Optimization of Accelerated Solvent Extraction of Polysaccharides from Gracilaria lemaneiformis Using Response Surface Methodology and Anti-inflammatory Activity
-
摘要: 为了建立快速溶剂萃取技术(ASE)提取龙须菜多糖的新方法,本文以秦皇岛龙须菜为原料,利用ASE提取龙须菜粗多糖(GLP-K),以多糖得率为指标,采用单因素实验结合响应面试验法优化提取工艺条件。通过傅里叶红外光谱和高效液相色谱对多糖进行结构表征;探索GLP-K在脂多糖(LPS)诱导的RAW264.7巨噬细胞中的抗炎作用。结果表明,快速溶剂萃取法用于龙须菜多糖提取的最佳工艺参数为提取温度70 ℃,提取时间8.5 min,循环4次,在此条件下,多糖实验得率为9.58%±0.31%;红外光谱证实该多糖含有糖醛酸,重均分子量在4.4~747.1 kDa 之间;GLP-K在浓度1000 μg/mL及以下时对RAW264.7细胞增殖也无影响(P<0.001);与模型组相比,GLP-K给药组(50、100、200、300、400、500 μg/mL)NO的释放量显著降低43.76%~69.47%(P<0.001)。本文丰富了快速溶剂萃取技术在多糖提取方面的研究,为龙须菜多糖的开发和利用提供实验依据。Abstract: The aim of this work was to apply response surface methodology (RSM) to model and optimize the accelerated solvent extraction (ASE) technique for extracting the crude polysaccharides (GLP-K) from Gracilaria lemaneiformis. In terms of the yield of polysaccharide, single factor tests and Box-Behnken design response surface method were developed. The structure of the prepared polysaccharides was characterized by Fourier transform infrared (FT-IR) and high performance liquid chromatography (HPLC). And the anti-inflammatory potential of GLP-K in lipopolysaccharide (LPS)-induced RAW264.7 macrophages was also explored. Briefly, the optimal extraction conditions for GLP-K were as follows: 70 °C of extraction temperature, 8.5 min of extraction time, and 4 extraction cycles. Under the condition, the experimental yield of polysaccharide was 9.58%±0.31%. FT-IR showed that the polysaccharide contained uronic acid, and the weight-average molecular weight ranged from 4.4 to 747.1 kDa. GLP-K had no significant cytotoxic effects at or below the concentrations of 1000 μg/mL (P<0.001). Compared with the model group, GLP-K administration group (50, 100, 200, 300, 400, 500 μg/mL) displayed remarkable inhibitory effects on the release level of NO (P<0.001), which decreased by 43.76%~69.47%. This paper enriched the research on the extraction of polysaccharides by accelerated solvent extraction technology, and provided experimental basis for the development and utilization of Gracilaria lemaneiformis polysaccharides.
-
龙须菜 (Gracilaria lemaneiformis) 又名江蓠、海发菜,属江蓠科红藻界天然海洋植物,其藻体直立,线形分支。其广泛分布在中国沿海地区,利于维持海洋生态环境,作为琼脂的主要来源,具有很高经济价值[1]。龙须菜富含多糖、膳食纤维、蛋白质、氨基酸、矿物质、多酚等可供人体吸收和利用的营养物质,其中多糖含量超过干重的30%[2]。研究表明,龙须菜多糖具有免疫调节[3]、降血糖[4]、抗氧化[5]、抗肿瘤[6]等优异活性,在功能食品、化妆品、医用材料和生物肥料领域实现高值化应用。
目前,多糖提取[7]的传统方法有微波辅助提取法[8]、溶剂提取法[9]和酶提取法[10]等。此外,快速溶剂萃取技术[11]是一种新兴的高压自动萃取技术,通过改变温度和压力影响多糖的提取率。该方法具有工序简单、自动化提取、效率高、成本低等优点,在食品[12]、化工[13]和环境[14]领域有广泛的应用。王国明等[15]研究发现快速溶剂萃取法提取人参粗多糖得率高于传统水提法;金建华等[16]探究了快速溶剂萃取法提取唐古特白刺果实多糖的最佳工艺为温度102 ℃、时间10 min、压力10 MPa、循环提取2次;王宇晴等[17]探究了快速溶剂萃取法提取灵芝多糖的最佳工艺参数为提取温度110 ℃,提取压力90 Pa,提取时间20 min,循环2次。然而,快速溶剂萃取技术提取龙须菜多糖尚未报道。
