• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

金冠豆角籽粒淀粉组成及性质研究

宋永, 贾璐泽, 张一婷, 刘佳莉, 刘大军, 孙庆申

宋永,贾璐泽,张一婷,等. 金冠豆角籽粒淀粉组成及性质研究[J]. 食品工业科技,2024,45(7):59−67. doi: 10.13386/j.issn1002-0306.2023050027.
引用本文: 宋永,贾璐泽,张一婷,等. 金冠豆角籽粒淀粉组成及性质研究[J]. 食品工业科技,2024,45(7):59−67. doi: 10.13386/j.issn1002-0306.2023050027.
SONG Yong, JIA Luze, ZHANG Yiting, et al. Composition and Properties of Starch from Golden Crown Bean[J]. Science and Technology of Food Industry, 2024, 45(7): 59−67. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050027.
Citation: SONG Yong, JIA Luze, ZHANG Yiting, et al. Composition and Properties of Starch from Golden Crown Bean[J]. Science and Technology of Food Industry, 2024, 45(7): 59−67. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050027.

金冠豆角籽粒淀粉组成及性质研究

详细信息
    作者简介:

    宋永(1976−),女,博士,副教授,研究方向:食品加工与安全,E-mail:songyong@hlju.edu.cn

    通讯作者:

    孙庆申(1977−),男,博士,教授,研究方向:食品与药品活性物质的挖掘,E-mail:sunqingshen@hlju.edu.cn

  • 中图分类号: TS235

Composition and Properties of Starch from Golden Crown Bean

  • 摘要: 为了明确金冠豆角淀粉的基本性质,本文以提取盐溶蛋白后剩余的金冠豆角籽粒豆渣为原料,采用水提法提取淀粉,观察淀粉颗粒形态,测定其组成、粒径、理化性质及体外抗消化特性。结果表明,金冠豆角籽粒淀粉中直链淀粉和支链淀粉的含量分别为47.39%和52.07%,淀粉的颗粒形态与豌豆淀粉类似,呈卵圆形或球型,颗粒表面光滑完整,粒径为75.10 μm。金冠豆角籽粒淀粉的峰值粘度(212.20 RVU)、衰减值(68.50 RVU)较低,但回生值(96.80 RVU)高于玉米淀粉;金冠豆角籽粒淀粉糊化的起始温度(T0)、峰值温度(Tp)显著高于豌豆淀粉(P<0.05)。金冠豆角籽粒淀粉的凝沉值在90 min时接近80%,凝沉速度显著高于玉米淀粉,透光率介于豌豆淀粉和玉米淀粉之间,持水性(WHC)和持油性(OHC)值分别为1.08和1.00 g/g,凝胶硬度小,属于易凝沉淀粉,其抗性淀粉(RS)含量为68.43%,高于玉米淀粉和豌豆淀粉(P<0.05),具有良好的抗消化特性。
    Abstract: In order to clarify the basic properties of Golden Crown Bean starch, the Golden Crown Bean seed residues after extraction of salt soluble protein were used as raw materials, of which the starch was obtained by water extraction. The morphology of starch particles was observed, and the composition, particle size, physicochemical properties and in vitro anti-digestibility of the starch were determined. The results showed that the content of amylose and amylopectin in the starch of Golden Crown bean seeds was 47.39% and 52.07%, respectively. The morphology of the starch particles was similar to that of pea starch, with an oval or spherical shape. The surface of the particles was smooth and complete, with a particle size of 75.10 μm. The peak viscosity (212.20 RVU) and attenuation value (68.50 RVU) of Golden Crown Bean starch were lower, but the retrogradation value (96.80 RVU) was higher than that of corn starch; the starting temperature (T0), peak temperature (Tp) of starch gelatinization in Golden Crown Beans were significantly higher than those of pea starch (P<0.05). The retrogradation value of Golden Crown Bean starch was close to 80% at 90 min, the retrogradation speed was significantly higher than that of corn starch. The transmittance of Golden Crown Bean starch was between pea starch and corn starch. The water holding capacity (WHC) and oil holding capacity (OHC) were 1.08 and 1.00 g/g respectively, the gel hardness was small, belonging to easy retrogradation starch. The content of resistant starch (RS) was 68.43%, which was higher than that of corn starch and pea starch (P<0.05), exhibiting an excellent anti-digestibility feature.
  • 油豆角(Phaseolus vulgaris L.)属于豆科、菜豆属,是黑龙江省的知名蔬菜和重点开发的绿色无公害优质农产品之一[1],其荚扁而宽,豆粒饱满,表皮肉厚鲜嫩,油亮光滑,味道鲜美[23]。鲜菜豆营养丰富[4],成熟干燥的菜豆籽粒中粗蛋白含量为22.54%[5],含有18种氨基酸,其中必需氨基酸占氨基酸总量的37.76%~42.26%,是补充人体所需氨基酸等营养物质的良好来源[67],此外,菜豆籽粒中淀粉含量一般在45%~50%左右[5]

    目前油豆角大部分以鲜食为主,也有关于油豆角保鲜[89]、干豆角丝加工[10]的相关研究。本课题组通过提取油豆角籽粒盐溶蛋白进而分离制备α-淀粉酶抑制剂,并研究其活性[11]。课题组前期对金冠豆角籽粒中的盐溶蛋白进行提取与利用后,会产生大量的金冠豆角籽粒豆渣,测得该豆渣中淀粉含量较高为26.28%,而目前对油豆角来源的淀粉研究较少,本实验将以提取过盐溶蛋白后的金冠豆角籽粒豆渣为原料提取淀粉,对该淀粉的成分、结构性质、理化性质和抗消化特性进行测定,并与豌豆淀粉、玉米淀粉进行比较,这将有助于深入了解油豆角淀粉的特性,为充分利用油豆角资源及为油豆角淀粉在食品加工中的应用提供参考。

    金冠豆角籽粒 黑龙江大学现代农业与生态环境学院提供;玉米淀粉 吉林省杞参食品有限公司;豌豆淀粉 成都城东王食品有限公司;DNS试剂、α-淀粉酶(10000 U/mL)、淀粉葡萄糖苷酶(2000~3300 U/mL) 江苏伊势久生物科技有限责任公司;氯化钠、无水乙酸钠等试剂 均为分析纯,天津市科密欧化学试剂有限公司。

    DZKW-D-2型恒温水浴锅 天津天泰仪器有限公司;KDN-19H定氮仪 上海纤检仪器有限公司;UV-5200PC紫外可见分光光度计 上海元析仪器有限公司;日立S-3400N型扫描电子显微镜 日本Hitachi公司;90Plus PALS激光光散射/Zeta电位分析仪 美国Brookhaven仪器公司;TA.XT.Plus质构仪 英国Stable Micro Systems公司;78-1型磁力搅拌器、YP10002B型电子天平 上海力辰仪器科技有限公司;Viscograph-E型 Brabender粘度仪 瑞典Brabender 公司;TA Q2000型差示扫描量热仪 美国TA仪器公司;ME54E型精密电子天平 Mettler Toledo;H1650型高速离心机 长沙湘仪仪器制造公司;101A-O型电热鼓风干燥箱 北京金北德工贸有限公司;FW100型万能粉碎机 天津市泰斯特仪器有限公司。

    将金冠豆角籽粒研磨,过60目筛后,经1.5%的氯化钠溶液浸提4 h,以10621×g,离心15 min,分离上清液中的盐溶蛋白后,取沉淀[12],即为金冠豆角籽粒豆渣,冷藏备用。

