Optimization of Dendrobium officinale Granule Formula Process by Combining Analytic Hierarchy Process and Entropy Weight Method with Orthogonal Experiment
-
摘要: 采用多指标综合评分法结合正交试验,优化铁皮石斛颗粒配方工艺。运用复杂系统熵聚类算法,对铁皮石斛保健品的注册信息进行分析,挖掘含铁皮石斛的保健品中原料药的配方组成;进一步以颗粒的成型率、溶化率、吸湿率、休止角为指标,筛选稀释剂,并以原料/稀释剂比例、乙醇体积浓度、乙醇用量为影响因素,采用层次分析法(analytic hierarchy process,AHP)结合熵权法(entropy weight method,EWM)确定综合权重,通过正交试验优化颗粒的配方工艺。结果表明,复杂系统熵聚类算法确定配方组合为铁皮石斛、枸杞、白芍;AHP-EWM法确定各指标权重分别为:成型率0.3567、休止角0.0847、溶化率0.1778及吸湿率0.3808;优化所得铁皮石斛-枸杞-白芍颗粒剂最佳工艺:原料药材浸膏粉、糊精和微晶纤维素的用量分别为5、3.5、1.5 g(即比例为10:7:3)、乙醇体积浓度50%、乙醇用量5 mL。验证试验中颗粒的AHP-EWM综合评分为93.63±1.65,与理论预测值接近,表明优选的颗粒剂配方工艺稳定可行,本研究为铁皮石斛的相关保健品开发提供了参考。Abstract: Optimize the formula process of Dendrobium officinale granules using a multi index comprehensive scoring method combined with orthogonal experiments. Based on the registered Dendrobium officinale health food, the formula composition of raw materials in Dendrobium officinale health food was determined by using complex system entropy clustering algorithm. The diluent was filtered by the formation rate, dissolution rate and moisture absorption rate of granules. The ratio of raw materials and diluents, ethanol volume concentration, and ethanol dosage were taken as the inspection factors. The analytic hierarchy process (AHP) and entropy weight method (EWM) were combined to establish a multi-index comprehensive evaluation method (AHP-EWM method). The formulation process of granules was optimized through orthogonal experiments. The results showed that the formula combination was Dendrobium officinale, Lycium chinense Mill., and Paeoniae Radix Alba by the complex system entropy clustering algorithm. The AHP-EWM method determines the weights of each indicator as follows: Molding rate 0.3567, angle of rest 0.0847, melting rate 0.1778, and moisture absorption rate 0.3808. The optimal molding process was the raw material extract powder, dextrin, and microcrystalline cellulose (10:7:3, m/m), 50% ethanol volume concentration, and 5 mL ethanol dosage. The valieation test result showed that the AHP-EWM comprehensive score of the granules was 93.63±1.65, which was close to the theoretical prediction value. The optimized granules formulation process was stable and feasible. This study would provide a reference for the development of health products of Dendrobium officinale.
-
铁皮石斛为兰科植物铁皮石斛(Dendrobium officinale Kimura et Migo)的干燥茎,首载于汉代《神农本草经》,是国家卫健委公布既是食品又是中药材的试点工作的物质名单[1]。铁皮石斛内含丰富的活性物质,如多糖、黄酮类、生物碱类、氨基酸类、微量元素以及挥发性物质等[2−3],现代药理学研究表明,铁皮石斛多糖具有增强免疫力与降血糖的功能[4−5],可清除体内自由基起到抗氧化作用[6];黄酮类物质能够促进血液循环,对心血管系统具有保护作用[7];铁皮石斛生物碱可以减轻抑郁样行为,达到缓解焦虑的效果[8]。颗粒剂以易于携带,方便服用且稳定性好的特点[9−10],广泛应用于保健食品中,其中含铁皮石斛的保健食品中颗粒剂占比27.12%[11]。
目前,保健食品颗粒的配方选择往往取决于传统经验,具有一定的局限性。结合现有铁皮石斛保健食品的配方组成分析,构建原料之间多层次组合网络,能够多方位、更全面的筛选和确定配方。同时铁皮石斛食品颗粒的配方工艺研究多以溶化时间[12]或吸湿率[13]等单一指标作为评价,或采用主观经验进行多指标权重分析,对指标信息的客观反映存在不足。层次分析法(analytic hierarchy process,AHP)作为主观赋权法,通过主观经验对指标重要程度排序及权重分配[14],熵权法(entropy weight method,EWM)为客观赋权法不依赖于主观判断,根据多指标所提供的信息来确定各指标权重[15]。主观权重系数与客观权重系数综合考虑,相互结合对多指标权重分析更加科学合理[16]。近年来,AHP-EWM(analytic hierarchy process-entropy weight method,AHP-EWM)法逐渐应用到颗粒工艺中[17]。本研究基于铁皮石斛保健食品注册信息,引入复杂系统熵聚类算法,挖掘铁皮石斛保健食品中配方组成,采用AHP-EWM(analytic hierarchy process-entropy weight method,AHP-EWM)法确定各指标权重系数,以综合得分为指标优化铁皮石斛颗粒配方工艺,为相关研究提供新思路和新案例。
