• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

运动营养食品的营养素、功能及酵母蛋白在其中的应用前景

尤孝鹏, 陈智仙

尤孝鹏,陈智仙. 运动营养食品的营养素、功能及酵母蛋白在其中的应用前景[J]. 食品工业科技,2024,45(8):366−371. doi: 10.13386/j.issn1002-0306.2023050169.
引用本文: 尤孝鹏,陈智仙. 运动营养食品的营养素、功能及酵母蛋白在其中的应用前景[J]. 食品工业科技,2024,45(8):366−371. doi: 10.13386/j.issn1002-0306.2023050169.
YOU Xiaopeng, CHEN Zhixian. Nutrients, Functions and Application Prospects of Yeast Protein in Sports Nutrition Foods[J]. Science and Technology of Food Industry, 2024, 45(8): 366−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050169.
Citation: YOU Xiaopeng, CHEN Zhixian. Nutrients, Functions and Application Prospects of Yeast Protein in Sports Nutrition Foods[J]. Science and Technology of Food Industry, 2024, 45(8): 366−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050169.

运动营养食品的营养素、功能及酵母蛋白在其中的应用前景

基金项目: 酵母蛋白关键技术研究与应用开发(2022BAD058)。
详细信息
    作者简介:

    尤孝鹏(1996−),男,硕士,研究方向:酵母功能原料应用与推广,E-mail:youxp@angelyeast.com

    通讯作者:

    陈智仙(1985−),女,硕士,高级工程师,研究方向:营养健康食品研究,E-mail:chenzxa@angelyeast.com

  • 中图分类号: TS202.1

Nutrients, Functions and Application Prospects of Yeast Protein in Sports Nutrition Foods

  • 摘要: 全民健康意识的不断增强使运动营养食品的市场容量不断扩大,然而产品同质化严重、缺乏创新等因素限制了行业的发展。酵母蛋白营养价值高,富含必需氨基酸和支链氨基酸,具有慢消化特性,目前主要作为蛋白质补充剂和肌肉恢复补充剂等应用于食品加工。酵母蛋白可增强食品中蛋白质的营养价值、部分替代乳清蛋白,并延长饱腹感,在运动营养食品中具有广阔的应用前景。本文从运动营养食品中常见营养素功能、酵母蛋白营养特性和应用现状入手,对酵母蛋白在运动营养食品中的应用前景进行分析总结,为运动营养食品创新发展提供思路。
    Abstract: The continuous enhancement of national health awareness has led to the continuous expansion of the market capacity of sports nutrition food. However, factors such as severe product homogenization and lack of innovation have limited the development of the industry. Yeast proteins have high nutritional value, abundant in essential amino and branched-chain amino acid, with slow digestion characteristics. At present, it is mainly used in food processing as protein supplement and muscle recovery supplements, which can enhance the nutritional value of protein in food, partially replace the use of whey protein, and extend the sense of satiety. Thus, the application of yeast proteins in sports nutrition food is promising. This paper introduces the functions of common nutrients, nutritional characteristics and application status of yeast proteins, and then analyzes and summarizes the application prospects of yeast protein in sports nutrition food, providing ideas for the innovative development of sports nutrition food.
  • 公共卫生的不断发展促使体育运动从职业竞技发展成为了公共体育[1]。运动有益于健康体魄的塑造,但容易引发机体运动疲劳和营养流失而造成不可逆损害,好发于无氧运动、耐力运动从事者以及中老年运动人群[2]。因此,近20年来涌现出了各种营养补剂以应对运动带来的负面问题。运动营养食品是根据运动人士的特殊营养需求而研制的产品,可提高营养的摄入量,优化运动者的营养摄入结构,有利于提高运动水平,并为运动过程中的能量供应、缓解运动疲劳以及运动后恢复等提供保障[3]。虽然运动营养食品的市场不断扩大,但仍存在诸多问题[45]:对于某些营养素的深入研究不足,无法确定其作用机制和安全性;商品价格和供求关系失衡,过高的价格直接抑制了消费者的购买欲望;整体同质化严重,缺乏创新;法规和相关标准的执行不足,导致市场乱象频出;缺乏专业性和真实性的自媒体传播产生了许多偏离真相的舆论等。

    蛋白质可促进骨骼肌的修复与合成,增强骨骼肌对运动的适应性,并在特定情况下参与供能,是运动营养食品的重要原料。酵母蛋白是一种符合“大食物观”发展理念的完全优质微生物蛋白,其生物价与乳清蛋白相当,富含全部必须氨基酸,并且氨基酸组成与人体理想氨基酸模式接近,是良好的蛋白质来源[6]。本文介绍了运动营养食品中的主要营养素及其功能,分析讨论了酵母蛋白在运动营养食品中的应用价值和前景,旨在为运动营养食品的健康与创新发展提供思路。