本文将探究快速溶剂萃取法提取龙须菜多糖的提取工艺参数(提取温度、提取时间、循环次数),以获得龙须菜多糖的最高得率。系统分析提取工艺参数对龙须菜多糖得率的影响及其相互作用,并对其结构和抗炎活性进行实验,有望为龙须菜多糖提取方法和生物活性提供一定参考价值。
1. 材料与方法
1.1 材料与仪器
龙须菜 2021年采自河北省秦皇岛海域,经除杂、清洗和晾晒后,得到的龙须菜在50 ℃恒温干燥箱中干燥至恒重,粉碎过40目筛,得到龙须菜粉末并置于−20 ℃冰箱内储存备用;3500 Da透析袋 上海源叶有限公司;RAW264.7(小鼠单核巨噬细胞白血病细胞) 武汉普诺赛生命科技有限公司;DMEM高糖培养基 上海富衡生物科技有限公司;胎牛血清 上海源培生物科技股份有限公司;CCK-8试剂盒 上海七纯生物科技有限公司;一氧化氮(nitric oxide,NO)检测试剂盒 上海碧云天生物技术有限公司;LPS(0111:B4) 美国Sigma公司;硫酸铵、叔丁醇、无水乙醇等 分析纯,天津欧博凯化工有限公司。
APLE-3000全自动加压溶剂萃取仪(配有100 mL萃取池) 北京吉天仪器有限公司;ALpha2-4L D plus冷冻干燥机 德国CHRIST公司;TENSOR27傅立叶变换红外光谱仪 德国Bruker公司;HPLC1100高效液相色谱仪 美国Agilent公司;1300Ⅱ级A2型生物安全柜、3111型CO2细胞培养箱、MultifugeX1R型高速冷冻离心机 美国Thermo Fisher Scientific公司;XSZ-D2普通倒置显微镜 德国ZEISS公司;SPECTRA MAX 190型酶标仪 美谷分子仪器(上海)有限公司。
1.2 实验方法
1.2.1 龙须菜多糖提取
参照何俊平等[18]的实验方法,并做修改。精确称取龙须菜粉末(5.0000±0.0003)g并与硅藻土(1:1,w/w)混合均匀,装入100 mL不锈钢萃取池中,用硅藻土填满萃取池剩余空间后放到加压溶剂萃取仪中,以水为溶剂,固定加载溶剂25 mL;固定10 MPa压力,在一定温度下静态萃取一定时间,循环一定次数,后将萃取液离心(5000 r/min,10 min),记录体积,加四倍体积无水乙醇4 ℃条件下醇沉过夜、离心取沉淀,将沉淀复溶;然后加入20% (w/v) 硫酸铵和1.5倍(v/v)叔丁醇,35 ℃反应30 min,过3500 Da透析膜,透析48 h,浓缩至四分之一,冷冻干燥得龙须菜粗多糖GLP-K。提取工艺流程见图1。
1.2.2 单因素实验
1.2.2.1 提取温度对多糖得率的影响
以水为溶剂,固定投料量为5 g,提取压力为10 Mpa,提取时间2 min,循环次数1次,探究提取温度(40、50、60、70、80 ℃)对龙须菜多糖得率的影响。每个实验平行重复三次。
1.2.2.2 提取时间对多糖得率的影响
以水为溶剂,固定投料量为5 g,提取压力为10 Mpa,提取温度60 ℃,循环次数1次,探究提取时间(2、4、6、8、10 min)对龙须菜多糖得率的影响。每个实验平行重复三次。
1.2.2.3 循环次数对多糖得率的影响
以水为溶剂,固定投料量为5 g,提取压力为10 Mpa,提取温度60 ℃,提取时间2 min,探究循环次数(1、2、3、4、5次)对龙须菜多糖得率的影响。每个实验平行重复三次。
1.2.3 响应面试验优化龙须菜多糖提取工艺
基于Box-Benhnken试验设计原理,综合单因素实验结果,固定提取投料量为5 g,提取压力为10 MPa,以多糖得率为响应值,选择提取温度(A)、提取时间(B)和循环次数(C)为自变量,设计三因素三水平响应面优化试验,响应面试验设计表见下表1。
表 1 响应面试验设计因素与水平Table 1. The design factors and levels of response surface test水平 A提取温度(℃) B提取时间(min) C循环次数(次) −1 60 6 3 0 70 8 4 1 80 10 5 1.2.4 龙须菜多糖得率的测定
参考任鑫等[19]的方法,按公式(1)计算龙须菜多糖得率:
Y(\%)=M1M2×100 (1) 式中:Y为龙须菜多糖得率,%;M1为龙须菜粗多糖质量,g;M2为龙须菜粉的质量,g。
选用苯酚硫酸法测定多糖含量。标准曲线:先配制0.1 mg/mL葡萄糖标准液母液,再配成一系列浓度(0、4、8、12、16、20、24、28、32、36、40 μg/mL)的标准溶液,各取1 mL于试管中,加1 mL 6%苯酚和5 mL浓硫酸,静置20 min,在490 nm处测定吸光度值,作图得标准曲线。配制1 mg/mL的GLP-K溶液,按上述步骤加苯酚和浓硫酸,静置20 min,在490 nm处测吸光度值。
1.2.5 傅里叶变换红外光谱(FTIR)分析
将干燥多糖样品与干燥KBr于研钵中顺时针充分研磨至混匀,置于专用模具内手动压成透明薄片后测试。扣除KBr的空白背景,扫描范围:500~4000 cm−1,扫描间隔2 cm−1。
1.2.6 分子量分布
采用高效液相色谱法[20](HPLC)对龙须菜多糖进行测定。将样品溶解在蒸馏水中,过0.22 μm的微孔滤膜后上机检测。色谱条件:Agilent PL aquagel-OH MIXED-H凝胶色谱柱(300×7.5 mm,8 μm),流动相为蒸馏水,流速为0.8 mL/min,柱温为35 ℃;配制2 mg/mL 葡聚糖标准品及样品,测样体积为20 μL。实验平行重复三次。
1.2.7 体外RAW264.7 细胞实验
1.2.7.1 细胞培养
将RAW 264.7细胞株采用生长培养液(含89% DMEM培养基、10%胎牛血清和1%的青霉素、链霉素双抗混悬液)于37 ℃含5% CO2的培养箱中常规培养。将培养皿放在普通倒置显微镜下,放大不同倍数观察细胞密度和生长情况。
1.2.7.2 对RAW 264.7细胞活力的影响
取生长状态良好的RAW 264.7制备细胞悬液,将细胞按1×104/孔接种到96孔板中,每孔100 μL培养基,贴壁培养24 h后弃培养基,空白组(无细胞)和对照组分别加入100 μL培养基,实验组加入100 μL含有不同浓度(7.8125、15.625、31.25、62.5、125、250、500、1000 μg/mL)龙须菜多糖的培养基干预24 h后,弃培养基,再将100 μL含有10% CCK-8试剂的细胞培养基加入空白组、对照组和实验组中,37 ℃避光孵育1 h。用酶标仪在450 nm处测量每个孔的吸光度(A450),计算细胞存活率。每组设三个复孔。存活率计算见公式(2)。
存活率(\%)=As−AbAc−Ab×100 (2) 式中:As为实验组吸光度;Ac为对照组吸光度;Ab为空白组吸光度。
