Research Progress on Softening Mechanism of Postharvest Fruit
-
摘要: 采后果实在经过储藏运输等一系列过程后会发生软化现象,而软化现象产生的原因有很多,例如由于细胞壁代谢相关酶活性的作用,使得细胞壁的物质成分、结构等发生改变;也可能是由于果实成熟后相关物质的变化以及受到植物激素的调控,进而促进果实成熟软化。本文综述了采后果实软化产生的原因,包括植物激素合成以及与受体结合进而促进果实软化、相关转录因子对果实软化的调控和果实软化相关的细胞壁代谢与碳水化合物代谢等途径,以期为探究采后果实软化机制提供参考。Abstract: The softening phenomenon of postharvest fruit will occur after a series of processes such as storage and transportation, and there are many reasons for the occurrence. For example, the material composition and structure of the cell wall are changed due to the action of the enzyme activity related to cell wall metabolism. It may also be due to the changes of related substances after fruit ripening and the regulation of plant hormones, thus promoting fruit ripening and softening. In this paper, the causes of postharvest fruit softening are reviewed, including the synthesis of plant hormones and their binding to receptors to promote fruit softening, the regulation of related transcription factors on fruit softening, and the pathways of cell wall metabolism and carbohydrate metabolism related to fruit softening, in order to provide reference for exploring the mechanism of postharvest fruit softening.
-
Keywords:
- postharvest fruits /
- softening /
- cell wall metabolism /
- phytohormone /
- research progress
-
水果作为人们日常生活中最常见的食物之一,可以为人体提供维生素、矿物质、膳食纤维等营养成分,但采摘后的果实由于呼吸作用会发生软化现象。果实软化现象是指采摘后的果实在储藏、运输等过程中,发生了诸多的生理变化和生化反应,如细胞壁结构和成分变化、相关基因表达变化等,最终导致果实硬度下降,果实发生软化。此外软化的果实极易受到外力作用而损伤,或被细菌、致病菌等微生物污染,从而影响果实的货架期。果实软化也是果实成熟的一个主要标志。大量研究表明,果实发生软化现象的主要原因是在许多细胞壁代谢相关酶的作用下,起支撑作用的细胞壁结构发生改变,细胞壁物质被降解,细胞的透过性有所提高,细胞液向外渗出,果实硬度有所下降[1]。也有研究表明,果实内含物淀粉的降解,会引起细胞壁结构发生改变,果实硬度下降[2]。
除细胞壁代谢外,植物激素合成途径也会影响果实软化,并且合成途径中的关键酶的表达受转录因子调控。越来越多证据表明,转录因子和植物激素共同调节果实软化过程中的细胞壁代谢。目前,许多与果实软化相关的转录因子以及植物激素合成基因已被鉴定并用于调控果实软化,因此探讨转录因子在果实软化过程中对相关代谢途径中基因的表达调控作用也很重要。
采后果实发生软化甚至腐烂现象会影响其营养价值以及商品价值,也给水果采后储藏、销售等带来不便。因此研究采后果实软化机制对提高果实品质有重大意义。本文综述了与果实软化相关的植物激素、转录因子、细胞壁代谢、淀粉代谢方面的研究进展,以期为探究果实软化机制提供理论依据。
1. 植物激素在果实软化中的调控作用
植物激素作为果实发育成熟的关键物质,通过各种复杂多样的生理生化过程影响果实的生长、成熟和软化。目前乙烯、脱落酸、生长素等植物激素对采后果实软化的调控作用在多种水果中均被证实。因此研究植物激素在果实软化中的调控作用尤为重要。
1.1 乙烯
乙烯是一种既能调控植物生长发育,又能调控果实成熟软化的植物激素[3]。有大量研究表明,乙烯可以有效促进呼吸跃变型果实的软化,而软化过程受乙烯合成、与相关受体结合启动信号转导以及下游基因来调控。乙烯合成途径是在1-氨基环丙烷-1-羧酸合成酶(ACS)作用下,将S-腺苷甲硫氨酸(SAM)催化生成1-氨基环丙烷-1-羧酸,然后1-氨基环丙烷-1-羧酸在1-氨基环丙烷-1-羧酸氧化酶(ACO)催化作用下合成乙烯[4],因此ACS和ACO是乙烯合成途径中的关键性酶。有研究表明,LeACS2和LeACO1不仅参与了乙烯合成过程,当抑制其基因表达时可以明显的延缓番茄果实成熟[5]。Ayub等[6]也表明,反义转基因ACO基因可以提高甜瓜果实的硬度,有效延长甜瓜的货架期。Atkinson等[7]发现,将猕猴桃果实用乙烯处理后,PG和果胶裂解酶基因表达显著增加,加快了猕猴桃果实软化;相同地对草莓果实进行外源乙烯处理,FaPG1基因表达也显著提高,草莓硬度迅速降低[8]。因此乙烯可以通过促进细胞壁的降解来调控果实软化。Zhang等[9]对牛油果进行外源乙烯抑制剂处理,研究发现,PG基因表达降低,显著抑制果实软化。Fan等[10]对杏果实进行外源乙烯抑制剂处理,研究发现,乙烯受体抑制剂可以抑制细胞壁降解相关基因的表达,从而延缓果实软化。王慧等[11]对柿果实进行纸片型1-MCP处理,结果表明,1-MCP处理可以有效降低柿果实呼吸强度,抑制柿果实采后软化。ETH受体作为乙烯信号转导途径中的负调控因子,通过其降解可以有效调控果实软化。Kevany等[12]对番茄果实乙烯受体进行研究,研究发现,LeETR4单突变体番茄对乙烯具有高敏感性。对番茄果实进行外源乙烯处理,可以使LeETR4快速降解,进而调控番茄果实成熟软化。LeEIN2是乙烯信号转导途径中的正调控因子。Hu等[13]通过沉默LeEIN2可以显著下调软化相关基因,达到延缓果实软化的目的。综上所述,乙烯对调控果实成熟软化有重要作用,可以通过抑制乙烯合成以及与受体结合来调控果实软化。
1.2 脱落酸
植物激素在果实发育成熟过程中起重要作用,呼吸跃变型果实的成熟软化依靠于乙烯的合成,而非呼吸跃变型果实的成熟软化依靠于脱落酸的合成。大量研究表明,脱落酸是调控非呼吸跃变型果实成熟软化的关键[14]。对桃果实进行外源脱落酸处理可以明显提高多聚半乳糖醛酸酶和果胶酯酶的活性,使细胞壁结构发生降解,从而加快果实软化[15]。纪迎琳等[16]发现,外源脱落酸处理可以提高乙烯合成量,进而加快果实软化。Chen等[17]对草莓果实进行外源脱落酸处理并对其进行转录组学分析,研究发现,外源脱落酸处理后的草莓果实软化相关基因表达显著提高,并诱导了果实衰老相关基因的表达。Mattus等[18]也发现,对草莓果实进行外源脱落酸处理可以显著提高FcPG、FcEXP5等细胞壁代谢基因的表达,加速果实软化。Jia等[19]研究发现,对葡萄果实进行外源脱落酸处理既可以提高多聚半乳糖醛酸酶活性,促进果实软化,又可以提高花色苷含量,促进果实着色。此外,有研究发现对葡萄果实进行外源脱落酸处理可以加快果实的软化,而对其进行脱落酸抑制剂处理可以有效推迟葡萄果实的成熟软化[20]。因此探究脱落酸对果实软化的调控作用具有重要意义。
1.3 生长素
生长素在果实发育早期起着重要的作用,且果实的发育与生长素密切相关。目前植物生长素主要研究萘乙酸以及吲哚乙酸两类。有研究表明,生长素可以延缓果实的成熟,对草莓果实进行外源生长素处理,可以显著推迟草莓果实着色,并抑制PG基因的表达,延缓了草莓果实的软化[21]。Vendrell等[22]对香蕉进行吲哚乙酸浸泡处理,结果表明,吲哚乙酸可以有效积累可溶性固形物含量,并延缓果实成熟。Purgatto等[23]也证明了生长素通过抑制淀粉酶基因的表达,延缓果实软化。付润山等[24]对柿果实进行萘乙酸处理,结果表明,萘乙酸处理可以有效降低细胞壁降解酶活性,达到延缓柿果实软化的目的。此外,生长素可以抑制编码DNA去甲基化酶的基因,从而维持果实的高甲基化水平,抑制果实成熟[25]。研究发现,番茄果实中PpIAA1基因的过表达可以通过提高乙烯合成以及果实成熟软化相关基因的表达来加快果实成熟软化,缩短了番茄果实的货架期[25]。在桃果实成熟过程中,生长素通过提高PpACS1的表达进而促进乙烯合成,使桃果实发生软化[26]。在猕猴桃果实中,调控生长素稳态基因AcGH3.1的沉默,也可以提高果实硬度,延长果实货架期。对葡萄果实进行外源生长素处理,可以有效抑制脱落酸合成,降低软化相关基因的表达,从而维持果实硬度[27]。因此,生长素可以有效调控果实软化。
