• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

凉粉草多糖提取、结构及功效机制的研究进展

唐雅园, 韦珍, 邓中霖, 戴涛涛, 梁朋光, 孙健, 何雪梅

唐雅园,韦珍,邓中霖,等. 凉粉草多糖提取、结构及功效机制的研究进展[J]. 食品工业科技,2024,45(4):379−388. doi: 10.13386/j.issn1002-0306.2023040125.
引用本文: 唐雅园,韦珍,邓中霖,等. 凉粉草多糖提取、结构及功效机制的研究进展[J]. 食品工业科技,2024,45(4):379−388. doi: 10.13386/j.issn1002-0306.2023040125.
TANG Yayuan, WEI Zhen, DENG Zhonglin, et al. Research Progress on Extraction, Structure, Functions and Mechanism of Action of Mesona Polysaccharide[J]. Science and Technology of Food Industry, 2024, 45(4): 379−388. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040125.
Citation: TANG Yayuan, WEI Zhen, DENG Zhonglin, et al. Research Progress on Extraction, Structure, Functions and Mechanism of Action of Mesona Polysaccharide[J]. Science and Technology of Food Industry, 2024, 45(4): 379−388. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023040125.

凉粉草多糖提取、结构及功效机制的研究进展

基金项目: 广西自然科学基金(2022GXNSFBA035581);广西农业科学院基本科研业务费项目(桂农科2023YM109,2021YTI16)。
详细信息
    作者简介:

    唐雅园(1991−),女,硕士,副研究员,研究方向:食品营养,E-mail:tangyayuan@gxaas.net

    韦珍(1992−),女,本科,助理工程师,研究方向:天然产物化学,E-mail:zhenwei@gxaas.net

    通讯作者:

    何雪梅(1981−),女,硕士,研究员,研究方向:天然产物化学,E-mail:xuemeihe1981@126.com

    +并列第一作者

  • 中图分类号: TS201.4

Research Progress on Extraction, Structure, Functions and Mechanism of Action of Mesona Polysaccharide

  • 摘要: 凉粉草是中国特色的药食同源食品,在我国有着丰富的产量和广大的受众人群。多糖类是凉粉草的主要活性成分之一,在预防和治疗疾病方面具有多种生物活性。凉粉草多糖目前广泛应用在清热解毒类中成药、凉茶、凉粉等方面,但存在产品开发深度不够等问题。本文检索了近年来的相关国内外文献,全面综述凉粉草多糖的提取与分离纯化技术、结构与流变凝胶特性,并对凉粉草多糖的抗氧化、调节肠道菌群、降血糖、降血脂、保肝护肝、免疫调节等功能活性及相关作用机制进行分析,以期为凉粉草高值化加工利用提供参考和依据。
    Abstract: Mesona is a special edible and medicinal food in China. The country has an abundant Mesona output and a large number of Mesona consumers. Polysaccharide is one of the important active components in Mesona, which has a variety of biological activities in disease prevention and treatment. Currently, Mesona polysaccharide has been widely used in Chinese Traditional medicine, herbal tea, as well as jelly. However, there are problems such as insufficient development of deep-processing products. In this paper, the domestic and foreign literature in the past recent years are retrieved and collected. This article comprehensively proposes the extraction, isolation and purification technologies of Mesona polysaccharide, as well as their characteristic structures, and rheological and gelling properties. Additionally, their functional activities and the underlying mechanism of action on antioxidant, regulation of gut flora, anti-hyperglycemia, anti-hyperlipidemia, liver protection and immunoregulation are systematically reviewed. This review provides useful ideas and guidance for the basic research as well as the commercialization of research on Mesona.
  • 凉粉草,素有“仙草”之称,为唇形科凉粉草属一年生草本植物。全世界约有10种凉粉草属植物,我国主要有两种,分别是凉粉草(Mesona chiensis Benth)和小花凉粉草(Mesona parviflora(Benth)Briq)[1]。凉粉草作为食药同源植物,主要分布在我国两广、闽南、云滇等地区,其中广东增城派潭凉粉草被批准为国家地理标志保护产品。据《中华本草》《全国中草药汇编》《中药大辞典》等书中记载,凉粉草性寒、甘淡凉,具有清热解暑、解热利尿之功效,主治中暑、丹毒、消渴、高血压、关节疼痛等疾病,目前被广泛应用于生产清热解毒类中成药、凉茶、凉粉、功能饮料等[2]

    凉粉草多糖是一种广泛存在于凉粉草的根茎叶各个部位的具有凝胶特性的水溶性多糖,是凉粉草中关键生物活性成分之一,占全草干样的70%[3],具有抗氧化、降血糖、降血脂、保肝护肝、免疫调节等功能[4],还有良好的热稳性和促凝性,在食品和制药工业中常被用作增稠剂、稳定剂和凝胶剂[5],有广阔的开发利用前景。本文结合国内外凉粉草研究现状,系统性介绍凉粉草多糖提取与分离纯化技术,探讨凉粉草多糖的结构与流变凝胶特性,并讨论凉粉草多糖这一功能成分对人类健康的影响,以期为凉粉草高值化加工利用提供借鉴。

    以凉粉草为原料制备凉粉草多糖,需要经过提取、精制、纯化等步骤。提取分离后得到的凉粉草粗多糖中还含有蛋白质、色素等,采用脱蛋白、脱色、除小分子等精制处理。经过精制后的凉粉草多糖,进一步采用离子交换色谱法、凝胶渗透色谱法等方法进行分级纯化,最终得到均一的多糖组分。制备凉粉草多糖的常见方法和流程如图1所示。

    图  1  凉粉草多糖提取与分离纯化方法和流程
    Figure  1.  Flow chart and methods of extraction and purification of Mesona polysaccharide

    凉粉草多糖的提取方法有传统热水浸提法、热水碱液浸提法、酶辅助浸提法、超声辅助浸提法等。不同提取方法对凉粉草多糖得率和总糖含量有较大影响,影响多糖得率的因素有碱液浓度、提取温度、提取时间、液固比等,得率范围在7.05%~43.84%,具体提取方法及评价见表1。不同品种及不同产地的凉粉草中多糖含量有一定的差异,其中匍匐型凉粉草的多糖含量明显高于直立型[6],而来自广东饶平和福建漳州的凉粉草的多糖含量较高[7]。此外,同一品种不同部位的多糖含量差异极显著,其中凉粉草叶中多糖含量最高,其次分别为根和茎[8]。不同生长阶段的凉粉草的多糖含量也有着显著差异,特别是在现蕾前期(每年9月至10月),全草的多糖积累量达到最高值[9]

    表  1  凉粉草多糖提取方法及评价
    Table  1.  Extraction methods for Mesona polysaccharide
    提取方法 过程和条件描述 提取结果 评价
    传统热水浸提法[10] 液固比60 mL/g,提取温度100 ℃,提取时间2~3 h,
    重复3次。
    粗多糖得率为17.89%~18.93%,
    总糖含量约45%
    提取设备简单,多糖结构破坏小;
    但是得率低,提取时间长。
    热水碱液浸提法[1115] Na2CO3浓度0.3%~1.5%,液固比20~28 mL/g,提取温度91.74~95 ℃,提取时间1.5~3 h。 粗多糖得率最高达到41.00%。 得率相较热水浸提法高;但碱液会改变凉粉草多糖的风味。
    高温高压(碱液)
    浸提法[8]
    高压灭菌锅温度120 ℃、压力0.1 MPa,液固比
    25 mL/g,Na2CO3浓度0.3%,提取时间1.5 h。
    叶、根、茎的粗多糖得率分别为40.56%、32.01%和31.88%。 提取设备简单,得率较高;但高温可能造成多糖部分降解,导致总糖含量减少、粘度特性降低。
    复合酶辅助
    浸提法[1618]
    酶解温度50~55 ℃,pH5.5,复合酶(纤维素酶、
    果胶酶)浓度0.4%~0.6%,酶解时间4 h。
    粗多糖得率比传统热水浸提法
    提高了50%~60%。
    提取条件温和,得率较高;但酶价格较贵,提取时间长。
    超声辅助(碱液)
    浸提法[1921]
    超声辅助提取0.5~1 h,提取温度100 ℃,Na2CO3质量浓度为0.3%~0.4%,液固比20~40 mL/g,提取功率400~600 W。 粗多糖得率比碱液浸提法的提高了约14.00%,总糖含量提高了92.81 mg/g,多糖粘度特性比碱液浸提法的
    提高了约18.00%。
    提取的多糖的凝胶特性强,提取
    时间短;但超声设备造价高。
    微波辅助(碱液)
    浸提法[2223]
    微波功率350~400 W,碱液浓度0.125 mol/L,微波时间90 s,液固比35~40 mL/g,提取时间1 h。 粗多糖得率最高达到43.84%,
    总糖含量35.43%。
    得率最高,提取时间短;但投入大,成本高。
    动态超高压微射流
    辅助(碱液)浸提法[24]
    以Na2CO3溶液为提取液,提取时间2 h,重复2次,
    醇沉收集多糖样品,置于微射流均质机中在
    120 MPa压力下处理6次。
    粗多糖中总糖含量提高了20.25%,糖醛酸含量提高了14.24%,且蛋白
    含量降低了21.33%。
    多糖结构不变,且功能活性显著提高;但设备造价高,多糖提取目前限于
    小试研究阶段。
    下载: 导出CSV 
    | 显示表格