1.2.7.3 细胞中NO含量检测
取生长状态良好的RAW 264.7制备细胞悬液,将细胞按2×105/孔接种到48孔板中,每孔200 mL培养基,贴壁培养24 h后弃培养基,实验组加入200 μL含有不同浓度(50、100、200、300、400、500 μg/mL)龙须菜多糖的培养基,LPS组和对照组加200 μL新鲜培养基,预处理2 h后,LPS组和实验组加入22.2 μL含10 μg/mL LPS的培养基,对照组加入22.2 μL新鲜培养基,刺激22 h后,根据NO试剂盒说明书步骤检测培养基上清中NO含量。
1.3 数据处理
通过Excel软件处理三次平行实验的实验结果作平均值和标准差分析,响应面试验数据采用Design-Expert8.0.6.1软件进行分析。采用Origin 9软件进行结构作图,GraphPad prism8.0.1软件进行活性作图分析。P<0.05表示差异显著,P<0.01表示差异极显著,P<0.001表示差异高度显著。
2. 结果与分析
2.1 单因素实验结果
2.1.1 提取温度对多糖得率的影响
如图2所示,随着反应温度的升高,多糖的得率随之提高,当温度达到70 ℃时,多糖得率达到最大,继续升高温度时,得率略有下降,可能是温度的上升有利于溶剂与细胞壁的相互作用,使胞内物质溶出,但在10 MPa的压力加持下,高温导致多糖发生了热降解。因此后继试验中提取温度取值范围为60~80 ℃。
2.1.2 提取时间对多糖得率的影响
如图3 所示,在2~8 min内,龙须菜多糖的得率随反应时间增加而提高,提取时间为8 min 时得率达到最大值,为5.59%;继续延长时间后,得率下降,分析可能是在较短时间范围内,随着提取时间的延长,细胞组织遭到持续性破坏,多糖溶出,得率增加;多糖在长时间[21−22]的高压作用下发生水解或氧化。因此后继试验中提取时间取值范围为6~10 min。
2.1.3 循环次数对多糖得率的影响
如图4所示,多糖得率随着循环次数的增加而提高,当循环次数为4时得率最高,继续增加循环次数,得率没有增加,分析是多糖在水中溶解度是一定的,达到平衡后不再溶出,更换新溶剂后多糖会继续溶出至再次达到平衡,但随着提取次数的增加,其他水溶性杂质会占据多糖的位置,因此后继试验中循环次数取值范围为3~5次。循环次数对多糖得率的影响结果与Du等[21]在青稞中β-葡聚糖的快速溶剂萃取试验结果一致。
2.2 响应面试验优化分析
2.2.1 响应面多元回归方程的建立
以龙须菜多糖的得率为响应值,采用三因素三水平的响应面试验设计得到最佳提取工艺参数,实验结果见表2,方差分析结果见表3,龙须菜多糖得率在7.38%~9.75%之间,对表2中的响应面试验数据结果进行多元回归方程拟合,并获得以龙须菜多糖为响应值的多元回归方程:
表 2 龙须菜多糖提取工艺条件响应面优化方案及结果Table 2. Response surface optimization scheme and results of extraction process conditions of GLP-K实验号 A提取温度 B提取时间 C循环次数 Y龙须菜多糖得率(%) 1 −1 −1 0 7.38 2 1 −1 0 8.36 3 −1 1 0 7.79 4 1 1 0 8.20 5 −1 0 −1 7.38 6 1 0 −1 7.83 7 −1 0 1 8.42 8 1 0 1 9.16 9 0 −1 −1 8.15 10 0 1 −1 8.35 11 0 −1 1 8.99 12 0 1 1 9.13 13 0 0 0 9.68 14 0 0 0 9.73 15 0 0 0 9.75 16 0 0 0 9.69 17 0 0 0 9.59 表 3 响应面回归方程模型方差分析Table 3. Analysis of variance of response surface regression equation model来源 偏差平方和 自由度 均方 F值 P值 显著性 模型 11.24 9 1.25 99.36 <0.0001 ** A 0.83 1 0.83 66.13 <0.0001 ** B 0.044 1 0.044 3.53 0.1022 C 1.99 1 1.99 158.61 <0.0001 ** AB 0.081 1 0.081 6.45 0.0387 * AC 0.022 1 0.022 1.73 0.2298 BC 0.001 1 0.001 0.070 0.7989 A2 5.18 1 5.18 411.70 <0.0001 ** B2 1.77 1 1.77 140.97 <0.0001 ** C2 0.62 1 0.62 49.36 0.0002 ** 残差 0.088 7 0.013 失拟项 0.073 3 0.024 6.47 0.0515 不显著 纯误差 0.015 4 0.001 总和 11.33 16 注:R2=0.9922,R2adj=0.9822;*表示有显著性差异(P<0.05);**表示有极显著性差异(P<0.01)。 Y=9.69+0.32A+0.075B+0.50C−0.14AB+0.074AC−0.015BC−1.11A2−0.65B2−0.38C2
结合表3可知,F值越高,P值越低,显著性则越高[23]。回归模型P<0.01,失拟项P=0.0515,A和C对响应值影响极显著(P<0.01),B对响应值影响不显著(P>0.05);交互项AB对响应值影响显著(P<0.05),AC、BC对响应值影响不显著(P>0.05);二次项对响应值影响均极显著(P<0.01);表明优化实验结果具有较高的相关性和真实性,三个因素显著性影响大小分别为循环次数>提取温度>提取时间。
2.2.2 响应面及等高线图分析
图5展示了三因素(提取温度、提取时间和循环次数)两两交互的响应曲面和等高线图。如图所示,相对比较而言,多糖得率在提取温度较低(60~70 ℃)时随提取时间的增大呈递增趋势,在提取温度较高时(70~80 ℃),呈递减趋势。提取温度和提取时间的响应面图的曲面较陡,表明其交互作用显著(P<0.05);多糖得率在提取温度较低(60~70 ℃)时随循环次数的增大呈递增趋势,在提取温度较高时(70~80 ℃),呈缓慢递减趋势(P>0.05);多糖得率在提取时间较低(6~8 min)时随循环次数的增大呈递增趋势,在提取时间较高时(8~10 min),呈缓慢递减趋势(P>0.05)。综合分析可得,温度和时间交互作用最强烈,温度和循环次数交互作用次之,时间和循环次数交互作用最弱,和表3方差分析结果相符。