2. 果实软化的转录调控
果实的成熟软化过程非常复杂,包括一系列的生理生化过程,而这一过程受大量基因表达的调控[28],其中转录因子在基因表达调控中起着很重要的作用。转录因子通过和相关基因上游的特定作用元件结合,从而激发或遏制该基因的活性,达到调控该基因表达的作用[29]。越来越多的植物转录因子研究都有了较大的突破,因此果实成熟软化过程中的转录因子调控研究已成为新的热点之一[30]。近年来,随着大量学者的深入研究,逐渐从果实中分析出AP2/ERF、EIN3/EIL、MADS-box等多种成熟软化相关的转录因子[31],探究这些转录因子的调控机制对延缓果实成熟软化有着重要的意义。
2.1 AP2/ERF转录因子
AP2/ERF作为植物中最大的转录因子家族之一,含有70个氨基酸组成的AP2/ERF结构域[32]。根据结构域的不同,AP2/ERF可以分为AP2、RAV、ERF、soloist这四个亚类[33],而ERF亚家族主要包括DREB和ERF这两类,其中ERF在果实成熟软化中的研究一直令人关注。ERF转录因子的激活是乙烯信号转导途径的结果,ERFs通过与启动子区域上的顺式作用元件结合来调控乙烯响应基因的表达[34−35]。起初在番茄果实中发现LeERF1-LeERF4、LeERF3b这几个ERF家族成员,且反义表达LeERF1能延缓番茄果实的软化,延长果实的贮藏期[36];而LeERF2在果实成熟软化过程中表达水平不断升高[37],并且与LeACO3启动子上的顺式作用元件结合反馈调控乙烯的生成[38]。ERF转录因子参与了果实成熟软化,这在猕猴桃、番木瓜、香蕉、苹果等果实软化研究中均被证明[39]。Yin等[40]研究发现,猕猴桃的ERF转录因子能直接结合并激活果实软化相关基因的启动子,进而调控果实的成熟软化。AP2a作为AP2/ERF家族成员,可以负调控乙烯的合成,在番茄果实中沉默AP2a可以显著提高乙烯合成,促进番茄果实软化[41]。Wang等[26]研究桃果实软化过程,研究发现,PpERF4转录因子可以与PpACO1、PpIAA1基因启动子结合并激活其转录,转录后的PpIAA1与PpERF4相互作用形成复合物并激活果实软化相关基因的表达,进而调控桃果实软化。
2.2 EIN3/EIL转录因子
EIN3/EIL转录因子其氨基酸序列N端高度保守,包括酸性氨基酸区、碱性氨基酸区以及脯氨酸富集区等特征结构域。EIN3/EIL转录因子能与启动子的PERE顺式作用元件相结合,激活并调控乙烯响应基因和细胞壁降解基因表达[42]。Yin等[40]研究了猕猴桃果实的成熟衰老过程,结果表明,AdEIL2和AdEIL3能结合细胞壁降解基因AdXET5和乙烯合成基因AdACO1的启动子并激活其表达,因此推测AdEIL2和AdEIL3能调控猕猴桃果实软化。有研究表明,甜瓜CmEIL1和CmEIL2转录因子可以结合CmACO1启动子并激活其表达,起到促进果实成熟软化的作用;苹果MdEIL2转录因子能与MdPG1启动子结合并激活其表达[43]。
2.3 MADS-box转录因子
MADS-box基因构成一个高度保守的转录因子家族,参与果实成熟软化的调控[44]。MADS-box转录因子含有60个氨基酸组成的MADS-box结构域,其主要分为TypeⅠ型和TypeⅡ型,TypeⅠ型分为Mα、Mβ、Mγ、Mδ四个亚族,TypeⅡ型分为MIKCc和MIKC*两个亚族,作为调控果实成熟的关键转录因子被广泛研究。SEP作为MADS-box亚家族成员,对调控果实成熟软化有重要作用。Vrebalov等[45]研究发现,成熟抑制因子SiMADS-RIN在番茄果实成熟软化的调控中起重要作用。在桃果实中PrpMADS7的沉默也显著延缓果实的成熟软化[46]。Ito等[47]研究发现,LeMADS-RIN可以和乙烯合成基因LeACS2的启动子结合并激活其表达,控制乙烯的合成,进而影响果实软化进程。LeMADS-RIN不仅能调控乙烯的合成,还能与细胞壁降解酶基因等其他下游基因发生反应[48],目前这一研究还有待深入研究。Qi等[49]对甜樱桃果实成熟软化进行了研究,表明PaMADS7的差异表达与果实成熟一致,PaMADS7通过与PaPG1启动子直接结合,正向调控PaPG1表达,促进甜樱桃果实成熟软化,且PaMADS7沉默能显著抑制甜樱桃果实的成熟,具体表现为果实硬度有所增加。综合以上研究结果表明PaMADS7在甜樱桃果实成熟软化的调控中发挥着不可或缺的作用。在香蕉果实软化研究中,通过沉默MaMADS1或MaMADS2可以有效抑制乙烯合成,从而达到抑制果实软化的目的[50]。
2.4 MYB转录因子
MYB转录因子广泛存在于植物中,具有保守的MYB结构域,其长度大概为52个氨基酸残基。根据结构域个数的不同可以分为1R-MYB、2R-MYB、3R-MYB、4R-MYB四类。MYB转录因子在果实发育和成熟软化过程中发挥重要作用。在番茄和草莓果实中均鉴定出MYB转录因子,其中一些转录因子在细胞壁代谢以及次生代谢中起着重要作用。Cao等[51]发现,番茄果实中的转录抑制因子SiMYB70通过与SlACS2基因启动子结合,抑制其转录,达到延缓番茄果实软化的目的。Liu等[52]发现,番茄果实中SiMYB75过表达可以显著下调SIFSR表达,有效延长果实货架期。Cai等[53]研究发现,过表达FvMYB79可以使FvPME38表达显著上调,导致草莓果实软化加快,当沉默FvMYB79时,草莓果实硬度明显升高。MaMYB3可以抑制香蕉中的淀粉降解酶基因的表达,进而调控香蕉果实的成熟软化[54]。此外,CpMYB1和CpMYB2还能结合木瓜细胞壁降解酶基因CpPME1、CpPME2和CpPG5的启动子,通过调控这些基因的表达,参与木瓜果实软化[55];进一步研究发现,CpMYB1和CpMYB2均为转录抑制子,能抑制CpPME1、CpPME2、CpPG5启动子的活性,这一发现为研究MYB转录因子在果实软化中的作用提供了新的思考方向。
3. 与果实软化相关的代谢
3.1 细胞壁的变化
细胞壁作为植物抵御病原体攻击的第一道屏障,主要由初生壁、中间层、次生壁三层组成。初生壁包含纤维素、半纤维素、果胶、糖蛋白等,次生壁包含以木质化为特征的木质素、纤维素等[56],中间层由果胶组成,其中中间层负责将相邻的细胞粘连在一起。细胞壁的组成决定了细胞的结构,同时影响了细胞的大小、形状和功能[57]。一般果实的细胞壁结构由薄壁层组成,尤其是成熟后的肉质果实中只有初生壁和中间层[58]。因此当果实发生软化现象时,在细胞壁代谢相关酶的作用下,细胞壁中的结构多糖被降解,使得细胞壁结构和物质成分发生改变。引起细胞壁代谢的酶有很多,如果胶甲酯酶、多聚半乳糖醛酸酶、纤维素酶、β-半乳糖苷酶等[59]。在不同生长阶段的相同果实以及不同种类的果实中,引起果实软化的关键酶有所差异。Ben等[60]研究了牛油果果实软化的主要原因,结果表明,多聚半乳糖醛酸酶会导致牛油果果胶成分发生改变,原果胶降解为可溶性果胶,而可溶性果胶能溶于水[61],导致细胞壁结构松动和降解,因此牛油果果实硬度有所下降。Brummell等[62]研究了猕猴桃果实软化原因,结果表明,纤维素酶会造成猕猴桃中的纤维素发生水解,导致细胞壁解离,果实发生软化。
3.1.1 果胶及果胶酶
果胶是一类与果实软化相关的多糖,它主要由半乳糖醛酸、均半乳糖醛酸、鼠李糖半乳糖醛酸-Ⅰ、鼠李糖半乳糖醛酸-Ⅱ、木糖半乳糖醛酸组成[63]。当果实发生软化现象时,细胞壁中的原果胶降解为可溶性果胶,细胞间粘连力下降导致细胞壁结构松散,其中起到作用的酶有多聚半乳糖醛酸酶(PG)以及果胶甲酯酶(PME)。果胶甲酯酶是直接作用于果实细胞壁中果胶成分的主要酶之一,果胶甲酯酶能使半乳糖醛酸残基之间的酯键发生断裂,生成半乳糖醛酸和甲醇,果胶变成低甲酯化果胶,从而有助于多聚半乳糖醛酸酶对果胶的水解,在梨[64]、鹰嘴蜜桃[65]、香蕉[66]等研究中都被证实。Hu等[67]研究了用NaHS处理草莓果实对果实软化的影响,研究结果表明,通过NaHS处理抑制果胶甲酯酶活性可以有效延缓草莓果实软化。目前,多数研究表明,果胶甲酯酶有利于多聚半乳糖醛酸酶的反应,促进果胶的降解[68]。PG是作用于果胶成分的另一种关键酶,PG能使半乳糖醛酸主链上的1,4-α-D-半乳糖苷键发生断裂,生成半乳糖醛酸和寡聚半乳糖醛酸,达到破坏果胶结构的目的,使细胞壁结构发生改变,果实发生软化现象。PG是导致果实发生软化现象的关键因素,这在李[69]、猕猴桃[70]、枣[71]、“秦冠”[72]等果实软化研究中均被证明。Zhong等[73]研究了1-MCP复合壳聚糖涂膜处理对台湾青枣的影响,结果表明,该处理能有效抑制多聚半乳糖醛酸酶的活性,达到延长货架期的目的。在桃、葡萄、香蕉等其他肉质水果软化的研究中同样发现果实软化也受到PG基因表达的调控[74−75]。
3.1.2 纤维素及纤维素酶
纤维素作为植物细胞壁组成成分对细胞起着重要的作用。当果实发生软化现象时,纤维素酶活性逐渐增加,细胞壁的骨架物质纤维素被降解,导致细胞壁结构松散。纤维素酶能使β-1,4-糖苷键断裂,生成葡萄糖。罗自生[76]研究了柿果实的软化过程,结果表明,在软化过程中纤维素酶活性迅速提高,使纤维素发生降解,导致果实软化。有学者研究桃果实软化过程,研究发现纤维素酶活性的提高使桃果实的细胞壁结构发生改变,加速桃果实的软化[77]。赵云峰等[78]发现,茄子采后过程中,纤维素酶活性不断提高,且与果实硬度之间呈显著负相关。但在京白梨软化过程研究中发现,当京白梨果实硬度降低、纤维素含量下降时,纤维素酶活性也逐渐降低,因此推测纤维素酶与京白梨果实软化不相关[79]。对其进行相关性分析,发现纤维素与多聚半乳糖醛酸酶、β-半乳糖苷酶相关,因此其机制需要进一步研究。
