• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于乳液的植物多酚封装体系及其在食品工业中应用的研究进展

王楠, 马燕, 王乐, 黄现青, 马相杰, 孟少华, 赵建生

王楠,马燕,王乐,等. 基于乳液的植物多酚封装体系及其在食品工业中应用的研究进展[J]. 食品工业科技,2024,45(7):352−359. doi: 10.13386/j.issn1002-0306.2023050109.
引用本文: 王楠,马燕,王乐,等. 基于乳液的植物多酚封装体系及其在食品工业中应用的研究进展[J]. 食品工业科技,2024,45(7):352−359. doi: 10.13386/j.issn1002-0306.2023050109.
WANG Nan, MA Yan, WANG Le, et al. Research Progress on Plant Polyphenols Encapsulated by Emulsion Systems and Its Application in Food Industry[J]. Science and Technology of Food Industry, 2024, 45(7): 352−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050109.
Citation: WANG Nan, MA Yan, WANG Le, et al. Research Progress on Plant Polyphenols Encapsulated by Emulsion Systems and Its Application in Food Industry[J]. Science and Technology of Food Industry, 2024, 45(7): 352−359. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050109.

基于乳液的植物多酚封装体系及其在食品工业中应用的研究进展

基金项目: 中国博士后科学基金资助项目(2022M711460);国家自然科学基金青年基金(32201942);2022年漯河市重大科技创新专项(揭榜挂帅)项目;河南青年人才托举工程项目(2023HYTP018);河南省自然科学基金(青年科学基金项目)(222300420179);河南省研究生联合培养基地项目(YJS2022JD16);河南省高校科技创新团队(23IRTSTHN023)。
详细信息
    作者简介:

    王楠(1997−),女,硕士研究生,研究方向:食品加工与安全,E-mail:731291717@qq.com

    通讯作者:

    黄现青(1977−),男,博士,教授,研究方向:食品营养与安全,E-mail:hxq8210@126.com

  • 中图分类号: TS221

Research Progress on Plant Polyphenols Encapsulated by Emulsion Systems and Its Application in Food Industry

  • 摘要: 植物多酚是一类分子结构中含有若干个酚羟基的植物次生代谢产物,具有抗炎、抗癌、抑菌等生理特性,可作为优良的膳食补充剂;但部分多酚稳定性差,其在食品生产加工和储存过程中容易降解,因此需要采用封装技术改善其稳定性,同时维持其活性。乳液具备稳定性好、多功能等特点,具有封装和保护植物多酚的潜力。本文首先分析了植物多酚的特性及其应用受限的根本原因,进一步论述了不同类型乳液(普通乳液、微乳液、纳米乳液、Pickering乳液、多层乳液和乳液凝胶等)对多酚的封装效果,最后总结了多酚乳液封装体系在肉类、果蔬、冰淇淋、烘焙和饮料等食品工业中的应用现状,并对多酚乳液未来的制备方向及其在食品领域中的发展方向进行了展望。该文能为植物多酚乳液封装体系在未来食品工业中的应用提供一定参考。
    Abstract: Plant polyphenols are a class of plant secondary metabolites containing several phenolic hydroxyl groups in their molecular structure, which have physiological properties such as anti-inflammatory, anticancer, antibacterial, etc., and can be used as excellent dietary supplements. However, some of the polyphenols are poorly stabilized, and they are prone to degradation during food production, processing, and storage, so it is necessary to use encapsulation technology to improve their stability and maintain their activity at the same time. The emulsion possesses the characteristics of stability and versatility with the potential to encapsulate and protect plant polyphenols. This paper firstly analyzes the properties of plant polyphenols and the underlying reasons for their limited applications, further discusses the encapsulation effect of different types of emulsions (normal emulsion, microemulsion, nanoemulsion, Pickering emulsion, multilayer emulsion and emulsion gel, etc.) on polyphenols, and finally summarizes the current status of polyphenol emulsion encapsulation systems in the food industry such as meat, fruits and vegetables, ice cream, bakery, and beverage, etc., and provides an overview of polyphenol emulsions in the future preparation direction and its development direction in the food field. This paper can provide some reference for the application of plant polyphenol emulsion encapsulation system in the future food industry.
  • 植物多酚是一类分子结构中含有若干个酚羟基的植物次生代谢产物,普遍存在于蔬菜、瓜果、豆类、茶等植物中,主要分布在植物的皮、根、叶、壳和种子中[1]。多酚化合物的特征在于苯环上至少带有一个或多个羟基。根据其碳骨架的结构可以分为黄酮、酚酸、芪类和木酚素[2]。植物多酚具有抗氧化性、抗癌性、抗炎性、抑菌性等特性[34],已被证实对糖尿病、心血管疾病、炎症、阿尔茨海默症、癌症等人类疾病具有重要的预防作用[56]。随着社会经济的发展和人们健康意识的提高,植物多酚潜在的健康功效被不断挖掘,多酚的高效利用已成为食品科学及其相关领域的研究热点之一。

    植物多酚具有水溶性差的特点,且部分多酚对氧气、温度、光等条件敏感易降解,稳定性较差,这导致多酚的生物利用度较低,极大限制了多酚在食品工业中的应用[7]。目前针对该问题的研究聚焦于植物多酚封装制剂的设计,如通过脂质体、静电纺丝、电喷雾和乳液包封方式等,其中乳液封装体系可改善多酚溶解度、稳定性、生物利用度等,有效保护酚类物质免受外界环境的影响[8]。同时,乳液封装体系可以将多酚物质缓慢释放,延长其作用时间,提高其生物可及性。Wang等[9]利用乳清蛋白和透明质酸生产负载槲皮素的乳液凝胶,与单独使用槲皮素(21.26%)相比,乳清蛋白-透明质酸乳液凝胶具有更高的生物可及性(55.01%)。随着乳液封装体系研究的推进,乳液的配方与性质被不断优化,其封装的多酚种类亦越来越多。为了对植物多酚封装体系进行系统性概括和深入分析,本文从植物多酚生理活性和目前其应用受限的原因着手,进一步论述了植物多酚在不同类型乳液封装效果,总结了多酚乳液封装体系在食品工业中的应用现状,旨在为植物多酚乳液封装体系在未来食品工业中的应用提供一定理论参考。

    植物多酚是一类具有多元酚化学结构物质的总称,是常见的植物源生物活性物质,广泛存在于水果、茶、咖啡等食品中。目前已分离鉴定的酚类化合物超过8000种,主要来源于莽草酸和苯丙氨酸代谢途径[10]。据多酚分子量和化学结构的差异,将其分为两大类。一类是多酚的单体,即非聚合物,包括各种黄酮类化合物(包括黄酮、异黄酮、黄酮醇、黄烷酮、黄烷醇、黄烷酮醇、花色素苷等)、绿原酸类、没食子酸和鞣花酸,也包括一些接有糖苷基的复合类多酚化合物(如芸香苷等)。另一类则是由单体聚合而成的低聚或多聚体,统称单宁类物质,包括缩合型单宁中的原花色素和水解型单宁中的没食子单宁和鞣花单宁等[11]。植物多酚的主要来源及性质见表1

