的昆布多糖得率高,效率快,多糖药理活性强。因此,本研究以单因素实验为基础,采用响应面试验优化酶法辅助双水相法提取蝉花多糖的工艺条件,测定蝉花多糖的体外抗氧化、降血糖和降血脂活性,以期为蝉花多糖的进一步开发利用提供参考。

    天然蝉花 采集自安徽省萧县皇藏峪风景区,保存于本实验室;纤维素酶(1 U/mg)、果胶酶(30 U/mg)、α-淀粉酶(50 U/mL) 上海源叶生物科技有限公司;α-葡萄糖苷酶(50 U/mg) 北京索莱宝科技有限公司;(NH42SO4、PEG 6000、苯酚、FeSO4、无水乙醇、氯仿、正丁醇、抗坏血酸(Vitamin C,VC)、菲啰嗪、对硝基苯基α-D-吡喃葡糖苷、浓硫酸、胆酸钠、牛磺胆酸钠、阿卡波糖、胆固醇 分析纯,南京晚晴化玻仪器有限公司;ABTS试剂盒 上海酶联生物科技有限公司。

    BJ-400A多功能高速粉碎机 永康市铂欧五金制品有限公司;DHP-9082电热恒温培养箱 上海慧泰仪器制造有限公司;L550湘仪医用离心机 湖南湘仪实验室仪器开发有限公司;UV-1900PC紫外可见分光光度计 上海皓缇仪器有限公司;R502B旋转蒸发仪 上海申生科技有限公司;FA2004B电子天平 上海精科天美科学仪器有限公司;HH-4数显电子恒温水浴锅 常州国华电器有限公司。

    参考李卫等[22]、史继童等[23]的实验方法,取适量蝉花子实体,70 ℃干燥箱充分烘干,高速粉碎机粉碎,过150目筛,弃杂质,收集子实体粉末,按料液比1:25添加超纯水混合均匀,调节pH至5.8,加入纤维素酶和果胶酶,50 ℃水浴反应80 min,随后沸水浴10 min灭活,冷却至室温后加入PEG 6000和(NH42SO4,充分混匀,4000 r/min离心10 min,下相提取液即为蝉花多糖溶液。

    为确定酶法辅助双水相提取蝉花多糖的工艺参数,选择纤维素酶添加量、果胶酶添加量、(NH42SO4质量分数和PEG质量分数为主要工艺参数进行研究[2425]

    调节纤维素酶添加量分别为0.5%,1.0%,1.5%,2.0%和2.5%,在果胶酶添加量2.0%,(NH42SO4质量分数18%以及PEG质量分数20 %的条件下进行实验,计算多糖得率。

    调节果胶酶添加量分别为0.5%,1.0%,1.5%,2.0%和2.5%,在纤维素酶添加量2.0%,(NH42SO4质量分数18%以及PEG质量分数20%的条件下进行实验,计算多糖得率。

    调节(NH42SO4质量分数分别为12%,15%,18%,21%和24%,在纤维素酶添加量2.0%,果胶酶添加量2.0%以及PEG质量分数20 %的条件下进行实验,计算多糖得率。

    调节PEG质量分数分别为10%,15%,20%,25%和30%,在纤维素酶添加量2.0%、果胶酶添加量2.0%、(NH42SO4质量分数18%的条件下进行实验,计算多糖得率。

    在单因素实验的基础上,以Box-Behnken模型设计原理进行四因素三水平响应面试验,优化蝉花多糖提取工艺,试验因素与水平见表1

    表  1  响应面试验因素和水平
    Table  1.  Factors and levels of response surface experiment
    因素 水平
    −1 0 1
    纤维素酶添加量(%) 1.5 2.0 2.5
    果胶酶添加量(%) 1.5 2.0 2.5
    (NH42SO4质量分数(%) 15 18 21
    PEG质量分数(%) 15 20 25
    下载: 导出CSV 
    | 显示表格

    采用苯酚-硫酸法,以葡萄糖为标准品绘制标准曲线。称取适量葡萄糖配制成0.1 mg/mL的葡萄糖标准品溶液,分别吸取0.1、0.3、0.5、0.7、0.9和1.1 mL标准品溶液至干燥试管,超纯水定容至2.0 mL,加入0.5 mL 5%的苯酚溶液,充分混匀,再加入3 mL浓硫酸,混匀后静置5 min,沸水浴10 min,冷却至室温。使用超纯水重复上述操作作为空白对照组,分光光度计测定490 nm处的吸光度。以葡萄糖标准品质量浓度(mg/mL)为横坐标,吸光度为纵坐标,得到标准曲线回归方程y=11.684x−0.0011(R2=0.997)。

    蝉花多糖提取液进行稀释后,将1 mL稀释液转移至干燥试管,随后加入0.5 mL 5%的苯酚和3 mL浓硫酸,充分混匀。沸水浴10 min后冷却至室温,分光光度计测定490 nm处的吸光度。根据葡萄糖标准曲线方程计算蝉花多糖浓度,按照公式(1)计算蝉花多糖得率。

    W(%)=C×D×Vm×100 (1)

    式中:W表示蝉花多糖得率,%;C表示根据吸光度值计算出的蝉花多糖溶液质量浓度,mg/mL;D表示溶液稀释倍数;V表示多糖溶液体积,mL;m表示蝉花样本取样量,mg。

    使用旋转蒸发仪浓缩蝉花提取液至原体积的1/3,随后添加无水乙醇至终浓度80%,静置24 h后,室温下以4000 r/min离心20 min,收集沉淀。使用蒸馏水溶解沉淀,按照体积比1:1加入氯仿正丁醇混合液(氯仿:正丁醇=4:1),振荡20 min后室温下以4000 r/min离心20 min。收集最上层溶液置于透析袋(截留量3500 kDa)中4 ℃透析48 h。透析液浓缩后再次添加无水乙醇至终浓度80%,静置24 h后,室温下经4000 r/min离心20 min收集沉淀。冷冻干燥后得到蝉花粗多糖粉末。

    参考Agrawal等[26]的实验方法,配制浓度为1.0、2.0、3.0、4.0和5.0 mg/mL的蝉花多糖溶液,分别取1 mL多糖溶液,加入3.71 mL超纯水混匀,再加入0.1 mL 2 mmol/L的FeSO4溶液和0.2 mL 5 mmol/L的菲啰嗪溶液,充分混匀,常温下避光放置10 min后测定其在562 nm处的吸光度。以VC作阳性对照,按照公式(2)计算蝉花多糖对Fe2+的螯合率。

