Research Progress on Vitamin E Embedded in Food Delivery System
-
摘要: 维生素E是具有抗氧化活性等多种生理活性功能的脂溶性维生素,但是脂溶性限制了其在水溶性体系为主流的食品体系中的应用,并降低了其生物利用度。利用脂质体、纳米颗粒、乳液、微胶囊和环糊精包合物等食品运载体系可以改变维生素E的溶解性。选用恰当的运载体系,并对体系原材料筛选并加以适当修饰或改性能够有效提高维生素E的稳定性和生物利用率。本文概述了不同食品级运载体系对维生素E的包埋方法、负载特性和产品功能方面的研究和应用进展,为开发性能优良的运载体系,提高维生素E的稳定性和生物利用率提供有益的指导。Abstract: Vitamin E is a fat-soluble vitamin with various physiological functions including antioxidant activity. However, its fat solubility limits its application in food systems where water-soluble systems are the mainstream, and reduces its bioavailability. The solubility of vitamin E can be changed by using food delivery systems such as liposomes, nanoparticles, emulsions, microcapsules, and cyclodextrin inclusion complexes. Choosing an appropriate delivery system and screening and modifying the raw materials of the system can effectively improve the stability and bioavailability of vitamin E. This manuscript reviews the research and application progress of vitamin E embedding methods, loading characteristics and product functions in different food-grade delivery systems, and provides useful guidance for the developing delivery systems with well performance and improving the stability and bioavailability of vitamin E.
-
Keywords:
- vitamin E /
- food delivery systems /
- stability /
- bioavailability
-
维生素E(Vitamin E)又名生育酚,是指含苯并二氢吡喃结构的一类化合物,存在8种主要形式,包括α-、β-、γ-、δ-生育酚和相应的四种生育三烯酚,其中,α-生育酚是自然界中分布最广泛、含量最丰富、活性最高的维生素E的存在形式[1-2]。维生素E广泛存在于细胞质膜中,具有重要的抗氧化活性,它可以破坏自由基和超氧阴离子,抑制质膜的脂质过氧化,是人体必需的脂溶性维生素,具有预防衰老、维持机体正常的繁殖机能和增强免疫力等功能[2-4]。然而维生素E的脂溶性限制了其与水溶性成分或界面均匀混合,不利于体内递送以及消化吸收;此外,维生素E对氧气非常敏感,极易发生氧化,这限制了其在食品工业中的应用[5-6]。
食品运载体系是近年来食品工业重点发展的高新技术,利用该技术包埋、保护生物活性物质,不仅可以提高物质在食品体系中的稳定性,还可以转换其溶解性[7]。食品级运载体系的原料一般为天然食品级大分子材料,如植物胶、糊精、蛋白质、脂质、纤维素、淀粉等[8]。无毒、包埋工艺简单、包埋率高、生物利用率高、能保护生物活性物质在加工、储藏过程中不被降解是食品级运载体系的基本要求[9-10]。在实际应用中,食品运载体系还要求能够被添加在高水分食物基质中如饮料、甜品、调味品等[9]。利用不同包埋技术构建的食品级运载体系包括脂质体、纳米颗粒、乳液、微胶囊、β-环糊精包合物等[11]。
一般而言,维生素E必须被小肠中的上皮细胞吸收并转运到体内循环中之后才能发挥其生物活性[12]。然而,维生素E易受到消化道环境中极端pH、消化酶系等因素的影响,其生物利用度被严重降低[7]。已证实包埋能有效提高活性物质的水溶性,避免其受光、热、氧的影响,控制递送、释放,进而提高其生物利用度[13]。常用的维生素E包埋系统有脂质体、纳米颗粒、乳液、微胶囊、环糊精包合物等[14]。
作为具备多种功能活性的脂溶性维生素,维生素E在食品工业中的应用大多还停留在与油脂等成分混合添加的阶段,如何提高其稳定性及生物利用度,使其更好地发挥功能活性,受到了科研人员的广泛关注。本文综述了近年来不同包埋技术构建的食品级运载体系改善维生素E生物利用度和稳定性能的研究进展,并对本领域的发展前景做出了展望,以期强化维生素E在食品工业中的应用。
1. 脂质体
脂质体是一种具有生物膜结构的球形或近似球形的囊泡,通常由一个或者多个磷脂双分子层或薄层构成[15]。它兼具亲水和亲油的性质,能够包埋水溶性或脂溶性物质,还能够将物质包埋在水相与油相交界的磷脂层中,因此脂质体具有良好的生物相容性、缓释性和靶向性,能够用于包埋多种生物活性物质,并抑制其在敏感环境条件下的降解[16]。
使用脂质体包埋可以有效延缓维生素E的释放效率,从而提高其生物利用率。Xu等[17]制备了与β-胡萝卜素共同包埋的维生素E脂质体,发现其在模拟胃液中累积释放率约为20%,而在模拟肠液中释放率可达80%以上,这表明脂质体表现出良好的缓释效能。张朋杰[18]以磷脂为脂质材料采用薄膜分散法制备了分散性良好的天然维生素E脂质体,体外释放实验的结果表明,所制备的脂质体释放曲线符合典型的释放受控曲线,缓释效果明显。