    运动营养食品作为膳食补充剂,主要包括基本营养素和功能因子。基本营养素是指人体所需的营养素或其代谢产物,包括碳水化合物、蛋白质和脂质等,功能因子是指动物和植物的活性或功能成分,例如葡萄糖胺、姜黄素、左旋肉碱和番茄红素等[7]。运动营养食品可以针对性地提供营养素,改善运动人群的营养状况,减轻体育活动对机体新陈代谢的负担[8]

    作为主要能量物质,体内碳水化合物水平过低会引发运动疲劳。运动员对碳水化合物的依赖程度与运动强度呈正相关,适度补充碳水化合物可提高运动表现[9]。运动前适量摄入碳水化合物类运动营养食品有助于为运动员持续供能,并促进胰岛素的合成与释放,加速脂肪氧化分解,减少体内因肌糖原的无氧代谢而产生乳酸的堆积,消除运动性疲劳,提高运动员的运动水平[1011]

    蛋白质是生物繁衍、代谢最重要的物质基础[12]。蛋白质主要以下列方式在运动中发挥重要作用:直接参与并作为肌肉的主要成分;作为酶调控物质能量代谢反应;作为能量物质分解代谢产能。蛋白质在肌肉重塑、特殊情况下合成糖原、产生能量和维持非肌肉组织结构稳定等方面具有重要作用[13]。例如乳清蛋白可以促进机体蛋白质合成,提高免疫能力,延缓疲劳的发生和发展,提高抗氧化能力,并作为能量物质[1415]

    脂肪是机体的主要储能形式,也是机体能量的主要来源。脂肪对运动员耐力的影响极大,同时还可在运动中起到保温作用[1617]。Philpott等[18]研究表明,膳食补充ω-3系列多不饱和脂肪酸可以改善肌肉的适应能力,有利于调节能量代谢和肌肉恢复,并避免组织氧化损伤。此外,有研究者发现磷脂酸也可以促进骨骼肌蛋白质合成,促进肌肉力量增加[19]

    维生素是一类调节机体能量代谢以及缓解细胞损伤的有机物,不可提供能量。B族维生素作为辅酶直接参与调控糖酵解、三羧酸循环、氧化磷酸化、脂肪酸β氧化和氨基酸代谢等能量反应,是运动营养食品中主要的维生素种类[20]。此外,维生素D和维生素E也常见于运动营养食品,对于提升肌肉健康和力量、清除氧自由基以及运动后身体机能的恢复等具有重要意义[2122]

    矿物质存在于组织结构中,是酶和激素的重要组成部分,并作为新陈代谢和神经功能的调节剂[23]。矿物质可直接参与组成骨组织和部分酶的辅因子、调控机体生理活动,并对维持水盐平衡具有重要意义。例如补钙可改善运动引发的骨损伤,提高骨密度[24];补铁可以提高贫血运动员的运动能力[25]

    除基本营养素外,据统计,运动营养补剂主要包括可保护关节软骨的氨基葡萄糖、软骨素、透明质酸等;可改善肌肉质量的牛磺酸、核酸、肌酸等;可调节内分泌的谷氨酰胺、六味地黄汤等;可控制体重的左旋肉碱、咖啡因、辣椒素等;可提高能源储存和利用率的麦芽低聚糖、肉碱等;可增强免疫功能的大蒜素、蜂蜜花粉、辅酶Q10等[2627]

    能量代谢加剧是机体在运动时最直接的内在变化,是一种适应性机制。能量代谢失调易引发运动疲劳,产生氧化应激,并造成乳酸的堆积和中枢神经损伤等不利后果[28]。目前,运动营养食品中抗疲劳的活性成分主要包括多糖、生物碱、皂苷、多酚、生物活性肽等,其作用机制主要包括:参与和调节能量代谢;抑制炎症反应;降低活性氧含量;神经递质的调节。例如Yu等[29]研究了微胶囊化山楂多酚(HPM)对小鼠能量代谢、产物积累、炎症、氧化应激和肠道菌群的影响和机制。结果表明HPM提高了AKT和PI3K的mRNA的表达,通过骨骼肌AMPK(AMP依赖的蛋白激酶)途径增强肝糖原和肌糖原的合成代谢,同时AMPK直接参与Nrf2的蛋白表达生成抗氧化酶,提高了超氧化物歧化酶(SOD)的表达、增强了骨骼肌总抗氧化能力(T-AOC),降低了丙二醛(MDA)、乳酸(LD)、血清尿素氮(BUN)等氧化代谢物的积累,提高了小鼠游泳能力,缓解了运动疲劳。