2.2.3 响应面优化试验结果验证
通过响应面软件对最佳提取工艺条件进行预测,得到龙须菜多糖快速溶剂萃取的最佳工艺条件为:蒸馏水为溶剂,萃取压力10 MPa,提取温度70.41 ℃,提取时间8.53 min,循环次数4.24次,预测得率为9.82%。基于实际情况,将最优条件调整为温度70 ℃,时间8.5 min,循环次数4次,在此条件下进行三次平行水平验证实验,龙须菜多糖得率为9.58%±0.31%,与多元回归方程得到的预测值相近,表明该模型的优化参数基本可靠,具有可行性。
2.3 多糖纯度测定
通过苯酚-硫酸法对葡萄糖标准溶液作图,得葡萄糖标准曲线方程:Y=0.006X+0.002,R2=0.998,代入方程计算GLP-K中总糖含量为75.28%。
2.4 红外光谱分析
如图6所示,在3386 cm−1处的宽而强的吸收峰是-OH伸缩振动特征吸收峰;在2916 cm−1处有一个-CH伸缩振动引起的弱而小的吸收峰,表明该样品类属于多糖类化合物[24];在1643 cm−1和1444 cm−1处的吸收峰分别对应C=O和C-O的拉伸振动,表明此多糖存在糖醛酸[25];1239 cm−1处的峰代表S=O的拉伸振动,表明含有硫酸基;1152 cm−1和1071 cm−1 的吸收表示半乳糖和葡萄糖的存在[26]。综上表明GLP-K是一种含有硫酸基和糖醛酸的粗多糖。
2.5 分子量分析
在最佳工艺参数下得到龙须菜多糖。图7给出了龙须菜多糖的HPLC洗脱曲线以及葡聚糖标准品[27](重均分子量Mw分别为180、667、47100、344000、708000 Da)的标准矫正曲线。得到标准曲线的线性方程lgMw=−0.9822t+14.9794,其中R2=0.994,呈良好的线性关系[28]。由表4可知,此方法得到的多糖分子量范围较宽,在4.4~747.1 kDa,响应信号最大值对应的Mw为29787 Da。
表 4 保留峰时间和分子量Table 4. Retention peak time and molecular weight样品 峰 保留时间(min) Mn(Da) Mw(Da) D(Mw/Mn) 龙须菜多糖 1 10.69±0.03 4419±452 747122±7508 169.07±25.84 2.6 体外抗炎活性研究
2.6.1 GLP-K对RAW 264.7细胞活性的影响
如图8所示,本实验探究在7.8125~1000 μg/mL浓度的GLP-K的细胞存活率[29−31]。结果显示,与对照组相比,7.8125~1000 μg/mL浓度范围内的GLP-K组对巨噬细胞的活力分别增加了10.3%~46.7%,表明快速溶剂法萃取龙须菜多糖对细胞没有毒性作用。
2.6.2 GLP-K 对 LPS 诱导的 RAW264.7 释放 NO 的影响
NO作为一种有毒气体存在于空气中,但它在生物生理方面充当重要的信号分子作用,参与生物体免疫调节或抗炎活动。在炎症细胞模型中,可以通过NO释放量减少来判断炎症反应是否得到改善[32−34]。由图9可知,与对照组相比,LPS组NO产生量有提升了4倍(P<0.001),证明炎症模型诱导成功;与模型组相比,不同浓度的实验组NO释放量降低,出现显著性差异(P<0.001),随着GLP-K实验组浓度的升高,NO抑制率呈正相关。在50 μg/mL时NO抑制率为43.76%,500 μg/mL时NO抑制率为69.47%。结果表明,GLP-K可以改善炎症反应。朱彦彬等[31]采用体外细胞实验,研究了桦褐孔菌醇抑制LPS诱导RAW264.7细胞炎症反应,结果表明,该提取物能有效抑制LPS诱导RAW264.7细胞中促炎因子和过氧化物的产生,提高细胞抗炎和抗氧化能力,从而保护细胞免受损伤。
3. 结论
本研究使用快速溶剂萃取法提取龙须菜多糖,首先利用单因素实验获得提取温度、提取时间和循环次数对龙须菜多糖得率影响的最佳条件,再利用响应面法对快速溶剂法龙须菜多糖提取工艺进行优化,得到最佳提取工艺参数:温度70 ℃,时间8.5 min,循环次数4次,龙须菜多糖得率为9.58%±0.31%,与多元回归方程得到的预测值相近,表明该模型的优化参数基本可靠,具有可行性。红外光谱证实该多糖含有糖醛酸,重均分子量在4.4~747.1 kDa 之间;GLP-K在浓度1000 μg/mL及以下时对RAW264.7细胞增殖也无影响(P<0.001);与模型组相比,GLP-K给药组(50、100、200、300、400、500 μg/mL)NO的释放量显著降低43.76%~69.47%(P<0.001)。本文首次快速溶剂萃取法应用于龙须菜多糖的提取,并初步证实其抗炎活性,其抗炎机理还需进一步研究。
-
表 1 响应面试验设计因素与水平
Table 1 The design factors and levels of response surface test
水平 A提取温度(℃) B提取时间(min) C循环次数(次) −1 60 6 3 0 70 8 4 1 80 10 5 表 2 龙须菜多糖提取工艺条件响应面优化方案及结果
Table 2 Response surface optimization scheme and results of extraction process conditions of GLP-K
实验号 A提取温度 B提取时间 C循环次数 Y龙须菜多糖得率(%) 1 −1 −1 0 7.38 2 1 −1 0 8.36 3 −1 1 0 7.79 4 1 1 0 8.20 5 −1 0 −1 7.38 6 1 0 −1 7.83 7 −1 0 1 8.42 8 1 0 1 9.16 9 0 −1 −1 8.15 10 0 1 −1 8.35 11 0 −1 1 8.99 12 0 1 1 9.13 13 0 0 0 9.68 14 0 0 0 9.73 15 0 0 0 9.75 16 0 0 0 9.69 17 0 0 0 9.59 表 3 响应面回归方程模型方差分析
Table 3 Analysis of variance of response surface regression equation model