1. 材料与方法
1.1 材料与仪器
铁皮石斛浸膏粉(每g浸膏含10 g生药)、枸杞浸膏粉(每g浸膏含10 g生药)、白芍浸膏粉(每g浸膏含10 g生药) 陕西海益斯生物科技有限公司;糊精(≥99%) 山东西王糖业有限公司;乳糖(≥99%) 上海麦克林生化科技有限公司;微晶纤维素(≥99%) 湖州市菱湖新望化学有限公司;无水乙醇 分析纯,天津市富宇精细化工有限公司;氯化钠分析纯 重庆江川化工有限公司;GB/T 6003标准检验筛 绍兴市上虞华丰五金仪器有限公司。
WTC3002电子天平 上海舜宇恒平科学仪器有限公司;DZ-2BCIV真空干燥箱 天津市泰斯特仪器有限公司;WP-UP-WF-30实验室超纯水机 四川沃特尔水处理设备有限公司。
1.2 实验方法
1.2.1 数据来源
查询SAMR特殊食品安全监督管理司官网(http://www.samr.gov.cn/tssps/)上保健食品注册信息,在“查询栏”中输入关键词“铁皮石斛”与“铁皮枫斗”,排除没有配方、保健功能等信息的批文,采用Excel 2020合并重复数据,截止到2023年5月1日收集到铁皮石斛相关保健食品共计160种。
1.2.2 配方的确定方法
以铁皮石斛保健食品中的原料组成信息为分析目标,录入配方中的原料药数据,采用SPSS 26.0软件进行复杂系统熵聚类算法,构建原料药之间多层次组合网络,确定铁皮石斛保健食品的配方用药组合。
1.2.3 颗粒的制备方法
取铁皮石斛、枸杞、白芍浸膏粉适量,加入适量稀释剂,乙醇作为润湿剂,采用挤出制粒法制备颗粒[18],于60 ℃干燥箱中干燥1 h,过1.70 mm(10目)筛,整粒,即得水分含量不超过5%的样品颗粒。
1.2.4 稀释剂的筛选方法
取铁皮石斛浸膏粉5.17 g、枸杞浸膏粉3.10 g、白芍浸膏粉3.10 g,加入50%乙醇4 mL,选择糊精、乳糖、微晶纤维素、糊精与微晶纤维素1:1混合物、乳糖与微晶纤维素1:1混合物作为5种稀释剂,按浸膏粉与稀释剂的质量比1:1混匀,置于干燥至恒重的称量瓶中。以成型率、溶化率、吸湿率和休止角为指标,筛选颗粒的稀释剂。
1.2.5 单因素实验
根据颗粒配方工艺的相关参考文献[19−20],结合预试验结果,由单因素实验初步探究原料与稀释剂比例,乙醇体积浓度,乙醇用量对颗粒剂AHP-EWM综合评分的影响。
1.2.5.1 原料与稀释剂比例
选择体积浓度为50%的乙醇,乙醇用量为4 mL,设置不同的原料与稀释剂比例(5:0.5:4.5、5:1.5:2.5、5:2.5:2.5、5:3.5:1.5、5:4.5:0.5),以AHP-EWM综合评分确定原料与稀释剂比例。
1.2.5.2 乙醇体积浓度
选择原料与稀释剂比例为5:2.5:2.5,乙醇用量为4 mL,设置不同的乙醇体积浓度(10%、30%、50%、70%、90%),以AHP-EWM综合评分确定乙醇体积浓度。
1.2.5.3 乙醇用量
选择原料与稀释剂比例为5:2.5:2.5,体积浓度为50%的乙醇,设置不同的乙醇用量(2、3、4、5、6 mL),以AHP-EWM综合评分确定乙醇用量。
1.2.6 正交试验的工艺优化
在单因素实验的结果基础上,以原料:糊精:微晶纤维素比例为A、乙醇体积浓度为B、乙醇用量为C作为考察因素,以成型率、溶化率、吸湿率和休止角为指标进行正交试验设计分析,AHP-EWM进行权重分析,通过正交试验进一步优化铁皮石斛颗粒剂的配方,所确定的因素与水平见表1。
表 1 L9(34)正交试验设计表Table 1. L9 (34) orthogonal experimental design table水平 因素 A(原料:糊精:微晶
纤维素,g:g:g)B(乙醇体积
浓度,%)C(乙醇
用量,mL)1 5:1.5:3.5 30 3 2 5:2.5:2.5 50 4 3 5:3.5:1.5 70 5 1.2.7 评价指标的确定
1.2.7.1 成型率
采用双筛分法,即能通过1.70 mm(10目)筛但不能通过0.180 mm(80目)筛的颗粒为合格颗粒[21]。
成型率(%)=合格颗粒质量过筛前颗粒质量×100 (1) 1.2.7.2 溶化率
精密称量1.000 g颗粒样品置于烧杯中,加入75 ℃热水,用玻璃棒搅拌5 min使其全部溶解;滤纸过滤,残渣置于60 ℃烘箱内干燥至恒重,精密称量干燥残渣重量[22]。
溶化率(%)=溶化的颗粒重总颗粒重×100 (2) 1.2.7.3 吸湿率
将配制好的氯化钠饱和溶液置于玻璃干燥器底部放置24 h,使其内部相对湿度为75%。将颗粒置于其中,24 h后称重[23]。
吸湿率(%)=吸湿后质量−吸湿前质量吸湿前质量×100 (3) 1.2.7.4 休止角
将漏斗用木架固定于水平实验台上,从漏斗上方倒入颗粒使其自由落下,待颗粒从漏斗中缓缓落到实验台上并形成一个稳定的堆积圆锥时,测定其高度和底面半径,按下式计算休止角[24]。
α=tanhr (4) 式中,h为堆积圆锥的高度(cm),r为底面半径(cm);α为休止角。
1.2.8 AHP-EWM法进行权重
1.2.8.1 AHP法
建立颗粒配方工艺优化与指标(溶化率、休止角、成型率和吸湿率)的AHP双层次模型。通过公式(5)判断矩阵每一列归一化,随后按照公式(6)进行行相加,根据公式(7)将得到的结果归一化算出权重向量。通过公式(8)与公式(9)计算判断矩阵的最大特征根和一致性比值(Consistency Ratio,CR)值。CR值用于评估矩阵合理性,CR值小于0.1表明矩阵数值设置以及权重系数可靠[25]。
qij=aijm∑k=1akj(i,j=1,2,⋅⋅⋅,m) (5) 式中,aij表示判断矩阵中第i行第j个指标的值;akj表示判断矩阵第j个指标所在第k列的求和值;k表示列数;m表示指标成分个数;qij表示a矩阵中第i行第j个指标的按列归一化后的值。
ri=m∑j=1qij (6) r=rim∑j=1rj (7) 式中,ri表示将q矩阵第i行相加的值;rj表示将q矩阵第j行列相加的值;r表示所求的权重值。
λmax=m∑i=1(Ar)imri (8) CR=λmax−m1.12(m−1) (9) 式中,λmax表示判断矩阵的最大特殊根;CR表示一次性比值;1.12为常数,表示m=5时的平均随机一致性指标。
1.2.8.2 EWM法