    运动营养食品中的蛋白质通过提供必须氨基酸来促进肌肉蛋白质的合成,同时,运动尤其是急性阻力运动可提高氨基酸的利用率,增强骨骼肌的蛋白质合成[30]。大豆蛋白、酪蛋白、乳清蛋白、鸡蛋或牛肉形式的完全蛋白的摄入为肌肉提供了氨基酸,氨基酸主要通过激活雷帕霉素复合物1(mTORC1)的蛋白激酶靶标、蛋白质翻译的主要调节因子、AMPK等促进运动后的肌肉蛋白质合成[3132]。当细胞中营养物质含量较高时,mTORC1信号传导被激活,这反过来又使AMPK信号传导失活,并促进蛋白质的积累和生长;相反,当mTORC1 信号传导被抑制时,AMPK信号传导在低能量水平下被激活,蛋白质分解被激活以释放氨基酸促进能量代谢[33]

    增加运动中或运动后脂肪的分解,是提高耐力运动能力并起到运动减肥效果的重要前提,动植物中一些天然物质具有刺激脂肪分解的作用,与运动联合将起到更好的效果。目前已经发现咖啡因、绿茶提取物(茶碱)、藤黄果提取物(羟基柠檬酸)、辣椒素、人参(皂苷)、丝肽、二十八醇、肉碱、牛磺酸等可增强脂肪分解代谢作用,其中咖啡因和绿茶提取物的作用较显著[34]。例如Hodgson等[35]研究表明,富含儿茶素和咖啡因的绿茶提取物可通过PPAR-γ共激活因子1-α和PPAR加速休息或运动期间的脂肪代谢。

    近20年来,由于人均蛋白质需求和全球蛋白质消费量逐年增长,传统来源蛋白供应不足,可持续替代蛋白质的开发与应用已成为研究热点[36]。酵母蛋白通常是以发酵所得酿酒酵母为原料,经过机械法或酶解除去细胞壁多糖等其他组分后富集而成的一种功能性蛋白,是一种优质的天然完全蛋白质[37]。酵母蛋白还是一种“慢”消化、高吸收率的蛋白,在不影响利用率的同时延长了消化时间[38]。与传统蛋白的主要生产方式养殖与种植相比,酵母蛋白的生产具有更低碳排放、占用耕地更少、环境友好、绿色可持续、无宗教禁忌等优势,更符合“大食物观”的发展理念,并且其营养价值并不低于动物蛋白[39]

    安全性是酵母在食品工业中应用的基础,Mirzaei等[40]研究证实了酿酒酵母对于人体是安全的。酵母中蛋白质含量在40%~60%,其营养价值介于乳清蛋白和大豆蛋白之间,支链氨基酸的含量高于乳清蛋白[41]。研究表明,酵母蛋白具有以下特性:含有全部必需氨基酸,属于全价蛋白,营养丰富,能够满足人体营养的需求;发酵工艺成熟,制造效率高,适合于规模化制造,所需用水量和耕地面积显著降低;无致敏成分,适合人群广泛;无豆腥味,并且风味上能够丰富肉味等[42]

    目前关于酵母蛋白在食品工业中的应用主要包括:蛋白质补充剂、天然调味剂、澄清剂、肌肉恢复补充剂、肉制品改良剂、肉类填充剂、微胶囊化的载体材料等,其中以蛋白质补充剂和肌肉恢复补充剂为主[43]。例如刘雪姣等[44]将总蛋白含量为80.5%的酵母蛋白添加至调理鸡胸肉中,发现酵母蛋白不仅能提高调味鸡胸肉蛋白质含量,还能全部或者部分替代大豆分离蛋白、淀粉或者糊精,起到保水作用,从而将产品出品率提高至110%,并且整体风味协调自然、无豆腥味、口感及硬度较好;Liao等[45]研究发现酵母蛋白可通过激活Akt/mTOR/1E-BP4通路和调节肌源性调节因子(Myog、Myf4、Myf5和Myod1)的表达以促进肌肉蛋白质的合成和肌肉生长。

    基于国内运动营养食品的研究现状,针对不同应用场景或人群对运动营养食品功能的需求,结合酵母蛋白的营养与消化特性,对酵母蛋白在运动营养食品中的应用前景从以下3个方面作分析与讨论。