    参考王艳等[13]方法并稍作修改:称取一定量豆渣(湿基),按料液质量体积比1:10加入蒸馏水,搅拌使其分散,过200目筛,得到滤液后,将其放入4 ℃冰箱中静置沉淀6~8 h,倒去上清液,刮去上层黄色物质,再加一定量的水洗涤,静置沉淀直至水溶液变得透明后,将沉淀放入45 ℃的烘箱中干燥6 h,使用万能粉碎机粉碎,过200目筛后得到金冠豆角籽粒淀粉。以玉米淀粉和豌豆淀粉作为对照,对金冠豆角籽粒淀粉的成分、结构性质、理化性质和抗消化特性进行分析。

    水分:采用GB/T 5009.3-2016中第一法测定[14];总淀粉:采用GB/T 5009.9-2016中第二法测定[15];蛋白质:采用GB 5009.5-2016中第一法测定[16];灰分:采用GB 5009.4-2016中第一法测定[17];直链和支链淀粉:参照何洁等[18]的方法测定直链、支链淀粉含量。

    将适量淀粉粉末均匀地撒在带有双面胶的铝片上,用吸耳球吹去多余的淀粉颗粒,在真空条件下喷金处理[19],然后用扫描电子显微镜观察淀粉形态。将淀粉样品悬浮于水中形成5.0%的淀粉溶液,超声波分散后进样,用90Plus PALS激光光散射/Zeta电位分析仪进行淀粉粒径测定[20]

    采用国标GB/T 24853-2010法测定[21],记录淀粉的糊化特性参数。

    参考文献报道的方法[22],采用TA Q2000型差示扫描量热仪,每份样品称取3 mg于铝盒中,加入2倍(m:V)蒸馏水后密封,室温放置2 h促进水化。以空铝盒作参照,升温速率为5 ℃/min,温度扫描范围为25~120 ℃。记录起始温度(T0)、峰值温度(Tp)、终止温度(Te)和焓值(△H)。

    参考文献报道的方法[23],配制质量分数为1.0%的淀粉溶液沸水浴糊化20 min后,冷却至室温,将淀粉乳倒入100 mL量筒中,在室温下分别放置0、15、30、45、60、75、90、105、120、180、240、300、360、420、480、540、600 min时记录上清液体积,按以下公式计算凝沉值:

    (\%)=×100
    (1)

    参考文献报道的方法[24],称取一定量的淀粉,加适量蒸馏水调成质量分数为1.0%的淀粉溶液,在沸水浴中加热20 min,然后冷却至30 ℃。用分光光度计在620 nm下,以蒸馏水为空白,设蒸馏水的透光率为100%,测定淀粉糊的透光率。

    按照参考文献的方法[25],准确称量0.4 g淀粉样品(W),置于50 mL离心管中,加入25 mL蒸馏水,分别在50、60、70、80、90 ℃不同温度水浴加热并搅拌30 min,冷却,以955×g,离心20 min,分离上层清液和下层沉淀物,将上清液置于玻璃器皿中,于105 ℃烘干至恒重(Wr),称取管中沉淀物质量(Wt),按如下公式计算淀粉样品的溶解度与膨胀力:

    S=WrW×100
    (2)
    P=WtWWr
    (3)

    式中,S为溶解度(%);P为膨胀力(g/g);Wr为上清液恒重(g);W为样品质量(g);Wt为沉淀物质量(g)。

    准确称量1 g淀粉干样品(W1),并放入离心管中称重(W2),量取10 mL蒸馏水至管中,在漩涡混合器上混合,之后静置30 min,以955×g,离心20 min,弃上清,保持沉淀并称重(W3)。求样品持水性(WHC)的公式如下[26]

    (g/g)=W3W2W1
    (4)

    准确称量1 g淀粉干样品(W1),并放入离心管中称重(W2)。量取10 mL大豆油至管中,在漩涡混合器将其充分混合,室温下静置30 min,每隔5 min摇动一次,以2150×g,离心25 min。除去大豆油的上层,并将离心管在滤纸上倒置以吸收过量的油,保持沉淀并称重(W3)。求样品持油性(OHC)的公式如下[26]

    (g/g)=W3W2W1
    (5)

    取2.4 g淀粉置于50 mL的烧杯中,加水至总质量为40 g,放入95 ℃的水浴锅中加热,开始边加热边搅拌,防止淀粉沉淀后糊化不均匀,待淀粉有黏性后(约4 min)立即停止搅拌以保证液面平整。趁热封保鲜膜,于95 ℃水浴30 min直至淀粉完全糊化,取出后冷却至室温,在4 ℃环境中静置15 h,形成稳定的淀粉凝胶样品,待测。采用TPA模式(两次压缩模式),选取P36R探头,测定参数设定为:测定前下降速度1.0 mm/s,触发力5 g,测定速度1.0 mm/s,压缩比50%,测定后上升速度1.0 mm/s[27]

    称取一定量的淀粉样品配成质量分数为6.0%的淀粉溶液,在沸水浴中加热搅拌30 min,使之充分糊化,冷却至室温,称糊重A1,在−20 ℃的冰箱中冷冻24 h后取出,在室温下自然解冻,以1699×g,离心30 min,弃去上清液,称沉淀物的质量A2,反复冻融5次,计算析水率,以析水率来表示冻融稳定性[28]。按照如下公式计算:

    (%)=A1A2A1×100
    (6)

    参考曹旭等[29]的方法,准确称取200 mg淀粉干样品于锥形瓶中,加入乙酸-乙酸钠缓冲液(0.2 mol/L、pH5.2)15 mL,沸水浴中振荡糊化20 min后,冷却至室温后,加入α-淀粉酶(290 U/mL)和淀粉葡萄糖苷酶(15 U/mL)混合酶溶液10 mL,于37 ℃恒温水浴中振荡保温,在20和120 min时,分别取出1 mL水解液,采用DNS法测定体系中还原糖含量。淀粉样品中快消化淀粉(RDS)、慢消化淀粉(SDS)与抗性淀粉(RS)的含量用如下公式计算:

    RDS(%)=(G20FG)×0.9TS×100
    (7)
    SDS(\text{%})=(G120G20)×0.9TS×100
    (8)
    RS(\text{%})=(1RDSSDS)×100
    (9)

    式中:G20为酶解20 min后释放的葡萄糖质量,mg;G120为酶解120 min后释放的葡萄糖质量,mg;TS为总淀粉干基质量,mg;FG为游离葡萄糖质量,mg。

    采用Excel进行数据整理,SPSS 22.0进行统计分析,采用Origin 2023绘图,所有实验重复三次。

    本实验所得到的金冠豆角籽粒淀粉含量为95.75±1.23 g/100 g、水分(2.63±0.09 g/100 g)、蛋白质(0.62±0.05 g/100 g)、灰分(0.38±0.03 g/100 g)含量较低。由表1可知,金冠豆角籽粒淀粉的直链淀粉为47.39%±0.71%,显著高于玉米淀粉(P<0.05),而支链淀粉含量为52.07%±0.42%显著低于玉米淀粉(P<0.05);另外金冠豆角籽粒淀粉和豌豆淀粉的直链淀粉含量有显著性差异(P<0.05),支链淀粉含量无显著性差异(P>0.05)。三种淀粉的直链淀粉含量顺序依次为:豌豆淀粉>金冠豆角籽粒淀粉>玉米淀粉。

    表  1  三种淀粉的直链、支链淀粉含量
    Table  1.  Contents of amylose and amylopectin of three kinds of starch
    淀粉种类 直链淀粉(%) 支链淀粉(%) 直支比
    金冠豆角籽粒淀粉 47.39±0.71b 52.07±0.42b 0.94:1
    豌豆淀粉 49.94±0.98a 48.39±5.71b 1:1
    玉米淀粉 35.51±0.76c 72.54±0.65a 0.5:1
    注:同列不同字母表示显著差异(P<0.05),表2表4~表6同。
    下载: 导出CSV 
    | 显示表格