基于熵信息理论的EWM可根据给定数据推断有用信息,当评价指标的给定信息具有重大意义时,熵值较低,此信息应被赋予高权重系数以表示其重要性[26]。采用熵权法对多个指标进行客观赋权[27]。首先采用Excel 2020软件对数据Yij根据公式(10)进行归一化处理,得到归一化数据,再根据公式(11)得到标准化数据,再通过公式(12)计算第j个指标的信息熵,得到的各指标信息熵利用公式(13)转化为熵权,即得评价指标的熵权值。
Yij=实测值−最小值最大值−最小值 (10) Υ∗ij=Υijn∑i=1Υij(i=1,2,⋅⋅⋅,n;j=1,2,3,4,5) (11) Sj=−ln(1/n)n∑ijY∗ijlnY∗ij(Y∗ij=0时,limY∗ijlnY∗ij=0) (12) Wj=1−Sj∑nj=1Sj (13) 式中,Yij表示第i次实验时第j个评价指标标准化后的值;Y*ij表示第i次试验时第j个评价指标的归一化值,n表示试验次数;Sj表示第j个评价指标的信息熵值,Wj表示第j个评价指标的熵权值。
1.2.8.3 AHP-EWM法
AHP法与EWM法相结合,既能通过主观经验对指标重要性进行排序分配,又能客观反应指标信息,使得权重系数更加科学合理[28−30]。按下列公式计算AHP-EWM法复合权重,并通过复合权重计算综合得分。
F∗j=rwj/∑nj=1rwj (14) 式中,r和wj分别为EWM及AHP法所得权重系数;F*j表示各个相应指标的AHP-EWM法复合权重。
1.3 数据处理
所有试验平行3次,结果取平均值。采用Excel 2020进行数据统计整理;绘图采用Origin 2019;利用SPSS 26.0进行复杂系统熵聚类算法。P<0.05表示存在显著性差异,P>0.05表示无显著性差异。
2. 结果与分析
2.1 基于关联规则的配方规律分析
配方规律以规则分析为核心处理算法,根据设置的支持度个数和置信度,确定配方模式和配方规律[31]。根据录入的保健食品的原料配方的特点设置支持度个数为7(表示在所有原料中同时出现的个数),置信度为1,如表2所示,配方模式中出现7次及以上共有8种关联规则组合,除铁皮石斛外涉及8种原料,即枸杞、西洋参、黄芪、灵芝、山药、茯苓、麦冬、葛根。药物组合网络展示如图1所示。
表 2 药物组合的关联规则分析Table 2. Association rule analysis of drug combinations序号 关联规则 置信度 序号 关联规则 置信度 1 枸杞→铁皮石斛 1.00 5 山药→铁皮石斛 1.00 2 西洋参→铁皮石斛 1.00 6 茯苓→铁皮石斛 1.00 3 黄芪→铁皮石斛 1.00 7 麦冬→铁皮石斛 1.00 4 灵芝→铁皮石斛 1.00 8 葛根→铁皮石斛 1.00 2.2 基于熵聚类的配方规律分析
复杂系统熵聚类方法是一种非监督的模式发现算法,可自组织地从数据库中提取药物的核心组合[32]。根据录入的保健食品数量,结合经验判断和不同参数提取数据的预读,设置相关度为8,惩罚度为4[33],在上述组合的基础上进行聚类分析,得到原料药之间的关联组合,如表3所示。选择组合1(枸杞、白芍)以“国草”森山饮料为参照,每瓶规格为310 mL,铁皮石斛标示量为5.17 g,枸杞与白芍均为3.10 g。确定原料药浸膏粉为铁皮石斛5.17 g、枸杞3.10 g、白芍3.10 g,进行后续研究。铁皮石斛具有增强中枢神经系统、提高记忆力的作用[34];枸杞能够抑制细胞凋亡,从而延缓皮肤衰老,两者合用对预防老年痴呆症有功效[35]。此外,铁皮石斛与白芍合用在保护化学性肝损伤上具有协同作用[36]。
表 3 基于熵聚类的药物组合分析Table 3. Drug combination analysis based on entropy clustering序号 组合 序号 组合 1 枸杞、白芍 9 西洋参、玄参 2 枸杞、黄精 10 西洋参、五味子 3 枸杞、白术 11 西洋参、绞股蓝 4 西洋参、人参 12 灵芝、人参 5 当归、银杏叶 13 灵芝、淫羊藿 6 当归、灵芝 14 麦冬、玉竹 7 人参、乌药 15 黄精、马鹿茸 8 枸杞、芦根 16 黄精、人参 2.3 稀释剂的选择
对颗粒样品的成型率、溶化率及吸湿率进行测定,选择最佳的稀释剂,结果如图2所示。由图2A可知,单一稀释剂中微晶纤维素的成型率最高,为72.29%,而糊精与微晶纤维素合用后的成型率为75.43%,且与单一微晶纤维素存在显著性差异(P<0.05),证明糊精与微晶纤维素合用的成型率最好;由图2B可知,糊精的溶化率不及乳糖,但当两者与微晶纤维素混合后,溶化率均有所增强,混合物中糊精+微晶纤维素的溶化率为87.04%,乳糖+微晶纤维素的溶化率为87.79%,两者基本相同,无显著性差异;由图2C可知,乳糖的吸湿率较高,吸湿后容易液化,颜色变深,使颗粒粘连。而混合物中糊精+微晶纤维素的吸湿率为12.75%,与单一微晶纤维素存在显著性差异(P<0.05);由图2D可知,5种稀释剂的休止角均处于26°左右处,且两两之间均不存在显著性差异(P>0.05)。因糊精与微晶纤维素混合后的吸湿率最低、溶化性强、成型率最高,选择糊精+微晶纤维素混合辅料作为颗粒的稀释剂。
2.4 单因素实验结果
2.4.1 原料与稀释剂比例的选择
由图3结果所示,原料与稀释剂比例从5:0.5:4.5至5:2.5:2.5,综合评分呈上升趋势,当原料与稀释剂比例为5:2.5:2.5时,综合评分为88.87。当继续增加糊精比例,减小微晶纤维素比例时,颗粒剂的综合评分反而有所下降。因此选择5:2.5:2.5的原料与稀释剂比例作为单因素探究的最适条件,并选用5:1.5:3.5、5:2.5:2.5、5:3.5:1.5三个水平进行后续的正交试验。
2.4.2 乙醇体积浓度的选择
润湿剂常通过润湿原料,诱发其黏性,以使原料贴结,方便制粒。如图4所示,随着乙醇体积浓度的升高,润湿效果明显,颗粒剂的综合评分增大,乙醇体积分数50%时综合评分最高,达到90.09,且制粒效果好,粒度均匀。因此选择体积浓度50%的乙醇作为单因素探究的最适条件,并选用30%、50%、70%三个水平进行后续的正交试验。
2.4.3 乙醇用量的选择
乙醇作为润湿剂的用量关系到软材的硬度,从而影响颗粒的形态与特征。由图5结果可知,随着乙醇用量的增加,综合评分呈现先上升后下降的趋势,当乙醇用量为4 mL时,综合评分最高为88.01。因此选择用量为4 mL的乙醇作为单因素探究的最适条件,并选用3、4、5 mL三个水平进行后续的正交试验。
2.5 正交试验优化工艺
基于稀释剂的筛选,正交试验各指标结果见表4。AHP法优势在于定量表达评价人员的主观判断[37],按照成型率=吸湿率>溶解率>休止角,赋值组成成对比较的判断矩阵[38],如表5所示,由AHP确定指标(溶化率、休止角、成型率和吸湿率)的λmax为4,CR=0<0.1,表明矩阵的参数设置合理以及权重系数可靠。EWM最大优点是避免了主观因素,得到的权重更具客观性[39]。AHP法、EWM法以及AHP-EWM法所得多指标权重系数见表6。