    目前对于食物中不同蛋白质质量的评价方法主要包括生物法和非生物法,但暂时没有统一标准。不同来源蛋白质中的蛋白质含量、氨基酸组成和比例等均不同,对满足人体营养需求的贡献情况也不同。董娟等[46]在对食品中蛋白质质量的评价方法研究中表示,利用不同来源蛋白质氨基酸互补,以满足人体蛋白质需求,不仅可以增强食物的营养价值,还能减少对动物和人类的伤害。类似地,Bohrer[47]的研究表明微生物蛋白在平衡膳食来源蛋白质中起到了显著作用。唐晓荞等[48]从氨基酸营养组成和含量、功效比等方面,对比研究了酵母蛋白、大豆蛋白和乳清蛋白营养质量,结果显示,酵母蛋白中必需氨基酸含量丰富,占总量的47.58%,必需氨基酸与非必需氨基酸的比值达到了0.91,高于FAO/WHO标准规定的40%和0.6,蛋白质功效比结果显示混合蛋白组具有最高水平的校正PER(蛋白质功效比值),高达2.71±0.09。因此,利用蛋白质氨基酸互补机制,酵母蛋白有助于提升运动营养食品的营养价值。

    乳清蛋白及其水解物因其氨基酸组成与人体接近,具有较高的生物价,是运动营养食品中蛋白质的主要来源,可通过调控物质能量代谢起到缓解运动疲劳、减少机体组织损伤、促进脂肪分解和运动后恢复、提高运动能力等积极作用[49]。乳清蛋白作为动物来源蛋白,其生产效率低,对环境影响较大,因此寻找可持续替代蛋白是未来的必然趋势[50]。孙合群等[51]对比研究了小麦蛋白粉、大豆蛋白粉、乳清蛋白粉和酵母蛋白粉的氨基酸含量和组成,结果显示乳清蛋白粉和酵母蛋白粉的纯蛋白质含量分别为82.8%±2.22%和80.5%±2.02%,其中乳清蛋白粉和酵母蛋白粉的必需氨基酸分别占总蛋白含量的47.52%和44.89%。蛋白质的营养价值取决于氨基酸的含量、种类和组成比例,从这点来看,酵母蛋白与乳清蛋白相当。Yamanashi等[52]的研究表明,补充支链氨基酸可通过激活mTOR信号途径以显著改善血管紧张素 II诱导的骨骼肌萎缩,有效预防并缓解肌肉减少症。类似地,Peng等[53]使用双盲试验研究表明补充支链氨基酸可以显著提升50岁以上成年人阻力训练期间的肌肉质量,包括肌肉含量、力量以及耐力,并降低体脂率。酵母蛋白中支链氨基酸含量较高,部分替代运动营养食品中乳清蛋白的潜力。

    相较于消化速率较快的乳清蛋白和大豆蛋白,作为“慢消化”蛋白的酵母蛋白更有利于带来饱腹感[54]。此外,研究表明,不同消化速率的蛋白对餐后全身蛋白质沉积的调节不同,快速可消化蛋白可引起明显但短暂的餐后血浆氨基酸和小肽的提高,刺激蛋白质的合成,但同时可能增加氨基酸的氧化;相反,慢速可消化蛋白质会导致血浆中氨基酸和多肽在餐后少量而长时间的增加,抑制机体蛋白质降解,进而增加整体蛋白质存留[55]。目前具有饱腹作用,应用在代餐食品中最多的原料为富含膳食纤维的植物,例如魔芋粉、紫薯粉等,因此,酵母蛋白可为以“减脂”、“代餐”为核心的体重管理类运动营养食品的创新开发提供新思路。

    在后疫情时代和国民受教育水平不断提高的影响下,人们的健康意识不断加强,运动营养食品也成了大众消费品,其市场容量不断扩大。受资源短缺和紧张的国际形势影响,原料获取难度与成本越来越高,同时,产品同质化严重以及缺乏创新等多种因素限制了运动营养食品的发展。酵母蛋白因其较高的营养价值及其生产制造的天然优势,为运动营养食品的创新开发提供优质选择。首先,酵母蛋白应用于运动营养食品中,可通过蛋白质互补以增强产品的营养特性;其次,酵母蛋白具有部分替代乳清蛋白的可能,相应减少因动物来源蛋白生产而引起的环境污染和资源浪费,实现节能减排,助推绿色、可持续发展的同时规避了动物蛋白可能引发的过敏反应或者宗教禁忌;最后,酵母蛋白因其“慢消化”的特性,为体重管理类运动营养食品的创新提供思路,不仅满足了饱腹的需求,还提升了营养价值。然而,目前酵母蛋白在溶解性、起泡性、乳化性等加工性能上与传统蛋白存在差距,一定程度上限制了其在食品中的应用。

    未来运动营养食品发展必将更加标准化、精准化、差异化和专业化,加强对酵母蛋白的基础、工艺与应用研究,对酵母蛋白更好地应用于运动营养食品具有重要意义。主要包括:优化提取工艺对酵母蛋白进行修饰,通过改变空间结构或与其他物质复配以改善其加工特性,从而提高酵母蛋白在食品体系中的配伍性与兼容性;结合现代生物组学与临床研究,加深对酵母蛋白在体内的代谢途径和作用机制的认识,建立健全成分与功效间的联系,以明确其适宜用量和实现精准营养。