    不同来源的淀粉颗粒形貌不同,大致分为球形、椭球形和不规则形状[23,30]。由图1可以看出,玉米淀粉和两种豆类淀粉颗粒形态有较大的差异。金冠豆角籽粒淀粉(图A1、A2)和豌豆淀粉(图B1、B2)两种豆类淀粉颗粒类似,多为卵圆形,少数小颗粒为球形;金冠豆角籽粒淀粉颗粒表面较豌豆淀粉光滑,凸起少,少数颗粒有“裂纹”,极少数颗粒表面有小坑,豌豆淀粉颗粒表面横向有多道“裂纹”,部分延伸相交,将颗粒表面分成多个凸起,凸起表面仍较光滑;玉米淀粉(图C1、C2)颗粒呈多角形棱角分明,颗粒的表面凹凸不平,有通向颗粒中心的细孔。不同植物来源的淀粉颗粒大小和超微形态有着不同的特征,通常富含支链淀粉的淀粉颗粒在形状上比富含直链淀粉的淀粉颗粒更规则[31]。玉米淀粉的支链淀粉含量高于金冠豆角籽粒淀粉,玉米淀粉的颗粒形貌较金冠豆角籽粒淀粉形状更规则,棱角分明,呈五角星形状。这些淀粉颗粒形态和张燕鹏等[32]观察到的淀粉颗粒形态结果相似。因此,金冠豆角籽粒淀粉颗粒形貌光滑圆润,无明显褶皱,符合豆类淀粉的特性。

    图  1  三种淀粉颗粒的SEM图
    注: A1、A2金冠豆角籽粒淀粉(×700、×3000倍);B1、B2豌豆淀粉(×700、×4000倍);C1、C2玉米淀粉(×700、×4000倍)。
    Figure  1.  SEM images of three kinds of starch particles

    三种淀粉的粒径分布见表2,D[4,3]和D[3,2]分别为体积平均粒径[33]和表面积平均粒径[34],Dx(10)、Dx(50)、Dx(90)指检测的淀粉样品中10%、50%和90%的颗粒粒径位于该值以下,其中Dx(50)又叫平均粒径[35]。三种淀粉颗粒的粒径分布有显著性差异(P<0.05),90%的金冠豆角淀粉颗粒粒径位于75.10±0.20 μm,高于玉米淀粉和豌豆淀粉;且金冠豆角籽粒淀粉的平均粒径31.36±0.05 μm也高于玉米淀粉和豌豆淀粉;该淀粉的表面积平均粒径和体积平均粒径分别为29.06±0.05和39.56±0.05 μm均高于豌豆淀粉和玉米淀粉。根据淀粉颗粒的粒径分布可知,金冠豆角籽粒淀粉粒径>豌豆淀粉>玉米淀粉。淀粉颗粒形状及大小对淀粉的酶解活力影响较大,通常小颗粒淀粉、不规则形状的淀粉和颗粒表面不光滑的小坑、细孔较多的会更易被酶水解,因为与酶接触的机会更大,被酶水解速度快[36]。由于金冠豆角籽粒淀粉的颗粒粒径大,淀粉颗粒表面光滑,无明显裂痕,不易被酶水解。

    表  2  三种淀粉的粒径分布
    Table  2.  Particle size distribution of three kinds of starch
    淀粉种类 D[4,3](μm) D[3,2](μm) Dx(10)(μm) Dx(50)(μm) Dx(90)(μm)
    金冠豆角
    籽粒淀粉
    39.56±0.05a 29.06±0.05a 17.00±0.00a 31.36±0.05a 75.10±0.20a
    豌豆淀粉 25.96±0.05b 23.20±0.00b 15.50±0.00b 24.73±0.05b 38.43±0.05b
    玉米淀粉 20.56±0.56c 15.73±0.15c 9.06±0.04c 17.93±0.25c 36.03±1.76c
    下载: 导出CSV 
    | 显示表格

    三种淀粉的糊化特性见表3,金冠豆角籽粒淀粉具有最高的糊化温度75.90 ℃,高于豌豆淀粉和玉米淀粉。由于该淀粉颗粒表面光滑(见图1),粒径较大,淀粉分子间结合力强,限制了与水的结合,因此不易糊化且糊化温度高。

    表  3  三种淀粉的糊化特性
    Table  3.  Gelatinization properties of three kinds of starch
    淀粉种类糊化温度(℃)峰值粘度(RVU)峰值时间(min)最低粘度(RVU)最终粘度(RVU)衰减值(RVU)回生值(RVU)
    金冠豆角籽粒淀粉75.90212.204.50143.80240.5068.5096.80
    豌豆淀粉72.80253.804.60174.70352.2079.10177.50
    玉米淀粉75.50214.505.20115.70162.3098.8046.60
    下载: 导出CSV 
    | 显示表格

    峰值粘度显示淀粉颗粒的膨胀特性和水结合的能力,粘度越大与水结合能力越大[3738]。金冠豆角籽粒淀粉的峰值粘度为212.20 RVU,低于豌豆淀粉和玉米淀粉。最终粘度显示物料再熟化并冷却后所形成粘糊或凝胶的能力[36]。淀粉糊的最低粘度和最终粘度均按以下顺序排列:豌豆淀粉>金冠豆角籽粒淀粉>玉米淀粉,淀粉凝胶的最终粘度大小顺序与直链淀粉含量(见表1)大小顺序一致。衰减值是指峰值粘度与最低粘度的差值[37],显示淀粉的热糊稳定性,衰减值越低,热糊稳定性越好[36]。金冠豆角籽粒淀粉的衰减值为68.50 RVU,低于豌豆淀粉和玉米淀粉。回生值是指最终粘度与最低粘度的差值[37],显示样品冷糊的稳定性和老化趋势[36]。金冠豆角籽粒淀粉的回生值为96.80 RVU,高于玉米淀粉。因此,金冠豆角籽粒淀粉的峰值粘度低,热糊稳定性较好,易回生。

    热力学特性能够反映淀粉颗粒的热稳定性和淀粉凝胶的过程,包括淀粉结晶区螺旋展开和微晶融合[33,39]。三种淀粉的热力学特性存在差异,如表4所示,淀粉糊化的起始温度(T0)、峰值温度(Tp)、终止温度(Te)和焓值(ΔH)均以金冠豆角籽粒淀粉的最高,其中T0值、Tp值与豌豆淀粉相比均差异显著(P<0.05),说明其凝胶化起始所需的能量大,且其螺旋结构更为紧密[40]

    表  4  三种淀粉的热力学参数
    Table  4.  Thermal behavior parameters of the three kinds of starch
    淀粉种类T0(℃)Tp(℃)Te(℃)ΔH(J/g)
    金冠豆角籽粒淀粉61.43±1.12a70.66±0.10a91.22±1.35a11.96±0.55a
    豌豆淀粉56.85±0.09b67.10±0.78c86.39±4.65ab9.99±2.41a
    玉米淀粉60.88±0.43a68.75±0.36b81.73±5.34b11.52±2.15a
    下载: 导出CSV 
    | 显示表格

    图2可知三种淀粉的凝沉特性。随着静置时间的增加,金冠豆角籽粒淀粉的凝沉值增加趋势逐渐平缓;其中金冠豆角籽粒淀粉在90 min之内快速凝沉,凝沉值接近80%,凝沉速度明显高于玉米淀粉,但与豌豆淀粉凝沉速度相比差异不明显,表明杂豆类淀粉具有相似的性质,但与玉米淀粉差异较大,玉米淀粉凝沉值低且凝沉性较弱[41],因为豆类淀粉的直链淀粉含量高于玉米淀粉,当淀粉糊冷却后由于直链淀粉聚集,很快发生凝沉现象,所以豆类淀粉的凝沉值高于玉米淀粉。

    图  2  三种淀粉的凝沉特性
    Figure  2.  Coagulation characteristics of three kinds of starch