表 4 正交试验数据表Table 4. Data of orthogonal experiment实验号 A B C D 成型率
(%)溶化率
(%)吸湿率
(%)休止角
(°)1 1 1 1 1 70.65 60.32 11.06 26.47 2 1 2 2 2 69.29 70.30 12.06 29.24 3 1 3 3 3 70.05 70.16 11.47 27.02 4 2 1 2 3 70.32 79.32 10.37 24.7 5 2 2 3 1 68.52 76.22 11.94 34.21 6 2 3 1 2 72.11 71.33 11.57 32.02 7 3 1 3 2 71.29 89.10 10.25 24.02 8 3 2 1 3 70.20 87.00 10.95 27.92 9 3 3 2 1 67.64 73.90 12.67 24.55 表 5 指标成对比较的判断优先矩阵Table 5. Judgment precedence matrix for paired comparison of indicators指标 成型率 吸湿率 溶解率 休止角 λmax CR 成型率 1 1 2 4 4 0 吸湿率 1 1 2 4 溶化率 1/2 1/2 1 2 休止角 1/4 1/4 1/2 1 表 6 AHP、EWM、AHP-EWM 法权重系数Table 6. Weight coefficients of AHP, EWM and AHP-EWM methods方法 权重系数 成型率 休止角 溶化率 吸湿率 AHP法 0.3636 0.3636 0.1818 0.0909 EWM法 0.2491 0.2366 0.2483 0.2660 APH-EWM法 0.3567 0.0847 0.1778 0.3808 基于L9(34)正交试验设计参数,以AHP-EWM综合评分为考察指标,结果见表7~表8。结果显示因素A、C对AHP-EWM法中综合评分影响程度较小,无显著性差异(P>0.05),因素B对试验结果有显著影响(P<0.05)。各因素对AHP-EWM复合评分的影响为B>A>C,即乙醇体积浓度>原料与稀释剂比例>乙醇用量。通过k值对正交试验结果进行分析得:A3>A2>A1,B2>B3>B1,C3>C2>C1,推测颗粒各因素各水平的最佳组合为A3B2C3,选用原料浸膏粉:糊精:微晶纤维素的比例为5:3.5:1.5(10:7:3),其中原料浸膏粉为铁皮石斛5.17 g、枸杞3.10 g、白芍3.10 g,体积浓度为50%、用量为5 mL的乙醇作润湿剂为最佳制粒工艺。
表 7 AHP-EWM法综合评分的正交试验结果Table 7. Results of the orthogonal test of the comprehensive score of the AHP-EWM method实验号 A B C D AHP-EWM 综合评分(分) 1 1 1 1 1 86.79 2 1 2 2 2 91.80 3 1 3 3 3 89.82 4 2 1 2 3 87.90 5 2 2 3 1 93.48 6 2 3 1 2 92.62 7 3 1 3 2 89.79 8 3 2 1 3 91.91 9 3 3 2 1 92.35 k1 89.470 88.160 90.440 90.873 k2 91.333 92.397 90.663 91.403 k3 91.350 91.597 91.030 89.877 R 1.880 4.237 0.590 1.526 表 8 方差分析结果Table 8. Results of the analysis of variance分析方法 方差来源 离差平方和 自由度 F值 F临界值 P AHP-EWM综合评分法 A 7.007 2.000 1.860 6.940 >0.05 B 30.400 2.000 8.070 6.940 <0.05 C 0.527 2.000 0.140 6.940 >0.05 D 3.605 2.000 0.957 6.940 2.6 工艺验证试验
按正交试验所得最佳工艺参数制备3批铁皮石斛-枸杞-白芍颗粒,对工艺进行验证。分别测定其成型率、溶化率、吸湿率及休止角,计算其AHP-EWM综合评分,3批样品的平均综合评分为93.63,结果见表9(结果大于表7中9个实验组),表明工艺稳定可行。
表 9 工艺验证试验结果(¯x±s,n=3)Table 9. Results of the validation test (¯x±s, n=3)评价指标 成型率(%) 溶化率(%) 吸湿率(%) 休止角(°) 综合评分(分) 结果 77.04±0.46 88.97±0.21 11.00±0.20 23.91±0.28 93.63±1.65 3. 结论
本文基于熵聚类方法探究了原料药之间的配方规律,确定了铁皮石斛-枸杞-白芍组合。通过层次分析-熵权法结合正交试验优化了铁皮石斛颗粒配方工艺,确定各指标权重为:成型率0.3567、休止角0.0847°、溶化率0.1778、吸湿率0.3808;最佳配方工艺为:原料浸膏粉:糊精:微晶纤维素的比例为5:3.5:1.5(10:7:3),其中原料浸膏粉为铁皮石斛5.17 g、枸杞3.10 g、白芍3.10 g,乙醇体积浓度50%、乙醇用量5 mL。由最佳工艺得成型率77.04%±0.46%、溶化率88.97%±0.21%、吸湿率11.00%±0.20%、休止角23.91°±0.28°,且AHP-EWM法综合得分为93.63±1.65,与预测值接近。为铁皮石斛-枸杞-白芍颗粒的应用开发提供了理论依据,并验证了多指标综合评价方法的适用性。
-
表 1 L9(34)正交试验设计表
Table 1 L9 (34) orthogonal experimental design table
水平 因素 A(原料:糊精:微晶
纤维素,g:g:g)B(乙醇体积
浓度,%)C(乙醇
用量,mL)1 5:1.5:3.5 30 3 2 5:2.5:2.5 50 4 3 5:3.5:1.5 70 5 表 2 药物组合的关联规则分析
Table 2 Association rule analysis of drug combinations
序号 关联规则 置信度 序号 关联规则 置信度 1 枸杞→铁皮石斛 1.00 5 山药→铁皮石斛 1.00 2 西洋参→铁皮石斛 1.00 6 茯苓→铁皮石斛 1.00 3 黄芪→铁皮石斛 1.00 7 麦冬→铁皮石斛 1.00 4 灵芝→铁皮石斛 1.00 8 葛根→铁皮石斛 1.00 表 3 基于熵聚类的药物组合分析
Table 3 Drug combination analysis based on entropy clustering
序号 组合 序号 组合 1 枸杞、白芍 9 西洋参、玄参 2 枸杞、黄精 10 西洋参、五味子 3 枸杞、白术 11 西洋参、绞股蓝 4 西洋参、人参 12 灵芝、人参 5 当归、银杏叶 13 灵芝、淫羊藿 6 当归、灵芝 14 麦冬、玉竹 7 人参、乌药 15 黄精、马鹿茸 8 枸杞、芦根 16 黄精、人参 表 4 正交试验数据表