  • [1]

    JAL M A, NEGRE J M S, LOZANO P P, et al. Trends in the food and sports nutrition industry:A review[J]. Critical Reviews in Food Science and Nutrition,2020,60(14):2405−2421. doi: 10.1080/10408398.2019.1643287

    [2]

    CHURCHILL N W, HUTCHISON M G, DI B, et al. Structural, functional, and metabolic brain markers differentiate collision versus contact and non-contact athletes[J]. Frontiers in Neurology,2017,8:390. doi: 10.3389/fneur.2017.00390

    [3] 谢凯. 运动营养食品的市场现状、趋势与发展对策[J]. 食品与机械,2021,37(6):229−232. [XIE K. Market status, trends, and development strategies of sports nutritional foods[J]. Food and Machinery,2021,37(6):229−232.]

    XIE K. Market status, trends, and development strategies of sports nutritional foods[J]. Food and Machinery, 2021, 376): 229232.

    [4] 张斯, 莫锡乾, 曾绮莹, 等. 中国运动营养食品产业发展面临的机遇和挑战[J]. 食品安全导刊,2023(2):125−127,131. [ZHANG S, MO X Q, ZENG Q Y, et al. Opportunities and challenges faced by the development of China's sports nutrition food industry[J]. Food Safety Guide,2023(2):125−127,131.]

    ZHANG S, MO X Q, ZENG Q Y, et al. Opportunities and challenges faced by the development of China's sports nutrition food industry[J]. Food Safety Guide, 20232): 125127,131.

    [5] 马永轩, 张名位, 魏振承, 等. 运动营养食品的现状与趋势[J]. 食品研究与开发,2017,38(14):205−207. [MA Y X, ZHANG M W, WEI Z C, et al. The current situation and trends of sports nutritional foods[J]. Food Research and Development,2017,38(14):205−207.]

    MA Y X, ZHANG M W, WEI Z C, et al. The current situation and trends of sports nutritional foods[J]. Food Research and Development, 2017, 3814): 205207.

    [6]

    JACH M E, SEREFKO A, ZIAJA M, et al. Yeast protein as an easily accessible food source[J]. Metabolites,2022,12(1):63. doi: 10.3390/metabo12010063

    [7]

    SUN Y, LIANG C, ZHENG L H, et al. Anti-fatigue effect of hypericin in a chronic forced exercise mouse model[J]. Journal of Ethnopharmacology,2022,284:114767. doi: 10.1016/j.jep.2021.114767

    [8]

    GROUT A, MCCLAVE S A, JAMPOLIS M B, et al. Basic principles of sports nutrition[J]. Current Nutrition Reports,2016,5(3):213−222. doi: 10.1007/s13668-016-0177-3

    [9]

    ROTHSCHILD J A, KILDING A E, PLEWS D J. What should I eat before exercise? Pre-exercise nutrition and the response to endurance exercise:Current prospective and future directions[J]. Nutrients,2020,12(11):3473. doi: 10.3390/nu12113473

    [10] 杨媛. 运动食品对游泳运动员耐疲劳的影响[J]. 食品研究与开发,2022,43(9):233−234. [YANG Y. The effect of sports food on the fatigue resistance of swimmers[J]. Food Research and Development,2022,43(9):233−234.]

    YANG Y. The effect of sports food on the fatigue resistance of swimmers[J]. Food Research and Development, 2022, 439): 233234.

    [11]

    SYLOW L, KLEINERT M, RICHTER E A, et al. Exercise-stimulated glucose uptake - regulation and implications for glycaemic control[J]. Nature Reviews Endocrinology,2017,13(3):133−148. doi: 10.1038/nrendo.2016.162

    [12]

    KREIDER R B, ALMADA A L, ANTONIO J, et al. ISSN exercise & sport nutrition review:Research & recommendations[J]. Journal of the International Society of Sports Nutrition,2004,1(1):1−44. doi: 10.1186/1550-2783-1-1-1

    [13]

    MORTON R W, MURPHY K T, MCKELLAR S R, et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults[J]. British Journal of Sports Medicine,2018,52(6):376−384. doi: 10.1136/bjsports-2017-097608

    [14]

    BATY J J, HWANG H, DING Z P, et al. The effect of a carbohydrate and protein supplement on resistance exercise performance, hormonal response, and muscle damage[J]. Journal of Strength & Conditioning Research,2007,21(2):321−329.

    [15] 李英顺. 促肌肉增长类运动营养食品对篮球运动员肌肉力量的影响[J]. 食品研究与开发,2021,42(23):227−228. [LI Y S. The effect of muscle growth promoting sports nutritional foods on the muscle strength of basketball players[J]. Food Research and Development,2021,42(23):227−228.]