将维生素E包埋在脂质体的磷脂双分子层结构中,可以隔绝环境中的氧气,从而提高维生素E的抗氧化性[19]。Jash等[20]使用超临界二氧化碳从牛奶中分离提取了乳脂球膜磷脂,并用其合成维生素E脂质体,脂质体在90 ℃加热30 min后仍然保持了结构完整性。Han等[21]使用超临界二氧化碳合成了超临界亲二氧化碳磷脂,并利用快速膨胀法工艺制备了维生素E醋酸酯的脂质体,脂质体表现出良好的稳定性和持续且稳定的缓释性能。Lopez等[22]将α-生育酚分子插入到乳鞘磷脂膜中,发现这种生育酚负载体系能够有效抑制氧化的发生。但是,脂质体属于热力学不稳定性体系,在贮藏过程中容易出现融合、聚集、磷脂水解和氧化等问题[23]。与普通脂质体相比,纳米脂质体的尺寸更小,比表面积更大,因而具有更高的溶解度和生物利用度,还可以实现更为精准的靶向释放能力[24]。Clemente等[25]从藻类中提取脂质制得的纳米脂质体能够提高生物相容性,在保有缓释性能的同时,提高了α-生育酚的稳定性,并增强对不同靶点定向释放的活性。
脂质体的优点是能够有效地将维生素E容纳在磷脂双层结构中,减少其在贮藏过程中由于光照、氧气等环境因素造成的氧化或降解[26-27]。但是,由于脂质体属于热力学不稳定系统,再贮藏过程中容易发生失稳,且其与血液成分混合后,因理化稳定性差可能导致包埋物质的快速泄漏[27]。对脂质体的原材料进行改性或修饰,设计并构建新型脂质体是提高其稳定性的有效方法[26-28]。
2. 固体脂质纳米颗粒
固体脂质纳米颗粒是近几十年来最流行的胶体剂型之一,具有负载率高和易于通过表面修饰提高生物利用度等优点[29]。固体脂质纳米颗粒通常由包覆有单层磷脂的固体疏水脂质核心组成,通常为球形,粒径范围在50~1000 nm[29-30]。固体脂质纳米颗粒的主要成分是固体脂质、表面活性剂和水,甘油三酯、蜂蜡、脂肪酸、类固醇等各种天然或合成的脂质均可以作为固体脂质纳米粒的基质,磷脂、离子或非离子表面活性剂、聚乙二醇等常用于稳定水性介质与固体脂质纳米粒外壳之间的界面[29]。固体脂质纳米颗粒的优点是物理稳定性和化学稳定性均较好,具有很好的持续释放和靶向释放能力;但是其缺点在于油相基质容易发生结晶、存储讨程中可能发生爆裂[31-32]。通过使用糖类成分修饰固体脂质纳米颗粒的表面,或者使用混合脂质作基质成分可以一定程度避免此类问题的发生[9,33]。
固体脂质纳米颗粒的常用制备方法有微乳液法、固液乳化法、高速剪切乳化法、薄膜蒸发法、乙醇注入法、薄膜接触器法、逆相蒸发法和纳米反应器法等[34-39]。Charcosset等[35]利用固体脂质纳米粒包埋维生素E,所使用的薄膜接触器法具有装备简单、易于量产的特点,制得的固体脂质纳米粒的包封率接近100%,粒径大小也可以调控。Malekpour-Galogahi等[36]使用微乳液法制备了生育酚琥珀酸酯基固体脂质纳米颗粒,并用于递送治疗阿尔茨海默病的脂溶性药物,产品具有很好的缓释性能。Gupta等[37]同样使用微乳液法制备了负载有α-生育酚乙酸酯和异维甲酸的固体脂质纳米颗粒,α-生育酚乙酸酯的包封率达到77.4%,并在痤疮治疗模型中发挥了良好的缓释作用和疗效。De等[38]以硬脂酸为基质使用固液乳化法制备了维生素E固体脂质纳米颗粒,并成功地在护肤品模型中实现了24 h内50%的释放效果。杨振等[39]以乳木果油为基质使用高速剪切乳化法制备了α-生育酚固体脂质纳米颗粒,包封效率达到95%以上,且作为载体的运载效果良好。
3. 生物聚合物纳米颗粒
生物聚合物纳米颗粒,是指通过纳米颗粒对生物活性成分进行包埋并递送,以实现对其控释的目的[40]。生物聚合物纳米颗粒体积小、稳定性高,对药物的负载率也高,使用纳米载体包埋理化性质不稳定的成分可以减少其在食品加工和贮藏过程中的损失,并提高其生物利用度[27,41]。生物聚合物纳米颗粒的载体一般为多糖、蛋白质或复合成分[27]。
制备生物聚合物纳米颗粒最常用的多糖之一是壳聚糖,壳聚糖为载体的纳米颗粒可以提高细胞膜的通透性,从而增强所包埋成分在小肠绒毛上皮细胞的吸收,因此壳聚糖是生物聚合物纳米颗粒的理想壁材原料之一[42]。陈文彬等[43]采用乳化-离子凝胶两步法制备了α-生育酚的壳聚糖纳米颗粒,以 DPPH自由基清除率为指标,纳米颗粒抗氧化作用的发挥时间达到未包埋α-生育酚的250%以上,展现了长效的抗氧化作用。Trombino等[44]采用膜乳化法制备了壳聚糖负载α-生育酚纳米颗粒,通过体外实验的评估证实,壳聚糖和α-生育酚之间形成的化学键可以增强α-生育酚的抗氧化性能,从而使得其以受控的方式在药物递送系统中发挥功效。
乳清分离蛋白是制备纳米颗粒常用的载体蛋白质,但通常需要添加多糖等物质提高纳米颗粒的稳定性[45]。付晓俊[46]和殷欣等[47]使用乳清分离蛋白和柚皮素构建了α-生育酚复合纳米颗粒,发现柚皮素的加入能明显提高α-生育酚的生物利用度且不会影响其的稳定性。
4. 乳液
乳液是由两种或两种以上不相溶的液体相(油相和水相)混合形成的分散体系,通常是其中一种液体以液滴的形式分散在另一种液体中,在水溶性为主的食品体系中,水包油(O/W)乳液常被用于油脂和脂溶性成分的运载[48]。普通乳液通常由水相、油相和乳化剂三者构成,属于热力学不稳定体系,其稳定性会受到油水界面存在的表面张力的影响,往往会随着时间的推移而发生絮凝或分层[49-51]。为了解决这一问题,研究人员设计了不同结构与性质的新型乳液体系,目前研究和应用较多的乳液体系包括纳米乳液、微乳液以及皮克林乳液等[9,48]。
4.1 纳米乳液和微乳液
纳米乳液与普通乳液相比,具有粒径小、透光性好和理化稳定性高等优点,相比于普通乳液,纳米乳液能够较好地抵抗油水的重力分层、聚沉和凝聚[52]。Saxena等[53]以椰子油作为油相基质,包埋α-生育酚作为功能性食品营养强化剂,所得纳米乳液在胃肠道pH范围的稳定性良好,且具有很好的生物相容性和抗菌活性。张潇元等[54]联合运用真空冷冻干燥技术与高压均质技术制得维生素E纳米乳液粉末复原乳液,包封率超过90%,乳液稳定性良好,且显著提高了维生素E的生物利用率。