    凉粉草多糖的精制与纯化一般包括粗多糖脱蛋白、脱色、除小分子及粗多糖的分级纯化。采用三氟乙酸法、Savage法、酶法除去凉粉草多糖中的蛋白质。过氧化氢法[15]、活性炭法[25]和树脂吸附法是凉粉草多糖脱色的传统方法。陈荔红等[26]比较活性炭与大孔树脂对凉粉草多糖的脱色效果,确定树脂D301的脱色效果最佳,多糖脱色率高(超过95%)且损失率低。除小分子等杂质一般采用透析袋透析法。凉粉草多糖分级纯化可采用离子交换色谱法、凝胶渗透色谱法等。采用离子交换树脂(DEAE Sepharose CL-6B、DEAE Sepharose Fast Flow)结合盐梯度将粗多糖的酸性糖组分和中性糖组分分离,凝胶渗透色谱(Sephadex G-75、Sephadex G-100、Sephacryl S-300HR)根据多糖分子量的不同进一步将多糖分离纯化。例如,冯涛等[27]采用DEAE Sepharose Fast Flow从凉粉草多糖中分离得到一个中性糖组分和两个酸性糖组成。

    凉粉草多糖为杂聚糖,其组成和结构十分复杂,相关研究国内外文献报道较少。多糖的结构分为初级结构(一级结构)和高级结构(二、三、四级结构)。多糖初级结构主要包括多糖分子量、糖基组成及比例、糖基构型、糖苷键类型、糖链中糖基排列顺序、糖链的分支位置与长短等。多糖高级结构主要包括多糖骨架链间以氢键结合而形成的各种聚合体、多糖链间非共价结合形成的聚集体等。由于植物多糖结构复杂、解析难度高、解析技术水平相对有限等原因,目前对凉粉草多糖结构研究主要集中在一级结构解析。

    研究多糖结构首先要分析多糖的糖基组成。凉粉草多糖的糖基组成及比例分析常采用薄层层析[28]、还原胺化试剂衍生-液相色谱[15]、酸辅助热水解-离子色谱[7]、柱前衍生-超高效液相色谱-串联四极杆质谱[29]、柱前衍生-高效液相色谱-紫外检测[30]等技术。碱液浸提法制备的凉粉草多糖含有葡萄糖(Glu)、甘露糖(Man)、木糖(Xyl)、鼠李糖(Rha)、半乳糖(Gal)、核糖(Rib)、阿拉伯糖(Ara)、葡萄糖醛酸(GluA)和半乳糖醛酸(GalA),其中多以Glu、Gal和GalA为主要糖基成分[30]

    采用离子交换柱、凝胶柱等分离纯化方法从凉粉草多糖中进一步分级分离得到一个中性糖组分(MCP-N)和一个或多个酸性糖组分(MCP-A),其中以MCP-A为主。进一步通过凝胶色谱、红外光谱、甲基化和GC-MS分析、核磁共振等现代波谱分析手段确定了凉粉草糖组分的一级结构。多糖提取、分离纯化及结构鉴定方法的差异会导致凉粉草多糖结构表征的差异,具体凉粉草多糖分级纯化及其糖组分特征结构描述见表2。凉粉草MCP-N和MCP-A的糖环构型均呈现吡喃型,其中MCP-N多以β-糖苷键连接,而MCP-A中同时含有α-和β-糖苷键。

    表  2  凉粉草多糖分级纯化及其糖组分特征结构
    Table  2.  Characteristic structures of isolated and purified Mesona polysaccharide
    提取方法 分离纯化方法 糖组分 分子量
    (kDa)
    单糖组成 糖苷键、糖环构型 其他特征
    碱提[28] Sephadex G-75 酸性糖 43 葡萄糖、半乳糖、阿拉伯糖、木糖、鼠李糖,半乳糖醛酸及一种未知单糖。 糖苷键以α-(1→4)为主,可能含少量β-(1→4)。 含少量蛋白质或核酸,具有高聚阴离子性质。
    碱提[31] DEAE Sepharose Fast Flow、Sephadex G-100 中性糖 5.227 以阿拉伯糖含量最高。 β-糖苷键的吡喃环结构。 /
    酸性糖 6.566 以半乳糖醛酸含量最高。 主链由聚半乳糖醛酸组成的“光滑区”[→4)-α-D-GalpA-(1→]n和聚鼠李半乳糖醛酸组成的“毛发区”[→4)-α-D-GalpA-(1→2)-α-L-Rhap-(1→]m组成,侧链均与鼠李糖的4-O原子链接,侧链主要有半乳聚糖、阿拉伯聚糖和木聚糖。 具有流变性和较强的吸水溶胀性。
    碱提[32] DEAE Sepharose CL-6B、Sephacryl S-300HR 中性糖 1.250 以半乳糖含量最高。 β-糖苷键的吡喃环结构。 总糖含量49.10%,含少量蛋白质和硫酸根。
    酸性糖1 15.19 以木糖含量最高。 α-、β-糖苷键的吡喃环结构。 总糖含量45.10%,糖醛酸含量18.86%,含少量蛋白质和
    硫酸根。
    酸性糖2 12.06 以半乳糖醛酸含量最高。 α-、β-糖苷键的吡喃环结构。 总糖含量30.62%,糖醛酸含量59.14%,含少量蛋白质和
    硫酸根。
    水提[32] DEAE Sepharose CL-6B、Sephacryl S-300HR 中性糖 1.165 以半乳糖含量最高。 β-糖苷键的吡喃环结构。 总糖含量53.12%,含少量蛋白质和硫酸根。
    酸性糖 11.77 以半乳糖醛酸含量最高。 α-、β-糖苷键的吡喃环结构。 总糖含量34.42%,糖醛酸含量63.71%,含少量蛋白质和硫酸根,含乙酰基团。
    下载: 导出CSV 
    | 显示表格

    此外,通过扫描电镜、X射线衍射等手段对凉粉草多糖高级结构进行初步探索。董伟等[14]采用扫描电镜分析了碱液浸提法制备的凉粉草多糖的超微结构,观察到多糖表面疏松且有很多密集气孔,呈雪花状,层层叠起,还有很多细小颗粒附在片状物质表面,使多糖呈现较为蓬松质轻的形态。Xiao等[33]采用X射线衍射技术分析凉粉草多糖,结果显示,凉粉草多糖具有非晶体结构,且X衍射曲线呈光束状。

    凉粉草多糖具有独特的流变凝胶性质,能在液体状态下呈牛顿流体(低浓度)或假塑性流体(高浓度)。凉粉草多糖的结构特征决定了其流变凝胶特性。与MCP-N相比,MCP-A富含GalA,且具有一定的流变特性,而MCP-N几乎不具有流变特性,推测凉粉草多糖的流变特性差异与其结构中糖醛酸含量密切相关[27]。凉粉草酸性多糖含有α-(1→4)-半乳糖醛酸骨架及α-1,2-鼠李糖残基(图2),推测这一特殊的糖基连接方式使凉粉草多糖具备一定的凝胶特性[31]

    图  2  凉粉草酸性多糖的主要结构[31]
    Figure  2.  Main structure of Mesona acidic polysaccharide[31]

    另外,已有研究证实,单一的凉粉草多糖溶液的黏度不足以单独形成凝胶。凉粉草多糖需要与小麦[34]、大米[35]、木薯[36]、红薯[37]、玉米[38]、山药[39]等来源的淀粉类成分和大豆[40]、乳清[41]等来源的蛋白类成分相互作用,从而形成具有特殊口感的凝胶。凉粉草多糖与淀粉类、蛋白类成分复配,会改善淀粉、蛋白的结构和功能性质,但是凉粉草多糖与不同淀粉、蛋白的相互作用存在显著差异,且相互作用对凝胶特性(粘性、强度和硬度)、微观形貌以及消化特性均有影响。随着近年来现代分析仪器的应用逐渐普及,多糖分子结构检测分析方法也日趋完善,对凉粉草多糖结构表征与其流变凝胶特性的研究有望进一步深入展开。