    Fe2+(%)=A0A1A0×100 (2)

    式中:A0为FeSO4溶液+菲啰嗪溶液的吸光值;A1为蝉花多糖溶液+FeSO4溶液+菲啰嗪溶液的吸光值。

    配制浓度为1.0、2.0、3.0、4.0和5.0 mg/mL的蝉花多糖溶液,用ABTS试剂盒进行实验,移取200 μL反应液于96孔板中,测定其在734 nm处的吸光度。以超纯水做空白对照,VC作阳性对照,按照公式(3)计算蝉花多糖对ABTS+自由基的清除率。

    ABTS+(%)=A0A1A0×100 (3)

    式中:A0为空白组的吸光值;A1为实验组的吸光值。

    参考徐晋等[27]的实验方法,配制浓度为1.0、2.0、3.0、4.0和5.0 mg/mL的蝉花多糖溶液,分别取1 mL多糖溶液,加入2.5 mL 0.2 mol/L的磷酸缓冲液(pH6.6)混匀,随后加入2.5 mL 1%的铁氰化钾溶液,充分混匀,50 ℃水浴20 min,再加入2.5 mL 10%的三氯乙酸溶液,充分混匀,室温下4000 r/min离心10 min。取2.5 mL上清液加入2.5 mL超纯水,随后加入0.5 mL 1%的FeCl3溶液,充分混匀,在波长700 nm处测定其吸光度。以VC作阳性对照,计算蝉花多糖总还原力。

    参考佐兆杭等[28]的方法并稍作修改,以0.05 mol/L的PBS(pH6.8)作为溶剂,配制浓度为1.0、2.0、3.0、4.0和5.0 mg/mL的蝉花多糖溶液,分别取0.5 mL多糖溶液,加入0.5 mL 0.2 mol/L的α-葡萄糖苷酶溶液,充分混匀,37 ℃水浴20 min,加入0.5 mL 0.02 mol/L的对硝基苯基α-D-吡喃葡糖苷,充分混匀,37 ℃水浴20 min,随后加入2 mL 1 mol/L的Na2CO3终止反应,在波长405 nm处测定其吸光度。以阿卡波糖作阳性对照,按照公式(4)计算蝉花多糖对α-葡萄糖苷酶活性的抑制率。

    α-(%)=1ABCD×100 (4)

    式中:A为蝉花多糖溶液的吸光值;B为α-葡萄糖苷酶溶液的吸光值;C为PBS代替多糖溶液的吸光值;D为PBS的吸光值。

    参考羡荣华等[29]的方法,以0.05 mol/L的PBS(pH6.8)作为溶剂,配制浓度为1.0、2.0、3.0、4.0和5.0 mg/mL的蝉花多糖溶液,分别取0.25 mL多糖溶液,加入0.25 mL α-淀粉酶(1 U/mL)混合,37 ℃反应15 min。随后,向混合液中加入500 μL 1%的淀粉溶液继续反应10 min。加入600 μL DNS试剂,沸水浴15 min,冷却至室温,在540 nm处测定其吸光度。以阿卡波糖作阳性对照,按照公式(5)计算蝉花多糖对α-淀粉酶活性的抑制率。

    α-(%)=1ABCD×100 (5)

    式中:A为蝉花多糖溶液的吸光值;B为α-葡萄糖苷酶溶液的吸光值;C为PBS代替多糖溶液的吸光值;D为PBS的吸光值。

    参考李苏等[30]的方法并稍作修改,配制不同质量浓度的标准胆酸钠、牛磺胆酸钠溶液(0、0.2、0.4、0.8、1.2、1.6 mg/mL),分别吸取1 mL上述标准溶液加入6 mL 45%的H2SO4溶液和1 mL 0.3 %的糠醛溶液混合液中,充分混匀后在65 ℃水浴反应30 min,冷却至室温,在620 nm处测定吸光度。以胆酸盐浓度为横坐标,吸光度为纵坐标,绘制标准曲线:胆酸钠标准曲线为y=1.0118x+0.0417(R2=0.9982),牛磺胆酸钠标准曲线为y=0.8949x−0.0451(R2=0.9964)。

    配制浓度为1.0、2.0、3.0、4.0和5.0 mg/mL的蝉花多糖溶液,分别取50 mL多糖溶液与50 mL 2 mg/mL的胆酸钠和牛磺胆酸钠混合液,混合均匀后于37 ℃恒温振荡2 h,室温下以4000 r/min离心20 min,取1 mL上清液测胆酸盐含量,按照公式(6)计算胆酸盐吸附率。

    (%)=C0C1C0×100 (6)

    式中:C0为胆酸盐加入量;C1为胆酸盐剩余量。

    参考纪慧杰等[31]的研究方法并稍作修改,分别取浓度为0.1、0.2、0.3、0.4、0.5和0.6 mg/mL的标准胆固醇溶液与0.2 mL邻苯二甲醛溶液(1 mg/mL),4 mL混合酸溶液(V浓硫酸:V冰乙酸=1:1)混合均匀,37 ℃水浴10 min,在550 nm处测定吸光度。以胆固醇浓度为横坐标,吸光度为纵坐标,绘制标准曲线为y=4.0093x+0.0026(R2=0.9997)。

    分别取50 mL浓度为1.0、2.0、3.0、4.0和5.0 mg/mL的蝉花多糖溶液与100 mL胆固醇溶液(1 mg/mL)混合均匀,37 ℃恒温振荡2 h,室温下以4000 r/min离心20 min,取0.4 mL上清液测定胆固醇含量,按照公式(7)计算胆固醇吸附率。

    (%)=C0C1C0×100 (7)

    式中:C0为胆固醇加入量;C1为胆固醇剩余量。

    所有样品平行实验3次,结果以平均值±标准差表示。采用Graph Pad 8.0.2软件进行绘图,使用Design-Expert 12.0软件进行响应面分析。

    当纤维素添加量在0.5%~2.0%时,蝉花多糖得率随纤维素酶添加量的增加而升高。当纤维素酶添加量为2.0%时,蝉花多糖得率达到24.52%±1.10%。随后多糖得率随纤维素酶量的增加反而逐渐降低(图1)。这可能是在一定范围内纤维素酶量增加时,酶解效率也随之提高,利于多糖从细胞中溶解浸出,但纤维素酶量过大时,部分多糖被过度分解为可溶于水的小分子,导致蝉花多糖得率降低[32]