微乳液是一种加入了表面活性剂与助表面活性剂后由水油两相自发形成的一种透明或半透明的油水混合体系,属于纳米级热力学稳定分散体系[55]。Aboudzadeh等[56]选择乙酸异戊酯作为基质油相,分别以Tween 20和甘油作为表面活性剂和助表面活性剂,将α-生育酚包封到水性介质中,所得的微乳液具有良好的自由基清除活性,并且具有良好的缓释性能。
纳米乳液和微乳液的稳定性和分散性能均比普通乳液高,特别适合α-生育酚等脂溶性功能成分的稳定性提升和体内递送,二者的制备过程简单,能有效提高食品组分的消化率和抗氧化活性,但纳米乳液对热较为敏感,而微乳液在加工和储藏过程中容易受到其它成分的影响而导致相变[57]。
4.2 皮克林乳液
皮克林乳液利用固体颗粒以不可逆的方式吸附在油水界面,通过物理屏蔽作用防止液滴聚集,是具备高抗聚结稳定性和高存储稳定性的乳液[57-58]。
Ribeiro等[59]制备了由纳米羟基磷灰石稳定的负载维生素E的皮克林乳液,由于油相的包裹导致维生素E在胃中的生物可及性较低,从而提高了其在肠道中的生物利用度。Sun等[60]制备了由南瓜籽分离蛋白纳米粒子稳定的负载维生素E的皮克林乳液,所得乳液可以在室温下耐受90%浓度的乙醇长达60 d,研究者认为这种极高的乙醇耐受性是由于纳米粒子在界面处实现了完全覆盖。
皮克林乳液可以调节食品体系中各相密度的差异,从而增加体系的物理稳定性,并用于维生素E等亲油成分的稳态化包埋和可控释放,从而提高其生物利用率[61-62]。然而单一粒子稳定的皮克林乳液的生物可降解性和生物相容性在一定程度上限制了其在食品和制药领域的应用,而且食品体系中含有许多表面活性的分子,它们可能会促进或妨碍粒子在界面上的吸附,从而降低乳液体系的稳定性。
5. 微胶囊
微胶囊是一种使用成膜材料将芯材物质包裹起来,形成与外界环境隔离的一种微小容器,微胶囊的壁材可以通过物理阻隔和分子间互作赋予芯材保护及控制释放等方面的性能[63]。微胶囊制作工艺包含其壁材的选择和微胶囊化方法的选择,是控制微胶囊产品性能的关键参数[64]。
5.1 微胶囊的壁材
微胶囊壁材的选择很大程度上影响了产品性能的优劣,一般根据芯材的性质,最终产品的目标性能以及微胶囊化的工艺条件来选择壁材[9]。
壳聚糖是常用的多糖类壁材,由于壳聚糖的资源丰富,生物相容性良好,特别是其不同于大多数天然多糖,是一种阳离子电解质,可以与多种阴离子电解质形成具有不同特征的复合物,用于微胶囊壁的构成[64-65]。Milinković-Budinčić等[65]选择壳聚糖和十二烷基硫酸钠共同作为壁材,使用喷雾干燥法对维生素E进行包埋,通过无毒性交联剂对壁材进行交联后,复合壁材的溶胀有利于控制维生素E的释放过程。Gangurde等[66]选用麦芽糖糊精或辛烯基琥珀酸酐改性淀粉作为壁材并使用喷雾干燥法制备维生素E微胶囊,所得产品在40 °C、相对湿度为75%的条件下能够保持成分稳定达3个月以上。蒋敏[67]将黄原胶和高取代度的酸解羧甲基淀粉共同作为壁材制备了维生素E微胶囊,产品具有明显的pH敏感型释放特性,能够有效地保护并将维生素E在小肠靶向释放,实现了接近100%的生物利用度。
常见的蛋白类壁材有乳清分离蛋白、明胶蛋白以及以豆科为代表的植物蛋白等[68]。Parthasarathi等[69]以乳清分离蛋白为壁材,分别使用喷雾干燥、冷冻干燥和喷雾冷冻干燥的方法制备了维生素E微胶囊,其包封率均超过85%,三者中喷雾冷冻法制得的微胶囊呈现出最大的溶解潜能和溶解释放速率,因而可以有效提高维生素E的口服生物利用度。董焕焕等[70]使用热变性牛血清白蛋白做为壁材,以α-生育酚、白藜芦醇和表没食子儿茶素没食子酸酯(EGCG)复合作为芯材制备了微胶囊,大幅度提高α-生育酚的稳定性,且将α-生育酚清除自由基的能力由游离时的6%提高至69%。
以蛋白质和多糖复配作为壁材,能够进一步发挥它们在加工特性和功能特性上的优势,进一步提升微胶囊对于芯材的保护能力[68]。Xu等[71]选用乳清分离蛋白和壳聚糖作为壁材,包埋α-生育酚制备微胶囊,并进行了模拟胃肠消化实验,结果表明,经模拟胃消化120 min后微胶囊结构保持完整,并可以在随后的模拟肠道消化中持续释放,从而实现了对α-生育酚的靶向递送和控释。Carpentier等[72]选用豌豆分离蛋白与黄芪胶或阿拉伯胶对α-生育酚进行微胶囊化,发现与单独使用豌豆分离蛋白相比,和多糖以等比例复合作为壁材的微胶囊具有pH依赖性释放行为,存在良好的酸稳定性,因此上述组合十分适合作为耐胃消化微胶囊的壁材。
在需要缓慢、持续地靶向释放维生素E等脂溶性芯材成分时,选择阿拉伯胶、改性壳聚糖、淀粉和改性淀粉等作为壁材是合适的选择[73]。此外,戊二醛等交联剂的使用可能进一步提高微胶囊的稳定性和缓释性能[65]。
5.2 微胶囊化方法
依据微胶囊的成囊条件、性质、形成机理,微胶囊制备的方法可分为物理法(喷雾干燥法、溶剂蒸发法、挤压法等)、化学法(原位聚合法、界面聚合法、乳液聚合法等)和物理化学法(复合凝聚法、相分离法、溶液-凝胶法等)[74]。在上述方法之中,喷雾干燥法和复合凝聚法在工业生产和科学研究中较为常用,所得的维生素E微胶囊的产品特性如表1所示。
表 1 维生素E的微胶囊化的制备方法及产品特性Table 1. Preparation method and product characteristics of microencapsulation of vitamin E微胶囊化的方法之中,喷雾干燥法具有生产率高、开发周期短、灵活性好等优点,已成为食品工业生产中最主要的微胶囊化方法[76]。根据产品特性方面的要求,喷雾冷冻干燥法可以在普通喷雾干燥法的基础上进一步优化芯材释放的动力学参数,制备出具有更高生物利用度的微胶囊产品[69]。复合凝聚法是包埋高附加值脂溶性功能成分的常用方法,由该方法得到的微胶囊产品载量较高,对于脂溶性芯材具有良好的延缓氧化以及控制释放的效果[68,77]。