3.1.3 其他酶的影响
研究表明,果胶和半纤维素中有很多半乳糖的存在,在细胞壁结构降解过程中,β-半乳糖苷酶会使带有支链的多聚醛酸发生降解,半乳糖含量降低,果胶被溶解。因此β-半乳糖苷酶对果实软化也起到了一定的作用。Debra等[80]研究了桃果实采后的软化过程,结果表明,β-半乳糖苷酶对果胶分子上半乳糖支链的水解会加速桃果实的软化。这在Fan等[81]对杏果实软化的研究中被证实。在番茄果实中沉默β-半乳糖苷酶基因SITBG4可以有效抑制番茄果实软化[82]。陆玲鸿等[83]研究了不同贮藏温度下猕猴桃果实软化相关酶活性的变化,贮藏温度为25 ℃的猕猴桃果实软化与β-半乳糖苷酶显著相关。
木葡聚糖作为一种半纤维素多糖广泛存在于细胞壁中。而木葡聚糖内转糖苷酶可以使木葡聚糖链发生断裂,细胞壁结构被降解,果实发生软化。有研究表明木葡聚糖内转糖苷酶对采后果实中半纤维素的降解起到主要作用。这一观点在蓝莓[84]、柿子[85]、梨[86]等果实软化研究中被证实。Lin等[59]研究了壳聚糖处理对龙眼果肉的影响,结果表明,该处理可以有效降低木葡聚糖内转糖苷酶以及β-半乳糖苷酶的活性,显著抑制龙眼果实的软化。
在果实成熟衰老过程中,细胞壁多糖的合成与交联作用使得细胞壁拥有良好的支撑作用,而细胞壁降解也导致了果实发生软化现象,因此对果实软化过程中细胞壁代谢进行研究,能显著的降低果实软化的速度,延长果实的货架期,对保持果实品质有很大的意义。
3.2 碳水化合物的代谢
淀粉与糖作为果实细胞内最重要的两种内含物,其含量及成分对果实风味和采后果实代谢有很大的影响。有研究表明果实在成熟期间有大量淀粉累积,而这些淀粉会被淀粉酶降解为葡萄糖,生成的葡萄糖又会在异构酶的作用下变成果糖,果糖与葡萄糖在蔗糖磷酸酶的作用下合成蔗糖,蔗糖被转化酶分解为葡萄糖和果糖,最终淀粉与糖之间形成一种动态平衡,以达到维持果实硬度的目的[87]。
淀粉是果实主要的贮藏物质,也是细胞壁的支撑骨架,随着淀粉酶活性的提高,淀粉被降解为可溶性的葡萄糖和果糖,细胞的扩张力会降低,果实发生软化现象[88]。因此果实软化与淀粉的降解密切相关,这在苹果[89]、桃[90]、猕猴桃[91]、香蕉[92]等果实软化研究中被证明。Mo等[2]研究了番荔枝果实的成熟软化过程,结果表明,随着果实的不断成熟,果实硬度逐渐降低,这是由于淀粉被降解为可溶性糖。魏宝东等[93]对磨盘柿果实软化进行了研究,结果表明,淀粉在淀粉酶的作用下被分解,所生成的糖为果实的呼吸跃变提供能量。胡丽松等[94]对菠萝蜜果实的糖代谢过程进行研究,结果表明,随着淀粉酶活性的增强,大量淀粉被分解,果实发生软化。张强等[87]在甜瓜果实后熟软化的研究中也得到了相同的观点,果实软化过程中淀粉酶活性显著提高,淀粉含量降低,果实硬度下降,因此淀粉水解是果实软化的重要原因。
4. 结论与展望
采后的果实经过贮藏运输等一系列过程会发生软化现象,而软化也是果实成熟的主要标志。本文综述了采后果实软化发生机制的研究进展,包括起支撑作用的细胞壁结构和物质成分发生改变,如果胶、纤维素、半纤维素等被降解;还包括细胞内含物淀粉的分解;而乙烯、脱落酸等植物激素对调控果实成熟软化也有着重要的作用。果实软化过程中相关转录因子对靶基因的调控作用研究是目前揭示采后果实软化分子机制的重要研究内容,目前已经揭示了众多果实软化的分子机制,但是果实软化的调控过程是复杂多样的,需要多种转录因子共同作用的。因此研究某一种转录因子的调控机制不能完全清楚的的概述出果实软化的机制。所以挖掘更多果实软化关键作用的转录因子,以及多种转录因子的共同调控作用还需要进一步探究。此外,采后果实软化过程中参与的酶众多,且不同种类或不同时期的果实中参与调控的酶也有所不同,因此研究采后果实软化过程中全部酶活性以及酶之间的相互作用,进一步确定果实软化过程中起关键作用的酶,这将为采后果实软化的调控提供理论依据。
-
[1] LIN Y F, LIN Y X, LIN H T, et al. Effects of paper containing 1-MCP postharvest treatment on the disassembly of cell wall polysaccharides and softening in Younai plum fruit during storage[J]. Food Chemistry,2018,264:1−8. doi: 10.1016/j.foodchem.2018.05.031
[2] MO Y W, GONG D, LIANG G B, et al. Enhanced preservation effects of sugar apple fruits by salicylic acid treatment post-harvest storage[J]. Journal of the Science of Food and Agriculture,2008,88:2693−2699. doi: 10.1002/jsfa.3395
[3] 刘思敏. 柿果实采后乙烯生物合成启动及相关基因表达研究[D]. 南宁:广西大学, 2018. [LIU S M. Study on ethylene biosynthesis and related gene expression in postharvest persimmon fruit[D]. Nanning:Guangxi University, 2018.] LIU S M. Study on ethylene biosynthesis and related gene expression in postharvest persimmon fruit[D]. Nanning: Guangxi University, 2018.
[4] LIN Z F, ZHONG S L, GRIERSON D. Recent advances in ethylene research[J]. Journal of Experimental Botany,2009,60(12):3311−3336. doi: 10.1093/jxb/erp204
[5] WILKINSON J Q, LANAHAN M B, YEN H C, et al. An ethylene-inducible component of signal transduction encoded by never-ripe[J]. Science,1995,270(5243):1807−1809. doi: 10.1126/science.270.5243.1807
[6] AYUB R, GUIS M, BEN A M, et al. Expression of ACC oxidase antisense gene inhibits ripening of cantaloupe melon fruits[J]. Nat Biotechnol,1996,14(7):862−866. doi: 10.1038/nbt0796-862
[7] ATKINSON R G, GUNASEELAN K, WANG M Y, et al. Dissecting the role of climacteric ethylene in kiwifruit ( Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line[J]. Journal of Experimental Botany,2011,62(11):3821−3835. doi: 10.1093/jxb/err063
[8] VILLARREAL N M, BUSTAMANTE C A, CIVELLO P M, et al. Effect of ethylene and 1-MCP treatments on strawberry fruit ripening[J]. Journal of the Science of Food and Agriculture,2010,90:683−689. doi: 10.1002/jsfa.3868
[9] ZHANG Z K, HUBER D J, RAO J P. Ripening delay of mid-climacteric avocado fruit in response to elevated doses of 1-methylcyclopropene and hypoxia-mediated reduction in internal ethylene concentration[J]. Postharvest Biology and Technology,2011,60:83−91. doi: 10.1016/j.postharvbio.2011.01.001
[10] FAN X G, SHU C, ZHAO K, et al. Regulation of apricot ripening and softening process during shelf life by post-storage treatments of exogenous ethylene and 1-methylcyclopropene[J]. Scientia Horticulturae,2018,232:63−70. doi: 10.1016/j.scienta.2017.12.061