    图  1  纤维素酶添加量对蝉花多糖得率的影响
    Figure  1.  Effects of cellulase addition amount on the polysaccharides yield

    当果胶酶添加量在0.5%~2.0%时,蝉花多糖得率随果胶酶添加量增加而增加,当果胶酶添加量为2.0%时,蝉花多糖得率达到24.83%±0.77%。此后继续增加酶量,多糖得率逐渐降低(图2)。这可能是由于果胶酶量较低时,酶水解效率不足,多糖得率不高。随着果胶酶量增加,水解效率随之提高,利于多糖从细胞中溶解浸出,多糖得率提高。当果胶酶添加量过大时,酶与底物出现产物抑制现象,导致多糖得率降低[33]

    图  2  果胶酶添加量对蝉花多糖得率的影响
    Figure  2.  Effects of pectinase addition amount on the polysaccharide yield

    当(NH42SO4质量分数在12%~24%,随着(NH42SO4质量分数的提高,多糖得率呈现先增加后下降的趋势,当(NH42SO4质量分数为18%时,蝉花多糖得率达到25.69%±0.70%。随后,多糖得率开始逐渐降低(图3)。(NH42SO4添加量与多糖得率的升降变化可能是盐浓度影响多糖表面疏水性,改变了上下相的体积比和分配比,导致多糖得率不同[34]

    图  3  (NH42SO4质量分数对蝉花多糖得率的影响
    Figure  3.  Effects of (NH4)2SO4 mass fraction on the polysaccharides yield

    当PEG质量分数在10%~30%时,随着PEG质量分数的提高,多糖得率呈现先增加后下降的趋势,当PEG质量分数到20%时,多糖得率可达23.90%±1.60%,随后,多糖得率开始逐渐降低(图4)。这可能由于PEG质量分数过高使得溶液黏度增大,成相物质分子之间空间位阻增大,导致蝉花多糖在下相溶液中分配减少[35]

    图  4  PEG质量分数对蝉花多糖得率的影响
    Figure  4.  Effects of PEG mass fraction on the polysaccharide yield

    选用纤维素酶添加量(A)、果胶酶添加量(B)、(NH42SO4质量分数(C)、PEG质量分数(D)为自变量,蝉花多糖得率(Y)为响应值,进行四因素三水平试验设计(表2)。

    表  2  响应面分析设计及结果
    Table  2.  Design and results of response surface analysis
    实验号 A B C D 多糖得率(%)
    1 0 1 0 −1 15.41
    2 0 1 0 1 22.77
    3 −1 0 0 −1 16.14
    4 0 0 0 0 24.14
    5 0 0 1 1 16.82
    6 0 0 0 0 24.17
    7 1 0 0 1 20.89
    8 0 0 0 0 24.91
    9 1 1 0 0 13.40
    10 0 −1 0 −1 17.76
    11 0 −1 1 0 13.87
    12 −1 0 −1 0 19.90
    13 −1 1 0 0 19.95
    14 0 0 −1 −1 20.67
    15 1 0 −1 0 20.67
    16 0 0 0 0 25.72
    17 −1 −1 0 0 15.37
    18 0 1 −1 0 19.65
    19 0 0 0 0 26.71
    20 0 −1 −1 0 18.79
    21 −1 0 0 1 17.34
    22 0 0 1 −1 17.34
    23 0 1 1 0 21.91
    24 0 −1 0 1 18.28
    25 1 −1 0 0 15.88
    26 1 0 0 −1 15.15
    27 −1 0 1 0 15.84
    28 1 0 1 0 22.64
    29 0 0 −1 1 18.36
    下载: 导出CSV 
    | 显示表格

    用Design Expert 12.0软件对表2的数据进行多元回归分析,结果见表3,得到蝉花多糖得率与因素间的回归方程:Y=25.13+0.3423A+1.09B−0.8024C+0.9985D−1.77AB+1.51AC+1.13AD+1.80BC+1.71BD+0.4493CD−4.04A2−4.05B2−2.37C2−3.57D2

    表  3  蝉花多糖得率回归模型方差分析
    Table  3.  Analysis of variance of regression model for polysaccharide yield
    来源平方和自由度均方FP显著性
    模型306.191421.874.370.0046**
    A1.4111.410.28110.6043
    B14.38114.382.870.1121
    C7.7317.731.540.2344
    D11.96111.962.390.1443
    AB12.46112.462.490.1368
    AC9.1019.101.820.1988
    AD5.1415.141.030.3278
    BC12.92112.922.580.1304
    BD11.72111.722.340.1482
    CD0.807610.80760.16140.6939
    105.711105.7121.130.0004**
    106.551106.5521.290.0004**
    36.53136.537.300.0172*
    82.49182.4916.490.0012**
    残差70.05145.00
    失拟项65.25106.535.440.0586
    纯误差4.8041.20
    总和376.2428
    注: *表示P<0.05;**表示P<0.01。
    下载: 导出CSV 
    | 显示表格

    表3可知,回归方程极显著(P<0.01),失拟项不显著(P>0.05),表明回归方程模拟可靠,不存在失拟因素。回归方程模型可以描述各因素与响应值之间的关系,用于优化提取过程。各因素对蝉花多糖得率的影响大小依次为:果胶酶添加量>PEG质量分数>(NH42SO4质量分数>纤维素酶添加量。

    各因素两两相互作用对蝉花多糖得率的影响如图5所示。等高线图呈椭圆形,响应面的坡度较为陡峭,则表明两因素交互作用对多糖得率影响显著,若等高线趋于圆形,坡度平缓,则表明两因素交互作用对多糖得率影响不显著。由图5可知,纤维素酶添加量与果胶酶添加量的交互作用、纤维素酶添加量与PEG质量分数的交互作用、果胶酶添加量与(NH42SO4质量分数的交互作用、果胶酶添加量与PEG质量分数的交互作用虽对蝉花多糖得率有一定的影响,但均未达到显著性水平,这也与表3中所示结果一致。

    图  5  各因素交互作用对蝉花多糖得率影响的响应面和等高线图
    注:a. 纤维素酶添加量与果胶酶添加量交互作用;b. 纤维素酶添加量与(NH42SO4质量分数交互作用;c. 纤维素酶添加量与PEG质量分数交互作用;d. 果胶酶添加量与(NH42SO4质量分数交互作用;e. 果胶酶添加量与PEG质量分数交互作用;f. PEG质量分数与(NH42SO4质量分数交互作用。
    Figure  5.  Response surface and contour plots showing the interactions of various factors on C. cicadae polysaccharide extraction rate