    降低体内氧化应激水平是当前大健康产业中的研究热点,而凉粉草多糖已被证实是一种天然抗氧化剂。凉粉草多糖具有DPPH、ABTS+、羟基、超氧阴离子等自由基清除能力[42]、Fe2+螯合能力及还原力[4344],并表现出稳定的剂量-效应关系。凉粉草多糖可增加小鼠正常肝细胞NCTC-1469和人体肝细胞LO2内抗氧化酶活性,降低脂质过氧化物生成,有效防止DNA的氧化损伤[4546]。体内模型也证实凉粉草水提取物能增强高血压大鼠、糖尿病大鼠体内的总抗氧化状态[4748]。此外,李艳萍[49]分析凉粉草生长过程中多糖抗氧化活性的动态变化,发现凉粉草多糖的DPPH和ABTS+自由基清除能力在现蕾前期(9月至10月)达到较高水平,故建议优先采摘9月至10月的凉粉草作为抗氧化功能产品的原料。如何提高凉粉草多糖抗氧化活性也是当前极有价值的研究方向。Huang等[23]采用动态超高压微射流技术辅助处理凉粉草多糖,发现与单一热水碱液浸提法相比,该技术使多糖DPPH和羟基自由基清除能力分别提高了10.18%和41.03%。

    植物多糖对于机体肠道菌群的组成及功能具有重要的影响。肠道菌群的主要作用底物是不完全消化型多糖,这些多糖在不同酶类的消化及肠道菌群的酵解过程中被转化为乙酸、丙酸、丁酸等短链脂肪酸(Short chain fatty acids,SCFAs)及其他代谢产物,进一步发挥调节人体健康的作用[50]。凉粉草多糖可增加免疫抑制小鼠体内的瘤胃菌科(Ruminococcaceae)、毛螺菌科(Lachnospiraceae)、颤螺菌属(Oscillospira)、布劳特氏菌属(Blautia)以及粪球菌属(Coprococcus)的相对丰度以及抑制拟杆菌科(Bacteroidaceae)和拟杆菌属(Bacteroides)的相对丰度[51],还能提高小鼠肠道中SCFAs浓度,促进乙酸、丙酸和丁酸生成[51],有利于被肠道微生物有效利用,发挥其有益作用。此外,凉粉草多糖可增加溃疡性结肠炎模型小鼠体内的乳酸菌属(Lactobacillus)和粪球菌属(Coprococcus)的相对丰度,抑制螺杆菌属(Helicobacter)和普氏菌属(Prevotella)的相对丰度,修复肠道菌群失调[52]

    世界卫生组织和联合国于2016年已将Ⅱ型糖尿病预防作为健康的首要任务[53],因此亟待开发预防和治疗糖尿病的功能产品。凉粉草在《中国药植图鉴》和《中药大辞典》中早已有“治疗糖尿病”的记载。冯白茹等[54]以凉粉草为原料研发降血糖制剂,发现该产品对Ⅱ型糖尿病患者有较好的治疗效果,且没有明显的毒副作用。α-葡萄糖苷酶在人体糖代谢过程中发挥着重要作用,凉粉草多糖被证实具有较强的α-葡萄糖苷酶抑制能力,或可被开发成天然α-葡萄糖苷酶抑制剂[5556]。不同产地的凉粉草提取物对α-葡萄糖苷酶的抑制活性各有差异[57]。来自广东饶平产地的凉粉草多糖样品对α-葡萄糖苷酶的抑制效果最佳,IC50值为19.49 μg/mL[7]。凉粉草多糖推测还具有促进葡萄糖氧化分解和糖原合成、抑制糖异生等作用[58]。凉粉草降血糖的功效机制目前尚不明确,有待研究人员的进一步深入研究。

    血脂异常是心血管疾病的主要危险因素。近年来,食药同源食品的降血脂功效受到广泛的关注,具有辅助降血脂作用的凉粉草具有很大的开发前景[59]。凉粉草多糖通过激活机体丝裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和腺苷酸活化蛋白激酶(Adenosine 5'-monophosphate (AMP)-activated protein kinase,AMPK)信号通路[60],改善小鼠的脂蛋白含量和结构(包括降低甘油三酯、胆固醇、低密度脂蛋白、极低密度脂蛋白以及提高高密度脂蛋白),调节脂质运输,进而有效提高脂质代谢能力。此外,凉粉草多糖可降低小鼠的动脉粥样硬化指数,改善血液流变学异常[61],纠正血脂异常,表明凉粉草可作为动脉粥样硬化的辅助剂。

    肝脏是人体内最重要的代谢和解毒器官[62],肝脏疾病是一个全球性的健康问题,然而目前用于治疗和预防肝损伤的药物功效作用有限,且副作用多[63],因此开发有效安全的保肝护肝功能产品迫在眉睫。有研究报道,凉粉草水提取物可抑制大鼠肝纤维化[64]。凉粉草多糖能有效缓解酒精性肝损伤,且呈现出剂量-效应关系,主要是其多糖具有抑制肝脏氧化应激作用,降低肝脏细胞内活性氧水平,局部清除羟基、超氧阴离子等自由基[65]。此外,凉粉草多糖还能改善四氯化碳(CCl4)诱导的和环磷酰胺(Cyclophosphamide,Cy)诱导的急性肝损伤,主要是其多糖有效提高肝脏内抗氧化酶活性,抑制肝脏内促炎因子水平,降低血清中谷丙转氨酶和谷草转氨酶含量[51,66]。通过体内体外肝损伤模型、16S核糖体RNA(16S rRNA)基因测序、靶向和非靶向代谢组学等现代检测分析手段,系统性阐明凉粉草多糖的保肝护肝机制可能源于其能有效清除自由基并恢复机体抗氧化防御系统,有效控制机体炎症水平,亦或是源于其能有效调节肠道菌群结构,增加有益菌和减少有害菌的相对丰度,影响肠道微生物代谢(包括SCFAs)、花生四烯酸代谢等通路[67],如图3所示。可见,凉粉草多糖对天然保肝护肝功能食品的开发具有较高的应用价值。

    图  3  凉粉草多糖保肝护肝机理示意图
    Figure  3.  Schematic diagram showing the function of Mesona polysaccharide in liver protection

    植物多糖的免疫调节作用是其最关键的功能活性之一,常常能通过多条途径、在多个层面对机体免疫系统发挥作用[68]。有研究表明,凉粉草水提取物具有提高机体免疫的作用[6970],对小鼠肉瘤S180有一定的抑制作用,是一种潜在的天然免疫调节剂[71]。黄祥彬等[72]发现凉粉草水提取物能增强小鼠B淋巴细胞活性,促进溶血素水平,增加抗体产生,进而提高机体的特异性体液免疫功能。进一步有研究确定凉粉草多糖可促进Cy诱导的免疫抑制小鼠的脾T/B淋巴细胞增殖和脾脏中细胞因子分泌[73],亦可与刀豆蛋白A协同促进机体T淋巴细胞增殖。此外,在机体非特异性免疫应答方面,凉粉草多糖也表现出较强的调控能力。Shen等[74]发现凉粉草多糖可通过与Toll样受体4(toll-like receptor 4,TLR4)结合而促进巨噬细胞增殖、吞噬和分泌细胞因子能力,以增强机体免疫应答。Huang等[75]进一步分析凉粉草多糖作用于巨噬细胞的可能机制是通过上调c-Jun氨基末端激酶(c-Jun N-terminal kinase,JNK)、p38蛋白激酶、细胞外调节蛋白激酶(extracellular regulated protein kinases,ERK)的磷酸化水平而激活MAPK信号通路,进而提高机体非特异性免疫调节能力(图4)。可见,凉粉草多糖能同时促进机体的非特异性免疫和特异性(体液和细胞)免疫功能。

    图  4  凉粉草多糖免疫调节机理示意图
    Figure  4.  Schematic diagram showing the function of Mesona polysaccharide in immunoregulation

    凉粉草多糖具有抗菌活性,能抑制大肠杆菌、枯草芽孢杆菌等病原微生物的生长[14],具有开发成食品防腐剂或保鲜剂的潜在价值。凉粉草多糖还具有一定的抗炎活性,可通过促进抗炎细胞因子分泌、提高肠粘膜屏障功能、抑制TLR4/MAPK/NF-κB信号通路,进而缓解葡聚糖硫酸钠引起的溃疡性结肠炎[52]。凉粉草水提取物具有抗血压作用,Yeh等[47]确定凉粉草水提取物可有效抑制自发性高血压大鼠的血压上升。