6. β-环糊精包合物
β-环糊精是环糊精葡萄糖转移酶作用于淀粉后发生一系列的酶促循环反应得到的环状低聚糖,由7个葡萄糖分子以α-1,4糖苷键结合而成[78]。β-环糊精最主要的结构特点是具有中心相对疏水,表面相对亲水的特殊环状空腔,其化学稳定性良好,可以与一些化合物形成稳定的包合物[79-80]。
选择合适的温度和pH条件并利用超声波辅助等手段可以将维生素E嵌入环糊精的疏水空腔中,从而对其释放速率进行调节[29]。欧阳玉祝等[81]使用β-环糊精对维生素E进行包合,二者通过非共价结合后维生素E的稳定性相比游离状态提高了2.12倍,在60 ℃的氧化反应速率常数由游离状态的0.0623降低到0.0251,因此维生素E的抗氧化性得到显著的提升。Chen等[82]制备了维生素E的β-环糊精包合物,包埋率达到78.62%,形成包合物的维生素E的DPPH自由基清除能力可以达到游离维生素E的2倍以上。
此外,β-环糊精的水溶性差,且在酸性条件下不稳定,通过改性引入新的基团,所得衍生物的水溶性和稳定性均有显著改善[9,29]。Ke等[83]利用辛烯基琥珀酸酐对β-环糊精进行修饰,制备了辛烯基琥珀酸-β-环糊精,再制备维生素E的包合物,结果表明修饰后β-环糊精对维生素E的保护能力显著提升,在O/W乳液体系中应用时的抗氧化能力也高于未修饰β-环糊精的包合物。可见,通过合适的修饰可以改善包合物的氧化稳定性。
7. 结论与展望
维生素E因其具有抗氧化性、维持生殖机能以及保护肝脏等多种生理活性而在功能食品及保健品产品中应用广泛,然而,其不溶于水、稳定性差和生物利用率低的特点很大程度制约其在食品和保健品工业中的应用。使用蛋白质、多糖和脂质等为材料,制备包埋维生素E的食品运载体系,可以改变其溶解性并增加其稳定性,还可以实现缓释或定向释放的效果,从而使维生素E能够更加方便地在食品体系中应用,提高其在加工和贮藏过程中的稳定性,并增加其生物利用率。本文分类综述了近年来食品级维生素E运载体系的制备方法及包封效率、缓释性能、稳定性和生物利用度等方面的特性及研究进展。
但是,目前食品运载体系包埋维生素E的研究和应用中还存在一些问题:维生素E运载体系尚且难以精确实现精准的靶向释放和定点吸收,维生素E的生物活性发挥受限;维生素E运载体系的吸收和代谢机制的相关研究尚且较少,部分新型原料的使用受到安全性的质疑;纳米级维生素E运载体的吸收和代谢等过程与微米级运载体不同,对于其潜在毒性的研究尚且不足;部分包埋技术成本高、工业化生产难度大,尚止步于实验室研究阶段。因此,今后本领域的相关研究将着力于以下几个方面:开发新型维生素E运载体系,并尝试将不同包埋技术的优势相结合,在确保维生素E稳定性的同时,挖掘其靶向释放方面的潜力;探究并系统评价不同食品运载体系对维生素E的吸收和代谢并解明其机制,开展针对新型原料的安全性评价研究;通过包括临床研究在内的毒理学实验系统性评价纳米级维生素E的潜在风险,为纳米级食品运载体系的工业化应用奠定理论基础;通过新型工艺的开发和选材的优化进行成本管理,研发在大规模工业化生产中经济可行的维生素E运载体系生产工艺。
-
表 1 维生素E的微胶囊化的制备方法及产品特性
Table 1 Preparation method and product characteristics of microencapsulation of vitamin E
-
[1] 赵军波. 固定化脂肪酶催化合成α-生育酚琥珀酸酯的研究[D]. 杭州: 浙江工业大学, 2017 ZHAO J B. Study on synthesis of α-tocopherol succinate by enzymatic immobilized lipase[D]. Hangzhou: Zhejiang University of Technology, 2017.
[2] 王传蓉, 王加启, 周振峰, 等. 维生素E的免疫研究进展[J]. 中国畜牧兽医,2008(8):24−28. [WANG C R, WANG J J, ZHOU Z F, et al. Progress in immunity of vitamin E[J]. China Animal Husbandry & Veterinary Medicine,2008(8):24−28. WANG C R, WANG J J, ZHOU Z F, et al. Progress in immunity of vitamin E[J]. China Animal Husbandry & Veterinary Medicine, 2008(8): 24-28.
[3] 陈嘉康, 吕春荣, 苗永旺, 等. 脂质组学技术在家畜精液质量评价和体外保存研究中的应用研究进展[J]. 中国畜牧兽医,2022,49(12):4697−4706. [CHEN J K, LU C R, MIAO Y W, et al. Research progress on application of lipidomic technology in quality assessment and in vitro storage of livestock semen[J]. China Animal Husbandry & Veterinary Medicine,2022,49(12):4697−4706. CHEN J K, LU C R, MIAO Y W, et al. Research progress on application of lipidomic technology in quality assessment and in vitro storage of livestock semen[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(12): 4697-4706.