    使用Design Expert 12.0软件对回归模型进行验证分析,得到蝉花多糖最佳提取条件为:纤维素酶添加量2.01%,果胶酶添加量2.07%,(NH42SO4质量分数17.72%,PEG质量分数20.87%,在此条件下,蝉花多糖得率为25.34%。考虑到实际操作的可行性,将提取条件调整为:纤维素酶添加量2.0%,果胶酶添加量2.1%,硫酸铵质量分数18.0%,PEG质量分数21.0%,在此条件下蝉花多糖得率为25.35%±0.38%,与预测值接近,表明该模型预测的最优提取工艺稳定可靠,具有良好的实际应用价值。

    当浓度在1.0~5.0 mg/mL范围时,蝉花多糖对Fe2+的螯合力随多糖浓度增大呈线性增加。多糖浓度达到5 mg/mL时,蝉花多糖对Fe2+的螯合力达到16.33%±1.68%,VC对Fe2+的最大螯合力为20.82%±1.86%(图6),表明蝉花多糖具有较强的Fe2+螯合力。

    图  6  蝉花多糖的Fe2+螯合力作用
    Figure  6.  Fe2+-chelating ability of C. cicadae polysaccharides

    随着浓度升高,蝉花多糖对ABTS+自由基的清除能力也随之增强。在蝉花浓度4 mg/mL时,蝉花多糖对ABTS+自由基的清除率达到17.38%±3.07%,随后蝉花多糖对ABTS+自由基的清除率维持在稳定水平,VC对ABTS+自由基的清除率最大为89.89%±2.41%(图7),表明蝉花多糖具有一定的ABTS+自由基清除力。

    图  7  蝉花多糖的ABTS+自由基清除活性
    Figure  7.  ABTS+ radical-clearance activity of C. cicadae polysaccharides

    另外,随着浓度增加,蝉花多糖吸光度呈线性增加,吸光度越高表明溶液的总还原能力越强。在多糖浓度达到5 mg/mL时,蝉花多糖的吸光度达到0.53±0.005,VC在检测浓度范围内吸光度变化较小,吸光度最大为2.75±0.037(图8)。

    图  8  蝉花多糖的总还原力
    Figure  8.  Total reduction power of C. cicadae polysaccharides

    当浓度在1.0~5.0 mg/mL范围时,蝉花多糖对α-葡萄糖苷酶活性的抑制作用随浓度增高呈上升趋势,但整体抑制率低于阿卡波糖的抑制效率。蝉花浓度为5 mg/mL时,蝉花多糖对α-葡萄糖苷酶活性的抑制率达到30.96%±4.53%,阿卡波糖对α-葡萄糖苷酶活性的抑制率为97.0%±1.75%(图9),表明蝉花多糖对α-葡萄糖苷酶活性有一定的抑制能力。

    图  9  蝉花多糖对α-葡萄糖苷酶活性的抑制能力
    Figure  9.  α-glucosidase activity inhibitory ability of C. cicadae polysaccharides

    与对α-葡萄糖苷酶活性的抑制作用类似,蝉花多糖和阿卡波糖对α-淀粉酶活性的抑制作用都随浓度增加而持续增强,但蝉花多糖抑制能力低于阿卡波糖的抑制能力。当蝉花多糖浓度为5 mg/mL时,其对α-淀粉酶活性的抑制率达到49.40%±1.30%,阿卡波糖对α-淀粉酶活性的抑制率为86.87%±4.16%(图10),表明蝉花多糖对α-淀粉酶活性有较好的抑制能力。

    图  10  蝉花多糖对α-淀粉酶活性的抑制能力
    Figure  10.  α-Amylase activity inhibitory ability of C. cicadae polysaccharides

    当浓度在1.0~5.0 mg/mL范围时,蝉花多糖对胆酸盐的吸附率随浓度的增加呈持续升高的趋势。在多糖浓度为5 mg/mL时,蝉花多糖对胆酸钠和牛磺胆酸钠的吸附率均达到最大值,分别为47.24%±1.89%和44.88%±0.82%(图11),表明蝉花多糖具有较好的胆酸盐吸附力。

    图  11  蝉花多糖的胆酸盐吸附率
    Figure  11.  Cholate adsorption rate of C. cicadae polysaccharides

    另外,蝉花多糖对胆固醇的吸附率随浓度的增加呈持续增加的趋势。在多糖浓度为5 mg/mL时,蝉花多糖对胆固醇的吸附率达到70.19%±2.54%(图12),表明蝉花多糖具有较好的降血脂活性。

    图  12  蝉花多糖的胆固醇吸附率
    Figure  12.  Cholesterol adsorption rate of C. cicadae polysaccharides

    本研究采用酶法辅助双水相提取蝉花多糖,分析了纤维素酶添加量、果胶酶添加量、(NH42SO4质量分数和PEG质量分数对蝉花多糖得率的影响,为工业化提取蝉花多糖提供数据参考。经响应面优化可知各因素对蝉花多糖得率的影响大小依次为:果胶酶添加量>PEG质量分数>硫酸铵质量分数>纤维素酶添加量。蝉花多糖的最佳提取工艺条件为:纤维素酶添加量2.01%,果胶酶添加量2.07%,硫酸铵质量分数17.72%,PEG质量分数20.87%,在此条件下蝉花多糖得率为25.34%。

    在检测浓度范围内,蝉花多糖对Fe2+的螯合力达到16.33%±1.68%,对ABTS+自由基的清除率达到17.38%±3.07%,并具有一定的总还原力,表明蝉花多糖有较强的抗氧化活性,这对后续利用蝉花多糖研发天然抗氧化剂提供了参考价值。另外,蝉花多糖对α-葡萄糖苷酶和α-淀粉酶抑制率分别达到30.94%±4.53%和49.40%±1.30%,表明蝉花多糖具有显著的降血糖活性。同时蝉花多糖对胆酸钠、牛磺胆酸钠和胆固醇的最大吸附率分别为47.24%±1.89%、44.88%±0.82%和70.19%±2.54%,这也表明蝉花多糖有明显的降血脂作用。与其他虫草属真菌多糖相比,蝉花多糖在抗氧化、降血糖及降血脂方面均有较好的生理活性[36],可以从多个方面为机体提供更加全面的保健功能。这些结果为进一步开发蝉花多糖相关产品及研究蝉花多糖药理功能提供了理论参考。