    表  1  代表性的植物多酚及其来源和性质
    Table  1.  Representative plant polyphenols and their sources and properties
    类型名称来源性质参考文献
    黄酮芹菜素、木犀草素水果、蔬菜天然色素;对氧气和pH敏感;糖苷配基微溶于水,糖苷可溶于水[12]
    黄酮醇杨梅素、槲皮素水果、蔬菜对氧气,光和pH敏感;苷元微溶于水,糖苷可溶于水[13]
    儿茶素儿茶素、表儿茶素茶叶对氧气、光和pH敏感;具有涩味和苦味;微溶于水[14]
    花青素天竺葵素、芍药花青素、花青色素、锦葵色素水果、鲜花天然色素;对温度、氧气、pH和光照高度敏感;易溶于水[15]
    丹宁(原花青素)原花青素、五没食子酰葡萄糖、栗木素茶、浆果、巧克力对高温和氧气敏感;又涩又苦;可溶于水[16]
    异黄酮大豆异黄酮、染料木素大豆、花生对pH敏感;涩味和苦味;大豆气味;溶于水;苷元难溶于水[17]
    黄烷酮类橙皮素、橙皮苷、柚皮苷、柚皮素柑橘类对氧气、光和pH敏感;苷元不溶于水,糖苷可溶于水[18]
    羟基苯甲酸没食子酸、对羟基苯甲酸、香草酸浆果、茶、小麦对温度、氧气、pH和光照敏感;易溶于水[19]
    羟基肉桂酸咖啡酸、肉桂酸、对香豆酸水果、谷物对氧气和pH敏感;易溶于水[20]
    下载: 导出CSV 
    | 显示表格

    植物多酚活性成分的保持是其能否发挥作用的关键。多酚化合物在食品加工和储存及食用过程中,很容易受温度、氧气、光照、pH和酶等外部因素影响,发生结构变化或降解,限制了植物多酚的应用。体外条件下:虾青素是天然抗氧化性最强的类胡萝卜素之一,但其具有低水溶性和对热、光不稳定的特点,虾青素溶液在4 ℃条件下储存三周后虾青素含量减少约40%,这极大限制了虾青素的广泛应用[21]。白藜芦醇具有优异的生物功能活性,但其稳定的反式结构在光照和高温条件下会转换成不稳定的顺式结构从而失活[22]。儿茶素具有苦涩、水溶性和稳定性较差,在功能食品或者药品中直接添加是一个较大的挑战[23]。此外,植物多酚在酸碱环境和酶的作用下,极易发生降解使其功能活性丧失。体内条件下:食品或药品中的多酚化合物经口摄入后,在经过口腔、胃、肠三个阶段进行消化后通过肠壁吸收[24]。口腔消化阶段:口腔中的唾液淀粉酶会与多酚发生相互作用,使多酚化合物发生酶促水解,形成不溶性聚集体导致多酚的损失。有研究发现,在口腔环境(pH6.6~7.1)作用下,葡萄多酚提取物如表儿茶素和儿茶素等被完全降解[25]。Xuan等[26]研究发现植物多酚在唾液淀粉酶作用下会使石榴酒中的酚类化合物发生沉淀,无法被机体消化利用。胃消化阶段:由于胃中较低的pH,多酚进入胃中会保持较高的稳定性。Herrera-Balandrano等[27]模拟胃肠消化研究中检测蓝莓中花青素含量与未经消化样品中花青素含量相比仅损失了0.05%。Ordoñez-Díaz等[28]研究芒果果肉多酚在模拟胃肠消化过程中总酚含量由未消化的8.2 mmol/g DW降至6.07 mmol/g DW。肠消化阶段:一些植物多酚,如花青素、酚酸、儿茶素、槲皮素、白藜芦醇、芦丁等,已被发现在含有胰酶的模拟肠液环境(pH6.8~8.0)中不稳定,在多项研究发现,植物多酚在模拟肠消化过程中会降解。Liang等[29]研究发现,经肠道消化后,苦瓜中的花色苷由黄色素阳离子转化为无色查尔酮假碱,使总花青素含量明显下降。Celep等[30]研究发现在肠液环境作用下,酚类化合物的水解使土耳其果酒总酚含量降低。

    虽然多酚功效诸多,对人体大有益处,然而由于大部分多酚水溶性差、稳定性差、生物利用度低且有苦涩味等,使得可以真正在食品行业广泛应用的多酚种类和应用形式十分有限。因此,植物多酚在加工、贮存和摄入后保持较高的稳定性和利用度是突破应用瓶颈的当务之急。目前,乳液封装体系已被广泛构建和研究,有望成为解决上述问题的有效手段。

    由于每种多酚具有不同的特性,因此没有一种封装技术是通用的。目前已经开发了多种应用于酚类化合物封装的技术,其中乳液可以保持亲脂性、亲水性和两亲性生物活性分子的稳定性,可以灵活控制和调整包埋活性物质产生的微粒大小,且具有成本低、产率高的优点。多酚的乳液封装常见有水包油(O/W)和油包水(W/O)两种乳液形式。为了提高植物多酚在食品工业中的应用效果,可以采用不同类型的乳液对植物多酚进行包封处理(表2)。乳液体系根据不同类别可分为普通乳液、微乳液、纳米乳液、Pickering乳液、多层乳液和乳液凝胶(图1)。

    表  2  不同类型的乳液封装技术对比
    Table  2.  Comparison of different emulsion encapsulation techniques
    乳液类型 原理 效果 参考文献
    普通乳液 利用表面活性剂的乳化作用,将活性成分封装在水相或
    油相中,形成稳定的乳液结构
    具有较好的稳定性和生物相容性,但是液滴尺寸较大,可能会影响活性成分的吸收和生物利用度 [31]
    微乳液 利用表面活性剂的的作用形成比普通乳液更小的液滴
    和更大的表面积,提高活性成分的稳定性
    具有更高的比表面积和更好的生物利用度,可以进一步提高活性成分的稳定性和吸收性
    [34]
    纳米乳液 通过高压均质等技术,使液滴尺寸进一步减小,从而
    提高活性成分的稳定性和吸收性
    提高比表面积和生物利用度能够增加活性成分与周围环境的接触面积,从而提高活性成分的稳定性和吸收性 [37]
    Pickering乳液 采用固体颗粒作为乳化剂,形成更稳定的乳液结构,
    实现高效活性成分封装
    具有良好的稳定性和较高的乳化效率,可以实现高效的活性成分封装和控制释放 [47]
    多重乳液 由多个液相构成的胶体系统,每个液相都含有不同的活性成分,通过超声波法或热循环法等技术,将不同液相分别混合,形成多重乳液结构,实现多种活性成分的同时封装 同时封装多种活性成分,实现多效合一的效果 [53]
    乳液凝胶 将凝胶剂分散在乳液中,通过凝胶剂的作用使乳液形成凝胶状,方便使用和贮存 提高活性成分的贮存稳定性和使用方便性 [56]
    下载: 导出CSV 
    | 显示表格
    图  1  不同类型的乳液
    注:A微乳液;B纳米乳液;C Pickering乳液;D多重乳液;E乳液凝胶。
    Figure  1.  Different types of emulsion

    普通乳液是将一种或多种物质通过表面活性剂以液滴的形式分散于另一种与之不溶的液体中而形成的分散体系[31]。在普通乳液中,油滴和水滴分别被包覆在表面活性剂分子形成的界面层中,粒径在0.1~100 μm之间,其界面层具有高度的表面活性和稳定性,并且会受到界面层厚度和表面活性剂分子的排列和吸附方式的影响。Tian等[32]将茶多酚嵌入黄原胶和刺槐豆胶后制成油包水(W/O)乳液,30 d后茶多酚的保留率仍超过70%,大大提高了茶多酚的稳定性。还有用大豆分离蛋白、黄原胶、茶多酚三者复合后制备乳液,得到的乳液粒径比多酚单体更小,提高了多酚在机体的吸收利用率[33]