来源 偏差平方和 自由度 均方 F值 P值 显著性 模型 11.24 9 1.25 99.36 <0.0001 ** A 0.83 1 0.83 66.13 <0.0001 ** B 0.044 1 0.044 3.53 0.1022 C 1.99 1 1.99 158.61 <0.0001 ** AB 0.081 1 0.081 6.45 0.0387 * AC 0.022 1 0.022 1.73 0.2298 BC 0.001 1 0.001 0.070 0.7989 A2 5.18 1 5.18 411.70 <0.0001 ** B2 1.77 1 1.77 140.97 <0.0001 ** C2 0.62 1 0.62 49.36 0.0002 ** 残差 0.088 7 0.013 失拟项 0.073 3 0.024 6.47 0.0515 不显著 纯误差 0.015 4 0.001 总和 11.33 16 注:R2=0.9922,R2adj=0.9822;*表示有显著性差异(P<0.05);**表示有极显著性差异(P<0.01)。 表 4 保留峰时间和分子量
Table 4 Retention peak time and molecular weight
样品 峰 保留时间(min) Mn(Da) Mw(Da) D(Mw/Mn) 龙须菜多糖 1 10.69±0.03 4419±452 747122±7508 169.07±25.84 -
[1] 周峙苗, 何清, 马晓宇. 东海红藻龙须菜的营养成分分析及评价[J]. 食品科学,2010,31(9):284−287. [ZHOU Zhimiao, HE Qing, MA Xiaoyu. Evaluation of nutritional components in Gracilaria lemaneiformis[J]. Food Science,2010,31(9):284−287. ZHOU Zhimiao, HE Qing, MA Xiaoyu . Evaluation of nutritional components in Gracilaria lemaneiformis[J]. Food Science,2010 ,31 (9 ):284 −287 .[2] HAN R, WANG L, ZHAO Z, et al. Polysaccharide from Gracilaria lemaneiformis prevents colitis in Balb/c mice via enhancing intestinal barrier function and attenuating intestinal inflammation[J]. Food Hydrocolloids,2020,109:106048.
[3] 任颖朗, 季德胜, 张云林, 等. 龙须菜多糖的提取及其免疫调节活性研究[J]. 现代食品科技,2017,33(10):45−51. [REN Yinglang, JI Desheng, ZHANG Yunlin, et al. Extraction of polysaccharides from Gracilaria lemaneiformis and their immunoregulatory activity[J]. Modern Food Science and Technology,2017,33(10):45−51. doi: 10.13982/j.mfst.1673-9078.2017.10.007 REN Yinglang, JI Desheng, ZHANG Yunlin, et al . Extraction of polysaccharides from Gracilaria lemaneiformis and their immunoregulatory activity[J]. Modern Food Science and Technology,2017 ,33 (10 ):45 −51 . doi: 10.13982/j.mfst.1673-9078.2017.10.007[4] 张云林. 龙须菜多糖的制备及降血糖活性研究[D]. 广州:华南理工大学, 2016. [ZHANG Yunlin. Preparation of Gracilaria lemaneiforms polysaccharidesand its hyperglycemic activities in STZ-induced diabetes mice[D]. Guangzhou:South China University of Technology, 2016. ZHANG Yunlin. Preparation of Gracilaria lemaneiforms polysaccharidesand its hyperglycemic activities in STZ-induced diabetes mice[D]. Guangzhou: South China University of Technology, 2016.
[5] 方甜. 龙须菜多糖的酶法降解及其酶解产物的抗氧化活性研究[D]. 宁波:宁波大学, 2021. [FANG Tian. Enzymatic degradation of Gracilariopsis lemaneiformis polysaccharide and the antioxidant activity of its degradationproducts[D]. Ningbo:Ningbo University, 2021. FANG Tian. Enzymatic degradation of Gracilariopsis lemaneiformis polysaccharide and the antioxidant activity of its degradationproducts[D]. Ningbo: Ningbo University, 2021.
[6] 贾贺威. 龙须菜多糖抗肿瘤活性研究[D]. 天津:天津科技大学, 2016. [JIA Hewei. The research on antitumor activity of polysaccharides from Gracilaria lemaneiforms[D]. Tianjin:Tianjin University of Science and Technology, 2016. JIA Hewei. The research on antitumor activity of polysaccharides from Gracilaria lemaneiforms[D]. Tianjin: Tianjin University of Science and Technology, 2016.