    图3可知三种淀粉的透光率有显著性差异(P<0.05),其中金冠豆角籽粒淀粉的透光率居中,显著高于玉米淀粉(P<0.05),但低于豌豆淀粉(P<0.05)。淀粉糊的透光率反映了淀粉和水结合能力的强弱以及膨胀程度。淀粉颗粒分散程度越大、越均匀,则淀粉糊的透光率越好[4243]

    图  3  三种淀粉的透光率
    注:图中不同小写字母表示差异显著P<0.05。
    Figure  3.  Transmittance of three kinds of starch

    淀粉的膨胀力和溶解度反映了淀粉颗粒的相互结合能力和持水能力[44]。根据图4图5可知,三种淀粉的膨胀力和溶解度随着温度的上升而增加。当温度为80 ℃时金冠豆角籽粒淀粉的膨胀力开始明显增加;80 ℃之前金冠豆角籽粒淀粉呈现不膨胀或是膨胀力较低,并且存在一个初始膨胀和迅速膨胀阶段,属于典型的两段膨胀过程[43],该淀粉属于限制型膨胀淀粉。金冠豆角籽粒淀粉在70 ℃之前溶解的速度较缓慢,在70 ℃以后淀粉得到充分溶解,溶解度迅速增加,并在90 ℃下获得最高值。由于金冠豆角籽粒淀粉中的直链淀粉含量大于玉米淀粉,其粒径也大于豌豆淀粉和玉米淀粉。直链淀粉间的强相互作用(通过氢键)使淀粉螺旋结构更紧密,会需要更高的热能输入来破坏直链淀粉链之间的相互作用[45]。此外,颗粒的完整性也可能是影响淀粉膨胀力和溶解度的重要因素[46]。因此,金冠豆角籽粒淀粉的膨胀力和溶解度均低于玉米淀粉和豌豆淀粉。

    图  4  三种淀粉的膨胀力
    Figure  4.  Swelling power of three kinds of starch
    图  5  三种淀粉的溶解度
    Figure  5.  Solubility of three kinds of starch

    淀粉的持油性和持水性对淀粉的加工品质影响较大。持油性主要反映淀粉吸油能力,如表5所示,三种淀粉的持油性为0.91~1.21 g/g,谷类淀粉和豆类淀粉两个品种间存在显著性差异(P<0.05),金冠豆角籽粒淀粉的持油性为1.00±0.06 g/g低于玉米淀粉,由于玉米淀粉空隙较多有“小坑”,利于油脂吸附,而金冠豆角籽粒淀粉颗粒表面较光滑不利于油脂吸附,所以相比于玉米淀粉持油性较低。三种淀粉的持水性在0.94~1.14 g/g之间,金冠豆角籽粒淀粉持水性为1.08±0.06 g/g高于玉米淀粉,而金冠豆角籽粒淀粉和豌豆淀粉的持水性和持油性无显著差异(P>0.05),表明杂豆类淀粉具有相似的性质,但与玉米淀粉差异较大,有研究表明,持水性与持油性成反比[47],与本实验结果相似。

    表  5  三种淀粉的持水性和持油性
    Table  5.  Water holding capacity and oil holding capacity of three kinds of starch
    淀粉种类持水性WHC(g/g)持油性OHC(g/g)
    金冠豆角籽粒淀粉1.08±0.06a1.00±0.06b
    豌豆淀粉1.14±0.04a0.91±0.10b
    玉米淀粉0.94±0.06b1.21±0.12a
    下载: 导出CSV 
    | 显示表格

    表6可知,在淀粉浓度为6%情况下的TPA质构特性。对凝胶硬度而言,三种淀粉凝胶的硬度有显著性差异(P<0.05),金冠豆角籽粒淀粉形成的凝胶硬度为776.33±44.66 g,显著低于豌豆淀粉(P<0.05)。三种淀粉凝胶的弹性无显著性差异(P>0.05)。另外金冠豆角籽粒淀粉的粘聚性为0.27±0.00高于豌豆淀粉,三种淀粉的粘聚性同直链淀粉的含量呈现负相关的趋势,这同张正茂等[27]分析得出豆类淀粉凝胶的粘聚性与直链淀粉含量呈极显著负相关的结论相似。

    表  6  三种淀粉凝胶质构参数
    Table  6.  Texture parameters of three kinds of starch gels
    淀粉种类硬度(g)弹性(mm)粘聚性胶着性咀嚼性
    金冠豆角籽粒淀粉776.33±44.66b0.96±0.02a0.27±0.00ab212.46±15.25b204.70±10.20b
    豌豆淀粉1863.63±10.75a0.97±0.01a0.22±0.02b419.46±41.64a409.26±38.50a
    玉米淀粉656.06±17.00c0.94±0.05a0.29±0.02a190.90±14.57b181.43±21.57b
    下载: 导出CSV 
    | 显示表格

    金冠豆角籽粒淀粉的胶着性和咀嚼性分别为212.46±15.25和204.70±10.20,大于玉米淀粉,小于豌豆淀粉,其中金冠豆角籽粒淀粉和豌豆淀粉的胶着性和咀嚼性有显著性差异(P<0.05)。金冠豆角籽粒淀粉和豌豆淀粉都是豆类淀粉,但是在淀粉凝胶质构特性表现出差异。可能由于豌豆淀粉中的直链淀粉含量较高为49.94%,且膨胀力和溶解度较好,从而使豌豆淀粉形成的凝胶硬度大,网络结构致密,咀嚼性和胶着性较好,因此豌豆淀粉通常制作凉粉食用;而金冠豆角籽粒淀粉形成的凝胶硬度较低,不适合制作凉粉食用。

    图6可知,随着淀粉的冻融次数增多,三种淀粉的析水率逐渐增加,在前两次冻融后析水率增加的趋势明显,在第三次以后析水率较前两次增加的趋势相对减慢,第五次冻融后金冠豆角籽粒淀粉的析水率在68%左右,高于豌豆淀粉。冻融稳定性是指经受冷冻和解冻交替变化时的稳定性,是生产经常被冷冻和解冻的淀粉食品的一个重要特性[48]。析水率越高,表明淀粉在低温条件下淀粉凝胶不能锁住水分,严重析水,老化速率加快,淀粉的冻融稳定性也变差。由图2可知,金冠豆角籽粒淀粉更易发生凝沉现象,易老化,析水率增加,在冷冻过程中,析出的水形成冰晶对淀粉结构造成破坏,加剧了水分的析出[33]。因此金冠豆角籽粒淀粉不适合应用于需要冻融的制品中。

    图  6  三种淀粉的冻融稳定性
    Figure  6.  Freeze-thaw stability of three kinds of starch

    根据人体对淀粉消化释放葡萄糖时间的快慢,将淀粉分为快消化淀粉(RDS)、慢消化淀粉(SDS)和抗性淀粉(RS)[45]。RDS是摄入后迅速被消化吸收,引起血糖水平突然升高的淀粉组分;SDS是在小肠中以比RDS低的速率完全消化的淀粉组分;RS是不能在小肠中消化但在大肠中可被微生物发酵的淀粉部分。由表7可知,本实验测得金冠豆角籽粒淀粉的RDS(26.41%±0.27%)和SDS(5.16%±0.25%)的含量低于玉米淀粉和豌豆淀粉;而RS(68.43%±0.51%)的含量则显著高于玉米淀粉和豌豆淀粉(P<0.05),具有良好的抗消化特性。豆类淀粉的高RS含量有利于增加饱腹感以达到减少食物摄入,调节体重,进而达到降血糖、降血脂等目的,同时RS还可被肠道细菌作为能量底物而发酵产生短链脂肪酸,如乙酸、丙酸、丁酸等有益物质,从而改善肠道环境[4950]