    微乳液是将分散相通过表面活性剂和助表面活性剂均匀分散在另一种与之不溶的液体内形成的热力学稳定体系[34]。微乳液由表面活性剂和助表面活性剂共同稳定,具有高度的表面活性和稳定性,能够有效地提高物质的反应速率和选择性,因此在反应工艺中具有重要的应用前景。此外,微乳液还具有很好的渗透性和生物相容性,可以作为一种有效的药物传递系统,用于药物输送和治疗。Nazareth等[35]利用假虎刺果实浓缩液制备微乳液和纳米乳液,研究发现两种乳液在1200 mg/mL时会抑制李斯特菌的生长,但相同浓度的游离提取物未表现出抑菌效果,这是由于乳液封装进一步降低了多酚化合物的粒径并改变周围界面,提高了多酚化合物的生物活性,同时使其可以穿透细菌细胞壁抑制酰基高丝氨酸内酯生成从而抑制细菌生物膜形成。Fregapane等[36]从核桃和开心果中提取了酚类化合物并制备微乳液,最终使得两种提取物乳液抗氧化能力与不添加酚类化合物的微乳液相比分别提高了7.5倍和1.5倍,氧化稳定性也高出数倍。

    纳米乳液是含有分散在水性介质中的小颗粒(直径通常约10~200 nm)的油滴的胶体分散体。与透明或半透明且热力学稳定的微乳液不同,纳米乳液具有动力学稳定性[37]。纳米乳液由纳米范围大小的液滴构成,纳米乳液粒径通常在1~100 nm之间。与传统乳液相比,它们具有许多潜在的优势,包括亲水性和疏水性化合物的递送、更高的稳定性、更好的抗菌性能、改善组分的生物利用度和溶解性[38]。Choi等[39]制备纳米乳液包封姜黄素,在模拟消化过程中姜黄素回收率提高了40%,说明高度亲脂性和不稳定化合物的纳米包封可以增加其亲水性和生物可及性。低水溶性易降解的生物活性化合物,如白藜芦醇,封装到纳米乳液递送系统中,可提高其稳定性和生物利用度[40]。使用乳清分离蛋白和聚合乳清蛋白制备乳液封装虾青素,其包封率分别达到92.1%和93.5%[41]。Sessa等[42]开发了一种基于卵磷脂包封白藜芦醇的纳米乳液递送体系,与白藜芦醇单体相比,纳米乳液中白藜芦醇通过细胞膜的时间缩短1倍,并且提高其对抗外部环境的抵御能力。白藜芦醇纳米乳液的自由基清除率也由单体的70%增加至83%,更好地发挥了其抗氧化能力[43]。鞣花酸是石榴中的主要生物活性成分,Wang等[44]将鞣花酸包封在纳米乳液中,与鞣花酸水悬浮液和石榴提取物相比,乳液中鞣花酸的保留率提高了6.6和3.2倍。Li等[45]使用乳铁蛋白和乳清蛋白包埋叶黄素制备纳米乳液,隔绝自由基和过渡金属与叶黄素接触,在增加其稳定性的同时双多酚的乳液封装起到了防止油脂氧化,传递活性物质的作用。Yin等[46]将表没食子儿茶素没食子酸酯(EGCG)和白藜芦醇共同包封在以鱼油作为油相的水包油型乳液中,封装后白藜芦醇和EGCG的乳液在23 d内对鱼油的抗氧化保护作用与单独使用EGCG相似,但23 d后乳液的抗氧化能力要优于单独使用白藜芦醇和EGCG。

    Pickering乳液是由固体颗粒吸附在水油界面上形成的乳液体系,胶体颗粒吸附在油水界面形成不可逆的物理屏障,可以有效地阻止界面间的相互作用和液滴的接触,防止了重力分离、絮凝、颗粒聚结、奥氏熟化(Ostwald ripening)等对Pickering乳液不利的热力学不稳定现象,具有较好的包埋、保护和递送活性物质的潜力。Su等[47]使用β-乳球蛋白与表没食子儿茶素没食子酸酯通过氢键和疏水相互作用制备稳定的Pickering乳液,储存30 d后,没食子儿茶素没食子酸酯的保留率达87.2%。Zembyla等[48]将姜黄素和槲皮素封装在乳清蛋白中并制备Pickering乳液,与游离多酚化合物制备的Pickering乳液相比,共封装多酚的Pickering乳液的稳定性显著提高。Hao等[49]采用反溶剂法制备白藜芦醇-玉米醇溶蛋白-果胶三元复合颗粒并以此制备Pickering乳液,该乳液可以较好的递送白藜芦醇。Ge等[50]选用玉米醇溶蛋白包封红豆种皮多酚并制备了负载虾青素的Pickering乳液。该乳液具有较好的理化稳定性,并显著提高了虾青素的递送效率。Zhang等[51]研究发现姜黄素经玉米醇溶蛋白和桃胶多糖包封后制备Pickering乳液,该乳液在模拟消化实验中,姜黄素在肠液中的释放率可以提高到32.5%。

    多重乳液是由两层及两层以上的表面活性剂通过静电相互作用稳定的乳液体系。通过层层自组装(layer-by-layer,LBL)的方法,多重乳液可以利用带相反电荷的聚电解质吸附到初级乳液表面上,形成带有多重电荷的乳液结构[52]。与普通乳液相比,多层乳液稳定性更强,包封率更高,还可同时包封亲疏性不同的物质。Sanna等[53]利用壳聚糖和聚(D,L-乳酸-乙醇酸)包封白藜芦醇制备W/O/W多重乳液,在模拟胃肠道环境下多重乳液在两小时内白藜芦醇释放率仅为40%,而仅使用聚(D,L-乳酸-乙醇酸)的乳液白藜芦醇释放率达70%。Tian等[54]通过在内层水相中添加黄原胶和刺槐豆胶包封的茶多酚混合物来改善W/O/W乳液的稳定性,研究结果表明封装多酚不仅提高茶多酚抗氧化能力,还增加了乳液的稳定性。Estévez等[55]将酪蛋白酸钠和多糖、羧甲基纤维素组成的静电复合物,用该复合物制备W/O/W多重乳液对葡萄籽提取物中多酚进行封装,结果表明多重乳液封装可以影响多酚释放速率。

    乳液凝胶是通过对普通乳液进行加热、酸、酶等处理或加入促进乳液中生物聚合物(如蛋白质和多糖)制备而成[56]。研究发现,通过添加明胶制备的丁香酚乳液凝胶微胶囊,由于明胶和丁香酚相互作用使乳液凝胶的凝胶强度明显增强,也达到对丁香酚控制释放的目的,延长其抑菌时间。Farooq等[57]采用儿茶素、咖啡酸、绿原酸和单宁酸与山茶油制备乳液凝胶,研究结果表明多酚和山茶油乳液之间形成了共价交联,改善了乳液的结构和流变特性,减缓了蛋白质基质的分解和游离脂肪酸的释放。Xu等[58]制备了大豆蛋白与阿魏酸共价改性的乳液凝胶,改性后的乳液凝胶内部更加致密均匀,油滴能够更好地嵌入凝胶的网络结构中,形成更稳定的凝胶结构,与阿魏酸的共价结合更加紧密,提高其稳定性。