[7] 王晓梅, 张忠山, 周俊波, 等. 龙须菜多糖的提取纯化及生物活性研究进展[J]. 海洋渔业,2020,42(1):120−128. [WANG Xiaomei, ZHANG Zhongshan, ZHOU Junbo, et al. Research progress on extraction, purification and physiological activity of polysaccharides from Gracilaria lemaneiformis[J]. Marine Fishery Industry,2020,42(1):120−128. doi: 10.3969/j.issn.1004-2490.2020.01.013 WANG Xiaomei, ZHANG Zhongshan, ZHOU Junbo, et al . Research progress on extraction, purification and physiological activity of polysaccharides from Gracilaria lemaneiformis[J]. Marine Fishery Industry,2020 ,42 (1 ):120 −128 . doi: 10.3969/j.issn.1004-2490.2020.01.013[8] 黄芳芳, 杨君, 裴亚萍, 等. 龙须菜多糖微波辅助提取结合超滤纯化及其保湿应用研究[J]. 食品工业,2014,35(8):74−78. [HUANG Fangfang, YANG Jun, PEI Yaping, et al. Microwave-assisted extracting combined with ultrafiltration technology to purify Gracilaria verrucosa polysaccharide and its moisture retentive research[J]. The Food Industry,2014,35(8):74−78. HUANG Fangfang, YANG Jun, PEI Yaping, et al . Microwave-assisted extracting combined with ultrafiltration technology to purify Gracilaria verrucosa polysaccharide and its moisture retentive research[J]. The Food Industry,2014 ,35 (8 ):74 −78 .[9] 颜晓琳, 刘杨. 双波辅助提取结合双水相萃取分离纯化龙须菜多糖研究[J]. 汕头大学学报(自然科学版),2017,32(2):10−17. [YAN Xiaolin, LIU Chang. Extraction of polysaccharides from Gracilaria lamaneiformis by ultrasonic-microwave-assisted aqueous two-phase system[J]. Journal of Shantou University(Natural Science Edition),2017,32(2):10−17. doi: 10.3969/j.issn.1001-4217.2017.02.002 YAN Xiaolin, LIU Chang . Extraction of polysaccharides from Gracilaria lamaneiformis by ultrasonic-microwave-assisted aqueous two-phase system[J]. Journal of Shantou University(Natural Science Edition),2017 ,32 (2 ):10 −17 . doi: 10.3969/j.issn.1001-4217.2017.02.002[10] 竺巧玲, 杨文鸽, 孙翠玲, 等. 酶法提取龙须菜多糖工艺条件的研究[J]. 食品工业科技,2007(6):150−152. [ZHU Qiaoling, YANG Wenge, SUN Cuiling, et al. Study on the technical conditions of polysaccharide from Gracilaria lamaneiformis by enzymatic extraction[J]. Science and Technology of Food Industry,2007(6):150−152. doi: 10.3969/j.issn.1002-0306.2007.06.045 ZHU Qiaoling, YANG Wenge, SUN Cuiling, et al . Study on the technical conditions of polysaccharide from Gracilaria lamaneiformis by enzymatic extraction[J]. Science and Technology of Food Industry,2007 (6 ):150 −152 . doi: 10.3969/j.issn.1002-0306.2007.06.045[11] 闫佳佳, 万璐, 吴桐, 等. 快速溶剂萃取技术在2种食药用真菌多糖提取中的应用[J]. 中国农学通报,2021,37(16):150−155. [YAN Jiajia, WANG Lu, WU Tong, et al. Application of pressurized solvent extraction technology in the extraction of polysaccharide from two kinds of edible and medicinal fungi[J]. Chinese Agricultural Science Bulletin,2021,37(16):150−155. doi: 10.11924/j.issn.1000-6850.casb2020-0429 YAN Jiajia, WANG Lu, WU Tong, et al . Application of pressurized solvent extraction technology in the extraction of polysaccharide from two kinds of edible and medicinal fungi[J]. Chinese Agricultural Science Bulletin,2021 ,37 (16 ):150 −155 . doi: 10.11924/j.issn.1000-6850.casb2020-0429[12] 王国明, 徐清华, 徐芳菲. 快速溶剂萃取技术在食品和保健食品活性成分检测中的应用[J]. 食品安全导刊,2022,338(9):180−182. [WANG Guoming, XU Qinghua, XU Fangfei. Application of accelerated solvent extraction in detection of active ingredients in food and healthy food[J]. China Food Safety Magazine,2022,338(9):180−182. WANG Guoming, XU Qinghua, XU Fangfei . Application of accelerated solvent extraction in detection of active ingredients in food and healthy food[J]. China Food Safety Magazine,2022 ,338 (9 ):180 −182 .[13] 王智超, 王擎, 柏静儒, 等. 快速溶剂萃取法提取印尼油砂沥青的工艺研究[J]. 石油炼制与化工,2022,53(4):58−62. [WANG Zhichao, WANG Qing, BAI Jingru, et al. Study on extraction technology of the Indonesia oil sands bitumen by accelerated solvent extraction[J]. Petroleum Processing and Petrochemicals,2022,53(4):58−62. WANG Zhichao, WANG Qing, BAI Jingru, et al . Study on extraction technology of the Indonesia oil sands bitumen by accelerated solvent extraction[J]. Petroleum Processing and Petrochemicals,2022 ,53 (4 ):58 −62 .[14] 林琳. 环境监测中萃取技术的应用[J]. 生物化工,2017,3(4):114−116. [LIN Lin. Application of extraction technology in environmental monitoring[J]. Biological Chemical Engineering,2017,3(4):114−116. doi: 10.3969/j.issn.2096-0387.2017.04.035 LIN Lin . Application of extraction technology in environmental monitoring[J]. Biological Chemical Engineering,2017 ,3 (4 ):114 −116 . doi: 10.3969/j.issn.2096-0387.2017.04.035[15] 王国明, 徐清华, 谢丽娟, 等. 人参、西洋参中多糖成分分析及其抗氧化活性研究[J]. 粮食与油脂,2022,35(6):143−146, 150. [WANG Guoming, XU Qinghua, XIE Lijuan, et al. Analysis of polysaccharide from ginseng and Panax quiquefolium L. and their antioxidant activity[J]. Cereals & Oils,2022,35(6):143−146, 150. doi: 10.3969/j.issn.1008-9578.2022.06.030 WANG Guoming, XU Qinghua, XIE Lijuan, et al . Analysis of polysaccharide from ginseng and Panax quiquefolium L. and their antioxidant activity[J]. Cereals & Oils,2022 ,35 (6 ):143 −146, 150 . doi: 10.3969/j.issn.1008-9578.2022.06.030[16] 金建华, 柳詹, 秦世荣. 唐古特白刺果实多糖提取工艺优化及其抗氧化活性研究[J]. 