    LI Y S. The effect of muscle growth promoting sports nutritional foods on the muscle strength of basketball players[J]. Food Research and Development, 2021, 4223): 227228.

    [16] 王锴. 补充能量类运动营养食品对体育运动员生理的影响[J]. 食品研究与开发,2021,42(14):225−226. [WANG K. The effect of supplementing energy sports nutritional foods on the physiology of athletes[J]. Food Research and Development,2021,42(14):225−226.]

    WANG K. The effect of supplementing energy sports nutritional foods on the physiology of athletes[J]. Food Research and Development, 2021, 4214): 225226.

    [17]

    KAWABATA F, NEYA M, HAMAZAKI K, et al. Supplementation with eicosapentaenoic acid-rich fish oil improves exercise economy and reduces perceived exertion during submaximal steady-state exercise in normal healthy untrained men[J]. Bioscience Biotechnology & Biochemistry,2014,78(12):2081−2088.

    [18]

    PHILPOTT J D, WITARD O C, GALLOWAY S D R. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance[J]. Research in Sports Medicine:An International Journal,2018,27(2):219−237.

    [19]

    SHAD B J, SMEUNINX B, ATHERTON P J, et al. The mechanistic and ergogenic effects of phosphatidic acid in skeletal muscle[J]. Appl Physiol Nutr Metabol,2015,40(12):1233−1241. doi: 10.1139/apnm-2015-0350

    [20] 靳东生. 我国运动营养食品发展研究[J]. 饮料工业,2020,23(4):70−73. [JIN D S. Research on the development of sports nutritional food in China[J]. Beverage Industry,2020,23(4):70−73.] doi: 10.3969/j.issn.1007-7871.2020.04.023

    JIN D S. Research on the development of sports nutritional food in China[J]. Beverage Industry, 2020, 234): 7073. doi: 10.3969/j.issn.1007-7871.2020.04.023

    [21]

    WYON M A, KOUTEDAKIS Y, WOLMAN R, et al. The influence of winter vitamin D supplementation on muscle function and injury occurrence in elite ballet dancers:A controlled study[J]. Journal of Science & Medicine in Sport,2014,17(1):8−12.

    [22]

    MIGNI A, GALLI F, ANTOGNELLI C, et al. The Choko-Age project:development and analytical characterization of a new chocolate product functionalized with vitamin E to combine with physical exercise in preventing malnutrion in pre-dementia eldery subjects[J]. Free Radical Biology and Medicine,2022,189(1):27.

    [23]

    THOMAS D T, ERDMAN K A, BURKE L M. American college of sports medicine joint position statement. nutrition and athletic performance[J]. Medicine & Science in Sports & Exercise,2016,48(3):543−568.

    [24]

    DUBNOV R G, LAHAV Y, CONSTANTINI N W. Non-nutrients in sports nutrition:Fluids, electrolytes, and ergogenic aids[J]. e-SPEN, the European e-Journal of Clinical Nutrition and Metabolism,2011,6(4):e217−e222. doi: 10.1016/j.eclnm.2011.05.001

    [25]

    ZOURDOS M C, SANCHEZ-GONZALEZ M A, MAHONEY S E. A brief review:The implications of iron supplementation for marathon runners on health and performance[J]. The Journal of Strength & Conditioning Research,2015,29(2):559−565.

    [26]

    CUI P B, LI M Y, YU M X, et al. Advances in sports food:Sports nutrition, food manufacture, opportunities and challenges[J]. Food Research International,2022,157:111258. doi: 10.1016/j.foodres.2022.111258

    [27]

    DEVOTO F, ZAPPAROLI L, SPINELLI G, et al. How the harm of drugs and their availability affect brain reactions to drug cues:a meta-analysis of 64 neuroimaging activation studies[J]. Translational Psychiatry,2020,10(1):429. doi: 10.1038/s41398-020-01115-7

    [28]

    OLCOTT A, ANSTROM C. The impact of sports nutrition knowledge on the physical effects of low energy availability in female cross country runners[J]. Journal of the Academy of Nutrition and Dietetics,2020,120(9):87.