[11] 王慧, 陈燕华, 林河通, 等. 纸片型1-MCP处理对安溪油柿果实采后生理和贮藏品质的影响[J]. 食品科学,2018,39(21):253−259. [WANG H, CHEN Y H, LIN H T, et al. Effects of 1-MCP treatment on postharvest physiology and storage quality of Anxi persimmon fruit[J]. Food Science,2018,39(21):253−259.] WANG H, CHEN Y H, LIN H T, et al . Effects of 1-MCP treatment on postharvest physiology and storage quality of Anxi persimmon fruit[J]. Food Science,2018 ,39 (21 ):253 −259 .[12] KEVANY B M, TIEMAN D M, TAYLOR M G, et al. Ethylene receptor degradation controls the timing of ripening in tomato fruit[J]. Plant Journal,2007,51:458−467. doi: 10.1111/j.1365-313X.2007.03170.x
[13] HU Z L, DENG L, CHEN X Q, et al. Co-suppression of the EIN2-homology gene LeEIN2 inhibits fruit ripening and reduces ethylene sensitivity in tomato[J]. Russian Journal of Plant Physiology,2010,57:554−559. doi: 10.1134/S102144371004014X
[14] 李翠, 侯柄竹. 脱落酸调控果实成熟的分子及信号转导机制研究进展[J]. 果树学报,2023,40(5):988−999. [LI C, HOU B Z. Research progress on molecular and signal transduction mechanisms of abscisic acid regulating fruit ripening[J]. Journal of Fruit Science,2023,40(5):988−999.] LI C, HOU B Z . Research progress on molecular and signal transduction mechanisms of abscisic acid regulating fruit ripening[J]. Journal of Fruit Science,2023 ,40 (5 ):988 −999 .[15] 郑秋萍, 林育钊, 李美玲, 等. 果实采后软化的影响因素及抑制技术研究进展[J]. 亚热带农业研究,2019,15(4):262−270. [ZHENG Q P, LIN Y Z, LI M L, et al. Research progress on influencing factors and inhibition technology of fruit postharvest softening[J]. Subtropical Agriculture Research,2019,15(4):262−270.] ZHENG Q P, LIN Y Z, LI M L, et al . Research progress on influencing factors and inhibition technology of fruit postharvest softening[J]. Subtropical Agriculture Research,2019 ,15 (4 ):262 −270 .[16] 纪迎琳, 蔺世姣, 王盼盼, 等. 乙烯利、脱落酸和1-MCP对早酥和早金酥梨果实后熟的影响[J]. 沈阳农业大学学报,2022,53(5):513−519. [JI Y L, LIN S J, WANG P P, et al. Effects of ethephon, abscisic acid and 1-MCP on fruit ripening of Zaosu and Zaojinsu pears[J]. Journal of Shenyang Agricultural University,2022,53(5):513−519.] JI Y L, LIN S J, WANG P P, et al . Effects of ethephon, abscisic acid and 1-MCP on fruit ripening of Zaosu and Zaojinsu pears[J]. Journal of Shenyang Agricultural University,2022 ,53 (5 ):513 −519 .[17] CHEN J X, MAO L C, LU W J, et al. Transcriptome profiling of postharvest strawberry fruit in response to exogenous auxin and ab- scisic acid[J]. Planta,2016,243(1):183−197. doi: 10.1007/s00425-015-2402-5
[18] MATTUS A E, STAPPUNG Y, HERRERA R, et al. Molecular actors involved in the softening of fragaria chiloensis fruit accelerated by ABA treatment[J]. Journal of Plant Growth Regulation,2023,42:433−448. doi: 10.1007/s00344-021-10564-3
[19] JIA H F, WANG S S, LIN H, et al. Effects of abscisic acid agonist or antagonist applications on aroma volatiles and anthocyanin biosynthesis in grape berries[J]. The Journal of Horticultural Science and Biotechnology,2018,93(4):392−399. doi: 10.1080/14620316.2017.1379364
[20] 杨方威, 段懿菲, 冯叙桥. 脱落酸的生物合成及对水果成熟的调控研究进展[J]. 食品科学,2016,37(3):266−272. [YANG F W, DUAN Y F, FENG X Q. Research progress on biosynthesis of abscisic acid and regulation of fruit ripening[J]. Food Science,2016,37(3):266−272.] YANG F W, DUAN Y F, FENG X Q . Research progress on biosynthesis of abscisic acid and regulation of fruit ripening[J]. Food Science,2016 ,37 (3 ):266 −272 .[21] 贾海锋, 赵密珍, 王庆莲, 等. 生长素和脱落酸在草莓果实发育过程中的作用[J]. 江苏农业科学,2016,44(11):173−176. [JIA H F, ZHAO M Z, WANG Q L, et al. Effects of auxin and abscisic acid on strawberry fruit development[J]. Jiangsu Agricultural Sciences,2016,44(11):173−176.] JIA H F, ZHAO M Z, WANG Q L, et al . Effects of auxin and abscisic acid on strawberry fruit development[J]. Jiangsu Agricultural Sciences,2016 ,44 (11 ):173 −176 .[22] VENDRELL M. Reversion of senescence-Effects of 2,4-dichlorophenoxyacetic acid and indoleacetic acid on respiration ethylene production and ripening of banana fruit slices[J]. Australian Journal of Biological Sciences,1969,22:601−610. doi: 10.1071/BI9690601