    表  7  三种淀粉的抗消化特性
    Table  7.  Anti-digestibility of three kinds of starch
    淀粉种类快消化淀粉
    (RDS,%)
    慢消化淀粉
    (SDS,%)
    抗性淀粉
    (RS,%)
    金冠豆角籽粒淀粉26.41±0.27c5.16±0.25c68.43±0.51a
    豌豆淀粉30.80±0.76b15.42±1.40b53.77±0.97b
    玉米淀粉33.06±0.87a24.67±1.57a42.26±1.79c
    下载: 导出CSV 
    | 显示表格

    金冠豆角籽粒淀粉颗粒表面光滑,少数颗粒有“裂纹”,粒径较大。该淀粉析水率较高,冻融稳定性较差;易凝沉,易老化,容易形成凝胶,但形成的凝胶硬度较低,咀嚼性较软,不适合制作凉粉。金冠豆角籽粒淀粉透光率高于玉米淀粉,但低于豌豆淀粉;糊化温度高于玉米淀粉和豌豆淀粉;其螺旋结构更紧密,峰值粘度较低、衰减值较高,热糊稳定性较好。金冠豆角籽粒淀粉不易被酶解消化,抗性淀粉含量为68.43%,高于豌豆淀粉和玉米淀粉,具有良好的抗消化特性。

  • 图  1   三种淀粉颗粒的SEM图

    注: A1、A2金冠豆角籽粒淀粉(×700、×3000倍);B1、B2豌豆淀粉(×700、×4000倍);C1、C2玉米淀粉(×700、×4000倍)。

    Figure  1.   SEM images of three kinds of starch particles

    图  2   三种淀粉的凝沉特性

    Figure  2.   Coagulation characteristics of three kinds of starch

    图  3   三种淀粉的透光率

    注:图中不同小写字母表示差异显著P<0.05。

    Figure  3.   Transmittance of three kinds of starch

    图  4   三种淀粉的膨胀力

    Figure  4.   Swelling power of three kinds of starch

    图  5   三种淀粉的溶解度

    Figure  5.   Solubility of three kinds of starch

    图  6   三种淀粉的冻融稳定性

    Figure  6.   Freeze-thaw stability of three kinds of starch

    表  1   三种淀粉的直链、支链淀粉含量

    Table  1   Contents of amylose and amylopectin of three kinds of starch

    淀粉种类 直链淀粉(%) 支链淀粉(%) 直支比
    金冠豆角籽粒淀粉 47.39±0.71b 52.07±0.42b 0.94:1
    豌豆淀粉 49.94±0.98a 48.39±5.71b 1:1
    玉米淀粉 35.51±0.76c 72.54±0.65a 0.5:1
    注:同列不同字母表示显著差异(P<0.05),表2表4~表6同。
    下载: 导出CSV

    表  2   三种淀粉的粒径分布

    Table  2   Particle size distribution of three kinds of starch

    淀粉种类 D[4,3](μm) D[3,2](μm) Dx(10)(μm) Dx(50)(μm) Dx(90)(μm)
    金冠豆角
    籽粒淀粉
    39.56±0.05a 29.06±0.05a 17.00±0.00a 31.36±0.05a 75.10±0.20a
    豌豆淀粉 25.96±0.05b 23.20±0.00b 15.50±0.00b 24.73±0.05b 38.43±0.05b
    玉米淀粉 20.56±0.56c 15.73±0.15c 9.06±0.04c 17.93±0.25c 36.03±1.76c
    下载: 导出CSV

    表  3   三种淀粉的糊化特性

    Table  3   Gelatinization properties of three kinds of starch

    淀粉种类糊化温度(℃)峰值粘度(RVU)峰值时间(min)最低粘度(RVU)最终粘度(RVU)衰减值(RVU)回生值(RVU)
    金冠豆角籽粒淀粉75.90212.204.50143.80240.5068.5096.80
    豌豆淀粉72.80253.804.60174.70352.2079.10177.50
    玉米淀粉75.50214.505.20115.70162.3098.8046.60
    下载: 导出CSV

    表  4   三种淀粉的热力学参数

    Table  4   Thermal behavior parameters of the three kinds of starch

    淀粉种类T0(℃)Tp(℃)Te(℃)ΔH(J/g)
    金冠豆角籽粒淀粉61.43±1.12a70.66±0.10a91.22±1.35a11.96±0.55a
    豌豆淀粉56.85±0.09b67.10±0.78c86.39±4.65ab9.99±2.41a
    玉米淀粉60.88±0.43a68.75±0.36b81.73±5.34b11.52±2.15a
    下载: 导出CSV

    表  5   三种淀粉的持水性和持油性

    Table  5   Water holding capacity and oil holding capacity of three kinds of starch

    淀粉种类持水性WHC(g/g)持油性OHC(g/g)
    金冠豆角籽粒淀粉1.08±0.06a1.00±0.06b
    豌豆淀粉1.14±0.04a0.91±0.10b
    玉米淀粉0.94±0.06b1.21±0.12a
    下载: 导出CSV

    表  6   三种淀粉凝胶质构参数

    Table  6   Texture parameters of three kinds of starch gels

    淀粉种类硬度(g)弹性(mm)粘聚性胶着性咀嚼性
    金冠豆角籽粒淀粉776.33±44.66b0.96±0.02a0.27±0.00ab212.46±15.25b204.70±10.20b
    豌豆淀粉1863.63±10.75a0.97±0.01a0.22±0.02b419.46±41.64a409.26±38.50a
    玉米淀粉656.06±17.00c0.94±0.05a0.29±0.02a190.90±14.57b181.43±21.57b
    下载: 导出CSV

    表  7   三种淀粉的抗消化特性

    Table  7   Anti-digestibility of three kinds of starch

    淀粉种类快消化淀粉
    (RDS,%)
    慢消化淀粉
    (SDS,%)
    抗性淀粉
    (RS,%)
    金冠豆角籽粒淀粉26.41±0.27c5.16±0.25c68.43±0.51a
    豌豆淀粉30.80±0.76b15.42±1.40b53.77±0.97b
    玉米淀粉33.06±0.87a24.67±1.57a42.26±1.79c
    下载: 导出CSV
  • [1] 刘琦. 黑龙江省油豆角产业存在问题及解决途径[J]. 中国园艺文摘,2016,32(7):55−56. [LIU Q. Problems and solutions of snap bean industry in Heilongjiang Province[J]. Chinese Horticultural Abstracts,2016,32(7):55−56.]

    LIU Q. Problems and solutions of snap bean industry in Heilongjiang Province[J]. Chinese Horticultural Abstracts, 2016, 327): 5556.

    [2] 田丽波, 商桑, 李绍鹏, 等. 海南省优良油豆角品种引种比较试验[J]. 北方园艺,2008(7):8−10. [TIAN L B, SHANG S, LI S P, et al. Introduction and comparing experiment of snap bean varieties for the use of out of season planting in Hainan Province[J]. Northern Horticulture,2008(7):8−10.]

    TIAN L B, SHANG S, LI S P, et al. Introduction and comparing experiment of snap bean varieties for the use of out of season planting in Hainan Province[J]. Northern Horticulture, 20087): 810.

    [3] 高强, 任海龙, 周勃, 等. 东北油豆角在三亚的品种比较试验[J]. 热带农业科学,2019,39(5):40−44. [GAO Q, REN H L, ZHOU B, et al. Comparing experiment of snap bean varieties in Sanya[J]. Chinese Journal of Tropical Agriculture,2019,39(5):40−44.]

    GAO Q, REN H L, ZHOU B, et al. Comparing experiment of snap bean varieties in Sanya[J]. Chinese Journal of Tropical Agriculture, 2019, 395): 4044.

    [4] 张福平, 陈蔚辉, 许秀彦, 等. 菜豆的营养成分分析[J]. 中国食物与营养,2006(2):55. [ZHANG F P, CHEN W H, XU X Y, et al. Analysis of nutritional components of bean ( Phaseolus vulgaris L.)[J]. Food and Nutrition in China,2006(2):55.]