    中国凉粉草资源栽培历史悠久,资源丰富且价格低廉,已成为我国南方地区出口创汇的重要农副产品之一。根据加工程度的不同,凉粉草每亩产生的经济效益可使农民收入达4000~10000元/年。自2010年凉粉草被归为食药同源资源后,近十多年来,国内中药和食品产业对其需求量迅速增加。据不完全统计,目前国内凉粉草每年需求量超过10万t[76]。王老吉、加多宝、和其正、黄振龙等知名凉茶品牌都以凉粉草全草为主要原料开发加工成凉茶饮品。凉粉草多糖也可作为主要添加物开发加工成黑凉粉、烧仙草、龟苓膏、凉粉草蜜等传统凝胶类凉粉草产品以及冰淇淋[77]、果冻[78]、布丁、酸奶[79]等新型凉粉草产品。在肉制品方面,凉粉草多糖还可作为兼具抗菌、抗氧化以及凝胶特性的外源性物质来改善产品品质、降低生产成本和提高凝胶特性,最终有效延长肉制品货架期[80]。另外,凉粉草多糖与红薯、木薯淀粉或与大豆分离蛋白复配,可制备涂膜剂、可食膜等包装新材料[81-82]。然而作为我国重要的食药同源植物,当前凉粉草高值化加工利用程度仍较低,这极易造成资源浪费。

    多糖是凉粉草中最重要、含量最丰富的活性成分,对其进行研究开发具有深远的意义。目前相关研究工作集中于凉粉草多糖提取分离技术优化、流变凝胶特性分析、功能活性评价等,然而对于凉粉草多糖构效关系的研究则尚不明确,关于凉粉草多糖与肠道菌群互作的研究也较少,未来这些研究方向将逐渐成为热点。此外,逐步优化凉粉草多糖提取分离技术,在现有凉粉草产品的基础上开展细胞、动物、临床试验等将有助于凉粉草新功能产品的开发。

  • 图  1   凉粉草多糖提取与分离纯化方法和流程

    Figure  1.   Flow chart and methods of extraction and purification of Mesona polysaccharide

    图  2   凉粉草酸性多糖的主要结构[31]

    Figure  2.   Main structure of Mesona acidic polysaccharide[31]

    图  3   凉粉草多糖保肝护肝机理示意图

    Figure  3.   Schematic diagram showing the function of Mesona polysaccharide in liver protection

    图  4   凉粉草多糖免疫调节机理示意图

    Figure  4.   Schematic diagram showing the function of Mesona polysaccharide in immunoregulation

    表  1   凉粉草多糖提取方法及评价

    Table  1   Extraction methods for Mesona polysaccharide

    提取方法 过程和条件描述 提取结果 评价
    传统热水浸提法[10] 液固比60 mL/g,提取温度100 ℃,提取时间2~3 h,
    重复3次。
    粗多糖得率为17.89%~18.93%,
    总糖含量约45%
    提取设备简单,多糖结构破坏小;
    但是得率低,提取时间长。
    热水碱液浸提法[1115] Na2CO3浓度0.3%~1.5%,液固比20~28 mL/g,提取温度91.74~95 ℃,提取时间1.5~3 h。 粗多糖得率最高达到41.00%。 得率相较热水浸提法高;但碱液会改变凉粉草多糖的风味。
    高温高压(碱液)
    浸提法[8]
    高压灭菌锅温度120 ℃、压力0.1 MPa,液固比
    25 mL/g,Na2CO3浓度0.3%,提取时间1.5 h。
    叶、根、茎的粗多糖得率分别为40.56%、32.01%和31.88%。 提取设备简单,得率较高;但高温可能造成多糖部分降解,导致总糖含量减少、粘度特性降低。
    复合酶辅助
    浸提法[1618]
    酶解温度50~55 ℃,pH5.5,复合酶(纤维素酶、
    果胶酶)浓度0.4%~0.6%,酶解时间4 h。
    粗多糖得率比传统热水浸提法
    提高了50%~60%。
    提取条件温和,得率较高;但酶价格较贵,提取时间长。
    超声辅助(碱液)
    浸提法[1921]
    超声辅助提取0.5~1 h,提取温度100 ℃,Na2CO3质量浓度为0.3%~0.4%,液固比20~40 mL/g,提取功率400~600 W。 粗多糖得率比碱液浸提法的提高了约14.00%,总糖含量提高了92.81 mg/g,多糖粘度特性比碱液浸提法的
    提高了约18.00%。
    提取的多糖的凝胶特性强,提取
    时间短;但超声设备造价高。
    微波辅助(碱液)
    浸提法[2223]
    微波功率350~400 W,碱液浓度0.125 mol/L,微波时间90 s,液固比35~40 mL/g,提取时间1 h。 粗多糖得率最高达到43.84%,
    总糖含量35.43%。
    得率最高,提取时间短;但投入大,成本高。
    动态超高压微射流
    辅助(碱液)浸提法[24]
    以Na2CO3溶液为提取液,提取时间2 h,重复2次,
    醇沉收集多糖样品,置于微射流均质机中在
    120 MPa压力下处理6次。
    粗多糖中总糖含量提高了20.25%,糖醛酸含量提高了14.24%,且蛋白
    含量降低了21.33%。
    多糖结构不变,且功能活性显著提高;但设备造价高,多糖提取目前限于
    小试研究阶段。
    下载: 导出CSV

    表  2   凉粉草多糖分级纯化及其糖组分特征结构

    Table  2   Characteristic structures of isolated and purified Mesona polysaccharide

    提取方法 分离纯化方法 糖组分 分子量
    (kDa)
    单糖组成 糖苷键、糖环构型 其他特征
    碱提[28] Sephadex G-75 酸性糖 43 葡萄糖、半乳糖、阿拉伯糖、木糖、鼠李糖,半乳糖醛酸及一种未知单糖。 糖苷键以α-(1→4)为主,可能含少量β-(1→4)。 含少量蛋白质或核酸,具有高聚阴离子性质。
    碱提[31] DEAE Sepharose Fast Flow、Sephadex G-100 中性糖 5.227 以阿拉伯糖含量最高。 β-糖苷键的吡喃环结构。 /
    酸性糖 6.566 以半乳糖醛酸含量最高。 主链由聚半乳糖醛酸组成的“光滑区”[→4)-α-D-GalpA-(1→]n和聚鼠李半乳糖醛酸组成的“毛发区”[→4)-α-D-GalpA-(1→2)-α-L-Rhap-(1→]m组成,侧链均与鼠李糖的4-O原子链接,侧链主要有半乳聚糖、阿拉伯聚糖和木聚糖。 具有流变性和较强的吸水溶胀性。
    碱提[32] DEAE Sepharose CL-6B、Sephacryl S-300HR 中性糖 1.250 以半乳糖含量最高。 β-糖苷键的吡喃环结构。 总糖含量49.10%,含少量蛋白质和硫酸根。
    酸性糖1 15.19 以木糖含量最高。 α-、β-糖苷键的吡喃环结构。 总糖含量45.10%,糖醛酸含量18.86%,含少量蛋白质和
    硫酸根。
    酸性糖2 12.06 以半乳糖醛酸含量最高。 α-、β-糖苷键的吡喃环结构。 总糖含量30.62%,糖醛酸含量59.14%,含少量蛋白质和
    硫酸根。
    水提[32] DEAE Sepharose CL-6B、Sephacryl S-300HR 中性糖 1.165 以半乳糖含量最高。 β-糖苷键的吡喃环结构。 总糖含量53.12%,含少量蛋白质和硫酸根。
    酸性糖 11.77 以半乳糖醛酸含量最高。 α-、β-糖苷键的吡喃环结构。 总糖含量34.42%,糖醛酸含量63.71%,含少量蛋白质和硫酸根,含乙酰基团。
    下载: 导出CSV
  • [1] 魏星任. 凉粉草质量控制及体外降脂作用初步研究[D]. 广州:广州中医药大学, 2017. [WEI Xingren. Research of Mesona chinesis on the quality control and the effect of Liposuction in vitro[D]. Guangzhou:Guangzhou University of Chinese Medicine, 2017.]

    WEI Xingren. Research of Mesona chinesis on the quality control and the effect of Liposuction in vitro[D]. Guangzhou: Guangzhou University of Chinese Medicine, 2017.

    [2]

    TANG D F, WEI F, CAI Z Q, et al. Analysis of codon usage bias and evolution in the chloroplast genome of Mesona chinensis Benth[J]. Development Genes and Evolution,2021,231(1/2):1−9.

    [3]

    LIN L H, SHEN M Y, LIU S C, et al. An acidic heteropolysaccharide from Mesona chinensis:Rheological properties, gelling behavior and texture characteristics[J]. International Journal of Biological Macromolecules, 2018, 107(Pt B):1591−1598.

    [4]

    CHEN X X, XIAO W H, SHEN M Y, et al. Changes in polysaccharides structure and bioactivity during Mesona chinensis Benth storage[J]. Current Research in Food Science,2022,5:392−400. doi: 10.1016/j.crfs.2022.01.024

    [5]

    RONG L Y, SHEN M Y, WEN H L, et al. Effects of xanthan, guar and Mesona chinensis Benth gums on the pasting, rheological, texture properties and microstructure of pea starch gels[J]. Food Hydrocolloids,2022,125(7):107391.