[4] 张婧菲, 胡志萍, 王恬. 天然维生素E及其衍生物的研究进展[J]. 饲料工业,2015,36(8):31−35. [ZHANG J F, HU Z P, WANG T. Research progress of natural vitamin E and its analogues[J]. Feed Industry,2015,36(8):31−35. ZHANG J F, HU Z P, WANG T. Research progress of natural vitamin E and its analogues[J]. Feed Industry, 2015, 36(8): 31-35.
[5] 林宏琳, 华永有, 童金华. HPLC法快速测定辅酶Q10维生素E软胶囊中2种功效成分含量[J]. 药物分析杂志,2017,37(3):402−406. [LIN H L, HUA Y Y, TONG J H. A fast HPLC method for simultaneous determination of two kinds of functional components in coenzyme Q10 vitamin E softgel[J]. Chinese Journal of Pharmaceutical Analysis,2017,37(3):402−406. LIN H L, HUA Y Y, TONG J H. A fast HPLC method for simultaneous determination of two kinds of functional components in coenzyme Q10 vitamin E softgel[J]. Chinese Journal of Pharmaceutical Analysis, 2017, 37(3): 402-406.
[6] 朱曙光, 维生素E微胶囊的制备及其含量成分测定研究[D]. 天津: 天津科技大学, 2014 ZHU S G. Preparation of vitamin E microencapsulation and the determination of content[D]. Tianjin: Tianjin University of Science and Technology, 2014.
[7] 陈雨露, 孙婉秋, 高彦祥, 等. 食品运载体系提高酚类物质生物利用度的研究进展[J]. 食品科学,2020,41(5):323−330. [CHEN Y L, SUN W Q, GAO Y X, et al. Recent progress in food delivery systems for lmproving bioavailability of phenolic compounds[J]. Food Science,2020,41(5):323−330. doi: 10.7506/spkx1002-6630-20190228-225 CHEN Y L, SUN W Q, GAO Y X, et al. Recent progress in food delivery systems for lmproving bioavailability of phenolic compounds[J]. Food Science, 2020, 41 (5): 323-330. doi: 10.7506/spkx1002-6630-20190228-225
[8] 王珊珊. 氧化淀粉载体制备、表征及对β-胡萝卜素的缓释[D]. 北京: 北京化工大学, 2015 WANG S S. Preparation and characterization of oxidized starch carriers to controlled uptake and release of β-carotene[D]. Beijing: Beijing University of Chemical Technology, 2015.
[9] 王健, 邓苏梦, 戴燕, 等. 不同包埋技术构建的食品级运载体系负载β-胡萝卜素的研究进展[J]. 食品工业科技, 2017, 38(3): 380-385 WANG J, DENG S M, DAI Y, et al. Research progress in the food-grade delivery systems in different encapsulating technology loading beta-carotene[J]. Science and Technology of Food Industry, 2017, 38(3): 380-385.
[10] DOYENNETTE M, DÉLÉRIS I, FÉRON G, et al. Main individual and product characteristics influencing in-mouth flavour release during eating masticated food products with different textures: Mechanistic modelling and experimental validation[J]. Journal of Theoretical Biology,2014,340:209−221. doi: 10.1016/j.jtbi.2013.09.005
[11] 孙希云, 王静雯, 田思慧, 等. 食品基质及加工方式对多酚生物利用度影响的研究进展[J]. 食品工业科技,2021,42(21):400−407. [SUN X Y, WANG J W, TIAN S H, et al. Research progress of the effects of food matrix and processing on bioaccessibility of polyphenols[J]. Science and Technology of Food Industry,2021,42(21):400−407. SUN X Y, WANG J W, TIAN S H, et al. Research progress of the effects of food matrix and processing on bioaccessibility of polyphenols[J]. Science and Technology of Food Industry, 2021, 42(21): 400-407.
[12] YANG Y, MCCLEMENTS D J. Vitamin E bioaccessibility: Influence of carrier oil type on digestion and release of emulsified α-tocopherol acetat[J]. Food Chemistry,2013,141(1):473−481. doi: 10.1016/j.foodchem.2013.03.033
[13] CHEN L, REMONDETTO G E, SUBIRADE M. Food protein-based materials as nutraceutical delivery systems[J]. Trends in Food Science & Technology,2006,17(5):272−283.
[14] MCCLEMENTS D J. Encapsulation, protection, and release of hydrophilic active components: Potential and limitations of colloidal delivery systems[J]. Advances in Colloid and Interface Science,2015,219:27−53. doi: 10.1016/j.cis.2015.02.002
[15] 邹立强. 多酚脂质体的物化稳定性及生理活性研究[D]. 南昌: 南昌大学, 2015 ZOU L Q. Study on the physicochemical stability and biological activity of polyphenol liposome[D]. Nanchang: Nanchang University, 2015.
[16] 侯丽芬, 谷克仁, 吴永辉. 不同制剂脂质体制备方法的研究进展[J]. 河南工业大学学报(自然科学版),2016,37(5):118−124. [HOU L F, GU K R, WU Y H. Research progress of the preparation methods of liposome about different formulations[J]. Journal of Henan University of Technology (Natural Science Edition),2016,37(5):118−124. HOU L F, GU K R, WU Y H. Research progress of the preparation methods of liposome about different formulations[J]. Journal of Henan University of Technology(Natural Science Edition), 2016, 37(05): 118-124.
[17] XU T, ZHANG J, JIN R. Physicochemical properties, antioxidant activities and in vitro sustained release behavior of co-encapsulated liposomes as vehicle for vitamin E and β-carotene[J]. Journal of the Science of Food and Agriculture, 2022,102(13):5759-5767.
[18] 张朋杰. 生物抗氧化剂脂质体的制备及其性能的研究[D]. 郑州: 河南工业大学, 2019 ZHANG P J. study on preparation and properties of biological antioxidant liposomes[D]. Zhengzhou: Henan University of Technology, 2019.
[19] KALA S G, CHINNI S. Bioavailability enhancement of vitamin E TPGS liposomes of nintedanib esylate: Formulation optimization, cytotoxicity and pharmacokinetic studies[J]. Drug Delivery and Translational Research, 2022,12(11):2856-2864.