    ZHANG F P, CHEN W H, XU X Y, et al. Analysis of nutritional components of bean (Phaseolus vulgaris L.)[J]. Food and Nutrition in China, 20062): 55.

    [5] 王述民. 普通菜豆的营养特点与加工利用[J]. 中国粮油学报,1993(S1):46−50. [WANG S M. Nutritional characteristics and processing utilization of common bean ( Phaseolus vulgaris L.)[J]. Journal of the Chinese Cereals and Oils Association,1993(S1):46−50.]

    WANG S M. Nutritional characteristics and processing utilization of common bean (Phaseolus vulgaris L.)[J]. Journal of the Chinese Cereals and Oils Association, 1993S1): 4650.

    [6] 冯国军, 刘大军. 菜豆的营养价值评价与分析[J]. 北方园艺,2016(24):200−208. [FENG G J, LIU D J. Evaluation and analysis on nutrition of Phaseolus vulgaris L

    J]. Northern Horticulture,2016(24):200−208.

    [7] 王艳, 张越, 陈姗姗, 等. 食荚菜豆氨基酸组成与含量及其品质评价[J]. 西北农林科技大学学报(自然科学版). 2014, 42(8):155−161. [WANG Y, ZHANG Y, CHEN S S, et al. Composition, content, and quality evaluation of amino acids in snap bean[J]. Journal of Northwest A&F University (Natural Science Edition.), 2014, 42(8):155−161.]

    WANG Y, ZHANG Y, CHEN S S, et al. Composition, content, and quality evaluation of amino acids in snap bean[J]. Journal of Northwest A&F University (Natural Science Edition.), 2014, 42(8): 155−161.

    [8] 张秀玲, EVGENIIA, 闫怡, 等. 一种复配保鲜剂对鲜切油豆角贮藏品质的影响[J]. 食品工业,2016,37(10):147−151. [ZHANG X L, EVGENIIA, YAN Y, et al. The ettect of a complex preservative on the storage qualities of fresh-cut oli beans[J]. The Food Industry,2016,37(10):147−151.]

    ZHANG X L, EVGENIIA, YAN Y, et al. The ettect of a complex preservative on the storage qualities of fresh-cut oli beans[J]. The Food Industry, 2016, 3710): 147151.

    [9] 郭丽, 马莺. 油豆角冰温贮藏对淀粉与蛋白质降解速度的影响[J]. 食品与发酵工业,2008(6):160−163. [GUO L, MA Y. Effect of ice-point temperature storage on the decomposition rate of starch and protein during storage of green bean[J]. Food and Fermentation Industries,2008(6):160−163.]

    GUO L, MA Y. Effect of ice-point temperature storage on the decomposition rate of starch and protein during storage of green bean[J]. Food and Fermentation Industries, 20086): 160163.

    [10] 王存堂, 张雄峰, 杨丽, 等. 热风温度和热烫处理对油豆角丝热风干制特性的影响[J]. 食品工业科技,2017,38(1):135−140,151. [WANG C T, ZHANG X F, YANG L, et al. Effect of temperature and blanching treatment on hot-air drying characteristics of shredded snap bean[J]. Science and Technology of Food Industry,2017,38(1):135−140,151.]

    WANG C T, ZHANG X F, YANG L, et al. Effect of temperature and blanching treatment on hot-air drying characteristics of shredded snap bean[J]. Science and Technology of Food Industry, 2017, 381): 135140,151.

    [11] 孙庆申, 朱国庆, 王璇, 等. 紫冠豆角( Phaseolus vulgaris L.)种子中 α-淀粉酶抑制剂的提取及其性质研究[J]. 食品工业科技,2021,42(6):137−143. [SUN Q S, ZHU G Q, WANG X, et al. Extraction and properties of α-amylase inhibitor from Phaseolus vulgaris L

    J]. Science and Technology of Food Industry,2021,42(6):137−143.

    [12] 朱国庆. 豆角种子资源中高活性α-淀粉酶抑制剂的优选及其性能评价[D]. 哈尔滨:黑龙江大学, 2021. [ZHU G Q. Optimization and performance evaluation of high activity α-amylase inhibitors from snap bean seed resources[D]. Harbin:Heilongjiang University, 2021.]

    ZHU G Q. Optimization and performance evaluation of high activity α-amylase inhibitors from snap bean seed resources[D]. Harbin: Heilongjiang University, 2021.

    [13] 王艳, 张煜松, 刘兴丽, 等. 湿热处理对绿豆淀粉结构及理化特性的影响[J]. 轻工学报,2022,37(3):36−42. [WANG Y, ZHANG Y S, LIU X L, et al. Effect of heat moisture treatment on the structural and physicochemical properties of mung bean starch[J]. Journal of Light Industry,2022,37(3):36−42.]

    WANG Y, ZHANG Y S, LIU X L, et al. Effect of heat moisture treatment on the structural and physicochemical properties of mung bean starch[J]. Journal of Light Industry, 2022, 373): 3642.

    [14] 中华人民共和国国家卫生健康委员会. GB 5009.3-2016 食品中水分的测定[S]. 北京:中国标准出版社, 2016. [National Health Commission of the People's Republic of China. GB 5009.3-2016 Determination of moisture in food[S]. Beijing:Standards Press of China, 2016.]

    National Health Commission of the People's Republic of China. GB 5009.3-2016 Determination of moisture in food[S]. Beijing: Standards Press of China, 2016.

    [15] 中华人民共和国国家卫生健康委员会. GB 5009.9-2016 食品中淀粉的测定[S]. 北京:中国标准出版社, 2016. [National Health Commission of the People's Republic of China. GB 5009.9-2016 Determination of starch in food[S]. Beijing:Standards Press of China, 2016.]

    National Health Commission of the People's Republic of China. GB 5009.9-2016 Determination of starch in food[S]. Beijing: Standards Press of China, 2016.

    [16] 中华人民共和国国家卫生健康委员会. GB 5009.5-2016 食品中蛋白质的测定[S]. 北京:中国标准出版社, 2016. [National Health Commission of the People’s Republic of China. GB 5009.5- 2016 Determination of protein in food[S]. Beijing:Standards Press of China, 2016.]

    National Health Commission of the People’s Republic of China. GB 5009.5- 2016 Determination of protein in food[S]. Beijing: Standards Press of China, 2016.

    [17] 中华人民共和国国家卫生健康委员会. GB 5009.4-2016 食品中灰分的测定[S]. 北京:中国标准出版社, 2016. [National Health Commission of the People's Republic of China. GB 5009.4-2016 Determination of ash in food[S]. Beijing:Standards Press of China, 2016.]

    National Health Commission of the People's Republic of China. GB 5009.4-2016 Determination of ash in food[S]. Beijing: Standards Press of China, 2016.

    [18] 何洁, 闫飞燕, 黄芳, 等. 双波长法测定薯芋类农产品中直链淀粉和支链淀粉的含量[J]. 食品工业科技,2022,43(7):303−309. [HE J, YAN F Y, HUANG F, et al. Determination of amylose and amylopectin contents in yam and taros by dual-wavelength spectrophotometry[J]. Science and Technology of Food Industry,2022,43(7):303−309.]

    HE J, YAN F Y, HUANG F, et al. Determination of amylose and amylopectin contents in yam and taros by dual-wavelength spectrophotometry[J]. Science and Technology of Food Industry, 2022, 437): 303309.

    [19] 王子逸, 张宾佳, 赵思明, 等. 不同品种马铃薯淀粉的多层次结构和理化特性研究[J]. 中国粮油学报,2019,34(3):24−30. [WANG Z Y, ZHANG B J, ZHAO S M, et al. Multi-level structures and physicochemical properties of different potato starchs[J]. Journal of the Chinese Cereals and Oils Association,2019,34(3):24−30.]