内蒙古民族大学学报(自然科学版),2021,36(4):290−297. [JIN Jianhua, LIU Zhan, QIN Shirong. Optimization of extraction technology of polysaccharide from Nitraria tangutorum Bobr. fruit and its antioxidant activity[J]. Journal of Inner Mongolia Minzu University(Natural Sciences),2021,36(4):290−297. JIN Jianhua, LIU Zhan, QIN Shirong . Optimization of extraction technology of polysaccharide from Nitraria tangutorum Bobr. fruit and its antioxidant activity[J]. Journal of Inner Mongolia Minzu University(Natural Sciences),2021 ,36 (4 ):290 −297 .[17] 王宇晴, 牛雯颖, 刘松梅, 等. 快速溶剂萃取法在灵芝多糖提取中的应用[J]. 中国调味品,2020,45(2):107−111. [WANG Yuqing, NIU Wenying, LIU Songmei, et al. Application of fast solvent extraction method in the extraction of polysaccharide from Ganoderma lucidum[J]. China Condiment,2020,45(2):107−111. doi: 10.3969/j.issn.1000-9973.2020.02.024 WANG Yuqing, NIU Wenying, LIU Songmei, et al . Application of fast solvent extraction method in the extraction of polysaccharide from Ganoderma lucidum[J]. China Condiment,2020 ,45 (2 ):107 −111 . doi: 10.3969/j.issn.1000-9973.2020.02.024[18] 何俊平, 李晓菁, 孟迪, 等. 板栗种仁多糖的提取纯化及体外抗肿瘤活性筛选[J]. 食品工业科技,2020,41(22):134−141, 149. [HE Junping, LI Xiaojing, MENG Di, et al. Extraction, purification and in vitro antitumor screening of polysaccharides from chestnut kernel[J]. Science and Technology of Food Industry,2020,41(22):134−141, 149. doi: 10.13386/j.issn1002-0306.2020020113 HE Junping, LI Xiaojing, MENG Di, et al . Extraction, purification and in vitro antitumor screening of polysaccharides from chestnut kernel[J]. Science and Technology of Food Industry,2020 ,41 (22 ):134 −141, 149 . doi: 10.13386/j.issn1002-0306.2020020113[19] 任鑫, 彭飞, 陈丽楠, 等. 安梨果渣可溶性膳食纤维微波辅助酶法提取工艺优化及结构表征[J]. 食品工业科技,2022,43(7):191−198. [REN Xin, PENG Fei, CHNEG Linan, et al. Optimization and characterization of microwave-assisted enzymatic extraction of soluble dietary fiber from anli fruit pomace[J]. Science and Technology of Food Industry,2022,43(7):191−198. REN Xin, PENG Fei, CHNEG Linan, et al . Optimization and characterization of microwave-assisted enzymatic extraction of soluble dietary fiber from anli fruit pomace[J]. Science and Technology of Food Industry,2022 ,43 (7 ):191 −198 .[20] 袁蕊, 王学江, 李峰. 海藻肥中海藻酸钠的提取及分子量检测[J]. 浙江农业科学,2019,60(8):1275−1277,1279. [YUAN Rui, WANG Xuejiang, LI Feng. Extraction and molecular weight determination of sodium alginate from seaweed fertilizer[J]. Journal of Zhejiang Agricultural Sciences,2019,60(8):1275−1277,1279. doi: 10.16178/j.issn.0528-9017.20190802 YUAN Rui, WANG Xuejiang, LI Feng . Extraction and molecular weight determination of sodium alginate from seaweed fertilizer[J]. Journal of Zhejiang Agricultural Sciences,2019 ,60 (8 ):1275 −1277,1279 . doi: 10.16178/j.issn.0528-9017.20190802[21] DU Bin, ZHU Fengmei, XU Baojun. β-Glucan extraction from bran of hull-less barley by accelerated solvent extraction combined with response surface methodology[J]. Journal of Cereal Science,2014,59(1):95−100. doi: 10.1016/j.jcs.2013.11.004
[22] CHEN Guangjing, ZHANG Shiqi, RAN Chunxia, et al. Extraction, characterization and antioxidant activity of water-soluble polysaccharides from Tuber huidongense[J]. International Journal of Biological Macromolecules,2016,91:431−442. doi: 10.1016/j.ijbiomac.2016.05.108
[23] XU Y, ZHANG L, YANG Y, et al. Optimization of ultrasound-assisted compound enzymatic extraction and characterization of polysaccharides from blackcurrant[J]. Carbohydrate Polymers,2015,117:895−902. doi: 10.1016/j.carbpol.2014.10.032
[24] GONG Y, MA Y, CHENG P C, et al. Structural characteristics and anti-inflammatory activity of UV/H2O2-treated algal sulfated polysaccharide from Gracilaria lemaneiformis[J]. Food and Chemical Toxicology,2021,152:112157. doi: 10.1016/j.fct.2021.112157
[25] HAJJI M, HAMDI M, SELLIMI S, et al. Structural characterization, antioxidant and antibacterial activities of a novel polysaccharide from Periploca laevigata root barks[J]. Carbohydrate Polymers,2019,206:380−388. doi: 10.1016/j.carbpol.2018.11.020
[26] WANG Z B, PEI J J, MA H L, et al. Effect of extraction media on preliminary characterizations and antioxidant activities of Phellinus linteus polysaccharides[J]. Carbohydrate Polymers,2014,109:49−55. doi: 10.1016/j.carbpol.2014.03.057
[27] 黄维波, 陈佳云, 黄芳, 等. 不同分子量龙须菜多糖对草酸钙结晶的调控作用[J]. 光谱学与光谱分析,2021,41(4):1163−1170. [HUANG Weibo, CHENG Jiayun, HUANG Fang, et al. Effects of different molecular weight of Gracilaria lemaneiformis polysaccharide on calcium oxalate crystal[J]. Spectroscopy and Spectral Analysis,2021,41(4):1163−1170. HUANG Weibo, CHENG Jiayun, HUANG Fang, et al . Effects of different molecular weight of Gracilaria lemaneiformis polysaccharide on calcium oxalate crystal[J]. Spectroscopy and Spectral Analysis,2021 ,41 (4 ):1163 −1170 .[28] 赵小丹, 刘玉, 陶新玉, 等. 不同分子量的铁皮石斛多糖对细胞免疫活性的研究[J/OL]. 中国药学杂志:1−10 [2023-03-25]. http://kns.cnki.net/kcms/detail/11.2162.R.20230308.1050.002.html. [ZHAO Xiaodan, LIU Yu, TAO Xinyu, et al. Study on cellular immune activity of Dendrobium officinale polysaccharide with different molecular weight[J/OL]. Chinese Pharmaceutical Journal:1−10 [2023-03-25]. http://kns.cnki.net/kcms/detail/11.2162.R.20230308.1050.002.html. ZHAO Xiaodan, LIU Yu, TAO Xinyu, et al. Study on cellular immune activity of Dendrobium officinale polysaccharide with different molecular weight[J/OL]. Chinese Pharmaceutical Journal: 1−10 [2023-03-25]. http://kns.cnki.net/kcms/detail/11.2162.R.20230308.1050.002.html.