[20] JASH A, UBEYITOGULLARI A, RIZVI S S. Synthesis of multivitamin-loaded heat stable liposomes from milk fat globule membrane phospholipids by using a supercritical-CO2 based system[J]. Green Chemistry,2020,22(16):5345−5356. doi: 10.1039/D0GC01674H
[21] HAN Y, CHENG J, RUAN N, et al. Preparation of liposomes composed of supercritical carbon dioxide-philic phospholipids using the rapid expansion of supercritical solution process[J]. Journal of Drug Delivery Science and Technology,2021,64:102568. doi: 10.1016/j.jddst.2021.102568
[22] LOPEZ C, DAVID-BRIAND E, MÉRIADEC C, et al. Milk sphingosomes as lipid carriers for tocopherols in aqueous foods: Thermotropic phase behaviour and morphology[J]. Food Research International,2022,162:112115. doi: 10.1016/j.foodres.2022.112115
[23] 龚珈苧, 李凤云, 裴泽荣, 等. 基于肿瘤微环境增强抗肿瘤治疗效果的纳米递药系统设计及应用[J]. 中国药学杂志,2022,57(20):1685−1696. [GONG J N, LI F Y, PEI Z R, et al. Design and application of nano drug delivery system for enhanced antitumor therapy based on tumor microenvironment[J]. Chinese Pharmaceutical Journal,2022,57(20):1685−1696. GONG J N, LI F Y, PEI Z R, et al. Design and application of nano drug delivery system for enhanced antitumor therapy based on tumor microenvironment[J]. Chinese Pharmaceutical Journal, 2022, 57 (20): 1685-1696.
[24] 李万茸. 基于β-酸-番茄红素的复合环糊精包合物的制备及性能评价[D]. 乌鲁木齐: 新疆大学, 2021 LI W R. Preparation and performance evaluation of composite cyclodextrin inclusion complex based on β-acids-lycopene[D]. Urumqi: Xinjiang University, 2021.
[25] CLEMENTE I, LAMPONI S, TAMASI G, et al. Structuring and de-structuring of nanovectors from algal lipids: Simulated digestion, preliminary antioxidant capacity and in vitro tests[J]. Pharmaceutics,2022,14(9):1847. doi: 10.3390/pharmaceutics14091847
[26] MEHANNY M, HATHOUT R M, GENEIDI A S, et al. Exploring the use of nanocarrier systems to deliver the magical molecule: Curcumin and its derivatives[J]. Journal of Controlled Release,2016,225:1−30. doi: 10.1016/j.jconrel.2016.01.018
[27] 郭静, 胡坦, 潘思轶. 食品运载体系包埋叶黄素的研究进展[J]. 食品科学,2022,43(1):313−320. [GUO J, HU T, PAN S Y. Progress in research on food delivery systems for lutein encapsulation[J]. Food Science,2022,43(1):313−320. doi: 10.7506/spkx1002-6630-20210330-373 GUO J, HU T, PAN S Y. Progress in research on food delivery systems for lutein encapsulation[J]. Food Science, 2022, 43 (1): 313-320. doi: 10.7506/spkx1002-6630-20210330-373
[28] GIBIS M, ZEEB B, WEISS, J. Formation, characterization, and stability of encapsulated hibiscus extract in multilayered liposomes[J]. Food Hydrocolloids,2014,38:28−39. doi: 10.1016/j.foodhyd.2013.11.014
[29] 任爽, 董文霞, 刘锦芳, 等. 食品运载体系包埋姜黄素的研究进展[J]. 食品科学,2021,42(9):264−274. [REN S, DONG W X, LIU J F, et al. Progress in food delivery systems used for curcumin encapsulation[J]. Food Science,2021,42(9):264−274. doi: 10.7506/spkx1002-6630-20200327-402 REN S, DONG W X, LIU J F, et al. Progress in food delivery systems used for curcumin encapsulation[J]. Food Science, 2021, 42(9): 264-274. doi: 10.7506/spkx1002-6630-20200327-402
[30] NUNES S, MADUREIRA A R, CAMPOS D, et al. Solid lipid nanoparticles as oral delivery systems of phenolic compounds: Overcoming pharmacokinetic limitations for nutraceutical applications[J]. Critical Reviews in Food Science and Nutrition,2017,57(9):1863−1873.
[31] WANG F, CHEN L, ZHANG D, et al. , Methazolamide-loaded solid lipid nanoparticles modified with low-molecular weight chitosan for the treatment of glaucoma: vitro and vivo study[J]. Journal of Drug Targeting,2014,22(9):849−858. doi: 10.3109/1061186X.2014.939983
[32] KOVAČEVIĆ A B, MÜLLER R H, SAVIĆ S D, et al. Solid lipid nanoparticles (SLN) stabilized with polyhydroxy surfactants: Preparation, characterization and physical stability investigation[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014,444:15−25.
[33] NASIRI F, FAGHFOURI L, HAMIDI M. Preparation, optimization, and in-vitro characterization of α-tocopherol-loaded solid lipid nanoparticles (SLNs)[J]. Drug Development and Industrial Pharmacy,2020,46(1):159−171. doi: 10.1080/03639045.2019.1711388
[34] 陈雅鑫, 张怡评, 杨婷, 等. 岩藻黄质稳态化制剂的研究进展[J]. 中医药导报,2021,27(8):109−114. [CHEN Y X, ZHANG Y P, YANG T, et al. Research progress on stabilized preparation of fucoxanthin[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy,2021,27(8):109−114. CHEN Y X, ZHANG Y P, YANG T, et al. Research progress on stabilized preparation of fucoxanthin[J]. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 2021, 27 (8): 109-114.
[35] CHARCOSSET C, EL-HARATI A, FESSI H. Preparation of solid lipid nanoparticles using a membrane contactor[J]. Journal of Controlled Release,2005,108(1):112−120. doi: 10.1016/j.jconrel.2005.07.023
[36] MALEKPOUR-GALOGAHI F, HATAMIAN-ZARMI A, GANJI F, et al. Preparation and optimization of rivastigmine-loaded tocopherol succinate-based solid lipid nanoparticles[J]. Journal of Liposome Research,2017,28(3):226−235.