    研究发现,利用壳聚糖先对丁香酚进行包封再制备壳聚糖-丁香酚乳液,该乳液可作为冰鲜带鱼的涂膜保鲜剂,其能够控释丁香酚,提高其抑菌性能、热稳定性和抗氧化性,还能对冰鲜带鱼起到延缓腐败、防止带鱼蛋白质冷藏变形[59]。Hernández-Ernández等[60]利用改性淀粉墨西哥牛至提取物进行包封再制备纳米乳液,该乳液可作为新鲜猪肉的涂膜保鲜剂,与游离提取物相比,纳米乳液具有更强的抑菌、护色、抗氧化和防干耗能力。Wang等[61]研究肉桂精油纳米乳液对冷藏鸡胸肉的影响,结果表明鸡胸肉在4 ℃下存放15 d时,与对照样品(活菌数8.50 lg CFU/g)相比,乳液处理的鸡胸肉总活菌数减少了1.00~3.95 lg CFU/g,有效改善了冷藏鸡肉的质量属性(如色泽、脂肪氧化和总挥发性盐基氮含量)。Wan等[62]利用丁香酚与明胶之间的疏水相互作用制备热可逆的乳液凝胶并应用于肉制品的保鲜,该乳液凝胶能有效控制多酚在肉制品表面的释放,从而显著抑制微生物的生长和肉的失重,延长其货架期3 d以上。

    研究发现,包封肉桂精油乳液体系对芒果和苹果汁具有保鲜作用,该乳液可通过抑制多酚氧化酶活性提高果汁稳定性,延缓芒果和苹果汁的酶促褐变、细胞壁降解和营养物质损失,从而延长其货架期[63]。石俊杰[64]制备O/W百里香精油微乳液体系并应用于枇杷保鲜,微乳液体系不仅克服了百里香精油中百里香酚不稳定、水溶性差的缺点,也提高了精油中多酚的抗氧化和抑菌等性能,可延长枇杷贮藏期至40 d。

    Kumar等[65]使用酪蛋白酸钠封装姜黄素制备纳米乳液并将其用于改善冰淇淋的品质,释放动力学结果表明添加乳液的冰淇淋中姜黄素在胃液中释放率为5.25%,在肠道中释放率为16.12%,达到了缓释的目的。Borrin等[66]通过乳液转化法将姜黄素包封在乳液体系并应用于菠萝冰淇淋,改变了冰淇淋流变特性,增加了其可塑性和粘性,同时赋予其诱人的色泽和风味。

    研究发现,通过将杨梅叶原花青素与明胶组装结合后制备的油凝胶可取代人造黄油,与添加人造黄油的海绵蛋糕和饼干相比,油凝胶显著提高了烘焙产品的质构特性和感官特性,减缓了烘焙产品中油脂氧化和高温有害产物的产生,同时减少反式脂肪酸和饱和脂肪酸的摄入[67]。吴晓龄[68]以茶多酚脂肪酸酯复合果胶构建油凝胶,油凝胶制作的饼干扩展比均低于普通饼干(黄油饼干和山茶油饼干),其感官评价和质构特性均明显提高,同时延缓饼干食用后的血糖升高速率。

    研究发现,通过玉米醇溶蛋白包封虾青素并将其加入到白酒、苹果醋、米醋,不仅改善了虾青素的紫外光和储存稳定性,而且提高了白酒、苹果醋、米醋的总抗氧化和自由基清除活性[69]。Liu等[70]使用乳液包封多种植物多酚,并研究其对核桃乳饮料品质的影响,结果表明,茶多酚可提高乳饮料在62±1 ℃热贮存过程中的物理稳定性,而添加斛皮苷的结果相反,且茶多酚可以抑制核桃乳饮料在热、紫外光照射下的脂肪氧化。Di-Maio等[71]使用纳米乳液包封嘉宝果多酚粗提物并将纳米乳液加入牛奶中,当粗提物添加量为15%时,多酚的包封率可达85.6%,不仅延缓了牛奶中脂肪的氧化,而且可以使其在8 ℃下保存60 d。Ruengdech等[72]制备儿茶素纳米乳液并加入到椰奶中,与未包封的儿茶素相比,添加儿茶素纳米乳液的椰奶中的儿茶素抗氧化活性更强,且延长了椰奶的保质期。

    乳液封装多酚体系还被应用于沙拉酱、鲜切蔬菜、糖果等食品。Jolayemi等[73]通过乳液包封橄榄叶多酚并应用于沙拉酱中,改善了沙拉酱的流变特性,使乳液内部液滴尺寸分布更加均匀,沙拉酱中油脂氧化诱导期从15~20 d延长至50 d,多酚的缓慢释放达到了延缓氧化的目的。Ai等[74]采用酪蛋白酸钠和阿拉伯树胶制备牛至精油-白藜芦醇乳液并将其用于鲜切卷心菜的涂膜保鲜,涂膜1 d后卷心菜中金黄色葡萄球菌含量从3.24 log CFU/g降至1.49~2.19 CFU/g,牛至精油-白藜芦醇乳液在15 ℃储存下,对金黄色葡萄球菌的抑制作用可达20 d。Pan等[75]采用茶多酚棕榈酸酯和黄原胶制备负载叶黄素乳液并将乳液用于软糖制作,添加叶黄素乳液的软糖的自由基清除率达135.66%。

    乳液由于可有效提高多酚类化合物的稳定性和生物利用度,已广泛应用于食品、医药、化妆品等领域,然而其封装技术还存在一些不足之处,限制了在食品工业中的广泛应用:a.植物多酚乳液封装技术需要使用乳化剂、稳定剂等辅料,部分乳化剂和添加剂大量使用对人体健康和环境的影响尚不明确,需要研究如何降低乳化过程中乳化剂、稳定剂添加量;b.高能乳化法需要特定仪器且需消耗较多能量,生产成本较高,不利于大规模工业化生产,可针对低能乳化法开展系统研究,提高其稳定性,实现部分替代高能法;c.植物多酚乳液在生产和应用过程易受到氧化、光、热等因素影响,需要进一步优化封装体系,可考虑采用天然大分子复合材料共同构建植物多酚封装体系或联合其他先进技术,形成更加高效、稳定的封装体系,以满足不同应用目标的要求。

    目前,乳液封装多酚体系在食品领域的应用多集中于提高产品的储存稳定性、抑菌性能及抗氧化性,而对于其健康作用缺乏关注:a.封装体系虽能一定程度上提高植物多酚的稳定性,但被包埋的植物多酚在生物体内消化吸收代谢情况尚不明确,多酚生物利用度研究相对不足,限制了其在机体内发挥健康效应,构建靶向递送和吸收的多酚乳液体系可大大提高植物多酚的生物利用率;b.多酚乳液体系进入人体内消化道时可能引起胃肠道初始功能的变化,未来用于功能性食品开发和营养素递送时,需开展毒理学试验评估其对人体健康的影响。多酚封装体系全材料的安全、健康、天然更符合消费者对健康的追求。