Table 4 Data of orthogonal experiment
实验号 A B C D 成型率
(%)溶化率
(%)吸湿率
(%)休止角
(°)1 1 1 1 1 70.65 60.32 11.06 26.47 2 1 2 2 2 69.29 70.30 12.06 29.24 3 1 3 3 3 70.05 70.16 11.47 27.02 4 2 1 2 3 70.32 79.32 10.37 24.7 5 2 2 3 1 68.52 76.22 11.94 34.21 6 2 3 1 2 72.11 71.33 11.57 32.02 7 3 1 3 2 71.29 89.10 10.25 24.02 8 3 2 1 3 70.20 87.00 10.95 27.92 9 3 3 2 1 67.64 73.90 12.67 24.55 表 5 指标成对比较的判断优先矩阵
Table 5 Judgment precedence matrix for paired comparison of indicators
指标 成型率 吸湿率 溶解率 休止角 λmax CR 成型率 1 1 2 4 4 0 吸湿率 1 1 2 4 溶化率 1/2 1/2 1 2 休止角 1/4 1/4 1/2 1 表 6 AHP、EWM、AHP-EWM 法权重系数
Table 6 Weight coefficients of AHP, EWM and AHP-EWM methods
方法 权重系数 成型率 休止角 溶化率 吸湿率 AHP法 0.3636 0.3636 0.1818 0.0909 EWM法 0.2491 0.2366 0.2483 0.2660 APH-EWM法 0.3567 0.0847 0.1778 0.3808 表 7 AHP-EWM法综合评分的正交试验结果
Table 7 Results of the orthogonal test of the comprehensive score of the AHP-EWM method
实验号 A B C D AHP-EWM 综合评分(分) 1 1 1 1 1 86.79 2 1 2 2 2 91.80 3 1 3 3 3 89.82 4 2 1 2 3 87.90 5 2 2 3 1 93.48 6 2 3 1 2 92.62 7 3 1 3 2 89.79 8 3 2 1 3 91.91 9 3 3 2 1 92.35 k1 89.470 88.160 90.440 90.873 k2 91.333 92.397 90.663 91.403 k3 91.350 91.597 91.030 89.877 R 1.880 4.237 0.590 1.526 表 8 方差分析结果
Table 8 Results of the analysis of variance
分析方法 方差来源 离差平方和 自由度 F值 F临界值 P AHP-EWM综合评分法 A 7.007 2.000 1.860 6.940 >0.05 B 30.400 2.000 8.070 6.940 <0.05 C 0.527 2.000 0.140 6.940 >0.05 D 3.605 2.000 0.957 6.940 表 9 工艺验证试验结果(¯x±s,n=3)
Table 9 Results of the validation test (¯x±s, n=3)
评价指标 成型率(%) 溶化率(%) 吸湿率(%) 休止角(°) 综合评分(分) 结果 77.04±0.46 88.97±0.21 11.00±0.20 23.91±0.28 93.63±1.65 -
[1] 周玉飞, 康专苗, 彭竹晶. 珍稀濒危铁皮石斛的研究进展[J]. 基因组学与应用生物学,2018,37(4):1629−1635. [ZHOU Yufei, KANG Zhuanmiao, PENG Zhujing. Research progress of rare and endangered Dendrobium candidum[J]. Genomics and Applied Biology,2018,37(4):1629−1635.] ZHOU Yufei, KANG Zhuanmiao, PENG Zhujing . Research progress of rare and endangered Dendrobium candidum[J]. Genomics and Applied Biology,2018 ,37 (4 ):1629 −1635 .[2] 国家药典委员会. 中华人民共和国药典. 一部[M]. 北京:中国医药科技出版社, 2010:85−87. [State Pharmacopoeia Commission Pharmacopoeia of the People's Republic of China. Volume I [M]. Beijing:China Pharmaceutical Science and Technology Press, 2010:85−87.] State Pharmacopoeia Commission Pharmacopoeia of the People's Republic of China. Volume I [M]. Beijing: China Pharmaceutical Science and Technology Press, 2010: 85−87.
[3] BURZACKA-HINZ A, NARAJCZYK M, DUDEK M, et al. Micromorphology of labellum in selected Dendrobium Sw. (Orchidaceae, Dendrobieae)[J]. International Journal of Molecular Sciences,2022,23(17):9578. doi: 10.3390/ijms23179578
[4] WEI T, QIANG Y U, HU L I, et al. Chemical modification and immunoregulatory activity of polysaccharides from Dendrobium officinale[J]. Food Sci,2017,38(7):155−160.
[5] CHEN H, MA X, CAO L X, et al. Recent progress in the mechanism behind exercise-induced fatigue and dietary bioactive components against fatigue[J]. Food Science,2020,41(11):247−258.