  • 图  1   纤维素酶添加量对蝉花多糖得率的影响

    Figure  1.   Effects of cellulase addition amount on the polysaccharides yield

    图  2   果胶酶添加量对蝉花多糖得率的影响

    Figure  2.   Effects of pectinase addition amount on the polysaccharide yield

    图  3   (NH42SO4质量分数对蝉花多糖得率的影响

    Figure  3.   Effects of (NH4)2SO4 mass fraction on the polysaccharides yield

    图  4   PEG质量分数对蝉花多糖得率的影响

    Figure  4.   Effects of PEG mass fraction on the polysaccharide yield

    图  5   各因素交互作用对蝉花多糖得率影响的响应面和等高线图

    注:a. 纤维素酶添加量与果胶酶添加量交互作用;b. 纤维素酶添加量与(NH42SO4质量分数交互作用;c. 纤维素酶添加量与PEG质量分数交互作用;d. 果胶酶添加量与(NH42SO4质量分数交互作用;e. 果胶酶添加量与PEG质量分数交互作用;f. PEG质量分数与(NH42SO4质量分数交互作用。

    Figure  5.   Response surface and contour plots showing the interactions of various factors on C. cicadae polysaccharide extraction rate

    图  6   蝉花多糖的Fe2+螯合力作用

    Figure  6.   Fe2+-chelating ability of C. cicadae polysaccharides

    图  7   蝉花多糖的ABTS+自由基清除活性

    Figure  7.   ABTS+ radical-clearance activity of C. cicadae polysaccharides

    图  8   蝉花多糖的总还原力

    Figure  8.   Total reduction power of C. cicadae polysaccharides

    图  9   蝉花多糖对α-葡萄糖苷酶活性的抑制能力

    Figure  9.   α-glucosidase activity inhibitory ability of C. cicadae polysaccharides

    图  10   蝉花多糖对α-淀粉酶活性的抑制能力

    Figure  10.   α-Amylase activity inhibitory ability of C. cicadae polysaccharides

    图  11   蝉花多糖的胆酸盐吸附率

    Figure  11.   Cholate adsorption rate of C. cicadae polysaccharides

    图  12   蝉花多糖的胆固醇吸附率

    Figure  12.   Cholesterol adsorption rate of C. cicadae polysaccharides

    表  1   响应面试验因素和水平

    Table  1   Factors and levels of response surface experiment

    因素 水平
    −1 0 1
    纤维素酶添加量(%) 1.5 2.0 2.5
    果胶酶添加量(%) 1.5 2.0 2.5
    (NH42SO4质量分数(%) 15 18 21
    PEG质量分数(%) 15 20 25
    下载: 导出CSV

    表  2   响应面分析设计及结果

    Table  2   Design and results of response surface analysis

    实验号 A B C D 多糖得率(%)
    1 0 1 0 −1 15.41
    2 0 1 0 1 22.77
    3 −1 0 0 −1 16.14
    4 0 0 0 0 24.14
    5 0 0 1 1 16.82
    6 0 0 0 0 24.17
    7 1 0 0 1 20.89
    8 0 0 0 0 24.91
    9 1 1 0 0 13.40
    10 0 −1 0 −1 17.76
    11 0 −1 1 0 13.87
    12 −1 0 −1 0 19.90
    13 −1 1 0 0 19.95
    14 0 0 −1 −1 20.67
    15 1 0 −1 0 20.67
    16 0 0 0 0 25.72
    17 −1 −1 0 0 15.37
    18 0 1 −1 0 19.65
    19 0 0 0 0 26.71
    20 0 −1 −1 0 18.79
    21 −1 0 0 1 17.34
    22 0 0 1 −1 17.34
    23 0 1 1 0 21.91
    24 0 −1 0 1 18.28
    25 1 −1 0 0 15.88
    26 1 0 0 −1 15.15
    27 −1 0 1 0 15.84
    28 1 0 1 0 22.64
    29 0 0 −1 1 18.36
    下载: 导出CSV

    表  3   蝉花多糖得率回归模型方差分析

    Table  3   Analysis of variance of regression model for polysaccharide yield

    来源平方和自由度均方FP显著性
    模型306.191421.874.370.0046**
    A1.4111.410.28110.6043
    B14.38114.382.870.1121
    C7.7317.731.540.2344
    D11.96111.962.390.1443
    AB12.46112.462.490.1368
    AC9.1019.101.820.1988
    AD5.1415.141.030.3278
    BC12.92112.922.580.1304
    BD11.72111.722.340.1482
    CD0.807610.80760.16140.6939
    105.711105.7121.130.0004**
    106.551106.5521.290.0004**
    36.53136.537.300.0172*
    82.49182.4916.490.0012**
    残差70.05145.00
    失拟项65.25106.535.440.0586
    纯误差4.8041.20
    总和376.2428
    注: *表示P<0.05;**表示P<0.01。
    下载: 导出CSV
  • [1]

    QIAN Y, SUN X, WANG X, et al. Mechanism of Cordyceps cicadae in treating diabetic nephropathy based on network pharmacology and molecular docking analysis[J]. Journal of Diabetes Research,2021,2021:5477941.

    [2]

    ZHANG Y, WU Y T, ZHENG W, et al. The antibacterial activity and antibacterial mechanism of a polysaccharide from Cordyceps cicadae[J]. Journal of Functional Foods,2017,38:273−279. doi: 10.1016/j.jff.2017.09.047

    [3]

    SUN Y F, KMONICKOVA E, HAN R L, et al. Comprehensive evaluation of wild Cordyceps cicadae from different geographical origins by TOPSIS method based on the macroscopic infrared spectroscopy (IR) fingerprint[J]. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy,2019,214:252−260.

    [4]

    NXUMALO W, EIATEEP A, SUN Y. Can Cordyceps cicadae be used as an alternative to Cordyceps militaris and Cordyceps sinensis? -A review[J]. Journal of Ethnopharmacology,2020,257:112879. doi: 10.1016/j.jep.2020.112879

    [5]

    XU J, TAN Z C, SHEN Z Y, et al. Cordyceps cicadae polysaccharides inhibit human cervical cancer hela cells proliferation via apoptosis and cell cycle arrest[J]. Food and Chemical Toxicology,2021,148:111971. doi: 10.1016/j.fct.2021.111971

    [6]

    YIN A H, PENG C F, ZHAO X, et al. Noninvasive detection of fetal subchromosomal abnormalities by semiconductor sequencing of maternal plasma DNA[J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(47):14670−14675.