  • 图  1   不同类型的乳液

    注:A微乳液;B纳米乳液;C Pickering乳液;D多重乳液;E乳液凝胶。

    Figure  1.   Different types of emulsion

    表  1   代表性的植物多酚及其来源和性质

    Table  1   Representative plant polyphenols and their sources and properties

    类型名称来源性质参考文献
    黄酮芹菜素、木犀草素水果、蔬菜天然色素;对氧气和pH敏感;糖苷配基微溶于水,糖苷可溶于水[12]
    黄酮醇杨梅素、槲皮素水果、蔬菜对氧气,光和pH敏感;苷元微溶于水,糖苷可溶于水[13]
    儿茶素儿茶素、表儿茶素茶叶对氧气、光和pH敏感;具有涩味和苦味;微溶于水[14]
    花青素天竺葵素、芍药花青素、花青色素、锦葵色素水果、鲜花天然色素;对温度、氧气、pH和光照高度敏感;易溶于水[15]
    丹宁(原花青素)原花青素、五没食子酰葡萄糖、栗木素茶、浆果、巧克力对高温和氧气敏感;又涩又苦;可溶于水[16]
    异黄酮大豆异黄酮、染料木素大豆、花生对pH敏感;涩味和苦味;大豆气味;溶于水;苷元难溶于水[17]
    黄烷酮类橙皮素、橙皮苷、柚皮苷、柚皮素柑橘类对氧气、光和pH敏感;苷元不溶于水,糖苷可溶于水[18]
    羟基苯甲酸没食子酸、对羟基苯甲酸、香草酸浆果、茶、小麦对温度、氧气、pH和光照敏感;易溶于水[19]
    羟基肉桂酸咖啡酸、肉桂酸、对香豆酸水果、谷物对氧气和pH敏感;易溶于水[20]
    下载: 导出CSV

    表  2   不同类型的乳液封装技术对比

    Table  2   Comparison of different emulsion encapsulation techniques

    乳液类型 原理 效果 参考文献
    普通乳液 利用表面活性剂的乳化作用,将活性成分封装在水相或
    油相中,形成稳定的乳液结构
    具有较好的稳定性和生物相容性,但是液滴尺寸较大,可能会影响活性成分的吸收和生物利用度 [31]
    微乳液 利用表面活性剂的的作用形成比普通乳液更小的液滴
    和更大的表面积,提高活性成分的稳定性
    具有更高的比表面积和更好的生物利用度,可以进一步提高活性成分的稳定性和吸收性
    [34]
    纳米乳液 通过高压均质等技术,使液滴尺寸进一步减小,从而
    提高活性成分的稳定性和吸收性
    提高比表面积和生物利用度能够增加活性成分与周围环境的接触面积,从而提高活性成分的稳定性和吸收性 [37]
    Pickering乳液 采用固体颗粒作为乳化剂,形成更稳定的乳液结构,
    实现高效活性成分封装
    具有良好的稳定性和较高的乳化效率,可以实现高效的活性成分封装和控制释放 [47]
    多重乳液 由多个液相构成的胶体系统,每个液相都含有不同的活性成分,通过超声波法或热循环法等技术,将不同液相分别混合,形成多重乳液结构,实现多种活性成分的同时封装 同时封装多种活性成分,实现多效合一的效果 [53]
    乳液凝胶 将凝胶剂分散在乳液中,通过凝胶剂的作用使乳液形成凝胶状,方便使用和贮存 提高活性成分的贮存稳定性和使用方便性 [56]
    下载: 导出CSV
  • [1] 张露潆, 赵健, 兰欢, 等. 植物多酚类化合物与肠道通透性相关研究进展[J]. 胃肠病学和肝病学杂志, 2019, 28(12):1421−1424. [ZHANG L Y, ZHAO J, LAN H, et al. Research progress of plant polyphenols and intestinal permeability[J]. Chinese Journal of Gastroenterology and Hepatology, 2019, 28(12):1421−1424.]

    ZHANG L Y, ZHAO J, LAN H, et al. Research progress of plant polyphenols and intestinal permeability[J]. Chinese Journal of Gastroenterology and Hepatology, 2019, 28(12): 1421−1424.

    [2]

    LUND M N. Reactions of plant polyphenols in foods:Impact of molecular structure[J]. Trends in Food Science & Technology,2021,112:241−251.

    [3]

    DING S, XU S, FANG J, et al. The protective effect of polyphenols for colorectal cancer[J]. Frontiers in Immunology,2020,11:1407. doi: 10.3389/fimmu.2020.01407

    [4]

    SOBHANI M, FARZAEI M H, KIANI S, et al. Immunomodulatory; anti-inflammatory/antioxidant effects of polyphenols:A comparative review on the parental compounds and their metabolites[J]. Food Reviews International,2020,37(8):759−811.

    [5]

    TUNGMUNNITHUM D, THONGBOONYOU A, PHOLBOON A, et al. Flavonoids and other phenolic compounds from medicinal plants for pharmaceutical and medical aspects:An overview[J]. Medicines,2018,5(3):93. doi: 10.3390/medicines5030093

    [6]

    GORZYNIK-DEBICKA M, PRZYCHODZEN P, CAPPELLO F, et al. Potential health benefits of olive oil and plant polyphenols[J]. International Journal of Molecular Sciences,2018,19(3):686. doi: 10.3390/ijms19030686

    [7] 王萍萍. 基于直链淀粉螺旋结构功能因子输送体系的构建及其性质研究[D]. 广州:华南理工大学, 2023. [[WANG P P. Construction and properties of functional factor transport system based on amylose spiral structure[D]. Guangzhou:South China University of Technology, 2023.]

    [WANG P P. Construction and properties of functional factor transport system based on amylose spiral structure[D]. Guangzhou: South China University of Technology, 2023.

    [8] 王枭. 沙棘叶中酚类物质的提取、包封及应用研究[D]. 西安:西北大学, 2021. [[WANG X. Study on extraction, encapsulation and application of phenols from seabuckthorn leaves [D]. Xi'an:Northwestern university, 2021.]

    [WANG X. Study on extraction, encapsulation and application of phenols from seabuckthorn leaves [D]. Xi'an: Northwestern university, 2021.

    [9]

    WANG N, ZHANG K, CHEN Y, et al. Tuning whey protein isolate hyaluronic acid emulsion gel structure to enhance quercetin bioaccessibility and in vitro digestive characteristics[J]. Food Chemistry,2023,429:136910. doi: 10.1016/j.foodchem.2023.136910

    [10] 金斐, 朱丽云, 高永生, 等. 植物源活性成分降血糖作用及其机理研究进展[J]. 食品科学,2021,42(21):322−330. [[JIN F, ZHU L Y, GAO Y S, et al. Research progress on hypoglycemic effect and mechanism of plant derived active ingredients[J]. Food Science,2021,42(21):322−330.] doi: 10.7506/spkx1002-6630-20200926-327

    [JIN F, ZHU L Y, GAO Y S, et al. Research progress on hypoglycemic effect and mechanism of plant derived active ingredients[J]. Food Science, 2021, 4221): 322330. doi: 10.7506/spkx1002-6630-20200926-327

    [11] 伊娟娟, 王振宇, 曲航, 等. 植物多酚抗肿瘤活性及其机制研究进展[J]. 食品工业科技,2016,37(18):391−395. [[YI J J, WANG Z Y, QU H, et al. Research progress on antitumor activity and mechanism of plant polyphenols[J]. Food Industry Science and Technology,2016,37(18):391−395.]

    [YI J J, WANG Z Y, QU H, et al. Research progress on antitumor activity and mechanism of plant polyphenols[J]. Food Industry Science and Technology, 2016, 3718): 391395.