    [29]

    YU J C, JIANG W H, WANG S Y, et al. Microencapsulated hawthorn berry polyphenols alleviate exercise fatigue in mice by regulating AMPK signaling pathway and balancing intestinal microflora[J]. Journal of Functional Foods,2022,97:105255. doi: 10.1016/j.jff.2022.105255

    [30]

    FUJITA S, DREYER H C, DRUMMOND M J, et al. Essential amino acid and carbohydrate ingestion before resistance exercise does not enhance postexercise muscle protein synthesis[J]. Journal of Applied Physiology,2009,106(5):1730−1739. doi: 10.1152/japplphysiol.90395.2008

    [31]

    REIDY P T, WALKER D K, DICKINSON J M, et al. Protein blend ingestion following resistance exercise promotes human muscle protein synthesis[J]. The Journal of Nutrition,2013,143(4):410−416. doi: 10.3945/jn.112.168021

    [32]

    PROUD C G. Phosphorylation and signal transduction pathways in translational control[J]. Cold Spring Harbor Perspectives in Biology,2019,11(7):a033050. doi: 10.1101/cshperspect.a033050

    [33]

    GONZÁLEZ A, HALL M N, LIN S C, et al. AMPK and TOR:The yin and yang of cellular nutrient sensing and growth control[J]. Cell Metabolism,2020,31(3):472−492. doi: 10.1016/j.cmet.2020.01.015

    [34]

    KIM J, PARK J, LIM K. Nutrition supplements to stimulate lipolysis:a review in relation to endurance exercise capacity[J]. Journal of Nutritional Science and Vitaminology,2016,62(3):141−161. doi: 10.3177/jnsv.62.141

    [35]

    HODGSON A B, RANDELL R K, JEUKENDRUP A E. The effect of green tea extract on fat oxidation at rest and during exercise:Evidence of efficacy and proposed mechanisms[J]. Advances in Nutrition,2013,4(2):129−140. doi: 10.3945/an.112.003269

    [36]

    ARIËNS R M, BASTIAAN-NET S, BERG-SOMHORST D, et al. Comparing nutritional and digestibility aspects of sustainable proteins using the INFOGEST digestion protocol[J]. Journal of Functional Foods,2021,87:104748. doi: 10.1016/j.jff.2021.104748

    [37]

    KWAK S, ROBINSON S J, LEE J W, et al. Dissection and enhancement of prebiotic properties of yeast cell wall oligosaccharides through metabolic engineering[J]. Biomaterials,2022,282:121379. doi: 10.1016/j.biomaterials.2022.121379

    [38] 陈智仙, 张海波, 张双庆, 等. 3种不同来源蛋白质的氨基酸组成及体外动态消化研究[J]. 河南工业大学学报(自然科学版),2019,40(2):62−68. [CHEN Z X, ZHANG H B, ZHANG S Q, et al. Study on amino acid composition and in vitro dynamic digestion of three proteins from different sources[J]. Journal of Henan University of Technology (Natural Science Edition),2019,40(2):62−68.]

    CHEN Z X, ZHANG H B, ZHANG S Q, et al. Study on amino acid composition and in vitro dynamic digestion of three proteins from different sources[J]. Journal of Henan University of Technology (Natural Science Edition), 2019, 402): 6268.

    [39]

    HUMPENÖDER F, BODIRSKY, B L, WEINDL I. et al. Projected environmental benefits of replacing beef with microbial protein[J]. Nature,2022,605:90−96. doi: 10.1038/s41586-022-04629-w

    [40]

    MIRZAEI M, MIRDAMADI S, EHSANI M R, et al. Production of antioxidant and ACE-inhibitory peptides from Kluyveromyces marxianus protein hydrolysates:Purification and molecular docking[J]. Journal of Food and Drug Analysis,2018,26(2):696−705. doi: 10.1016/j.jfda.2017.07.008

    [41]

    XIA S G, SHEN S, MA C X, et al. High-moisture extrusion of yeast-pea protein:Effects of different formulations on the fibrous structure formation[J]. Food Research International,2023,163:112132. doi: 10.1016/j.foodres.2022.112132

    [42] 刘延峰, 邓梦婷, 陈坚. 微生物替代蛋白生物制造:进展与展望[J]. 中国食品学报,2022,22(6):1−5. [LIU Y F, DENG M T, CHEN J. Biological production of microbial substitute protein:progress and prospect[J]. Journal of China Foods Limited,2022,22(6):1−5.]

    LIU Y F, DENG M T, CHEN J. Biological production of microbial substitute protein: progress and prospect[J]. Journal of China Foods Limited, 2022, 226): 15.

    [43]

    MA J R, SUN Y F, MENG D M, et al. Yeast proteins:The novel and sustainable alternative protein in food applications[J]. Trends in Food Science & Technology,2023,135:190−201.

    [44] 刘雪姣, 李沛, 郭江勇, 等. 添加酵母蛋白的轻食调理鸡胸肉制备工艺研究[J]. 肉类工业,2022(1):31−34. [LIU X J, LI P, GUO J Y, et al. Study on the preparation technology of light food conditioned chicken breast meat with yeast protein addition[J]. Meat Industry,2022(1):31−34.]