    [6] 冯碧香, 吴伟萍, 刘嫒姬, 等. 匍匐型和直立型仙草中仙草胶含量测定[J]. 广东农业科学,2008,44(8):109−111. [FENG Bixiang, WU Weiping, LIU Aiji, et al. Study on the difference of the herbs' colloid contents between spreading type and erect type of Mesona blume[J]. Guangdong Agricultural Sciences,2008,44(8):109−111.] doi: 10.3969/j.issn.1004-874X.2008.08.043

    FENG Bixiang, WU Weiping, LIU Aiji, et al. Study on the difference of the herbs' colloid contents between spreading type and erect type of Mesona blume[J]. Guangdong Agricultural Sciences, 2008, 448): 109111. doi: 10.3969/j.issn.1004-874X.2008.08.043

    [7] 黄家晋. 凉粉草总多酚、总多糖化学成分分析及降血糖活性研究[D]. 广州:广东工业大学, 2021. [HUANG Jiajin. Study on constituents and hpyerglycemic of total polyphenols and polysaccharides from Mesona chinensis[D]. Guangzhou:Guangdong University of Technology, 2021.]

    HUANG Jiajin. Study on constituents and hpyerglycemic of total polyphenols and polysaccharides from Mesona chinensis[D]. Guangzhou: Guangdong University of Technology, 2021.

    [8] 刘富来, 冯翠兰. 高温高压碱液提取仙草多糖研究[J]. 广东农业科学,2008,44(10):80−82. [LIU Fulai, FENG Cuilan. Study on extraction of Mesona polysaccharide by lye at high temperature and pressure[J]. Guangdong Agricultural Science,2008,44(10):80−82.] doi: 10.3969/j.issn.1004-874X.2008.10.030

    LIU Fulai, FENG Cuilan. Study on extraction of Mesona polysaccharide by lye at high temperature and pressure[J]. Guangdong Agricultural Science, 2008, 4410): 8082. doi: 10.3969/j.issn.1004-874X.2008.10.030

    [9] 李艳平. 凉粉草主要活性成分含量、抗氧化性及其居群变异研究[D]. 广州:华南农业大学, 2019. [LI Yanping. Study on the content, antioxidant activity and population variation of Mesona blume[D]. Guangzhou:South China Agricultural University, 2019.]

    LI Yanping. Study on the content, antioxidant activity and population variation of Mesona blume[D]. Guangzhou: South China Agricultural University, 2019.

    [10] 林慧霞, 肖玉娟, 黄华斌, 等. 仙草多糖提取工艺条件优化研究[J]. 热带农业工程, 2016, 40(4):22−26. [LIN Huixia, XIAO Yujuan, HUANG Huabin, et al. Optimization of extraction conditions of Mesona blume polysaccharide[J]. Tropical Agricultural Engineering, 2016, 40(4):22−26.]

    LIN Huixia, XIAO Yujuan, HUANG Huabin, et al. Optimization of extraction conditions of Mesona blume polysaccharide[J]. Tropical Agricultural Engineering, 2016, 40(4): 22−26.

    [11] 林丽华. 凉粉草多糖提取优化、理化性质及流变凝胶特性研究[D]. 南昌:南昌大学, 2017. [LIN Lihua. Polysaccharide from Mesona chinensis:Extraction optimization, physicochemical characterizations, rheological and gelling properties[D]. Nanchang:Nanchang University, 2017.]

    LIN Lihua. Polysaccharide from Mesona chinensis: Extraction optimization, physicochemical characterizations, rheological and gelling properties[D]. Nanchang: Nanchang University, 2017.

    [12] 黄丽媛, 邓婷, 何传波等. 仙草多糖提取工艺的优化[J]. 食品安全质量检测学报,2017,8(8):2907−2913. [HUANG Liyuan, DENG Ting, HE Chuanbo, et al. Optimization of extraction process for polysaccharide from Mesona[J]. Journal of Food Safety and Quality,2017,8(8):2907−2913.]

    HUANG Liyuan, DENG Ting, HE Chuanbo, et al. Optimization of extraction process for polysaccharide from Mesona[J]. Journal of Food Safety and Quality, 2017, 88): 29072913.

    [13] 王文洁. 凉粉草多糖的凝胶特性、形成机理及其对四氯化碳诱导的小鼠急性肝损伤的保护作用[D]. 南昌:南昌大学, 2019. [WANG Wenjie. Gelation characteristics, formation mechanism of polysaccharide from Mesona blumes and its protective effect on acute liver injury induced by carbon tetrachloride in mice[D]. Nanchang:Nanchang University, 2019.]

    WANG Wenjie. Gelation characteristics, formation mechanism of polysaccharide from Mesona blumes and its protective effect on acute liver injury induced by carbon tetrachloride in mice[D]. Nanchang: Nanchang University, 2019.

    [14] 董伟, 马生健, 郭俊先, 等. 凉粉草多糖提取、结构特征和生物活性研究[J]. 食品与机械,2022,38(11):168−175. [DONG Wei, MA Shengjian, GUO Junxian, et al. Extraction process, structural characteristics and biological activity of Mesona chinensis polysaccharide[J]. Food and Machinery,2022,38(11):168−175.]

    DONG Wei, MA Shengjian, GUO Junxian, et al. Extraction process, structural characteristics and biological activity of Mesona chinensis polysaccharide[J]. Food and Machinery, 2022, 3811): 168175.

    [15] 尹怀霞, 黎锡流, 潘兆广, 等. 纤维素酶提取仙草多糖的研究[J]. 食品科技,2007,38(5):126−128. [YIN Huaixia, LI Xiliu, Pan Zhaoguang, et al. Study on the extraction of Mesona procumbens Hemsl. polysaccharide by cellulose enzyme[J]. Food Science and Technology,2007,38(5):126−128.]

    YIN Huaixia, LI Xiliu, Pan Zhaoguang, et al. Study on the extraction of Mesona procumbens Hemsl. polysaccharide by cellulose enzyme[J]. Food Science and Technology, 2007, 385): 126128.

    [16] 冯翠兰, 刘富来, 董华强. 酶法提取仙草胶最佳工艺及不同产区仙草胶含量比较[J]. 广东农业科学,2009,45(2):65−68. [FENG Cuilan, LIU Fulai, DONG Huaqiang. Extraction Mesona blume gum by enzyme and comparison gum content in different production area[J]. Guangdong Agricultural Science,2009,45(2):65−68.] doi: 10.16768/j.issn.1004-874x.2009.02.005

    FENG Cuilan, LIU Fulai, DONG Huaqiang. Extraction Mesona blume gum by enzyme and comparison gum content in different production area[J]. Guangdong Agricultural Science, 2009, 452): 6568. doi: 10.16768/j.issn.1004-874x.2009.02.005

    [17] 肖月欢. 不同凉粉草多糖对木薯淀粉凝胶特性的影响及新型凉粉草冰糕制品研发[D]. 南昌:南昌大学, 2020. [XIAO yuehuan. Effect of different Mesona chinensis polysaccharides on gelation properties of tapioca starch and the development of new Mesona chinensis sorbet[D]. Nanchang:Nanchang University, 2020.]

    XIAO yuehuan. Effect of different Mesona chinensis polysaccharides on gelation properties of tapioca starch and the development of new Mesona chinensis sorbet[D]. Nanchang: Nanchang University, 2020.

    [18] 马星, 林莹, 刘小玲, 等. 凉粉草胶的超声辅助提取及胶体性质研究[J]. 食品与发酵工业,2010,36(3):166−171. [MA Xing, LIN Ying, LIU Xiaoling, et al. Study on extracting Mesona blumes gum with ultrasound and the gel property[J]. Food and Fermentation Industries,2010,36(3):166−171.]

    MA Xing, LIN Ying, LIU Xiaoling, et al. Study on extracting Mesona blumes gum with ultrasound and the gel property[J]. Food and Fermentation Industries, 2010, 363): 166171.

    [19] 于辉, 蓝宝华, 邱桂平. 仙草胶提取方法比较研究[J]. 中国食品添加剂,2011,22(1):141−147. [YU Hui, LAN Baohua, QIU Guiping. Study on extraction methods of Mesona blume gum[J]. China Food Additives,2011,22(1):141−147.]

    YU Hui, LAN Baohua, QIU Guiping. Study on extraction methods of Mesona blume gum[J]. China Food Additives, 2011, 221): 141147.

    [20] 吉惠杰, 杨艳俊, 沈启慧, 等. 超声辅助酶解法提取仙人草多糖的工艺研究[J]. 粮油食品科技,2017,25(2):74−77. [JI Huijie, YANG Yanjun, SHEN Qihui, et al. Study on extraction process of polysaccharide from Mesona chinensis by ultrasonic-assisted enzymatic method[J]. Science and Technology of Cereals, Oils and Foods,2017,25(2):74−77.]