    [12]

    LI Y, YANG B, BAI J Y, et al. The roles of synovial hyperplasia, angiogenesis and osteoclastogenesis in the protective effect of apigenin on collagen-induced arthritis[J]. International Immunopharmacol,2019,73:362−369. doi: 10.1016/j.intimp.2019.05.024

    [13]

    ZHAN Z Y, WU M, SHANG Y, et al. Taxifolin ameliorate high-fat-diet feeding plus acute ethanol binge-induced steatohepatitis through inhibiting inflammatory caspase-1-dependent pyroptosis[J]. Food Function,2021,12(1):362−372. doi: 10.1039/D0FO02653K

    [14]

    LIU J, LU J F, KAN J, et al. Synthesis, characterization and in vitro anti-diabetic activity of catechin grafted inulin[J]. International Journal of Biological Macromolecules,2014,64:76−83. doi: 10.1016/j.ijbiomac.2013.11.028

    [15]

    SHI J, YU J, POHORLY J E, et al. Polyphenolics in grape seeds-biochemistry and functionality[J]. Journal of Medicinal Food,2002,6(4):291−299.

    [16] 李紫微, 曹庸, 苗建银. 大豆异黄酮及其苷元的研究进展[J]. 食品工业科技,2019,40(20):348−355. [LI Z W, CAO Y, MIAO J Y. Research progress of bean isoflavone and its aglycones[J]. Science and Technology of Food Industry,2019,40(20):348−355.]

    LI Z W, CAO Y, MIAO J Y. Research progress of bean isoflavone and its aglycones[J]. Science and Technology of Food Industry, 2019, 4020): 348355.

    [17]

    RANI N, BHARTI S, KRISHNAMURTHY B, et al. Pharmacological properties and therapeutic potential of naringenin:A citrus flavonoid of pharmaceutical promise[J]. Current Pharmaceutical Design,2016,22(28):4341−4359. doi: 10.2174/1381612822666160530150936

    [18]

    YI F, WU K, YU G, et al. Preparation of Pickering emulsion based on soy protein isolate-gallic acid with outstanding antioxidation and antimicrobial[J]. Colloids and Surfaces B:Biointerfaces,2021,206:111954. doi: 10.1016/j.colsurfb.2021.111954

    [19]

    ALONSO-RIAO P, SANZ M T, BENITO-ROMÁN O, et al. Subcritical water as hydrolytic medium to recover and fractionate the protein fraction and phenolic compounds from craft brewer's spent grain[J]. Food Chemistry,2021(1):129264.

    [20]

    ZHANG X, YIN W, QI Y, et al. Microencapsulation of astaxanthin in alginate using modified emulsion technology:Preparation, characterization, and cytostatic activity[J]. Canadian Journal of Chemical Engineering,2017,95(3):412−419. doi: 10.1002/cjce.22712

    [21]

    BUOSI F, ALAIMO A, DI SANTO M, et al. Resveratrol encapsulation in high molecular weight chitosan-based nanogels for applications in ocular treatments:Impact on human ARPE-19 culture cells[J]. International Journal of Biological Macromolecules,2020,165:804−821. doi: 10.1016/j.ijbiomac.2020.09.234

    [22] 史先敏, 严泽民, 谢静红, 等. 白藜芦醇的光稳定性和热稳定性研究[J]. 日用化学工业,2011,41(3):204−207. [SHI X M, YAN Z M, XIE J H, et al. Study on photostability and thermal stability of resveratrol[J]. China Surfactant Detergent & Cosmetics,2011,41(3):204−207.]

    SHI X M, YAN Z M, XIE J H, et al. Study on photostability and thermal stability of resveratrol[J]. China Surfactant Detergent & Cosmetics, 2011, 413): 204207.

    [23]

    HARA Y. Tea catechins and their applications as supplements and pharmaceutics[J]. Pharmacological Research,2011,64(2):100−104. doi: 10.1016/j.phrs.2011.03.018

    [24]

    TENORE G C, CAMPIGLIA P, GIANNETTI D, et al. Simulated gastrointestinal digestion, intestinal permeation and plasma protein interaction of white, green, and black tea polyphenols[J]. Food Chemistry,2015,169:320−326. doi: 10.1016/j.foodchem.2014.08.006

    [25]

    SANZ-BUENHOMBRE M, VILLANUEVA S, MORO C, et al. Bioavailability and the mechanism of action of a grape extract rich in polyphenols in cholesterol homeostasis[J]. Journal of Functional Foods,2016,21:178−185. doi: 10.1016/j.jff.2015.11.044

    [26]

    XUAN L, LINWEI L, WASILA H, et al. Variation of polyphenols composition and bioactivities of pomegranate wines along in vitro digestion process[J]. Journal of Food & Nutrition Research,2014,2(11):839−845.

    [27]

    HERRERA-BALANDRANO D D, WANG J, CHAI Z, et al. Impact of in vitro gastrointestinal digestion on rabbiteye blueberry anthocyanins and their absorption efficiency in Caco-2 cells[J]. Food Bioscience,2023,52:102424. doi: 10.1016/j.fbio.2023.102424

    [28]

    ORDOÑEZ-DÍAZ J L, MORENO-ORTEGA A, ROLDÁN-GUERRA F J, et al. In vitro gastrointestinal digestion and colonic catabolism of mango ( Mangifera indica L. ) pulp polyphenols[J]. Foods,2020,9(12):1836. doi: 10.3390/foods9121836

    [29]

    LIANG L, WU X, ZHAO T, et al. In vitro bioaccessibility and antioxidant activity of anthocyanins from mulberry ( Morus atropurpurea roxb. ) following simulated gastro-intestinal digestion[J]. Food Research International,2012,46(1):76−82. doi: 10.1016/j.foodres.2011.11.024

    [30]

    CELEP E, CHAREHSAZ M, AKYÜZ S, et al. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some turkish fruit wines[J]. Food Research International,2015,78:209−215. doi: 10.1016/j.foodres.2015.10.009

    [31] 孙宏涛, 马燕, 郭洪涛, 等. 乳液体系包埋亚麻籽油研究进展[J]. 食品工业科技,2022,43(24):444−451. [SUN H T, MA Y, GUO H T, et al. Research progress of linseed oil embedding in emulsion system[J]. Science and Technology of Food Industry,2022,43(24):444−451.]

    SUN H T, MA Y, GUO H T, et al. Research progress of linseed oil embedding in emulsion system[J]. Science and Technology of Food Industry, 2022, 4324): 444451.

    [32]

    TIAN W. Using hydrogels in dispersed phase of water-in-oil emulsion for encapsulating tea polyphenols to sustain their release[J]. Colloids and Surfaces, A:Physicochemical and Engineering Aspects, 2021, 612(1):125999.

    [33] 王艳红, 田少君, 张争全, 等. 大豆分离蛋白-黄原胶-茶多酚复合物的制备及其乳液性质表征[J]. 中国油脂,2021,46(4):38−42. [WANG Y H, TIAN S J, ZHANG Z Q, et al. Preparation and characterization of bean protein-xanthan gum-tea polyphenol Complex[J]. China Oils and Fats,2021,46(4):38−42.]

    WANG Y H, TIAN S J, ZHANG Z Q, et al. Preparation and characterization of bean protein-xanthan gum-tea polyphenol Complex[J]. China Oils and Fats, 2021, 464): 3842.