    [7]

    HSU J H, CHANG W J, FU H I, et al. Clinical evaluation of the short-term effects of Cordyceps cicadae mycelium in lowering intraocular pressure[J]. Journal of Functional Foods,2022,95:105177. doi: 10.1016/j.jff.2022.105177

    [8]

    ZHU Y L, YU X F, GE Q, et al. Antioxidant and anti-aging activities of polysaccharides from Cordyceps cicadae[J]. International Journal of Biological Macromolecules,2020,157:394−400. doi: 10.1016/j.ijbiomac.2020.04.163

    [9] 贾国军, 王小英, 贠建民, 等. 蝉花多糖的提取和生物活性及产品研发进展[J]. 食品与机械,2023,39(5):217−223,240. [JIA G J, WANG X Y, YUN J M, et al. Research progress on extraction, biological activities and product development of polysaccharides from cicada flower[J]. Food & Machinery,2023,39(5):217−223,240.]

    JIA G J, WANG X Y, YUN J M, et al. Research progress on extraction, biological activities and product development of polysaccharides from cicada flower[J]. Food & Machinery, 2023, 39(5): 217−223,240.

    [10] 周文川, 唐自钟, 周铭, 等. 一种金蝉花多糖养生饮料及其制备方法:中国, 12741327A[P]. 2021-05-04. [ZHOU W C, TANG Z Z, ZHOU M, et al. A golden cicada flowers polysaccharide healthcare beverage and its preparation method:China, 12741327A[P]. 2021-05-04.]

    ZHOU W C, TANG Z Z, ZHOU M, et al. A golden cicada flowers polysaccharide healthcare beverage and its preparation method: China, 12741327A[P]. 2021-05-04.

    [11] 李成, 彭国杰, 吴凯强, 等. 一种蝉花菌质啤酒的制备方法:中国, 108117943B[P]. 2021-12-02. [LI C, PENG G J, WU K Q, et al. A preparation method of cicada flower mycoplasma beer:China, 108117943B[P]. 2021-12-02.]

    LI C, PENG G J, WU K Q, et al. A preparation method of cicada flower mycoplasma beer: China, 108117943B[P]. 2021-12-02.

    [12] 唐国笔, 唐得俊. 一种蝉花虫草组合物及其制备的蝉花虫草饮料:中国, 116076698A[P]. 2023-05-09. [TANG G B, TANG D J. A composition of cicada flower and cordyceps and its prepared cicada flower cordyceps beverage:China, 116076698A[P]. 2023-05-09.]

    TANG G B, TANG D J. A composition of cicada flower and cordyceps and its prepared cicada flower cordyceps beverage: China, 116076698A[P]. 2023-05-09.

    [13]

    WANG W L, TAN J Q, NIMA L M, et al. Polysaccharides from fungi:A review on their extraction, purification, structural features, and biological activities[J]. Food Chemistry:X,2022,15:100414. doi: 10.1016/j.fochx.2022.100414

    [14] 桑雨梅, 高郁超, 武济萍, 等. 食用真菌多糖提取、纯化及结构表征研究进展[J]. 食品研究与开发,2023,44(13):210−218. [SANG Y M, GAO Y C, WU J P, et al. Extraction, purification and structural characteristics of polysaccharides from edible fungi[J]. Food Research and Development,2023,44(13):210−218.] doi: 10.12161/j.issn.1005-6521.2023.13.031

    SANG Y M, GAO Y C, WU J P, et al. Extraction, purification and structural characteristics of polysaccharides from edible fungi[J]. Food Research and Development, 2023, 44(13): 210−218. doi: 10.12161/j.issn.1005-6521.2023.13.031

    [15] 秦广利, 刘全永, 杜星佑, 等. 超声波辅助复合酶法提取大蒜多糖的研究[J]. 食品科技,2022,47(6):224−228. [QIN G L, LIU Q Y, DU X Y et al. Ultrasonic assisted compound enzyme extraction of garlic Polysaccharide[J]. Food Science and Technology,2022,47(6):224−228.]

    QIN G L, LIU Q Y, DU X Y et al. Ultrasonic assisted compound enzyme extraction of garlic Polysaccharide[J]. Food Science and Technology, 2022, 47(6): 224−228.

    [16]

    KE L Q. Optimization of ultrasonic extraction of polysaccharides from Lentinus edodes based on enzymatic treatment[J]. Journal of Food Processing & Preservation,2015,39(3):254−259.

    [17] 姜秀敏, 卢艳敏, 张雷. 双水相萃取的应用研究进展[J]. 齐鲁工业大学学报,2014,38(1):23−26,67. [JIANG X M, LU Y M, ZHANG L. The application research and progress of aqueous two-phase extraction[J]. Journal of Qilu University of Technology,2014,38(1):23−26,67.]

    JIANG X M, LU Y M, ZHANG L. The application research and progress of aqueous two-phase extraction[J]. Journal of Qilu University of Technology, 2014, 38(1): 23−26,67.

    [18] 尹明松, 丁贺辉, 潘飞兵, 等. 响应面优化超声辅助双水相提取槟榔多糖及抗氧化活性研究[J]. 食品研究与开发,2021,42(19):163−170. [YIN M S, DING H H, PAN F B, et al. Optimization of ultrasonic-assisted aqueous two-phase extraction of areca catechu L. polysaccharide using response surface design and assessment of its antioxidant activities[J]. Food Research and Development,2021,42(19):163−170.] doi: 10.12161/j.issn.1005-6521.2021.19.023

    YIN M S, DING H H, PAN F B, et al. Optimization of ultrasonic-assisted aqueous two-phase extraction of areca catechu L. polysaccharide using response surface design and assessment of its antioxidant activities[J]. Food Research and Development, 2021, 42(19): 163−170. doi: 10.12161/j.issn.1005-6521.2021.19.023

    [19] 段鸿斌, 吴晓辉, 孙 伟, 等. 花椒叶多糖双水相提取及对亚硝酸盐清除活性[J]. 粮食与油脂,2023,36(9):70−74. [DUAN H B, WU X H, SUN W, et al. Aqueous two-phase extraction and nitrite scavenging activity of polysaccharides from pepper leaves[J]. Cereals& Oils,2023,36(9):70−74.]