    LIU X J, LI P, GUO J Y, et al. Study on the preparation technology of light food conditioned chicken breast meat with yeast protein addition[J]. Meat Industry, 20221): 3134.

    [45]

    LIAO Y X, ZHOU X L, PENG Z, et al. Muscle aging amelioration by yeast protein supplementation was associated with gut microbiota[J]. Journal of Functional Foods,2022,89:104948. doi: 10.1016/j.jff.2022.104948

    [46] 董娟, 张亚飞, 马宁, 等. 食品中蛋白质质量评价方法的研究进展[J]. 食品工业科技,2023,44(7):455−462. [DONG J, ZHANHG Y F, MA N, et al. Research progress on evaluation methods for protein quality in food[J]. Food industry technology,2023,44(7):455−462.]

    DONG J, ZHANHG Y F, MA N, et al. Research progress on evaluation methods for protein quality in food[J]. Food industry technology, 2023, 447): 455462.

    [47]

    BOHRER B M. Nutrient density and nutritional value of meat products and non-meat foods high in protein[J]. Trends in Food Science & Technology,2017,65:103−112.

    [48] 唐晓荞, 武宇, 樊军, 等. 酵母蛋白的营养质量评价[J]. 公共卫生与预防医学,2020,31(6):100−104. [TANG X Q, WU Y, FAN J, et al. Evaluation of nutritional quality of yeast protein[J]. Public Health and Preventive Healthcare,2020,31(6):100−104.]

    TANG X Q, WU Y, FAN J, et al. Evaluation of nutritional quality of yeast protein[J]. Public Health and Preventive Healthcare, 2020, 316): 100104.

    [49]

    HO C Y, SAMWIL S N M, KAHAIRUDIN Z, et al. Pre-habilitation with high whey-protein-based meal replacement therapy and exercise promote weight loss and preserve muscle mass before bariatric surgery[J]. Asian Journal of Surgery,2023,46(9):3716−3721. doi: 10.1016/j.asjsur.2023.03.026

    [50]

    DIAZ M L, KEPPLER J K, REYES L H, et al. Trends and prospects in dairy protein replacement in yogurt and cheese[J]. Heliyon,2023,9(6):e16974. doi: 10.1016/j.heliyon.2023.e16974

    [51] 孙合群, 覃先武, 胥怀, 等. 4种不同来源蛋白质的氨基酸测定及营养评价研究[J]. 饮料工业,2022,25(6):1−4. [SUN H Q, QIN X W, XU H, et al. Amino acid determination and nutritional evaluation of four different sources of proteins[J]. Beverage Industry,2022,25(6):1−4.]

    SUN H Q, QIN X W, XU H, et al. Amino acid determination and nutritional evaluation of four different sources of proteins[J]. Beverage Industry, 2022, 256): 14.

    [52]

    YAMANASHI K, KINUGAWA S, FUKUSHIMA A, et al. Branched-chain amino acid supplementation ameliorates angiotensin II-induced skeletal muscle atrophy[J]. Life Sciences,2020,250:117593. doi: 10.1016/j.lfs.2020.117593

    [53]

    PENG L N, YU P C, HSU C C, et al. Sarcojoint, the branched-chain amino acid-based supplement, plus resistance exercise improved muscle mass in adults aged 50years and older:A double-blinded randomized controlled trial[J]. Experimental Gerontology,2022,157:111644. doi: 10.1016/j.exger.2021.111644

    [54]

    NEPOCATYCH S, MELSON C E, MADZIMA T A, et al. Comparison of the effects of a liquid breakfast meal with varying doses of plant-based soy protein on appetite profile, energy metabolism and intake[J]. Appetite,2019,141:104322. doi: 10.1016/j.appet.2019.104322

    [55] 张楠, 王华凯, 马永喜. 蛋白质和淀粉的消化速率及程度对畜禽营养调控的研究进展[J]. 中国畜牧杂志,2022,58(5):20−25. [ZHANG N, WANG H K, MA Y X. Research progress on the digestion rate and degree of protein and starch on the nutritional regulation of livestock and poultry[J]. Chinese Journal of Animal Husbandry,2022,58(5):20−25.]

    ZHANG N, WANG H K, MA Y X. Research progress on the digestion rate and degree of protein and starch on the nutritional regulation of livestock and poultry[J]. Chinese Journal of Animal Husbandry, 2022, 585): 2025.

  • 期刊类型引用(0)

    其他类型引用(4)

  • 其他相关附件

计量
  • 文章访问数:  248
  • HTML全文浏览量:  115
  • PDF下载量:  65
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-05-15
  • 网络出版日期:  2024-02-20
  • 刊出日期:  2024-04-11

目录

/

返回文章
返回
x 关闭 永久关闭