    [34] 杨冠杰, 梁鹏. 微乳液在食品营养与安全领域的研究进展[J]. 食品研究与开发,2020,41(8):210−217. [YANG G J, LIANG P. Research progress of microemulsion in the field of food nutrition and safety[J]. Food Research and Development,2020,41(8):210−217.] doi: 10.12161/j.issn.1005-6521.2020.08.035

    YANG G J, LIANG P. Research progress of microemulsion in the field of food nutrition and safety[J]. Food Research and Development, 2020, 418): 210217. doi: 10.12161/j.issn.1005-6521.2020.08.035

    [35]

    NAZARETH M, SHREELAKSHMI S, RAO P, et al. Micro and nanoemulsions of Carissa spinarum fruit polyphenols, enhances anthocyanin stability and anti-quorum sensing activity:Comparison of degradation kinetics[J]. Food Chemistry,2021,359:129876. doi: 10.1016/j.foodchem.2021.129876

    [36]

    FREGAPANE G, CABEZAS-FERNÁNDEZ C, SALVADOR M D. Emulsion and microemulsion systems to improve functional edible oils enriched with walnut and pistachio phenolic extracts[J]. Foods,2022,11(9):1210. doi: 10.3390/foods11091210

    [37] 陈美妙, 王浩楠, 邱哲瀚, 等. 乳液基递送体系对植源活性物健康效应的影响研究进展[J]. 食品科学,2022,43(13):351−360. [CHEN M M, WANG H N, QIU Z H, et al. Research progress of the effect of liquid based delivery system on the health effects of plant active compounds[J]. Food Science,2022,43(13):351−360.] doi: 10.7506/spkx1002-6630-20210408-106

    CHEN M M, WANG H N, QIU Z H, et al. Research progress of the effect of liquid based delivery system on the health effects of plant active compounds[J]. Food Science, 2022, 4313): 351360. doi: 10.7506/spkx1002-6630-20210408-106

    [38]

    LI G, ZHANG Z, LIU H, et al. Nanoemulsion-based delivery approaches for nutraceuticals:Fabrication, application, characterization, biological fate, potential toxicity and future trends[J]. Food Function,2021,12(5):1933−1953. doi: 10.1039/D0FO02686G

    [39]

    CHOI S J, MCCLEMENTS D J. Nanoemulsions as delivery systems for lipophilic nutraceuticals:Strategies for improving their formulation, stability, functionality and bioavailability[J]. Food Science and Biotechnology,2020,29(1):149−168.

    [40]

    DAVIDOV-PARDO G, MCCLEMENTS D J. Nutraceutical delivery systems:Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification[J]. Food Chemistry,2015,167:205−212. doi: 10.1016/j.foodchem.2014.06.082

    [41]

    SHEN X, ZHAO C, LU J, et al. Physicochemical properties of whey-protein-stabilized astaxanthin nanodispersion and its transport via a caco-2 monolayer[J]. Journal of Agricultural and Food Chemistry,2018,66(6):1472−1478. doi: 10.1021/acs.jafc.7b05284

    [42]

    SESSA M, BALESTRIERI M L, FERRARI G, et al. Bioavailability of encapsulated resveratrol into nanoemulsion-based delivery systems[J]. Food Chemistry,2014,147:42−50. doi: 10.1016/j.foodchem.2013.09.088

    [43]

    SHARMA B, IQBAL B, KUMAR S, et al. Resveratrol-loaded nanoemulsion gel system to ameliorate UV-induced oxidative skin damage:from in vitro to in vivo investigation of antioxidant activity enhancement[J]. Archives of Dermatological Research,2019,311(10):773−793. doi: 10.1007/s00403-019-01964-3

    [44]

    WANG S T, CHOU C T, SU N W. A food-grade self-nanoemulsifying delivery system for enhancing oral bioavailability of ellagic acid[J]. Journal of Functional Foods,2017,34:207−215. doi: 10.1016/j.jff.2017.04.033

    [45]

    LI X, WANG X, XU D, et al. Enhancing physicochemical properties of emulsions by heteroaggregation of oppositely charged lactoferrin coated lutein droplets and whey protein isolate coated DHA droplets[J]. Food Chemistry,2018,239:75−85. doi: 10.1016/j.foodchem.2017.06.078

    [46]

    YIN X, DONG H, CHENG H, et al. Sodium caseinate particles with co-encapsulated resveratrol and epigallocatechin-3-gallate for inhibiting the oxidation of fish oil emulsions[J]. Food Hydrocolloids,2022,124:107308. doi: 10.1016/j.foodhyd.2021.107308

    [47]

    SU J, GUO Q, CHEN Y, et al. Characterization and formation mechanism of lutein pickering emulsion gels stabilized by β-lactoglobulin-gum arabic composite colloidal nanoparticles[J]. Food Hydrocolloids,2020,98:105276. doi: 10.1016/j.foodhyd.2019.105276

    [48]

    ZEMBYLA M, MURRAY B S, SARKAR A. Water-in-oil pickering emulsions stabilized by water-insoluble polyphenol crystals[J]. Langmuir,2018,34(34):10001−10011. doi: 10.1021/acs.langmuir.8b01438

    [49]

    HAO C, MAKA B, ZXA B, et al. A peppermint oil emulsion stabilized by resveratrol-zein-pectin complex particles:Enhancing the chemical stability and antimicrobial activity in combination with the synergistic effect-science direct[J]. Food Hydrocolloids, 103:105675.

    [50]

    GE S, JIA R, LI Q, et al. Pickering emulsion stabilized by Zein/Adzuki bean seed coat polyphenol nanoparticles to enhance the stability and bioaccessibility of astaxanthin[J]. Journal of Functional Foods,2022,88:104867. doi: 10.1016/j.jff.2021.104867

    [51]

    ZHANG R, LI L, MA C, et al. Shape-controlled fabrication of zein and peach gum polysaccharide based complex nanoparticles by anti-solvent precipitation for curcumin-loaded Pickering emulsion stabilization[J]. Sustainable Chemistry and Pharmacy,2022,25:100565. doi: 10.1016/j.scp.2021.100565

    [52]

    SIVAPRATHA S, SARKAR P. Multiple layers and conjugate materials for food emulsion stabilization[J]. Critical Reviews in Food Science and Nutrition,2018,58(6):877−892. doi: 10.1080/10408398.2016.1227765

    [53]

    SANNA V, ROGGIO A M, PALA N, et al. Effect of chitosan concentration on PLGA microcapsules for controlled release and stability of resveratrol[J]. International Journal of Biological Macromolecules,2015,72:531−536. doi: 10.1016/j.ijbiomac.2014.08.053

    [54]

    TIAN H, XIANG D, LI C. Tea polyphenols encapsulated in W/O/W emulsions with xanthan gum-locust bean gum mixture:Evaluation of their stability and protection[J]. International Journal of Biological Macromolecules,2021,175:40−48. doi: 10.1016/j.ijbiomac.2021.01.161

    [55]

    ESTÉVEZ M, GÜELL C, DE LAMO-CASTELLVÍ S, et al. Encapsulation of grape seed phenolic-rich extract within W/O/W emulsions stabilized with complexed biopolymers:Evaluation of their stability and release[J]. Food Chemistry,2019,272:478−487. doi: 10.1016/j.foodchem.2018.07.217

    [56]

    ROSSOW T, HEYMAN J A, EHRLICHER A J, et al. Fabrication methods of biopolymeric microgels and microgel-based hydrogels[J]. Food Hydrocolloids,2017,62:262−272. doi: 10.1016/j.foodhyd.2016.08.017

    [57]

    FAROOQ S, IJAZ A M, ZHANG Y, et al. Fabrication, characterization and in vitro digestion of camellia oil body emulsion gels cross-linked by polyphenols[J]. Food Chemistry,2022,394:133469. doi: 10.1016/j.foodchem.2022.133469

    [58]

    XU J, TENG F, WANG B, et al. Gel property of soy protein emulsion gel:Impact of combined microwave pretreatment and covalent binding of polyphenols by alkaline method[J]. Molecules,2022,27(11):3458. doi: 10.3390/molecules27113458

    [59] 邵颖. 壳聚糖-丁香酚乳液的制备表征及其对冷藏期间带鱼的保鲜作用研究[D]. 杭州:浙江大学, 2019. [SHAO Y. Preparation and characterization of chitosan-eugenol emulsion and its fresh-keeping effect on hairtail during cold storage[D]. Hangzhou:Zhejiang University, 2019.]