[37] GUPTA S, WAIRKAR S, BHATT L K. Isotretinoin and α-tocopherol acetate loaded solid lipid nanoparticle topical gel for the treatment of acne[J]. Journal of Microencapsulation,2020,37(8):557−565. doi: 10.1080/02652048.2020.1823499
[38] DE SOUZA I D, SAEZ V, DE CAMPOS V E, et al. Size and vitamin E release of nanostructured lipid carriers with different liquid lipids, surfactants and preparation methods[J]. Macromolecular Symposia,2019,383(1):1800011. doi: 10.1002/masy.201800011
[39] 杨振, 李曼, 慕鸿雁, 等. 装载α-生育酚的乳木果油固体脂质纳米颗粒的制备与表征[J]. 食品科学,2021,42(18):7−14. [YANG Z, LI M, MU H Y, et al. Preparation and evaluation of shea butter solid lipid nanoparticles loaded with α-tocopherol[J]. Food Science,2021,42(18):7−14. doi: 10.7506/spkx1002-6630-20200910-127 YANG Z, LI M, MU H Y, et al. Preparation and evaluation of shea butter solid lipid nanoparticles loaded with α-tocopherol[J]. Food Science, 2021, 42 (18): 7-14. doi: 10.7506/spkx1002-6630-20200910-127
[40] 韦阳, 王迪, 孙翠霞, 等. 基于生物大分子的纳米颗粒传递体系研究进展[J]. 中国食品添加剂,2017,10:167−176. [WEI Y, WANG D, SUN C X, et al. Research progress of biomacromolecular nanoparticle delivery systems[J]. China Food Additives,2017,10:167−176. doi: 10.3969/j.issn.1006-2513.2017.10.023 Wei Y, Wang D, Sun C X, et al. Research progress of biomacromolecular nanoparticle delivery systems[J]. China Food Additives, 2017, 10: 167-176. doi: 10.3969/j.issn.1006-2513.2017.10.023
[41] JOYE I J, MCCLEMENTS D J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application[J]. Current Opinion in Colloid & Interface Science,2014,19(5):417−427.
[42] 匡衡峰, 胡长鹰, 温晓敏, 等. 纳米ZnO/壳聚糖复合膜的性能及在冷鲜猪肉保藏中的应用[J]. 食品与发酵工业,2017,43(4):251−256. [KUANG H F, HU C Y, WEN X M, et al. The property of nano-ZnO/chitosan composite film and its application in chilled fresh pork preservation[J]. Food and Fermentation Industries,2017,43(4):251−256. KUANG H F, HU C Y, WEN X M, et al. The property of nano-ZnO/chitosan composite film and its application in chilled fresh pork preservation[J]. Food and Fermentation Industries, 2017, 43 (04): 251-256.
[43] 陈文彬, 严文静, 徐幸莲, 等. α-生育酚壳聚糖纳米粒的制备、表征及体外缓释抗氧化性能[J]. 食品科学,2017,38(22):216−223. [CHEN W B, YAN W J, XU X L, et al. Preparation, characterization andin vitro sustained antioxidant activity of α-tocopherol-loaded chitosan nanoparticles[J]. Food Science,2017,38(22):216−223. doi: 10.7506/spkx1002-6630-201722033 CHEN W B, YAN W J, XU X L, et al. Preparation, characterization and in vitro sustained antioxidant activity of α-tocopherol-loaded chitosan nanoparticles[J]. Food Science, 2017, 38 (22): 216-223. doi: 10.7506/spkx1002-6630-201722033
[44] TROMBINO S, POERIO T, CURCIO F, et al. Production of α-tocopherol-chitosan nanoparticles by membrane emulsification[J]. Molecules,2022,27(7):2319. doi: 10.3390/molecules27072319
[45] 袁巧月, 吴梵, 王孝治, 等. 雨生红球藻虾青素纳米颗粒的制备及稳定性研究[J]. 食品工业科技,2022,43(16):98−104. [YUAN Q Y, WU F, WANG X Z, et al. Preparation and stability of nanoparticles containing astaxanthin from Haematococcus pluvialis[J]. Science and Technology of Food Industry,2022,43(16):98−104. YUAN Q Y, WU F, WANG X Z, et al. Preparation and stability of nanoparticles containing astaxanthin from haematococcus pluvialis[J]. Science and Technology of Food Industry, 2022, 43 (16): 98-104.
[46] 付晓俊. 乳清分离蛋白作为载体对多种活性成分的保护及其相互作用的研究[D]. 无锡: 江南大学, 2018 FU X J. Study on the protection of various active components as carriers [D]. Wuxi: Jiangnan University, 2018.
[47] 殷欣, 包华燕, 常旋, 等. 基于乳清分离蛋白的α-生育酚/柚皮素的包埋和保护作用[C]// 中国化学会第十七届全国胶体与界面化学学术会议论文(摘要)集(第三卷). 无锡: 中国化学会, 2019(3): 271-272 YIN X, BAO H Y, CHANG X, et al. Encapsulation and protection of α-tocopherol/naringenin based on whey protein isolation [C]// Proceedings of the 17th National Conference on Colloid and Interface Chemistry of Chinese Chemical Society (Vol. 3). Wuxi: Chinese Chemical Society, 2019, 3: 271-272.
[48] MCCLEMENTS, D J, DECKER E A, WEISS J. Emulsion-based delivery systems for lipophilic bioactive components[J]. Journal of Food Science,2007,72(8):R109−R124. doi: 10.1111/j.1750-3841.2007.00507.x
[49] 徐沣. 纳米SiO2改性脲醛树脂/相变微胶囊制备及性能研究[D]. 苏州: 苏州科技大学, 2021 XU F. Preparation and properties of nano-SiO2 modified urea formaldehyde resin/phase change microcapsules[D]. Suzhou: Suzhou University of Science and Technology, 2021.