    WANG Z Y, ZHANG B J, ZHAO S M, et al. Multi-level structures and physicochemical properties of different potato starchs[J]. Journal of the Chinese Cereals and Oils Association, 2019, 343): 2430.

    [20] 周童童, 梁单, 刘伟, 等. 不同中薯系列马铃薯淀粉组成与理化性质的差异分析[J]. 核农学报,2022,36(4):766−776. [ZHOU T T, LIANG D, LIU W, er al. Componets and physicochemical properties of starchs from different Zhongshu series potato cultivars[J]. Journal of Nuclear Agricultural Science,2022,36(4):766−776.]

    ZHOU T T, LIANG D, LIU W, er al. Componets and physicochemical properties of starchs from different Zhongshu series potato cultivars[J]. Journal of Nuclear Agricultural Science, 2022, 364): 766776.

    [21] 中华人民共和国国家质量监督检验检疫总局. GB/T24853-2010小麦、黑麦及其粉类和淀粉糊化特性测定 快速粘度仪法[S]. 北京:中国标准出版社, 2010. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 24853-2010 Determination of gelatinization properties of wheat, rye and their powders and starches-rapid viscometer method[S]. Beijing:Standards Press of China, 2010.]

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China. GB/T 24853-2010 Determination of gelatinization properties of wheat, rye and their powders and starches-rapid viscometer method[S]. Beijing: Standards Press of China, 2010.

    [22] 罗芳会, 刘传菊, 聂荣祖, 等. 玉米淀粉和马铃薯淀粉共混糊化及凝胶特性的研究[J]. 中国粮油学报,2022,37(8):159−165. [LUO F H, LIU C J, NIE R Z, et al. Gelatinization and gel properties of blends of corn and potato starches[J]. Journal of the Chinese Cereals and Oils Association,2022,37(8):159−165.]

    LUO F H, LIU C J, NIE R Z, et al. Gelatinization and gel properties of blends of corn and potato starches[J]. Journal of the Chinese Cereals and Oils Association, 2022, 378): 159165.

    [23] 卢楹, 雷宁宇, 宋萧萧, 等. 4种杂豆淀粉结构特征和理化特性比较[J]. 食品科学,2023,44(6):34−40. [LU Y, LEI N Y, SONG X X, et al. Comparison of structural characteristics and physicochemical properties of four different kinds of pulse starches[J]. Food Science,2023,44(6):34−40.]

    LU Y, LEI N Y, SONG X X, et al. Comparison of structural characteristics and physicochemical properties of four different kinds of pulse starches[J]. Food Science, 2023, 446): 3440.

    [24] 许鑫, 韩春然, 袁美娟, 等. 绿豆淀粉和芸豆淀粉理化性质比较研究[J]. 食品科学,2010,31(17):173−176. [XU X, HAN C R, YUAN M J, et al. Comparative study of physico-chemical properties of kidney bean and mung bean starches[J]. Food Science,2010,31(17):173−176.]

    XU X, HAN C R, YUAN M J, et al. Comparative study of physico-chemical properties of kidney bean and mung bean starches[J]. Food Science, 2010, 3117): 173176.

    [25] 吴会琴, 杨秋歌, 黄梦迪, 等. 白芸豆淀粉与小利马豆淀粉理化性质的比较研究[J]. 中国粮油学报,2019,34(9):33−38. [WU H Q, YANG Q G, HUANG M D, et al. Comparative study on physicochemical properties of white kidney bean starch and Lima bean starch[J]. Journal of the Chinese Cereals and Oils Association,2019,34(9):33−38.]

    WU H Q, YANG Q G, HUANG M D, et al. Comparative study on physicochemical properties of white kidney bean starch and Lima bean starch[J]. Journal of the Chinese Cereals and Oils Association, 2019, 349): 3338.

    [26] 郭世龙. 黑豆细胞壁完整性与曲奇饼干理化品质及淀粉消化特性的相关性研究[D]. 沈阳:沈阳师范大学, 2021. [GUO S L. Study on the relationship between cell wall integrity of black bean and the physicochemical propertiesand starch digestibility of cookies[D]. Shenyang:Shenyang Normal University, 2021.]

    GUO S L. Study on the relationship between cell wall integrity of black bean and the physicochemical propertiesand starch digestibility of cookies[D]. Shenyang: Shenyang Normal University, 2021.

    [27] 张正茂, 周颖. 5种豆类淀粉凝胶特性的比较研[J]. 中国粮油学报,2019,34(3):38−44. [ZHANG Z M, ZHOU Y. Comparative study on starch gel properties of five kinds of legumes[J]. Journal of the Chinese Cereals and Oils Association,2019,34(3):38−44.]

    ZHANG Z M, ZHOU Y. Comparative study on starch gel properties of five kinds of legumes[J]. Journal of the Chinese Cereals and Oils Association, 2019, 343): 3844.

    [28] 康欣月, 王立梅, 孙姜, 等. 竹豆淀粉理化性质的研究[J]. 食品研究与开发,2017,38(22):20−24. [KANG X Y, WANG L M, SUN J, et al. Study on the physical and chemical properties of bamboo beans starch[J]. Food Research and Development,2017,38(22):20−24.]

    KANG X Y, WANG L M, SUN J, et al. Study on the physical and chemical properties of bamboo beans starch[J]. Food Research and Development, 2017, 3822): 2024.

    [29] 曹旭, 辛明航, 刘婷婷, 等. 湿热处理对油莎豆淀粉理化性质、结构及体外消化特性的影响[J]. 中国粮油学报,2022,37(10):131−137. [CAO X, XIN M H, LIU T T, et al. Impact of heat moisture treatment on physicochemical properties, structure and digestive properties of Cyperus esculentus L. starch[J]. Journal of the Chinese Cereals and Oils Association,2022,37(10):131−137.]

    CAO X, XIN M H, LIU T T, et al. Impact of heat moisture treatment on physicochemical properties, structure and digestive properties of Cyperus esculentus L. starch[J]. Journal of the Chinese Cereals and Oils Association, 2022, 3710): 131137.

    [30] 王绍清, 范文浩, 王琳琳, 等. 扫描电子显微镜原位观察可食用淀粉颗粒的超微形貌[J]. 食品科学,2013,34(1):61−64. [WANG S Q, FAN W H, WANG L L, et al. In situ SEM Observation of ultrastructural morphology of edible starch granules[J]. Food Science,2013,34(1):61−64.]

    WANG S Q, FAN W H, WANG L L, et al. In situ SEM Observation of ultrastructural morphology of edible starch granules[J]. Food Science, 2013, 341): 6164.

    [31]

    CHEN P, YU L, CHEN L, et al. Morphology and microstructure of maize starches with different amylose/amylopectin content[J]. [J]. Starch-Stärke,2006,58(12):611−615.

    [32] 张燕鹏, 庄坤, 丁文平, 等. 豌豆淀粉与马铃薯淀粉、玉米淀粉理化性质比较[J]. 食品工业科技,2016,37(4):183−186. [ZHANG Y P, ZHUANG K, DING W P, et al. Comparison of physicochemical properties of pea starch, potato starch and corn starch[J]. Science and Technology of Food Industry,2016,37(4):183−186.]

    ZHANG Y P, ZHUANG K, DING W P, et al. Comparison of physicochemical properties of pea starch, potato starch and corn starch[J]. Science and Technology of Food Industry, 2016, 374): 183186.

    [33] 王金梦, 张思维, 赵康云, 等. 不同品种木薯淀粉理化和结构性质的比较[J]. 食品工业科技,2023,44(2):115−122. [WANG J M, ZHANG S W, ZHAO K Y, et al. Comparison of physicochemical and structural properties of different species of cassava starch[J]. Science and Technology of Food Industry,2023,44(2):115−122.]