[6] 徐海军, 杨洋, 董雅琪, 等. 石斛多糖药理作用及其作用途径的研究进展[J]. 现代药物与临床,2021,36(7):1527−1532. [XU Haijun, YANG Yang, DONG Yaqi, et al. Research progress on the pharmacological effects and pathways of action of Dendrobium polysaccharides[J]. Modern Medicine and Clinical Practice,2021,36(7):1527−1532.] XU Haijun, YANG Yang, DONG Yaqi, et al . Research progress on the pharmacological effects and pathways of action of Dendrobium polysaccharides[J]. Modern Medicine and Clinical Practice,2021 ,36 (7 ):1527 −1532 .[7] 曾艺芸, 聂雪婷, 李振坚, 等. 中药石斛黄酮活性成分研究进展[J]. 中国实验方剂学杂志,2021,27(6):197−206. [ZENG Yiyun, NIE Xueting, LI Zhenjian, et al. Research progress on the active ingredients of flavonoids in traditional Chinese medicine Dendrobium officinale[J]. Chinese Journal of Experimental Prescriptions,2021,27(6):197−206.] ZENG Yiyun, NIE Xueting, LI Zhenjian, et al . Research progress on the active ingredients of flavonoids in traditional Chinese medicine Dendrobium officinale[J]. Chinese Journal of Experimental Prescriptions,2021 ,27 (6 ):197 −206 .[8] XIONG T W, LIU B, WU Q, et al. Beneficial effects of Dendrobium nob- ile Lindl. alkaloids (DNLA) on anxiety and depression induced by chronic unpredictable stress in rats[J]. Brain Research,2021,1771:147647. doi: 10.1016/j.brainres.2021.147647
[9] 郭彩娥, 阮沛桦, 胡欣, 等. 鲜铁皮石斛颗粒的质量标准研究[J]. 广东药科大学学报,2020,36(1):18−23. [GUO Cai'e, RUAN Peihua, HU Xin, et al. Study on the quality standard of fresh Dendrobium officinale granules[J]. Journal of Guangdong Pharmaceutical University,2020,36(1):18−23.] GUO Cai'e, RUAN Peihua, HU Xin, et al . Study on the quality standard of fresh Dendrobium officinale granules[J]. Journal of Guangdong Pharmaceutical University,2020 ,36 (1 ):18 −23 .[10] FADINI A L, ALVIM I D, RIBEIRO I P, et al. Innovative strategy based on combined microencapsulation technologies for food application and the influence of wall material composition[J]. LWT-Food Science and Technology,2018,91:345−352. doi: 10.1016/j.lwt.2018.01.071
[11] 刘雪娜, 吴雪娇, 刘顺航, 等. 铁皮石斛的药理作用及其保健食品研发进展[J]. 保鲜与加工,2021,21(10):144−150. [LIU Xuena, WU Xuejiao, LIU Shunhang, et al. The pharmacological effects of Dendrobium officinale and its research and development progress in health food[J]. Preservation and Processing,2021,21(10):144−150.] LIU Xuena, WU Xuejiao, LIU Shunhang, et al . The pharmacological effects of Dendrobium officinale and its research and development progress in health food[J]. Preservation and Processing,2021 ,21 (10 ):144 −150 .[12] 林雪媛, 王宇轩, 彭意, 等. 铁皮石斛叶总黄酮泡腾颗粒剂的制备与抗氧化活性研究[J]. 药学研究,2019,38(7):382−392. [LIN Xueyuan, WANG Yuxuan, PENG Yi, et al. Preparation and antioxidant activity of total flavonoids effervescent granules from Dendrobium officinale leaves[J]. Pharmaceutical Research,2019,38(7):382−392.] LIN Xueyuan, WANG Yuxuan, PENG Yi, et al . Preparation and antioxidant activity of total flavonoids effervescent granules from Dendrobium officinale leaves[J]. Pharmaceutical Research,2019 ,38 (7 ):382 −392 .[13] 张莉. 鲜铁皮石斛颗粒剂的制备及其质量标准研究[D]. 合肥:安徽中医药大学, 2018. [ZHANG Li. Preparation and Quality Standards of Fresh Dendrobium officinale Granules[D]. Hefei:Anhui University of Traditional Chinese Medicine, 2018.] ZHANG Li. Preparation and Quality Standards of Fresh Dendrobium officinale Granules[D]. Hefei: Anhui University of Traditional Chinese Medicine, 2018.
[14] 覃翔, 李婉铭, 韦金彩, 等. 基于层次分析法的正交试验优选坐浴安散提取工艺[J]. 中国药业,2023,32(3):55−62. [QIN Xiang, LI Wanming, WEI Jincai, et al. Optimization of extraction process for sitting bath ansan by orthogonal experiment based on analytic hierarchy process[J]. China Pharmaceutical,2023,32(3):55−62.] QIN Xiang, LI Wanming, WEI Jincai, et al . Optimization of extraction process for sitting bath ansan by orthogonal experiment based on analytic hierarchy process[J]. China Pharmaceutical,2023 ,32 (3 ):55 −62 .[15] 冯利梅, 陈艳琰, 乐世俊, 等. 基于层次分析-熵权法的中药质量标志物量化辨识方法研究—以芍药甘草汤为例[J]. 药学学报,2021,56(1):296−305. [FENG Limei, CHEN Yanyan, LE Shijun, et al. Research on quantitative identification method of traditional chinese medicine quality markers based on analytic hierarchy process and entropy weight method-Taking Shaoyao Gancao Tang as an example[J]. Journal of Pharmacy,2021,56(1):296−305.] FENG Limei, CHEN Yanyan, LE Shijun, et al . Research on quantitative identification method of traditional chinese medicine quality markers based on analytic hierarchy process and entropy weight method-Taking Shaoyao Gancao Tang as an example[J]. Journal of Pharmacy,2021 ,56 (1 ):296 −305 .[16] 贾德强, 贺成柱, 丁立利. AHP-熵权法结合Box-Behnken响应面法优化当归微波真空干燥工艺研究[J]. 药学学报,2023,44(2):60−68. [JIA Deqiang, HE Chengzhu, DING Lili. Optimization of microwave vacuum drying process for Angelica sinensis by AHP entropy weight method combined with Box Behnken response surface methodology[J]. Journal of Pharmacy,2023,44(2):60−68.] JIA Deqiang, HE Chengzhu, DING Lili . Optimization of microwave vacuum drying process for Angelica sinensis by AHP entropy weight method combined with Box Behnken response surface methodology[J]. Journal of Pharmacy,2023 ,44 (2 ):60 −68 .[17] 韩云凤, 唐茜, 石懿, 等. 基于熵权法-层次分析法结合响应面法优化养阴润目颗粒的提取工艺[J]. 中国现代应用药学,2022,39(7):896−903. [HAN Yunfeng, TANG Qian, SHI Yi, et al. Optimization of the extraction process of Yangyin Runmu granules based on entropy weight method, analytic hierarchy process, and response surface methodology[J]. China Modern Applied Pharmacy,2022,39(7):896−903.] HAN Yunfeng, TANG Qian, SHI Yi, et al . Optimization of the extraction process of Yangyin Runmu granules based on entropy weight method, analytic hierarchy process, and response surface methodology[J]. China Modern Applied Pharmacy,2022 ,39 (7 ):896 −903 .[18] 王晓林, 陈阵标, 钟方丽, 等. 黑果腺肋花楸果泡腾颗粒剂制备工艺研究[J]. 