[23] PURGATTO E, LAJOLO F M, NASCIMENTO J R, et al. Inhibition of β-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening[J]. Planta,2001,212:823−828. doi: 10.1007/s004250000441
[24] 付润山, 姜妮娜, 饶景萍, 等. 赤霉素和萘乙酸对柿果实采后成熟软化生理指标的影响[J]. 西北植物学报,2010,30(6):1204−1208. [FU R S, JIANG N N, RAO J P, et al. Effects of gibberellin and naphthaleneacetic acid on postharvest ripening and softening physiological indexes of persimmon fruit[J]. Acta Botanica Boreali-Occidentalia Sinica,2010,30(6):1204−1208.] FU R S, JIANG N N, RAO J P, et al . Effects of gibberellin and naphthaleneacetic acid on postharvest ripening and softening physiological indexes of persimmon fruit[J]. Acta Botanica Boreali-Occidentalia Sinica,2010 ,30 (6 ):1204 −1208 .[25] LI J Y, TAO X Y, LI L, et al. Comprehensive RNA-Seq analysis on the regulation of tomato ripening by exogenous auxin[J]. PLoS One,2016,11(5):e0156453. doi: 10.1371/journal.pone.0156453
[26] WANG X B, PAN L, WANG Y, et al. PpIAA1 and PpERF4 form a positive feedback loop to regulate peach fruit ripening by integrating auxin and ethylene signals[J]. Plant Science,2021,313:111084. doi: 10.1016/j.plantsci.2021.111084
[27] JIA H F, XIE Z Q, WANG C, et al. Abscisic acid, sucrose, and auxin coordinately regulate berry ripening process of the Fujiminori grape[J]. Functional and Integrative Genomics,2017,17:441−457. doi: 10.1007/s10142-017-0546-z
[28] PESARESI P, MIZZOTTI C, COLOMBO M, et al. Genetic regulation and structural changes during tomato fruit development and ripening[J]. Frontiers in Plant Science,2014,5:124.
[29] 郭光艳, 柏峰, 刘伟, 等. 转录因子对木质素生物合成调控的研究进展[J]. 中国农业科学,2015,48(7):1277−1287. [GUO G Y, BAI F, LIU W, et al. Research progress on the regulation of transcription factors on lignin biosynthesis[J]. Scientia Agricultura Sinica,2015,48(7):1277−1287.] GUO G Y, BAI F, LIU W, et al . Research progress on the regulation of transcription factors on lignin biosynthesis[J]. Scientia Agricultura Sinica,2015 ,48 (7 ):1277 −1287 .[30] 徐倩, 殷学仁, 陈昆松. 基于乙烯受体下游转录因子的果实品质调控机制研究进展[J]. 园艺学报,2014,41(9):1913−1923. [XU Q, YIN X R, CHEN K S. Research progress on fruit quality regulation mechanism based on ethylene receptor downstream transcription factors[J]. Acta Horticulturae Sinica,2014,41(9):1913−1923.] XU Q, YIN X R, CHEN K S . Research progress on fruit quality regulation mechanism based on ethylene receptor downstream transcription factors[J]. Acta Horticulturae Sinica,2014 ,41 (9 ):1913 −1923 .[31] 范中奇, 邝健飞, 陆旺金, 等. 转录因子调控果实成熟和衰老机制研究进展[J]. 园艺学报,2015,42(9):1649−1663. [FAN Z Q, KUANG J F, LU W J, et al. Research progress on the mechanism of transcription factors regulating fruit ripening and senescence[J]. Acta Horticulturae Sinica,2015,42(9):1649−1663.] FAN Z Q, KUANG J F, LU W J, et al . Research progress on the mechanism of transcription factors regulating fruit ripening and senescence[J]. Acta Horticulturae Sinica,2015 ,42 (9 ):1649 −1663 .[32] NAKANO T, SUZUKI K, FUJIMURA T, et al. Genome-wide analysis of the ERF gene family in Arabidopsis and rice[J]. Plant Physiol,2006,140(2):411−432. doi: 10.1104/pp.105.073783
[33] LICAUSI F, OHME T M, PERATA P. APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors:mediators of stress responses and developmental programs[J]. New Phytologist,2013,199(3):639−649. doi: 10.1111/nph.12291
[34] LI T, JIANG Z Y, ZHANG L C, et al. Apple ( Malus domestica) MdERF2 negatively affects ethylene biosynthesis during fruit ripening by suppressing MdACS1 transcription[J]. Plant Journal,2016,88(5):735−748. doi: 10.1111/tpj.13289
[35] LIU M C, CHEN Y, CHEN Y, et al. The tomato ethylene response factor Sl-ERF. B3 integrates ethylene and auxin signaling via direct regulation of Sl-Aux/IAA27[J]. New Phytologist,2018,219(2):631−640. doi: 10.1111/nph.15165
[36] LI Y C, ZHU B Z, XU W T, et al. LeERF1 positively modulated ethylene triple response on etiolated seedling, plant development and fruit ripening and softening in tomato[J]. Physiology and Biochemistry,2007,26(11):1999−2008.