    WANG J M, ZHANG S W, ZHAO K Y, et al. Comparison of physicochemical and structural properties of different species of cassava starch[J]. Science and Technology of Food Industry, 2023, 442): 115122.

    [34] 谢婷婷. 播期对小麦淀粉粒形态、粒径分布及理化特性的影响[D]. 杨凌:西北农林科技大学, 2022. [XIE T T. Effects of sowing date on grain morphology, particle size distribution and physicochemical properties of wheat starch[D]. Yangling:Northwest A&F University, 2022.]

    XIE T T. Effects of sowing date on grain morphology, particle size distribution and physicochemical properties of wheat starch[D]. Yangling: Northwest A&F University, 2022.

    [35] 欧阳群富. 超声处理对不同晶型淀粉的结构及理化性能的影响[D]. 长沙:中南林业科技大学, 2021. [OUYANG Q F. Effect of ultrasonic treatment on the structure and physicochemical properties of different crystalline starch[D]. Changsha:Central South University of Forestry and Technology, 2021.]

    OUYANG Q F. Effect of ultrasonic treatment on the structure and physicochemical properties of different crystalline starch[D]. Changsha: Central South University of Forestry and Technology, 2021.

    [36] 刘明. 豌豆淀粉主食加工适应性机制及其加工方式对小鼠餐后血糖的稳态化评价[D]. 哈尔滨:东北农业大学, 2017. [Effect of the processing adaptability of pea starch and the evaluation effect of pretreatment methods on postprandial blood glucose in mice[D]. Harbin:Northeast Agricultural University, 2017.]

    Effect of the processing adaptability of pea starch and the evaluation effect of pretreatment methods on postprandial blood glucose in mice[D]. Harbin: Northeast Agricultural University, 2017.

    [37] 杨晨希. 弋阳大禾谷淀粉结构与功能关系及对年糕营养消化特性影响研究[D]. 南昌:南昌大学, 2021. [YANG C X. Study on the relationship between structure and function of Yiyang rice starch and its effect on the nutrition and digestibility of rice cake[D]. Nanchang:Nanchang University, 2021.]

    YANG C X. Study on the relationship between structure and function of Yiyang rice starch and its effect on the nutrition and digestibility of rice cake[D]. Nanchang: Nanchang University, 2021.

    [38]

    WANG L, GONG Y, LI Y, et al. Structure and properties of soft rice starch[J]. International Journal of Biological Macromolecules,2020,157:10−16. doi: 10.1016/j.ijbiomac.2020.04.138

    [39]

    LI P, HE X, DHITAL S, et al. Structural and physicochemical properties of granular starches after treatment with debranching enzyme[J]. Carbohydrate Polymers,2017,169:351−356. doi: 10.1016/j.carbpol.2017.04.036

    [40] 蓝绪悦, 王玲, 杜沁岭, 等. 酶辅助碱法提取龙眼核淀粉的结构与理化性质研究[J]. 食品工业科技,2022,43(13):42−48. [LAN X Y, WANG L, DU Q L, et al. Structural and physicochemical properties of longan kernel starch by enzyme-assisted alkali extraction[J]. Science and Technology of Food Industry,2022,43(13):42−48.]

    LAN X Y, WANG L, DU Q L, et al. Structural and physicochemical properties of longan kernel starch by enzyme-assisted alkali extraction[J]. Science and Technology of Food Industry, 2022, 4313): 4248.

    [41] 刘惠娟, 赵春燕, 龚加顺. 蕉芋淀粉和玉米淀粉理化特性对比分析[J]. 食品科技,2022,47(3):271−277. [LIU H J, ZHAO C Y, GONG J S. Comparative analysis of starch physicochemical properties between Canna edulis Ker starch and corn starch[J]. Food Science and Technology,2022,47(3):271−277.]

    LIU H J, ZHAO C Y, GONG J S. Comparative analysis of starch physicochemical properties between Canna edulis Ker starch and corn starch[J]. Food Science and Technology, 2022, 473): 271277.

    [42] 白婷, 靳玉龙, 朱明霞, 等. 超声波处理对青稞淀粉理化特性的影响[J]. 中国粮油学报,2021,36(9):60−66. [BAI T, JIN Y L, ZHU M X, et al. Effects of ultrasonic treatment on physicochemical properties of highland barley starch[J]. Journal of the Chinese Cereals and Oils Association,2021,36(9):60−66.] doi: 10.3969/j.issn.1003-0174.2021.09.011

    BAI T, JIN Y L, ZHU M X, et al. Effects of ultrasonic treatment on physicochemical properties of highland barley starch[J]. Journal of the Chinese Cereals and Oils Association, 2021, 369): 6066. doi: 10.3969/j.issn.1003-0174.2021.09.011

    [43] 杜双奎, 王华, 聂丽洁. 芸豆淀粉理化特性研究[J]. 中国粮油学报,2012,27(8):31−35. [DU S K, WANG H, NIE L J. Study on physicochemical properties of kidney bean starch[J]. Journal of the Chinese Cereals and Oils Association,2012,27(8):31−35.]

    DU S K, WANG H, NIE L J. Study on physicochemical properties of kidney bean starch[J]. Journal of the Chinese Cereals and Oils Association, 2012, 278): 3135.

    [44]

    YANG J Y, REDDY C K, FAN Z L, et al. Physicochemical and structural properties of starches from non-traditional sources in China[J]. Food Science and Human Wellness,2023,12(2):416−423. doi: 10.1016/j.fshw.2022.07.043

    [45]

    HOOVER R, HUGHES T, CHUNG H J, et al. Composition, molecular structure, properties, and modification of pulse starches:A review[J]. Food Research International Starch,2010,43(2):399−413. doi: 10.1016/j.foodres.2009.09.001

    [46]

    GE X, SHEN H, SU C, et al. The improving effects of cold plasma on multi-scale structure, physicochemical and digestive properties of dry heated red adzuki bean starch[J]. Food Chemistry,2021,349:129159. doi: 10.1016/j.foodchem.2021.129159

    [47] 李欢欢, 刘传菊. 三种不同干燥方式对马铃薯全粉品质的影响[J]. 农产品加工,2019(16):35−37,40. [LI H H, LIU C J. Effects of three different drying methods on the quality of potato powder[J]. Farm Products Processing,2019(16):35−37,40.]

    LI H H, LIU C J. Effects of three different drying methods on the quality of potato powder[J]. Farm Products Processing, 201916): 3537,40.

    [48] 王倩雯. 芸豆萌发过程中营养成分、淀粉理化特性变化及相关性研究[D]. 大庆:黑龙江八一农垦大学, 2015. [WANG Q W. Changes of nutritional composition and starch physicochemical properties and correlation study during kidney bean germination[D]. Daqing:Heilongjiang Bayi Agricultural University, 2015.]

    WANG Q W. Changes of nutritional composition and starch physicochemical properties and correlation study during kidney bean germination[D]. Daqing: Heilongjiang Bayi Agricultural University, 2015.

    [49]

    ERICKSON J, CARLSON J, STEWART M, et al. Fermentability of novel type-4 resistant starches in vitro system[J]. Foods, 2018, 7(2): 18.

    [50]

    RAMDATH D, RENWICK S, DUNCAN A M. The role of pulses in the dietary management of diabetes[J]. Canadian Journal of Diabetes,2016,40(4):355−363. doi: 10.1016/j.jcjd.2016.05.015

  • 期刊类型引用(1)

    1. 张露,王修俊,何春霞,胡荣念,陈艳琳. 发酵青小米辣护色工艺条件优化及品质分析. 中国酿造. 2025(02): 199-205 . 百度学术

    其他类型引用(0)

  • 其他相关附件

图(6)  /  表(7)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  8
  • PDF下载量:  19
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-05-04
  • 网络出版日期:  2024-01-28
  • 刊出日期:  2024-03-31

目录

/

返回文章
返回
x 关闭 永久关闭