    DUAN H B, WU X H, SUN W, et al. Aqueous two-phase extraction and nitrite scavenging activity of polysaccharides from pepper leaves[J]. Cereals& Oils, 2023, 36(9): 70−74.

    [20]

    ABUDUWAILI A, ROZI P, MUTAILIFU P, et al. Effects of different extraction techniques on physicochemical properties and biological activities of polysaccharides from Fritillaria pallidiflora Schrenk[J]. Process Biochemistry,2019,83:189−197. doi: 10.1016/j.procbio.2019.05.020

    [21] 周芷冉, 刘晓翠, 田瑾. 竹笋多糖复合酶法提取工艺及其抗氧化活性研究[J]. 西华大学学报(自然科学版),2022,41(6):48−55. [ZHOU Z R, LIU X C, TIAN J. Study on compound enzymatic extraction technology and antioxidant activity of polysaccharides from bamboo shoot[J]. Journal of Xihua University (Natural Science Edition),2022,41(6):48−55.]

    ZHOU Z R, LIU X C, TIAN J. Study on compound enzymatic extraction technology and antioxidant activity of polysaccharides from bamboo shoot[J]. Journal of Xihua University (Natural Science Edition), 2022, 41(6): 48−55.

    [22] 李卫, 房雷雷, 张彦青, 等. 桔梗多糖的复合酶提取、结构表征及抗氧化活性分析[J]. 食品工业科技,2023,44(18):283−291. [LI W, FANG L L, ZHANG Y Q, et al. Compound enzyme extraction of platycodon grandiflorum polysaccharides and its structure and antioxidant activity characterization[J]. Science and Technology of Food Industry,2023,44(18):283−291.]

    LI W, FANG L L, ZHANG Y Q, et al. Compound enzyme extraction of platycodon grandiflorum polysaccharides and its structure and antioxidant activity characterization[J]. Science and Technology of Food Industry, 2023, 44(18): 283−291.

    [23] 史继童, 孙羽, 姜欣洋, 等. 超声辅助三相分配法同步提取大蒜中大蒜辣素和多糖的工艺优化[J]. 食品工业科技,2022,43(14):261−267. [SHI J T, SUN Y, JIANG X Y, et al. Optimization of ultrasound-assisted three-phase partitioning simultaneous extraction of allicin and polysaccharide from garlic[J]. Science and Technology of Food Industry,2022,43(14):261−267.]

    SHI J T, SUN Y, JIANG X Y, et al. Optimization of ultrasound-assisted three-phase partitioning simultaneous extraction of allicin and polysaccharide from garlic[J]. Science and Technology of Food Industry, 2022, 43(14): 261−267.

    [24] 刘芸, 谭艾娟, 吕世明. 酶法提取蝉拟青霉多糖的研究[J]. 天津农业科学,2010,16(2):36−38. [LIU Y, TAN A J, LÜ S M. Study on the enzyme-extraction method of polysaccharide from paecilomyce cicadae[J]. Tianjin Agricultural Sciences,2010,16(2):36−38.] doi: 10.3969/j.issn.1006-6500.2010.02.011

    LIU Y, TAN A J, LÜ S M. Study on the enzyme-extraction method of polysaccharide from paecilomyce cicadae[J]. Tianjin Agricultural Sciences, 2010, 16(2): 36−38. doi: 10.3969/j.issn.1006-6500.2010.02.011

    [25] 凡军民, 谢正林, 谢春芹, 等. 超声波辅助双水相体系提取蝉花多糖及抗氧化研究[J]. 食品科技,2020,45(5):196−201. [FAN J M, XIE Z L, XIE C Q, et al. Optimization of ultrasonic-assisted aqueous two-phase extraction and antioxidant activity of polysaccharide from Cordyceps cicadae[J]. Food Science and Technology,2020,45(5):196−201.]

    FAN J M, XIE Z L, XIE C Q, et al. Optimization of ultrasonic-assisted aqueous two-phase extraction and antioxidant activity of polysaccharide from Cordyceps cicadae[J]. Food Science and Technology, 2020, 45(5): 196−201.

    [26]

    AGRAWAL H, JOSHI R, GUPTA M. Isolation and characterisation of enzymatic hydrolysed peptides with antioxidant activities from green tender sorghum[J]. LWT-Food Science and Technology,2017,84:608−616. doi: 10.1016/j.lwt.2017.06.036

    [27] 徐晋, 庞倩婵, 孙京格, 等. 蒲公英叶多糖超声波细胞粉碎辅助提取工艺优化及体外抗氧化活性[J]. 食品研究与开发,2023,44(10):132−139. [XU J, PANG Q C, SUN J G, et al. Polysaccharides from dandelion leaves:optimization of ultrasonic cell crushing-assisted extraction and antioxidant activity[J]. Food Research and Development,2023,44(10):132−139.] doi: 10.12161/j.issn.1005-6521.2023.10.018

    XU J, PANG Q C, SUN J G, et al. Polysaccharides from dandelion leaves: optimization of ultrasonic cell crushing-assisted extraction and antioxidant activity[J]. Food Research and Development, 2023, 44(10): 132−139. doi: 10.12161/j.issn.1005-6521.2023.10.018

    [28] 佐兆杭, 徐炳政, 宫雪, 等. 藜麦粉的抗氧化能力及体外降糖降脂特性研究[J]. 山西农业科学,2022,50(11):1511−1518. [ZUO Z H, XU B Z, GONG X, et al. Study on antioxidant ability and hypoglycemic and lipid-lowering properties of quinoa powder in vitro[J]. Journal of Shanxi Agricultural Sciences,2022,50(11):1511−1518.]

    ZUO Z H, XU B Z, GONG X, et al. Study on antioxidant ability and hypoglycemic and lipid-lowering properties of quinoa powder in vitro[J]. Journal of Shanxi Agricultural Sciences, 2022, 50(11): 1511−1518.

    [29] 羡荣华, 蒲铎文, 樊梓鸾, 等. 老山芹多糖的分离纯化、结构表征及体外降糖活性研究[J]. 食品与发酵工业,2023,49(18):113−118,124. [XIAN R H, PU D W, FAN Z L, et al. Isolation, purification, structure characterisation and hypoglycemic activity analysis of polysaccharides from Heraclenm dissectum[J]. Food and Fermentation Industries,2023,49(18):113−118,124.]