[37] TOURNIER B, SANCHEZ M T, JONES B, et al. New members of the tomato ERF family show specific expression pattern and diverse DNA-binding capacity to the GCC box element[J]. Febs Letters,2003,550(1-3):149−154. doi: 10.1016/S0014-5793(03)00757-9
[38] ZHANG Z J, ZHANG H W, QUAN R D, et al. Transcriptional regulation of the ethylene response factor LeERF2 in the expression of ethylene biosynthesis genes controls ethylene production in tomato and tobacco[J]. Plant Physiology,2009,150(1):365−377. doi: 10.1104/pp.109.135830
[39] XIAO Y Y, CHEN J Y, KUANG J F, et al. Banana ethylene response factors are involved in fruit ripening through their interactions with ethylene biosynthesis genes[J]. Journal of Experimental Botany,2013,64(8):2499−2510. doi: 10.1093/jxb/ert108
[40] YIN X R, ALLAN A C, CHEN K S, et al. Kiwifruit EIL and ERF genes involved in regulating fruit ripening[J]. Plant Physiology,2010,153(3):1280−1292. doi: 10.1104/pp.110.157081
[41] CHUNG M, VREBALOV J, ALBA R, et al. A tomato ( Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening[J]. The Plant Journal,2010,64(6):936−947. doi: 10.1111/j.1365-313X.2010.04384.x
[42] YANG C, LU X, MA B, et al. Ethylene signaling in rice and Arabidopsis:Conserved and diverged aspects[J]. Molecular Plant,2015,8(4):495−505. doi: 10.1016/j.molp.2015.01.003
[43] TACKEN E, IRELAND H, GUNASEELAN K, et al. The role of ethylene and cold temperature in the regulation of the apple polygalacturonase1 gene and fruit softening[J]. Plant Physiology,2010,153(1):294−305. doi: 10.1104/pp.109.151092
[44] LI S, CHEN K S, GRIERSON D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening[J]. New Phytologist,2019,221(4):1724−1741. doi: 10.1111/nph.15545
[45] VREBALOV J, RUEZINSKY D, PADMANABHAN V, et al. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus[J]. Science,2002,296(5566):343−346. doi: 10.1126/science.1068181
[46] LI J J, LI F, QIAN M, et al. Characteristics and regulatory pathway of the Prupe SEP1 SEPALLATA gene during ripening and softening in peach fruits[J]. Plant Science,2017,257:63−73. doi: 10.1016/j.plantsci.2017.01.004
[47] ITO Y, KITAGAWA M, IHASHI N, et al. DNA-binding specificity, transcriptional activation potential, and the rin mutation effect for the tomato fruit-ripening regulator RIN[J]. Plant Journal,2008,55(2):212−223. doi: 10.1111/j.1365-313X.2008.03491.x
[48] QIN G Z, WANG Y Y, CAO B H, et al. Unraveling the regulatory network of the MADS box transcription factor RIN in fruit ripening[J]. Plant Journal,2012,70(2):243−255. doi: 10.1111/j.1365-313X.2011.04861.x
[49] QI X L, LIU C L, SONG L L, et al. PaMADS7, a MADS-box transcription factor, regulates sweet cherry fruit ripening and softening[J]. Plant Science,2020,301:110634. doi: 10.1016/j.plantsci.2020.110634
[50] ELITZUR T, YAKIR E, QUANSAH L, et al. Banana MaMADS transcription factors are necessary for fruit ripening and molecular tools to promote shelf-life and food security[J]. Plant Physiol,2016,171:380−391. doi: 10.1104/pp.15.01866
[51] CAO H H, CHEN J, YUE M, et al. Tomato transcriptional repressor MYB70 directly regulates ethylene-dependent fruit ripening[J]. Plant Journal,2020,104:1568−1581. doi: 10.1111/tpj.15021
[52] LIU M Y, ZHANG Z, XU Z X, et al. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato[J]. Plant Cell Reports,2021,40:43−58. doi: 10.1007/s00299-020-02609-w
[53] CAI J F, MO X L, WEN C J, et al. FvMYB79 positively regulates strawberry fruit softening via transcriptional activation of FvPME38[J]. International Journal of Molecular Sciences,2021,23(1):101. doi: 10.3390/ijms23010101
[54] FAN Z Q, BA L J, SHAN W, et al. A banana R2R3-MYB transcription factor MaMYB3 is involved in fruit ripening through modulation of starch degradation by repressing starch degradation-related genes and MabHLH6[J]. Plant Journal,2018,96(6):1191−1205. doi: 10.1111/tpj.14099
[55] FU C C, CHEN H J, GAO H Y, et al. Two papaya MYB proteins function in fruit ripening by regulating some genes involved in cell-wall degradation and carotenoid biosynthesis[J]. Journal of the Science of Food and Agriculture,2020,100(12):4442−4448. doi: 10.1002/jsfa.10484
[56] LAMPUGNANI E R, KHAN G A, SOMSSICH M, et al. Building a plant cell wall at a glance[J]. Journal of Cell Science,2018,131(2):s207373. doi: 10.1242/jcs.207373
[57] ZHANG B C, GAO Y H, ZHANG L J, et al. The plant cell wall:Biosynthesis, construction, and functions[J]. Journal of Integrative Plant Biology,2021,63(1):251−272. doi: 10.1111/jipb.13055
[58] YOKOYAMA R, SHINOHARA N, ASAOKA R, et al. The biosynthesis and function of polysaccharide components of the plant cell wall[J]. In Plant Cell Wall Patterning and Cell Shape,2014,1:3−34.
[59] LIN Y F, LIN Y Z, LIN Y X, et al. A novel chitosan alleviates pulp breakdown of harvested longan fruit by suppressing disassembly of cell wall polysaccharides[J]. Carbohydrate Polymers,2019,217:126−134. doi: 10.1016/j.carbpol.2019.04.053
[60] BEN A R, KISLER N, FRENKEL C. Degradation and solubilization of pectin by β-galactosidases purified from avocado mesocarp[J]. Plant Physiol,1993,87:279−285. doi: 10.1111/j.1399-3054.1993.tb01731.x
[61] 庞荣丽, 张巧莲, 郭琳琳, 等. 水果及其制品中果胶含量的比色法测定条件优化[J]. 果树学报,2012,29(2):302−307. [PANG R L, ZHANG Q L, GUO L L, et al. Optimization of colorimetric determination conditions of pectin content in fruits and their products by colorimetry[J]. Journal of Fruit Science,2012,29(2):302−307.] PANG R L, ZHANG Q L, GUO L L, et al . Optimization of colorimetric determination conditions of pectin content in fruits and their products by colorimetry[J]. Journal of Fruit Science,2012 ,29 (2 ):302 −307 .[62] BRUMMELL D A, CIN V D, LURIE S, et al. Cell wall metabolism during the development of chilling injury in cold-stored peach fruit:association of mealiness with arrested disassembly of cell wall[J]. Journal of Experimental Botany,2004,55:2041−2052. doi: 10.1093/jxb/erh228
[63] POSE S, PANIAGUA C, MATAS A J, et al. A nanostructural view of the cell wall disassembly process during fruit ripening and postharvest storage by atomic force microscopy[J]. Trends in Food Science & Technology,2019,87:47−58.