    JI Huijie, YANG Yanjun, SHEN Qihui, et al. Study on extraction process of polysaccharide from Mesona chinensis by ultrasonic-assisted enzymatic method[J]. Science and Technology of Cereals, Oils and Foods, 2017, 252): 7477.

    [21] 蒋文明, 李爱军, 汪辉, 等. 微波辅助碱液提取仙草多糖[J]. 食品科学,2011,32(4):11−14. [JIANG Wenming, LI Aijun, WANG Hui, et al. Microwave-assisted alkali extraction of Mesona blumes polysaccharides[J]. Food Science,2011,32(4):11−14.]

    JIANG Wenming, LI Aijun, WANG Hui, et al. Microwave-assisted alkali extraction of Mesona blumes polysaccharides[J]. Food Science, 2011, 324): 1114.

    [22] 吉惠杰, 曹雪玲, 郑凤梅, 等. 仙人草多糖提取及分离纯化工艺研究[J]. 河南工业大学学报(自然科学版),2017,38(4):64−69,85. [JI Huijie, CAO Xueling, ZHENG Fengmei, et al. Study on extraction and purification technology of polysaccharides from Mesona chinensis[J]. Journal of Henan University of Technology (Natural Science Edition),2017,38(4):64−69,85.] doi: 10.3969/j.issn.1673-2383.2017.04.012

    JI Huijie, CAO Xueling, ZHENG Fengmei, et al. Study on extraction and purification technology of polysaccharides from Mesona chinensis[J]. Journal of Henan University of Technology (Natural Science Edition), 2017, 384): 6469,85. doi: 10.3969/j.issn.1673-2383.2017.04.012

    [23]

    HUANG L X, SHEN M Y, ZHANG X W, et al. Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth[J]. Carbohydrate Polymers,2018,200(22):191−199.

    [24] 冯涛, 郁晶晶, 杨晓波. 凉粉草多糖提取及纯化工艺的研究[J]. 食品工业,2010,32(1):82−85. [FENG Tao, YU Jingjing, YANG Xiaobo. Studies on extracting and purifying technologies of Mesona blumes polysaccharide[J]. Food Industry,2010,32(1):82−85.]

    FENG Tao, YU Jingjing, YANG Xiaobo. Studies on extracting and purifying technologies of Mesona blumes polysaccharide[J]. Food Industry, 2010, 321): 8285.

    [25]

    CHEN C H, LI S L. Mechanical and water vapor barrier properties of tapioca starch/decolorized hsian-tsao leaf gum films in the presence of plasticizer[J]. Food Hydrocolloids,2008,22(8):1584−1595. doi: 10.1016/j.foodhyd.2007.11.006

    [26] 陈荔红, 郑宝东. 仙草胶提取液脱色工艺的研究Ⅰ—树脂脱色工艺的研究[J]. 中国农学通报,2009,25(5):57−62. [CHEN Lihong, ZHENG Baodong. Study on decolorizing hsian-tsao gumⅠ-Resin[J]. Chinese Agricultural Science Bulletin,2009,25(5):57−62.]

    CHEN Lihong, ZHENG Baodong. Study on decolorizing hsian-tsao gumⅠ-Resin[J]. Chinese Agricultural Science Bulletin, 2009, 255): 5762.

    [27] 冯涛, 顾正彪, 金征宇. 凉粉草胶的初级结构与流变性质的研究[J]. 天然产物研究与开发,2007,19(6):933−938. [FENG Tao, GU Zhengbiao, JIN Zhengyu. Study on the primary structural and rheological properties of Mesona blumes gum[J]. Natural Product Research and Development,2007,19(6):933−938.] doi: 10.3969/j.issn.1001-6880.2007.06.003

    FENG Tao, GU Zhengbiao, JIN Zhengyu. Study on the primary structural and rheological properties of Mesona blumes gum[J]. Natural Product Research and Development, 2007, 196): 933938. doi: 10.3969/j.issn.1001-6880.2007.06.003

    [28] 林少琴, 朱苏闽. 仙草多糖的分离纯化及鉴定[J]. 天然产物研究与开发,1992,4(3):42−47. [LIN Shaoqin, ZHU Sumin. Study on Mesona chinensis Benth polysaccharide I. isolation, purification an identification[J]. Natural Product Research and Development,1992,4(3):42−47.]

    LIN Shaoqin, ZHU Sumin. Study on Mesona chinensis Benth polysaccharide I. isolation, purification an identification[J]. Natural Product Research and Development, 1992, 43): 4247.

    [29] 张维冰, 王智聪, 张凌怡, 等. 柱前衍生超高效液相色谱—串联四极杆质谱法测定仙草多糖组成及其含量[J]. 分析测试学报,2013,32(2):143−149. [ZHANG Weibing, WANG Zhicong, ZHANG Lingyi, et al. Analysis of monosaccharide composition and content in Mesona chinensis Benth polysaccharides by precolumn derivatization ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry[J]. Journal of Instrumental Analysis,2013,32(2):143−149.]

    ZHANG Weibing, WANG Zhicong, ZHANG Lingyi, et al. Analysis of monosaccharide composition and content in Mesona chinensis Benth polysaccharides by precolumn derivatization ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry[J]. Journal of Instrumental Analysis, 2013, 322): 143149.

    [30] 齐国敏. 高效液相色谱—紫外检测分析凉粉草多糖水解单糖组分[J]. 福建分析测试,2022,31(3):28−33. [QI Guomin. Analysis of polysaccharide hydrolysate monosaccharide in Mesona chinensis by HPLC-UV[J]. Fujian Analysis & Testing,2022,31(3):28−33.]

    QI Guomin. Analysis of polysaccharide hydrolysate monosaccharide in Mesona chinensis by HPLC-UV[J]. Fujian Analysis & Testing, 2022, 313): 2833.

    [31]

    FENG T, GU Z B, JIN Z Y, et al. Isolation and characterization of an acidic polysaccharide from Mesona blumes gum[J]. Carbohydrate Polymers,2008,71(2):159−169. doi: 10.1016/j.carbpol.2007.05.017

    [32] 邓婷. 仙草多糖的分离纯化及凝胶特性研究[D]. 厦门:集美大学, 2017. [DENG Ting. Study on extraction, purification and gelation properties of Mesona blume polysaccharides[D]. Xiamen:Jimei University, 2017.]

    DENG Ting. Study on extraction, purification and gelation properties of Mesona blume polysaccharides[D]. Xiamen: Jimei University, 2017.

    [33]

    XIAO Y H, LIU S C, SHEN M Y, et al. Physicochemical, rheological and thermal properties of Mesona chinensis polysaccharides obtained by sodium carbonate assisted and cellulase assisted extraction[J]. International Journal of Biological Macromolecules, 2019, 126(Pt A):30−36.

    [34]

    LIU S C, LIN L H, SHEN M Y, et al. Effect of Mesona chinensis polysaccharide on the pasting, thermal and rheological properties of wheat starch[J]. International Journal of Biological Macromolecules,2018,118(10):945−951.

    [35]

    REN Y M, RONG L Y, SHEN M Y, et al. Interaction between rice starch and Mesona chinensis Benth polysaccharide gels:Pasting and gelling properties[J]. Carbohydrate Polymers,2020,240(14):116316.

    [36]

    XIAO Y H, LIU S C, SHEN M Y, et al. Effect of different Mesona chinensis polysaccharides on pasting, gelation, structural properties and in vitro digestibility of tapioca starch- Mesona chinensis polysaccharides gels[J]. Food Hydrocolloids,2020,99(3):105327.

    [37]

    REN Y M, XIAO W H, RONG L Y, et al. The role of alkali in sweet potato starch- Mesona chinensis Benth polysaccharide gels:Gelation, rheological and structural properties[J]. International Journal of Biological Macromolecules,2021,170(2):366−374.

    [38]

    LUO Y, HAN X Y, SHEN M Y, et al. Mesona chinensis polysaccharide on the thermal, structural and digestibility properties of waxy and normal maize starches[J]. Food Hydrocolloids,2021,112(5):106317.

    [39] 李晓柯, 何传波, 魏好程, 等. 仙草—山药粉凝胶性能研究[J]. 食品安全质量检测学报,2022,13(16):5187−5192. [LI Xiaoke, HE Chuanbo, WEI Haocheng, et al. Study on the properties of Mesona chinensis- Rhizoma dioscorea gel[J]. Journal of Food Safety and Quality,2022,13(16):5187−5192.]

    LI Xiaoke, HE Chuanbo, WEI Haocheng, et al. Study on the properties of Mesona chinensis-Rhizoma dioscorea gel[J]. Journal of Food Safety and Quality, 2022, 1316): 51875192.