食品研究与开发,2020,41(19):145−156. [WANG Xiaolin, CHEN Zhengbiao, ZHONG Fangli, et al. Study on the preparation technology of black fruit ribbed Sorbus fruit effervescent granules[J]. Food Research and Development,2020,41(19):145−156.] WANG Xiaolin, CHEN Zhengbiao, ZHONG Fangli, et al . Study on the preparation technology of black fruit ribbed Sorbus fruit effervescent granules[J]. Food Research and Development,2020 ,41 (19 ):145 −156 .[19] 章烨雯, 何玉妃, 刘雯静, 等. 减肥降脂复方魔芋颗粒剂的成型工艺[J]. 食品工业,2022,43(11):53−56. [ZHANG Yewen, HE Yufei, LIU Wenjing, et al. The molding process of weight loss and lipid lowering compound konjac granules[J]. Food Industry,2022,43(11):53−56.] ZHANG Yewen, HE Yufei, LIU Wenjing, et al . The molding process of weight loss and lipid lowering compound konjac granules[J]. Food Industry,2022 ,43 (11 ):53 −56 .[20] 刘勇, 吕慧锋, 张琼, 等. Design-Expert响应面法优选无糖型乳康颗粒成型工艺[J]. 中国药业,2021,30(17):50−53. [LIU Yong, LÜ Huifeng, ZHANG Qiong, et al. Design-Expert response surface methodology for optimizing the forming process of sugar free Rukang granules[J]. China Pharmaceutical,2021,30(17):50−53.] LIU Yong, LÜ Huifeng, ZHANG Qiong, et al . Design-Expert response surface methodology for optimizing the forming process of sugar free Rukang granules[J]. China Pharmaceutical,2021 ,30 (17 ):50 −53 .[21] 覃新华, 戴薇萍, 胡传义. 星点设计-效应面法优选复方益肾利石颗粒的成型工艺[J]. 中国医药导刊,2022,24(3):222−228. [QIN Xinhua, DAI Weiping, HU Chuanyi. Optimization of the forming process of compound Yishen Lishi granules by central composite design response surface methodology[J]. Chinese Medical Journal,2022,24(3):222−228.] QIN Xinhua, DAI Weiping, HU Chuanyi . Optimization of the forming process of compound Yishen Lishi granules by central composite design response surface methodology[J]. Chinese Medical Journal,2022 ,24 (3 ):222 −228 .[22] 于佳琦, 徐冰, 黄雨妍, 等. 基于在线浊度传感器的中药颗粒剂溶化性评价和分类研究[J]. 中国中药杂志,2020,45(2):259−266. [YU Jiaqi, XU Bing, HUANG Yuyan, et al. Evaluation and classification of the solubility of traditional Chinese medicine granules based on online turbidity sensors[J]. Chinese Journal of Traditional Chinese Medicine,2020,45(2):259−266.] YU Jiaqi, XU Bing, HUANG Yuyan, et al . Evaluation and classification of the solubility of traditional Chinese medicine granules based on online turbidity sensors[J]. Chinese Journal of Traditional Chinese Medicine,2020 ,45 (2 ):259 −266 .[23] 马天翔, 马转霞, 许爱霞, 等. 消风止痒颗粒成型工艺的优化[J]. 中成药,2021,43(8):2161−2164. [MA Tianxiang, MA Zhuanxia, XU Aixia, et al. Optimization of the forming process for Xiaofeng Zhiyang Granules[J]. Traditional Chinese Patent Medicines and Simple Preparations,2021,43(8):2161−2164.] MA Tianxiang, MA Zhuanxia, XU Aixia, et al . Optimization of the forming process for Xiaofeng Zhiyang Granules[J]. Traditional Chinese Patent Medicines and Simple Preparations,2021 ,43 (8 ):2161 −2164 .[24] 乔雪梅, 王莹, 刘朝霞, 等. G1-熵权法优化欣胃颗粒剂成型工艺的研究[J]. 安徽医药,2023,27(9):1745−1749. [QIAO Xuemei, WANG Ying, LIU Chaoxia, et al. Study on optimization of the forming process of Xinwei granules by G1 entropy weight method[J]. Anhui Medicine,2023,27(9):1745−1749.] QIAO Xuemei, WANG Ying, LIU Chaoxia, et al . Study on optimization of the forming process of Xinwei granules by G1 entropy weight method[J]. Anhui Medicine,2023 ,27 (9 ):1745 −1749 .[25] CUI H, LU T H, WANG M X, et al. Flavonoids from Morus alba L. leaves:Optimization of extraction by response surface methodology and comprehensive evaluation of their antioxidant, antimicrobial, and Inhibition of α-amylase activities through analytical hierarchy process[J]. Molecules,2019,24(13):2398. doi: 10.3390/molecules24132398
[26] YU D, PENGCHENG H, WEIFENG J, et al. Optimization of extraction or purification process of multiple components from natural products:entropy weight method combined with Plackett–Burman design and central composite design[J]. Molecules,2021,26(18):5572−5572. doi: 10.3390/molecules26185572
[27] ZHAO X M, ZHU M D, REN X, et al. A new technique for determining micronutrient nutritional quality in fruits and vegetables based on the entropy weight method and fuzzy recognition method[J]. Foods,2022,11(23):3844. doi: 10.3390/foods11233844
[28] 祝子喻, 谢雨欣, 俞月婷, 等. 基于熵权-层次分析法及反向传播神经网络多指标优化地黄水提物提取工艺[J]. 食品工业科技,2022,43(19):264−272. [ZHU Ziyu, XIE Yuxin, YU Yuting, et al. Optimization of extraction process of aqueous extract of Rehmannia glutinosa based on entropy weight method in cooperation with analytic hierarchy process and back propagation neural network with multiple indicators[J]. Science and Technology of Food Industry,2022,43(19):264−272.] ZHU Ziyu, XIE Yuxin, YU Yuting, et al . Optimization of extraction process of aqueous extract of Rehmannia glutinosa based on entropy weight method in cooperation with analytic hierarchy process and back propagation neural network with multiple indicators[J]. Science and Technology of Food Industry,2022 ,43 (19 ):264 −272 .[29] 黄露, 徐顶巧, 乐世俊, 等. 基于层次分析-熵权法和网络药理学的野马追质量标志物研究[J]. 中国中药杂志,2021,46(21):5545−5554. [HUANG Lu, XU Dingqiao, LE Shijun, et al. Research on Q-markers of Eupatorium lindleyanum based on analytic hierarchy process-entropy weight method and network pharmacology[J]. China Journal of Chinese Materia Medica,2021,46(21):5545−5554.] HUANG Lu, XU Dingqiao, LE Shijun, et al . Research on Q-markers of Eupatorium lindleyanum based on analytic hierarchy process-entropy weight method and network pharmacology[J]. China Journal of Chinese Materia Medica,2021 ,46 (21 ):5545 −5554 .[30] 王唱唱, 左蓓磊, 彭新, 等. 基于熵权法结合层次分析法和反向传播神经网络优选大皂角油制工艺[J]. 中草药, 2022, 53(15):4687−4697. [WANG Changchang, ZUO Beilei, PENG Xin, et al. Optimization of Gleditsiae Sinensis Fructus oil processing technology based on entropy method combined with analytic hierarchy process and BP neural network[J]. Chinese Traditional and Herbal Drugs 2022, 53(15):4687−4697.] WANG Changchang, ZUO Beilei, PENG Xin, et al. Optimization of Gleditsiae Sinensis Fructus oil processing technology based on entropy method combined with analytic hierarchy process and BP neural network[J]. Chinese Traditional and Herbal Drugs 2022, 53(15): 4687−4697.