    XIAN R H, PU D W, FAN Z L, et al. Isolation, purification, structure characterisation and hypoglycemic activity analysis of polysaccharides from Heraclenm dissectum[J]. Food and Fermentation Industries, 2023, 49(18): 113−118,124.

    [30] 李苏, 陈昌威, 付靖雯, 等. 条浒苔多糖酶解物制备工艺优化及体外降血脂活性研究[J]. 江苏海洋大学学报(自然科学版),2022,31(4):18−27. [LI S, CHEN C W, FU J W, et al. Optimization of the preparation process of Enteromorpha prolifera polysaccharide hydrolysate and study on its hypolipidemic activity in vitro[J]. Journal of Jiangsu Ocean University (Natural Science Edition),2022,31(4):18−27.]

    LI S, CHEN C W, FU J W, et al. Optimization of the preparation process of Enteromorpha prolifera polysaccharide hydrolysate and study on its hypolipidemic activity in vitro[J]. Journal of Jiangsu Ocean University (Natural Science Edition), 2022, 31(4): 18−27.

    [31] 纪慧杰, 朱彩平. 石榴皮多糖的提取及组成、体外降脂活性研究[J]. 食品与发酵工业,2023,49(4):161−168. [JI H J, ZHU C P. Study on the extraction and composition of pomegranate peel polysaccharide and hypolipidemic activity in vitro[J]. Food and Fermentation Industries,2023,49(4):161−168.]

    JI H J, ZHU C P. Study on the extraction and composition of pomegranate peel polysaccharide and hypolipidemic activity in vitro[J]. Food and Fermentation Industries, 2023, 49(4): 161−168.

    [32] 王旭升, 吴琼, 吴迪, 等. 纤维素酶法提取油莎豆多糖及其抗氧化性[J]. 食品研究与开发,2023,44(2):102−107,131. [WANG X S, WU Q, WU D, et al. Cellulase-based extraction and antioxidant activity of polysaccharide from Cyperus esculentus[J]. Food Research and Development,2023,44(2):102−107,131.] doi: 10.12161/j.issn.1005-6521.2023.02.015

    WANG X S, WU Q, WU D, et al. Cellulase-based extraction and antioxidant activity of polysaccharide from Cyperus esculentus[J]. Food Research and Development, 2023, 44(2): 102−107,131. doi: 10.12161/j.issn.1005-6521.2023.02.015

    [33] 李玲, 王维香, 王晓君. 果胶酶法提取川芎多糖工艺的研究[J]. 中药材,2008,290(4):600−602. [LI L, WANG W X, WANG X J. Pectinase method extraction of polysaccharides from Ligusticum chuanxiong[J]. Journal of Chinese Medicinal Materials,2008,290(4):600−602.] doi: 10.3321/j.issn:1001-4454.2008.04.046

    LI L, WANG W X, WANG X J. Pectinase method extraction of polysaccharides from Ligusticum chuanxiong[J]. Journal of Chinese Medicinal Materials, 2008, 290(4): 600−602. doi: 10.3321/j.issn:1001-4454.2008.04.046

    [34] 尹国友, 孙婕, 澹博, 等. 双水相萃取韭籽粕多糖的工艺优化及其抗氧化活性研究[J]. 食品科学技术学报,2021,39(2):134−142. [YIN G Y, SUN J, TAN B, et al. Study on optimal technology and antioxidant activity of polysaccharide extracted by two aqueous phase from Chinese leek seed meal[J]. Journal of Food Science and Technology,2021,39(2):134−142.]

    YIN G Y, SUN J, TAN B, et al. Study on optimal technology and antioxidant activity of polysaccharide extracted by two aqueous phase from Chinese leek seed meal[J]. Journal of Food Science and Technology, 2021, 39(2): 134−142.

    [35] 杨子敬, 饶桂维, 王磊. 超声波辅助双水相提取枇杷花总黄酮工艺优化及其抗氧化性[J]. 食品工业科技,2021,42(19):218−225. [YANG Z J, RAO G W, WANG L. Optimization of ultrasonic assisted aqueous two-phase extraction of total flavonoid from loquat flower and its antioxidant activity[J]. Science and Technology of Food Industry,2021,42(19):218−225.]

    YANG Z J, RAO G W, WANG L. Optimization of ultrasonic assisted aqueous two-phase extraction of total flavonoid from loquat flower and its antioxidant activity[J]. Science and Technology of Food Industry, 2021, 42(19): 218−225.

    [36] 马传贵, 张志秀, 贺宗毅. 虫草属真菌多糖的分离提取, 理化性质及生物活性研究进展[J]. 食用菌,2023,45(2):1−3,7. [MA C G, ZHANG Z X, HE Z Y. Research progress on the isolation, physicochemical properties, and biological activity of polysaccharides from Cordyceps fungi[J]. Edible Fungi,2023,45(2):1−3,7.]

    MA C G, ZHANG Z X, HE Z Y. Research progress on the isolation, physicochemical properties, and biological activity of polysaccharides from Cordyceps fungi[J]. Edible Fungi, 2023, 45(2): 1−3,7.

  • 期刊类型引用(3)

    1. 彭艺璇,任冬雪,王和祥,郑明浩,刘秀波,薛岩,赵明星,郭盛磊. 基于层次分析-熵权法优化刺五加叶多组分超声提取工艺. 辽宁中医药大学学报. 2025(01): 56-62 . 百度学术
    2. 范海月,于朝,张政洁,黎明,柏映国,俞峰,李中媛. 低转苷活性糖化酶GluM3的淀粉糖化工艺优化及淀粉颗粒的结构表征. 食品工业科技. 2025(03): 204-212 . 本站查看
    3. 李灿欣,徐在品,曹雅菡,衣兰晓,张丽,隋鑫,刘富琴,闵婷玉,洪晗,李欣妤,陈莉,梁家琪. 蝉花对动脉粥样硬化病理模型兔血脂及血管狭窄的影响. 动物医学进展. 2025(03): 38-44 . 百度学术

    其他类型引用(0)

  • 其他相关附件

图(12)  /  表(3)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  43
  • PDF下载量:  26
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-07-26
  • 网络出版日期:  2024-04-15
  • 刊出日期:  2024-06-14

目录

/

返回文章
返回
x 关闭 永久关闭