    [40]

    WANG W J, SHEN M Y, LIU S C, et al. Gel properties and interactions of Mesona blumes polysaccharide-soy protein isolates mixed gel:The effect of salt addition[J]. Carbohydrate Polymers,2018,192(14):193−201.

    [41]

    JIANG L, REN Y M, SHEN M Y, et al. Effect of acid/alkali shifting on function, gelation properties, and microstructure of Mesona chinensis polysaccharide-whey protein isolate gel[J]. Food Hydrocolloids, 2021, 117(15):106699.

    [42]

    LIN L H, XIE J H, LIU S C, et al. Polysaccharide from Mesona chinensis:Extraction optimization, physicochemical characterizations and antioxidant activities[J]. International Journal of Biological Macromolecules,2017,99(6):665−673.

    [43]

    LAI L S, CHOU S T, CHAO W W. Studies on the antioxidative activities of Hsian-tsao ( Mesona procumbens Hemsl.) leaf gum[J]. Journal of Agricultural and Food Chemistry,2001,49(2):963−968. doi: 10.1021/jf001146k

    [44]

    FENG T, SANG M, ZHUANG H N, et al. In vitro and in vivo antioxidative and radioprotective capacities of polysaccharide isolated from Mesona blumes gum[J]. Starch-Stärke,2017,69(6):1700056.

    [45]

    TANG W, SHEN M Y, XIE J H, et al. Physicochemical characterization, antioxidant activity of polysaccharides from Mesona chinensis Benth and their protective effect on injured NCTC-1469 cells induced by H2O2[J]. Carbohydrate Polymers, 2017, 175(21):538−546.

    [46] 何传波, 邓婷, 魏好程, 等. 仙草多糖对细胞氧化损伤的保护作用[J]. 食品科学, 2020, 41(13):160−168. [HE Chuanbo, DENG Ting, WEI Haocheng, et al. Protective effect of polysaccharide from Mesona blumes on oxidative damage of cells[J]. Food Science, 41(13):160−168.]

    HE Chuanbo, DENG Ting, WEI Haocheng, et al. Protective effect of polysaccharide from Mesona blumes on oxidative damage of cells[J]. Food Science, 41(13): 160−168.

    [47]

    YEH C T, HUANG W H, YEN G C. Antihypertensive effects of Hsian-tsao and its active compound in spontaneously hypertensive rats[J]. Journal of Nutritional Biochemistry,2009,20(11):866−875. doi: 10.1016/j.jnutbio.2008.07.015

    [48] 杨敏. 仙草水提物对糖尿病大鼠肾脏损伤的保护作用及其作用机制的研究[D]. 杭州:浙江大学, 2010. [YANG Min. Renal protective activity and mechanism of Hsian-tsao (Mesona procumbens Hemsl.) water extracts in diabetic rats[D]. Hangzhou:Zhejiang University, 2010.]

    YANG Min. Renal protective activity and mechanism of Hsian-tsao (Mesona procumbens Hemsl.) water extracts in diabetic rats[D]. Hangzhou: Zhejiang University, 2010.

    [49] 李艳平. 凉粉草主要活性成分含量、抗氧化性及其居群变异研究[D]. 广州:华南农业大学, 2019. [LI Yanping. Study on main bioactive compounds contents, antioxidant activity and their variations among populations in Masons chinensis Benth[D]. Guangzhou:South China Agricultural University, 2019.]

    LI Yanping. Study on main bioactive compounds contents, antioxidant activity and their variations among populations in Masons chinensis Benth[D]. Guangzhou: South China Agricultural University, 2019.

    [50]

    HO DO M, SEO Y S, PARK H Y. Polysaccharides:Bowel health and gut microbiota[J]. Critical Reviews in Food Science and Nutrition,2021,61(7):1212−1224. doi: 10.1080/10408398.2020.1755949

    [51]

    HONG Y Z, SHEN M Y, HUANG L X, et al. Mesona chinensis Benth polysaccharides alleviates liver injury by beneficial regulation of gut microbiota in cyclophosphamide-induced mice[J]. Food Science and Human Wellness,2022,11(1):74−84. doi: 10.1016/j.fshw.2021.07.009

    [52]

    LU H Y, SHEN M Y, CHEN T, et al. Mesona chinensis Benth polysaccharides alleviate DSS-induced ulcerative colitis via inhibiting of TLR4/MAPK/NF- κB signaling pathways and modulating intestinal microbiota[J]. Molecular Nutrition and Food Research,2022,66(15):2200047. doi: 10.1002/mnfr.202200047

    [53]

    CUNNINGHAM A L, STEPHENS J W, HARRIS D A. Gut microbiota influence in type 2 diabetes mellitus (T2DM)[J]. Gut Pathogens,2021,13(1):1−13. doi: 10.1186/s13099-020-00395-0

    [54] 冯白茹, 莫颖华, 侯秋苑. 凉粉草降糖颗粒的成型工艺研究[J]. 广东化工,2019,46(13):70−71. [FENG Bairu, MO Yinghua, HOU Qiuyuan. Study on the molding technology of hypoglycemic granules from Mesona chinensis Benth[J]. Guangdong Chemical Industry,2019,46(13):70−71.] doi: 10.3969/j.issn.1007-1865.2019.13.033

    FENG Bairu, MO Yinghua, HOU Qiuyuan. Study on the molding technology of hypoglycemic granules from Mesona chinensis Benth[J]. Guangdong Chemical Industry, 2019, 4613): 7071. doi: 10.3969/j.issn.1007-1865.2019.13.033

    [55]

    LIM J, ADISAKWATTANA S, HENRY C J. Effects of grass jelly on glycemic control:Hydrocolloids may inhibit gut carbohydrase[J]. Asia Pacific Journal of Clinical Nutrition,2018,27(2):336−340.

    [56] 宋晓娟, 卢晓莹, 曾唯雅, 等. 凉粉草不同极性部位抗氧化及对α-葡萄糖苷酶抑制作用研究[J], 医药导报, 2020, 39(3):286−291. [SONG Xiaojuan, LU Xiaoying, ZENG Weiya, et al. Studies on antioxidant activity and inhibitory effect of α-glucosidase of different polar extracts of Mesona chinensis[J]. Herald of Medicine, 2020, 39(3):286−291.]

    SONG Xiaojuan, LU Xiaoying, ZENG Weiya, et al. Studies on antioxidant activity and inhibitory effect of α-glucosidase of different polar extracts of Mesona chinensis[J]. Herald of Medicine, 2020, 39(3): 286−291.

    [57] 冯白茹, 莫颖华. 凉粉草抑制 α-葡萄糖苷酶活性成分快筛法的初步研究[J]. 山东化工,2022,51(20):123−126. [FENG Bairu, MO Yinghua. Preliminary study on fast screening method of α-glucosidase active component from Mesona chinensis Benth[J]. Shandong Chemical Industry,2022,51(20):123−126.]

    FENG Bairu, MO Yinghua. Preliminary study on fast screening method of α-glucosidase active component from Mesona chinensis Benth[J]. Shandong Chemical Industry, 2022, 5120): 123126.

    [58] 刘莹, 徐向进, 陈明珠, 等. 仙草的降糖作用与急性毒性实验[J]. 福州总医院学报,2005,12(4):266−267. [LIU Ying, XU Xiangjin, CHEN Mingzhu, et al. Hypoglycemic effect and acute toxicity of Mesona chinensis[J]. Journal of Fuzhou General Hospital,2005,12(4):266−267.]

    LIU Ying, XU Xiangjin, CHEN Mingzhu, et al. Hypoglycemic effect and acute toxicity of Mesona chinensis[J]. Journal of Fuzhou General Hospital, 2005, 124): 266267.

    [59] 牛睿, 方欢乐, 韩宁娟, 等. 神仙草对高脂诱导大鼠血脂及血液流变学的影响[J]. 食品工业科技,2018,39(12):307−310. [NIU Rui, FANG Huanle, HAN Ningjuan, et al. Effects of Mesona chinensis extract on blood lipid and hemorheology in hyperlipidemic rats[J]. Science and Technology of Food Industry,2018,39(12):307−310.]

    NIU Rui, FANG Huanle, HAN Ningjuan, et al. Effects of Mesona chinensis extract on blood lipid and hemorheology in hyperlipidemic rats[J]. Science and Technology of Food Industry, 2018, 3912): 307310.

    [60]

    HUANG H C, CHUANG S H, WU Y C, et al. Hypolipidaemic function of Hsian-tsao tea ( Mesona procumbens Hemsl.):Working mechanisms and active components[J]. Journal of Functional Foods,2016,26(10):217−227.

    [61]

    HANDAYANI D, TRI DEWANTI W, NOVITA W, et al. Black grass jelly ( Mesona palustris BL) effervescent powder has anti-dyslipidemia in high cholesterol diet-fed rats and antioxidant activity[J]. Research Journal of Life Science,2018,4(3):159−167.