[31] 张睿, 王林元, 刘金莲, 等. 辅助改善记忆中药类保健食品和中成药组方规律及特点分析[J]. 中国中药杂志,2021,46(13):3222−3227. [ZHANG Rui, WANG Linyuan, LIU Jinlian, et al. Analysis on the regularity and characteristics of Chinese medicine health food and Chinese patent medicine prescription for improving memory[J]. Chinese Journal of Traditional Chinese Medicine,2021,46(13):3222−3227.] ZHANG Rui, WANG Linyuan, LIU Jinlian, et al . Analysis on the regularity and characteristics of Chinese medicine health food and Chinese patent medicine prescription for improving memory[J]. Chinese Journal of Traditional Chinese Medicine,2021 ,46 (13 ):3222 −3227 .[32] 庄娟娜, 池伟东, 方灿途, 等. 基于关联规则和复杂系统熵聚类研究中药外洗方治疗奥沙利铂神经毒性的组方规律[J]. 浙江中医药大学学报,2018,42(7):568−572. [ZHUANG Juana, CHI Weidong, FANG Cantu, et al. Based on association rules and complex system entropy clustering, the study on the composition rules of traditional Chinese medicine external washing formula in the treatment of oxaliplatin neurotoxicity[J]. Journal of Zhejiang University of Traditional Chinese Medicine,2018,42(7):568−572.] ZHUANG Juana, CHI Weidong, FANG Cantu, et al . Based on association rules and complex system entropy clustering, the study on the composition rules of traditional Chinese medicine external washing formula in the treatment of oxaliplatin neurotoxicity[J]. Journal of Zhejiang University of Traditional Chinese Medicine,2018 ,42 (7 ):568 −572 .[33] 倪伟铭, 刘秋月, 满婷婷, 等. 基于关联规则和复方熵聚类分析的针刺辅助肺癌治疗的选穴规律研究[J]. 大众科技,2022,24(227):79−83. [NI Weiming, LIU Qiuyue, MAN Tingting, et al. A study on the selection rules of acupuncture assisted lung cancer treatment based on association rules and compound entropy clustering analysis[J]. Volkswagen Technology,2022,24(227):79−83.] NI Weiming, LIU Qiuyue, MAN Tingting, et al . A study on the selection rules of acupuncture assisted lung cancer treatment based on association rules and compound entropy clustering analysis[J]. Volkswagen Technology,2022 ,24 (227 ):79 −83 .[34] 王治丹, 代云飞, 罗尚娟, 等. 铁皮石斛化学成分及药理作用的研究进展[J]. 华西药学杂志,2022,37(4):472−476. [WANG Zhidan, DAI Yunfei, LUO Shangjuan, et al. Research progress on the chemical components and pharmacological effects of Dendrobium officinale[J]. West China Journal of Pharmacy,2022,37(4):472−476.] WANG Zhidan, DAI Yunfei, LUO Shangjuan, et al . Research progress on the chemical components and pharmacological effects of Dendrobium officinale[J]. West China Journal of Pharmacy,2022 ,37 (4 ):472 −476 .[35] 李伯齐. 铁皮石斛复方的抗氧化功能评价及网络药理学研究[D]. 杭州:浙江理工大学, 2021. [LI Boqi. Evaluation of antioxidant function and network pharmacology of Dendrobium officinale compound[D]. Hangzhou:Zhejiang Sci-Tech University, 2021.] LI Boqi. Evaluation of antioxidant function and network pharmacology of Dendrobium officinale compound[D]. Hangzhou: Zhejiang Sci-Tech University, 2021.
[36] 王雪瑶. 基于数据挖掘的原发性视网膜色素变性中医药干预规律研究[D]. 北京:中国中医科学院, 2022. [WANG Xueyao. Research on TCM intervention rule of primary retinitis pigmentosa based on data mining[D]. Beijing:Chinese Academy of Traditional Chinese Medicine, 2022.] WANG Xueyao. Research on TCM intervention rule of primary retinitis pigmentosa based on data mining[D]. Beijing: Chinese Academy of Traditional Chinese Medicine, 2022.
[37] JIANG C H, WAN F X, XIE Y G, et al. Optimizing of far-infrared drying process of Stevia rebaudiana leaves based on AHP-entropy weight method[J]. Journal of Northwest A&F University (Natural Science Edition),2022,50(6):1−9.
[38] YANG X, BAI Z F, ZHANG D W, et al. Enrichment of flavonoid-rich extract from Bidens bipinnata L. by macroporous resin using response surface methodology, UHPLC-Q-TOF MS/MS-assisted characterization and comprehensive evaluation of its bioactivities by analytical hierarchy process[J]. Biomedical Chromatography: BMC,2020,34(11):e4933. doi: 10.1002/bmc.4933
[39] HAN Y F, TANG X, SHI Y, et al. Optimization of extraction process for Yangyin Runmu granules by Box-Behnken design based on entropy weight method-analytic hierarchy process method[J]. Chinese Journal of Modern Applied Pharmacy,2022,39(7):896−903.