[64] 刘剑锋, 程云清, 彭抒昂. 梨采后细胞壁成分及果胶酶活性与果肉质地的关系[J]. 园艺学报,2004(5):579−583. [LIU J F, CHENG Y Q, PENG S A. Relationship between cell wall components, pectinase activity and flesh texture of postharvest pears[J]. Acta Horticulturae Sinica,2004(5):579−583.] LIU J F, CHENG Y Q, PENG S A . Relationship between cell wall components, pectinase activity and flesh texture of postharvest pears[J]. Acta Horticulturae Sinica,2004 (5 ):579 −583 .[65] 汤梅, 罗洁莹, 张浣悠, 等. 不同保鲜处理对鹰嘴蜜桃贮藏品质的影响[J]. 现代食品科技,2018,34(3):167−172. [TANG M, LUO J Y, ZHANG H Y, et al. Effects of different fresh-keeping treatments on storage quality of olecranon peach[J]. Modern Food Science and Technology,2018,34(3):167−172.] TANG M, LUO J Y, ZHANG H Y, et al . Effects of different fresh-keeping treatments on storage quality of olecranon peach[J]. Modern Food Science and Technology,2018 ,34 (3 ):167 −172 .[66] ALI Z M, CHIN L H, LAZAN H. A comparative study on wall degrading enzymes, pectin modifications and softening during ripening of selected tropical fruits[J]. Plant Science,2004,167(2):317−327. doi: 10.1016/j.plantsci.2004.03.030
[67] HU L Y, HU S L, WU J, et al. Hydrogen sulfide prolongs postharvest shelf life of strawberry and plays an antioxidative role in fruits[J]. Journal of Agricultural and Food Chemistry,2012,60(35):8684−8693. doi: 10.1021/jf300728h
[68] ZHANG L F, WANG P, CHEN F S, et al. Effects of calcium and pectin methylesterase on quality attributes and pectin morphology of jujube fruit under vacuum impregnation during storage[J]. Food Chemistry,2019,289(15):40−48.
[69] SHARMA S, SHARMA R, PAL R K, et al. Ethylene absorbents influence fruit firmness and activity of enzymes involved in fruit softening of Japanese plum ( Prunus salicina Lindell.) cv. Santa Rosa[J]. Fruits,2012,67(4):257−266. doi: 10.1051/fruits/2012021
[70] 李圆圆, 罗安伟, 李琳, 等. 采前氯吡脲处理对‘秦美’猕猴桃贮藏期间果实硬度及细胞壁降解的影响[J]. 食品科学,2018,39(21):273−278. [[LI Y Y, LUO A W, LI L, et al. Effects of pre-harvest forchlorfenuron treatment on fruit firmness and cell wall degradation of 'Qinmei' kiwifruit during storage[J]. Food Science,2018,39(21):273−278.] [LI Y Y, LUO A W, LI L, et al . Effects of pre-harvest forchlorfenuron treatment on fruit firmness and cell wall degradation of 'Qinmei' kiwifruit during storage[J]. Food Science,2018 ,39 (21 ):273 −278 .[71] 李欢, 张舒怡, 张钟, 等. 鲜食枣与制干枣的成熟软化机理差异研究[J]. 西北林学院学报,2017,32(5):137−143. [LI H, ZHANG S Y, ZHANG Z, et al. Study on the difference of ripening and softening mechanism between fresh jujube and dried jujube[J]. Journal of Northwest Forestry University,2017,32(5):137−143.] LI H, ZHANG S Y, ZHANG Z, et al . Study on the difference of ripening and softening mechanism between fresh jujube and dried jujube[J]. Journal of Northwest Forestry University,2017 ,32 (5 ):137 −143 .[72] 张娟, 高滋艺, 杨惠娟, 等. ‘秦冠’和‘富士’质地差异的解剖学观察及相关酶活性研究[J]. 西北农业学报,2015,24(10):88−94. [ZHANG J, GAO Z Y, YANG H J, et al. Anatomical observation of texture differences between 'Qinguan' and 'Fuji' and study on related enzyme activities[J]. Acta Agriculturae Boreali-occidentalis Sinica,2015,24(10):88−94.] ZHANG J, GAO Z Y, YANG H J, et al . Anatomical observation of texture differences between 'Qinguan' and 'Fuji' and study on related enzyme activities[J]. Acta Agriculturae Boreali-occidentalis Sinica,2015 ,24 (10 ):88 −94 .[73] ZHONG Q P, XIA W S. Effect of 1-methylcyclopropene and/or chitosan coating treatments on storage life and quality maintenance of Indian jujube fruit[J]. LWT - Food Science and Technology,2007,40(3):404−411. doi: 10.1016/j.lwt.2006.01.003
[74] QIAN M, XU Z, ZHANG Z H, et al. The downregulation of PpPG21 and PpPG22 influences peach fruit texture and softening[J]. Planta,2021,254(2):22. doi: 10.1007/s00425-021-03673-6
[75] KHAN N, FATIMA F, HAIDER M S, et al. Genome-Wide identification and expression profiling of the polygalacturonase (PG) and pectin methylesterase (PME) genes in grapevine ( Vitis vinifera L.)[J]. International Journal of Molecular Sciences,2019,20(13):3180. doi: 10.3390/ijms20133180
[76] 罗自生. 柿果实采后软化过程中细胞壁组分代谢和超微结构的变化[J]. 植物生理与分子生物学学报,2005(6):651−656. [LUO Z S. Changes of cell wall components metabolism and ultrastructure during postharvest softening of persimmon fruit[J]. Physiology and Molecular Biology of Plants,2005(6):651−656.] LUO Z S . Changes of cell wall components metabolism and ultrastructure during postharvest softening of persimmon fruit[J]. Physiology and Molecular Biology of Plants,2005 (6 ):651 −656 .[77] BRUMMELL D A. Cell wall disassembly in ripening fruit[J]. Functional Plant Biology,2006,33(2):103−119. doi: 10.1071/FP05234
[78] 赵云峰, 林瑜, 吴玲艳. 茄子果实采后软化过程中细胞壁组分及其降解酶活性的变化[J]. 食品与发酵工业,2012,38(10):212−216. [ZHAO Y F, LIN Y, WU L Y. Changes of cell wall components and their degrading enzyme activities during postharvest softening of eggplant fruit[J]. Food and Fermentation Industries,2012,38(10):212−216.] ZHAO Y F, LIN Y, WU L Y . Changes of cell wall components and their degrading enzyme activities during postharvest softening of eggplant fruit[J]. Food and Fermentation Industries,2012 ,38 (10 ):212 −216 .[79] 魏建梅, 马锋旺, 关军锋, 等. 京白梨果实后熟软化过程中细胞壁代谢及其调控[J]. 中国农业科学,2009,42(8):2987−2996. [WEI J M, MA F W, GUAN J F, et al. Cell wall metabolism and its regulation during fruit ripening and softening of Jingbai pear[J]. Scientia Agricultura Sinica,2009,42(8):2987−2996.] WEI J M, MA F W, GUAN J F, et al . Cell wall metabolism and its regulation during fruit ripening and softening of Jingbai pear[J]. Scientia Agricultura Sinica,2009 ,42 (8 ):2987 −2996 .[80] DEBRA M D, LAURENCE D M, CHRISTOPHER B W. Cell wall changes in nectarines ( Prunus persica):Solubilization and depolymerization of pectic and neutral polymers during ripening and in mealy fruit[J]. Plant Physiology,1992,100(3):1203−1210. doi: 10.1104/pp.100.3.1203