    SHAO Y. Preparation and characterization of chitosan-eugenol emulsion and its fresh-keeping effect on hairtail during cold storage[D]. Hangzhou: Zhejiang University, 2019.

    [60]

    HERNÁNDEZ-ERNÁNDEZ E, LIRA-MORENO C Y, Guerrero-Legarreta I, et al. Effect of nanoemulsified and microencapsulated mexican oregano ( Lippia graveolens Kunth) essential oil coatings on quality of fresh pork meat[J]. Journal of Food Science,2017,82(6):1423−1432. doi: 10.1111/1750-3841.13728

    [61]

    WANG W, ZHAO D, XIANG Q, et al. Effect of cinnamon essential oil nanoemulsions on microbiological safety and quality properties of chicken breast fillets during refrigerated storage[J]. LWT- Food Science and Technology,2021,152:112376. doi: 10.1016/j.lwt.2021.112376

    [62]

    WAN J W, HU Y, AI T Y, et al. Preparation of thermo-reversible eugenol-loaded emulgel for refrigerated meat preservation[J]. Food Hydrocolloids,2018,79:235−242. doi: 10.1016/j.foodhyd.2018.01.002

    [63] 许晶. 肉桂精油乳液递送体系的构建及其对果蔬贮藏品质的影响[D]. 南昌:南昌大学, 2021. [XU J. Construction of cinnamon essential oil emulsion delivery system and its effect on storage quality of fruits and vegetables[D]. Nanchang:Nanchang University, 2021.]

    XU J. Construction of cinnamon essential oil emulsion delivery system and its effect on storage quality of fruits and vegetables[D]. Nanchang: Nanchang University, 2021.

    [64] 石俊杰. 百里香精油微乳的制备及结合1-MCP在枇杷保鲜中应用[D]. 天津:天津商业大学, 2022. [SHI J J. Preparation and application of thyme essential oil microemulsion combined with 1-MCP in preservation of loquat[D]. Tianjin:Tianjin University of Commerce, 2022.]

    SHI J J. Preparation and application of thyme essential oil microemulsion combined with 1-MCP in preservation of loquat[D]. Tianjin: Tianjin University of Commerce, 2022.

    [65]

    KUMAR D D, MANN B, POTHURAJU R, et al. Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream[J]. Food Function,2016,7(1):417−424. doi: 10.1039/C5FO00924C

    [66]

    BORRIN T R, GEORGES E L, BRITO-OLIVEIRA T C, et al. Technological and sensory evaluation of pineapple ice creams incorporating curcumin loaded nanoemulsions obtained by the emulsion inversion point method[J]. International Journal of Dairy Technology,2018,71:491−500. doi: 10.1111/1471-0307.12451

    [67] 沈学敏. 基于原花色素-明胶自组装复合体的Pickering乳液、油凝胶的制备及其应用[D]. 杭州:浙江大学, 2020. [SHEN X M. Preparation and application of pickering emulsion and oil gel based on proanthocyanidin-gelatin self-assembly complex[D]. Hangzhou:Zhejiang University, 2020.]

    SHEN X M. Preparation and application of pickering emulsion and oil gel based on proanthocyanidin-gelatin self-assembly complex[D]. Hangzhou: Zhejiang University, 2020.

    [68] 吴晓龄. 基于茶多酚酯及维C棕榈酸酯的山茶油油凝胶体系的构建及在饼干中的应用[D]. 合肥:合肥工业大学, 2020. [WU X L. Construction of camellia oil gel system based on tea polyphenol ester and vitamin C palmitate and its application in biscuits [D]. Hefei:Hefei University of Technology, 2020.]

    WU X L. Construction of camellia oil gel system based on tea polyphenol ester and vitamin C palmitate and its application in biscuits [D]. Hefei: Hefei University of Technology, 2020.

    [69]

    JIANG M J. Preparation of astaxanthin-encapsulated complex with zein and oligochitosan and its application in food processing[J]. LWT-Food Science & Technology,2019,106:179−185.

    [70]

    LIU S, LIU F, XUE Y, et al. Evaluation on oxidative stability of walnut beverage emulsions[J]. Food Chemsitry,2016,203:409−416.

    [71]

    DI MAIO G, PITTIA P, MAZZARINO L, et al. Cow milk enriched with nanoencapsulated phenolic extract of jaboticaba ( Plinia peruviana)[J]. Journal of Food Science and Technology,2019,56(3):1165−1173. doi: 10.1007/s13197-019-03579-y

    [72]

    RUENGDECH A. Application of catechin nanoencapsulation with enhanced antioxidant activity in high pressure processed catechin-fortified coconut milk[J]. LWT-Food Science & Technology,2021,140(1):110594.

    [73]

    JOLAYEMI O S, NICOLÒ S, FLAMMINII F, et al. Influence of free and encapsulated olive leaf phenolic extract on the storage stability of single and double emulsion salad dressings[J]. Food and Bioprocess Technology,2021,14(1):93−105. doi: 10.1007/s11947-020-02574-y

    [74]

    AI Y , FANG F, ZHANG L, et al. Antimicrobial activity of oregano essential oil and resveratrol emulsions co-encapsulated by sodium caseinate with polysaccharides[J]. Food Control, 2022, 137:108925.

    [75]

    PAN L H, WU C L, LUO S Z, et al. Preparation and characteristics of sucrose-resistant emulsions and their application in soft candies with low sugar and high lutein contents and strong antioxidant activity[J]. Food Hydrocolloids,2022,129:107619. doi: 10.1016/j.foodhyd.2022.107619

  • 期刊类型引用(6)

    1. 王雅利,赵楠,葛黎红,赖海梅,杨梦露,黄玉立,梅源,刘达玉,朱永清. 酵母菌对发酵萝卜品质的影响. 食品与发酵工业. 2024(24): 68-75 . 百度学术
    2. 刘艳秋,范梓琪,常凯,毛迪锐,徐澎,耿业业. 玫瑰面包啤酒生产工艺优化. 北华大学学报(自然科学版). 2023(01): 134-140 . 百度学术
    3. 颜子豪,孟庆芳,陈江魁,孙嘉怡. 冰糖红梨酒发酵工艺优化及香气成分分析. 食品工业科技. 2022(06): 228-235 . 本站查看
    4. 李夏,谢光杰,王东鹏,徐旻. 发酵条件对高山葡萄石斛酒品质的影响研究. 食品安全质量检测学报. 2022(12): 4036-4042 . 百度学术
    5. 赵彤,王宣,吴黎明,延莎,卢焕仙,赵洪木,薛晓锋. 发酵蜂产品研究进展. 食品工业科技. 2022(14): 461-466 . 本站查看
    6. 刁体伟,陈晓姣,冷银江,魏鑫,赖晓琴,马懿. 植物源多酚对梨酒抗氧化能力及其感官品质的影响. 食品与发酵工业. 2022(23): 93-101 . 百度学术

    其他类型引用(2)

  • 其他相关附件

图(1)  /  表(2)
计量
  • 文章访问数:  0
  • HTML全文浏览量:  0
  • PDF下载量:  0
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-05-10
  • 网络出版日期:  2024-01-21
  • 刊出日期:  2024-03-31

目录

/

返回文章
返回
x 关闭 永久关闭