    [62]

    SO J, KIM A, LEE S H, et al. Liver progenitor cell-driven liver regeneration[J]. Experimental and Molecular Medicine,2020,52(8):1230−1238. doi: 10.1038/s12276-020-0483-0

    [63]

    RAMACHANDRAN P, MATCHETT K P, DOBIE R, et al. Single-cell technologies in hepatology:New insights into liver biology and disease pathogenesis[J]. Nature Reviews Gastroenterology & Hepatology,2020,17(8):457−472.

    [64]

    SHYU M H, KAO T C, YEN G C. Hsian-tsao ( Mesona procumbens Heml.) prevents against rat liver fibrosis induced by CCl4 via inhibition of hepatic stellate cells activation[J]. Food and Chemical Toxicology,2008,46(12):3707−3713. doi: 10.1016/j.fct.2008.09.051

    [65] 罗燕梅, 黄立红, 黄妙惠, 等. 仙草多糖对HepG2细胞酒精性损伤的保护作用[J]. 食品科技, 2015, 40(9):176−179. [LUO Yanmei, HUANG Lihong, HUANG Miaohui, et al. Protective effect of Mesona chinensis Benth polysaccharides on alcohol-induced injury in Hepg2 cells[J]. Food Scinece and Technology, 2015, 40(9):176−179.]

    LUO Yanmei, HUANG Lihong, HUANG Miaohui, et al. Protective effect of Mesona chinensis Benth polysaccharides on alcohol-induced injury in Hepg2 cells[J]. Food Scinece and Technology, 2015, 40(9): 176−179.

    [66]

    WANG W J, JIANG L, REN Y M, et al. Characterizations and hepatoprotective effect of polysaccharides from Mesona blumes against tetrachloride-induced acute liver injury in mice[J]. International Journal of Biological Macromolecules,2019,124(3):788−795.

    [67]

    HONG Y Z, SHEN M Y, YU Q, et al. UPLC-Q-TOF/MS-based metabolomics reveals modulatory effects of Mesona chinensis Benth polysaccharide in liver injury mice induced by cyclophosphamide[J]. Food Science and Human Wellness,2023,12(2):584−595. doi: 10.1016/j.fshw.2022.07.061

    [68]

    MIRZADEH M, KESHAVARZ L A, KHEDMAT L. Plant/algal polysaccharides extracted by microwave:A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect[J]. Carbohydrate Polymers,2021,266(16):118134.

    [69]

    MENGOME L E, VOXEUR A, AKUE J P, et al. Screening of antioxidant activities of polysaccharides extracts from endemic plants in Gabon[J]. Bioactive Carbohydrates and Dietary Fibre,2014,3(2):77−88. doi: 10.1016/j.bcdf.2014.02.001

    [70]

    WIDYANINGSIH T D, MARTATI E, LUKITASARI D M. Immunomodulatory effects of black cincau ( Mesona palustris BL) supplement on Escherichia Coli strain O157-infected mice[J]. Asian Journal of Pharmaceutical and Clinical Research,2017,10(9):326−330. doi: 10.22159/ajpcr.2017.v10i9.13402

    [71]

    WIDYANINGSIH T D, SISKA A I, FANANI R, et al. Traditional drink of black cincau ( Mesona palustris BL)-based wedang uwuh as immunomodulator on alloxan-induced diabetic rats[J]. Nutrition & Food Science,2020,50(6):1123−1133.

    [72] 黄祥彬, 陈光艳. 仙人草提取物对小鼠免疫功能的影响[J]. 河南中医,2014,34(10):1898−1899. [HUANG Xiangbin, CHEN Guangyan. Effects of Mesona chinensis Benth. extarct on immunological functionin mice[J]. Henan Traditional Chinese Medicine,2014,34(10):1898−1899.]

    HUANG Xiangbin, CHEN Guangyan. Effects of Mesona chinensis Benth. extarct on immunological functionin mice[J]. Henan Traditional Chinese Medicine, 2014, 3410): 18981899.

    [73] 黄莉鑫. 硫酸化修饰对凉粉草多糖免疫活性的影响及机制研究[D]. 南昌:南昌大学, 2020. [HUANG Lixin. Mechanism and effect of sulfated modification on the immunological activity of Mesona chinensis Benth polysaccharide[D]. Nanchang:Nanchang University, 2020.]

    HUANG Lixin. Mechanism and effect of sulfated modification on the immunological activity of Mesona chinensis Benth polysaccharide[D]. Nanchang: Nanchang University, 2020.

    [74]

    SHEN M Y, CHEN X X, HUANG L X, et al. Sulfated Mesona chinensis Benth polysaccharide enhance the immunomodulatory activities of cyclophosphamide-treated mice[J]. Journal of Functional Foods,2021,76(1):104321.

    [75]

    HUANG L X, SHEN M Y, WU T, et al. Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways[J]. International Journal of Biological Macromole cules, 2020, 152(6):766−774.

    [76] 汤丹峰, 韦范, 谢锦祥, 等. 广西仙草保育关键技术及问题分析[J]. 中国现代中药,2022,23(3):407−411. [TANG Danfeng, WEI Fan, XIE Jinxiang, et al. Key technologies and problems in conservation of Mesona chiensis Benth in Guangxi[J]. Modern Chinese Medicine,2022,23(3):407−411.]

    TANG Danfeng, WEI Fan, XIE Jinxiang, et al. Key technologies and problems in conservation of Mesona chiensis Benth in Guangxi[J]. Modern Chinese Medicine, 2022, 233): 407411.

    [77] 肖月欢. 不同凉粉草多糖对木薯淀粉凝胶特性的影响及新型凉粉草冰糕制品研发[D]. 南昌:南昌大学, 2022. [XIAO Y H. Effects of different Mesona chinensis polysaccharides on gelation proerties of tapioca starch and the development of new Mesona chinensis sorbet[D]. Nanchang:Nanchang University, 2022.]

    XIAO Y H. Effects of different Mesona chinensis polysaccharides on gelation proerties of tapioca starch and the development of new Mesona chinensis sorbet[D]. Nanchang: Nanchang University, 2022.

    [78] 董伟. 凉粉草多糖的提取、理化性质与凝胶特性及其在果冻中的应用研究[D]. 乌鲁木齐:新疆农业大学, 2022. [DONG W. Study on extraction, physicochemical properties, gelation properties and application in jelly of polysaccharides from Mesona chinensis[D]. Urumqi:Xinjiang Agricultural University, 2022.]

    DONG W. Study on extraction, physicochemical properties, gelation properties and application in jelly of polysaccharides from Mesona chinensis[D]. Urumqi: Xinjiang Agricultural University, 2022.

    [79] 林大成, 唐婉婷, 覃媚, 等. 中药优化酸奶仙草冻品质及其抗氧化活性研究[J]. 河南工业大学学报(自然科学版),2021,42(2):71−78. [LIN Dacheng, TANG Wanting, QIN Mei, et al. Optimization of quality and antioxidant activity of yoghurt Mesona Blume jelly by Chinese herbal medicine[J]. Journal of Henan University of Technology (Natural Science Edition),2021,42(2):71−78.]

    LIN Dacheng, TANG Wanting, QIN Mei, et al. Optimization of quality and antioxidant activity of yoghurt Mesona Blume jelly by Chinese herbal medicine[J]. Journal of Henan University of Technology (Natural Science Edition), 2021, 422): 7178.

    [80] 周昕仪, 游刚, 高可安, 等. 凉粉草多糖对鱼肌球蛋白理化性质和结构特征的影响[J]. 食品科学,2023,44(4):48−56. [ZHOU Xinyi, YOU Gang, GAO Kean, et al. Effects of Mesona chinensis Benth polysaccharide on the physicochemical properties and structural characteristics of myosin[J]. Food Science,2023,44(4):48−56.]

    ZHOU Xinyi, YOU Gang, GAO Kean, et al. Effects of Mesona chinensis Benth polysaccharide on the physicochemical properties and structural characteristics of myosin[J]. Food Science, 2023, 444): 4856.

    [81]

    RONG L Y, SHEN M Y, WEN H L, et al. Preparation and characterization of hyacinth bean starch film incorporated with TiO2 nanoparticles and Mesona chinensis Benth polysaccharide[J]. International Journal of Biological Macromolecules,2021,190(11):151−158.

    [82]

    REN Y M, WU Z W, SHEN M Y, et al. Improve properties of sweet potato starch film using dual effects:Combination Mesona chinensis Benth polysaccharide and sodium carbonate[J]. LWT-Food Science and Technology,2021,140(4):110679.

  • 其他相关附件

图(4)  /  表(2)
计量
  • 文章访问数:  226
  • HTML全文浏览量:  51
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-16
  • 网络出版日期:  2023-12-12
  • 刊出日期:  2024-02-14

目录

/

返回文章
返回
x 关闭 永久关闭