[81] FAN X G, JIANG W B, GONG H S, et al. Cell wall polysaccharides degradation and ultrastructure modification of apricot during storage at a near freezing temperature[J]. Food Chemistry,2019,300:125194. doi: 10.1016/j.foodchem.2019.125194
[82] SMITH D L, ABBOTT J A, GROSS K C. Down-regulation of tomato β-galactosidase 4 results in decreased fruit softening[J]. Plant Physiology,2002,129(4):1755−1762. doi: 10.1104/pp.011025
[83] 陆玲鸿, 马媛媛, 古咸彬, 等. 猕猴桃果实软化过程中细胞壁多糖物质含量与果胶降解相关酶活性变化[J]. 浙江农业学报,2022,34(12):2648−2658. [LU L H, MA Y Y, GU X B, et al. Changes of cell wall polysaccharide content and pectin degradation related enzyme activity during kiwifruit fruit softening[J]. Acta Agriculturae Zhejiangensis,2022,34(12):2648−2658.] LU L H, MA Y Y, GU X B, et al . Changes of cell wall polysaccharide content and pectin degradation related enzyme activity during kiwifruit fruit softening[J]. Acta Agriculturae Zhejiangensis,2022 ,34 (12 ):2648 −2658 .[84] CHEN Y H, HUNG Y C, CHEN M Y, et al. Effects of acidic electrolyzed oxidizing water on retarding cell wall degradation and delaying softening of blueberries during postharvest storage[J]. LWT-Food Science and Technology,2017,84:650−657. doi: 10.1016/j.lwt.2017.06.011
[85] WANG H, CHEN Y, LIN H, et al. 1-Methylcyclopropene containing-papers suppress the disassembly of cell wall polysaccharides in Anxi persimmon fruit during storage[J]. International Journal of Biological Macromolecules,2020,151:723−729. doi: 10.1016/j.ijbiomac.2020.02.146
[86] CHEN Y H, SUN J Z, LIN H T, et al. Paper-based 1-MCP treatment suppresses cell wall metabolism and delays softening of Huanghua pears during storage[J]. Journal of the Science of Food and Agriculture,2017,97(8):2547−2552. doi: 10.1002/jsfa.8072
[87] 张强, 代文婷, 李冀新, 等. 糖代谢对甜瓜果实后熟软化的影响[J]. 食品与发酵工业,2020,46(1):112−117. [ZHANG Q, DAI W T, LI J X, et al. Effects of sugar metabolism on melon fruit ripening and softening[J]. Food and Fermentation Industries,2020,46(1):112−117.] ZHANG Q, DAI W T, LI J X, et al . Effects of sugar metabolism on melon fruit ripening and softening[J]. Food and Fermentation Industries,2020 ,46 (1 ):112 −117 .[88] 艾沙江·买买提, 张校立, 梅闯, 等. 库尔勒香梨果实可溶性糖积累及代谢相关酶活性变化[J]. 新疆农业科学,2018,55(4):664−673. [AI S J, ZHANG X L, MEI C, et al. Changes of soluble sugar accumulation and metabolic enzyme activity in Korla fragrant pear fruit[J]. Xinjiang Agricultural Sciences,2018,55(4):664−673.] AI S J, ZHANG X L, MEI C, et al . Changes of soluble sugar accumulation and metabolic enzyme activity in Korla fragrant pear fruit[J]. Xinjiang Agricultural Sciences,2018 ,55 (4 ):664 −673 .[89] 齐秀东, 魏建梅. 冷藏和乙烯处理对采后苹果果实糖代谢及关键基因表达的调控[J]. 现代食品科技,2015,31(7):137−145. [QI X D, WEI J M. Regulation of cold storage and ethylene treatment on sugar metabolism and key gene expression in postharvest apple fruits[J]. Modern Food Science and Technology,2015,31(7):137−145.] QI X D, WEI J M . Regulation of cold storage and ethylene treatment on sugar metabolism and key gene expression in postharvest apple fruits[J]. Modern Food Science and Technology,2015 ,31 (7 ):137 −145 .[90] 李伟明, 陈晶晶, 段雅婕, 等. 番荔枝果实后熟过程多糖代谢与果实软化和采后裂果的关系[J]. 植物生理学报,2018,54(11):1727−1736. [LI W M, CHEN J J, DUAN Y J, et al. Relationship between polysaccharide metabolism and fruit softening and postharvest fruit cracking during fruit ripening of Annona squamosa[J]. Plant Physiology Journal,2018,54(11):1727−1736.] LI W M, CHEN J J, DUAN Y J, et al . Relationship between polysaccharide metabolism and fruit softening and postharvest fruit cracking during fruit ripening of Annona squamosa[J]. Plant Physiology Journal,2018 ,54 (11 ):1727 −1736 .[91] 陈金印, 曾荣, 李平. 猕猴桃果实冷藏过程中生理生化变化[J]. 食品科学,2003(2):138−141. [CHEN J Y, ZENG R, LI P. Physiological and biochemical changes of kiwifruit during cold storage[J]. Food Science,2003(2):138−141.] CHEN J Y, ZENG R, LI P . Physiological and biochemical changes of kiwifruit during cold storage[J]. Food Science,2003 (2 ):138 −141 .[92] 苗红霞, 金志强, 刘伟鑫, 等. 香蕉采后果肉硬度与淀粉代谢变化[J]. 中国农学通报,2013,29(28):124−128. [MIAO H X, JIN Z Q, LIU W X, et al. Changes in flesh firmness and starch metabolism of banana after harvest[J]. Chinese Agricultural Science Bulletin,2013,29(28):124−128.] MIAO H X, JIN Z Q, LIU W X, et al . Changes in flesh firmness and starch metabolism of banana after harvest[J]. Chinese Agricultural Science Bulletin,2013 ,29 (28 ):124 −128 .[93] 魏宝东, 梁冰, 张鹏, 等. 1-MCP处理结合冰温贮藏对磨盘柿果实软化衰老的影响[J]. 食品科学,2014,35(10):236−240. [WEI B D, LIANG B, ZHANG P, et al. Effects of 1-MCP treatment combined with ice-temperature storage on softening and senescence of Mopan persimmon fruit[J]. Food Science,2014,35(10):236−240.] WEI B D, LIANG B, ZHANG P, et al . Effects of 1-MCP treatment combined with ice-temperature storage on softening and senescence of Mopan persimmon fruit[J]. Food Science,2014 ,35 (10 ):236 −240 .[94] 胡丽松, 吴刚, 郝朝运, 等. 菠萝蜜果实中糖分积累特征及相关代谢酶活性分析[J]. 果树学报,2017,34(2):224−230. [HU L S, WU G, HAO Z Y, et al. Analysis of sugar accumulation characteristics and related metabolic enzyme activities in jackfruit fruit[J]. Journal of Fruit Science,2017,34(2):224−230.] HU L S, WU G, HAO Z Y, et al . Analysis of sugar accumulation characteristics and related metabolic enzyme activities in jackfruit fruit[J]. Journal of Fruit Science,2017 ,34 (2 ):224 −230 .
计量
- 文章访问数: 89
- HTML全文浏览量: 262
- PDF下载量: 36