[29] 付京城, 何俊辉, 仝江, 等. HO-1在巨噬细胞中的抗炎和抗氧化作用[J]. 中国畜牧兽医,2023,50(2):807−816. [FU Jingcheng, HE Junhui, TONG Jing, et al. Anti-inflammatory and antioxidant roles of HO-1 in macrophages[J]. China Animal Husbandry & Veterinary Medicine,2023,50(2):807−816. FU Jingcheng, HE Junhui, TONG Jing, et al . Anti-inflammatory and antioxidant roles of HO-1 in macrophages[J]. China Animal Husbandry & Veterinary Medicine,2023 ,50 (2 ):807 −816 .[30] XU Y, NIU X, LIU N, et al. Characterization, antioxidant and hypoglycemic activities of degraded polysaccharides from blackcurrant ( Ribes nigrum L.) fruits[J]. Food Chemistry,2018,243:26−35. doi: 10.1016/j.foodchem.2017.09.107
[31] 朱彦彬, 徐鑫婷, 黎燕冰, 等. 桦褐孔菌醇抑制LPS诱导RAW264.7细胞炎症反应[J]. 食品工业科技, 2023, 44(19): 401-409. [ZHU Y B, YU X T, LI Y B, et al. Effect of inotodiol on LPS-induced injury of RAW264.7 cells[J]. Science and Technology of Food Industry, 2023, 44(19):401-409. ZHU Y B, YU X T, LI Y B, et al. Effect of inotodiol on LPS-induced injury of RAW264.7 cells[J]. Science and Technology of Food Industry, 2023, 44(19):401-409.
[32] 李潭, 孙一涵, 李国峰. 根皮素对脂多糖诱导的RAW264.7细胞的体外抗炎作用机制[J]. 中国免疫学杂志,2021,37(7):812−818. [LI Tan, SUN Yihan, LI Guofeng. Anti inflammatory mechanism of phloretin on RAW264.7 cells induced by lipopolysaccharide in vitro[J]. Chinese Journal of Immunology,2021,37(7):812−818. doi: 10.3969/j.issn.1000-484X.2021.07.008 LI Tan, SUN Yihan, LI Guofeng . Anti inflammatory mechanism of phloretin on RAW264.7 cells induced by lipopolysaccharide in vitro[J]. Chinese Journal of Immunology,2021 ,37 (7 ):812 −818 . doi: 10.3969/j.issn.1000-484X.2021.07.008[33] 单梅华, 刘晓光, 朱毓永, 等. 山杏叶水提物对脂多糖诱导的RAW264.7细胞的体外抗炎作用[J]. 北方园艺,2018(18):132−137. [SHAN Meihua, LIU Xiaoguang, ZHU Yuyong, et al. Anti-inflammatory effect of water extract of wild apricot leaves on LPS-stimulated RAW264.7 cells[J]. Northern Horticulture,2018(18):132−137. SHAN Meihua, LIU Xiaoguang, ZHU Yuyong, et al . Anti-inflammatory effect of water extract of wild apricot leaves on LPS-stimulated RAW264.7 cells[J]. Northern Horticulture,2018 (18 ):132 −137 .[34] 张壮, 李琼, 黄丽萍, 等. 粉葛与葛根多糖对脂多糖诱导RAW264.7细胞的抗炎作用[J]. 现代食品科技,2022,38(7):1−10. [ZHANG Zhuang, LI Qiong, HUANG Liping, et al. Anti-inflammatory effect of Pueraria lobata (Willd.) Ohwi and P. thomsonii Benth. polysaccharides on LPS-induced RAW264.7 cells[J]. Modern Food Science and Technology,2022,38(7):1−10. ZHANG Zhuang, LI Qiong, HUANG Liping, et al . Anti-inflammatory effect of Pueraria lobata (Willd.) Ohwi and P. thomsonii Benth. polysaccharides on LPS-induced RAW264.7 cells[J]. Modern Food Science and Technology,2022 ,38 (7 ):1 −10 . -
期刊类型引用(2)
1. 喻本霞,瞿显友,江维克. 鸡蛋参多糖提取工艺优化及其抗氧化活性研究. 中国野生植物资源. 2024(02): 8-13+19 . 百度学术
2. 意如乐,格根图,王志军,胡日查,百岁,塞西雅拉图. 响应面法优化火绒草中总黄酮与总酚酸的提取工艺研究. 草地学报. 2024(03): 935-944 . 百度学术
其他类型引用(1)