[50] 张洁, 李苗云, 朱瑶迪, 等. 高压均质时间对牛骨白汤乳化稳定性的影响[J]. 食品安全质量检测学报,2022,13(17):5754−5760. [ZHANG J, LI M Y, ZHU Y D, et al. Effects of high-pressure homogenization time on emulsifying stability of beef bone white soup[J]. Journal of Food Safety & Quality,2022,13(17):5754−5760. doi: 10.3969/j.issn.2095-0381.2022.17.spaqzljcjs202217041 ZHANG J, LI M Y, ZHU Y D, et al. Effects of high-pressure homogenization time on emulsifying stability of beef bone white soup[J]. Journal of Food Safety & Quality, 2022, 13(17): 5754-5760. doi: 10.3969/j.issn.2095-0381.2022.17.spaqzljcjs202217041
[51] 黄凯. 低渗透油藏微乳液驱油体系配方优选及性能评价[D]. 大庆: 东北石油大学, 2017 HUANG K. Low permeability reservoirs micro-emulsion oil displacement system optimized formulation and performance evaluation[D]. Daqing: Northeast Petroleum University, 2017.
[52] 徐冰, 徐少青, 刘锐, 等. 百里香精油纳米乳液的制备及添加植物油对其理化性质及抑菌效果的影响[J]. 食品安全质量检测学报,2022,13(18):5861−5869. [XU B, XU S Q, LIU R, et al. Preparation of Thymus vulgaris essential oil nanoemulsions and the effects of adding vegetable oils on its physicochemical and antibacterial properties[J]. Journal of Food Safety & Quality,2022,13(18):5861−5869. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218011 XU B, XU S Q, LIU R, et al. Preparation of thymus vulgaris essential oil nanoemulsions and the effects of adding vegetable oils on its physicochemical and antibacterial properties[J]. Journal of Food Safety & Quality, 2022, 13 (18): 5861-5869. doi: 10.3969/j.issn.2095-0381.2022.18.spaqzljcjs202218011
[53] SAXENA V, HASAN A, SHARMA S, et al. Edible oil nanoemulsion: An organic nanoantibiotic as a potential biomolecule delivery vehicle[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,2018,67(7):410−419. doi: 10.1080/00914037.2017.1332625
[54] 张潇元, 潘悦, 朱鸿维, 等. 维生素E纳米乳液冻干粉末的制备及结构特性研究[J]. 中国食品学报,2020,20(8):118−129. [ZHANG X Y, PAN Y, ZHU H W, et al. Studies on preparation and structural properties of vitamine nanoemulsion freeze-dried powder[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(8):118−129. ZHANG X Y, PAN Y, ZHU H W, et al. Studies on preparation and structural properties of vitamine nanoemulsion freeze-dried powder[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(8): 118-129.
[55] 韩冰, 郑野, 徐嘉, 等. 微乳体系的制备及其稳定性研究进展[J]. 食品与发酵工业,2020,46(24):284−291. [HAN B, ZHENG Y, XU J, et al. Research progress on preparation and stability of microemulsion system[J]. Food and Fermentation Industries,2020,46(24):284−291. HAN B, ZHENG Y, XU J, et al. Research progress on preparation and stability of microemulsion system[J]. Food and Fermentation Industries, 2020, 46 (24): 284-291.
[56] ABOUDZADEH M A, MEHRAVAR E, FERNANDEZ M, et al. Low-energy encapsulation of α-tocopherol using fully food grade oil-in-water microemulsions[J]. ACS Omega,2019,3(9):10999−11008.
[57] 孙宏涛, 马燕, 郭洪涛, 等. 乳液体系包埋亚麻籽油研究进展[J]. 食品工业科技,2022,43(24):444−451. [SUN H T, MA Y, GUO H T, et al. Research progress on embedding flaxseed oil in emulsion system[J]. Science and Technology of Food Industry,2022,43(24):444−451. SUN H T, MA Y, GUO H T, et al. Research progress on embedding flaxseed oil in emulsion system[J]. Science and Technology of Food Industry, 2022, 43 (24): 444-451.
[58] 宋子悦, 杨杨, 苏丹, 等. 皮克林乳液冻融稳定性研究进展[J]. 食品工业科技,2022,43(2):420−426. [SONG Z Y, YANG Y, SU D, et al. Progress of freeze-thaw stability of pickering emulsion[J]. Science and Technology of Food Industry,2022,43(2):420−426. SONG Z Y, YANG Y, SU D, et al. Progress of freeze-thaw stability of pickering emulsion[J]. Science and Technology of Food Industry, 2022, 43(2): 420-426.
[59] RIBEIRO A, GONÇALVES R F, PINHEIRO A C, et al. In vitro digestion and bioaccessibility studies of vitamin E-loaded nanohydroxyapatite Pickering emulsions and derived fortified foods[J]. LWT,2022,154:112705. doi: 10.1016/j.lwt.2021.112705
[60] SUN Y, SHEN Y, DING J, et al. High ethanol tolerance of oil-in-water Pickering emulsions stabilized by protein nanoparticles[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2022,632:127777. doi: 10.1016/j.colsurfa.2021.127777
[61] TIKEKAR R V, PAN Y, NITIN N. Fate of curcumin encapsulated in silica nanoparticle stabilized Pickering emulsion during storage and simulated digestion[J]. Food Research International,2013,51(1):370−377. doi: 10.1016/j.foodres.2012.12.027
[62] 朱雨晴, 刘伟, 陈兴, 等. 食品级皮克林乳液的稳定机制及稳定性研究进展[J]. 食品工业科技,2018,39(7):315−322. [ZHU Y Q, LIU W, CHEN X, et al. Advances in stabilization mechanism and stability control of food grade Pickering emulsion[J]. Science and Technology of Food Industry,2018,39(7):315−322. ZHU Y Q, LIU W, CHEN X, et al. , Advances in stabilization mechanism and stability control of food grade Pickering emulsion[J]. Science and Technology of Food Industry, 2018, 39(7): 315-322.
[63] 邵兵, 吴宝睿, 姚思思, 等. 二氧化硅微胶囊的制备工艺及在木材改性领域的应用[J]. 林产工业,2021,58(9):7−11. [SHAO B, WU BAO R, YAO S S, et al. Preparation of silicon dioxide microcapsule and lts application in wood modification[J]. China Forest Products Industry,2021,58(9):7−11. SHAO B, WU BAO R, YAO S S, et al. Preparation of silicon dioxide microcapsule and lts application in wood modification[J]. China Forest Products Industry, 2021, 58(9): 7-11.
[64] 马铁铮, 钱启尧, 王静. 油脂和脂溶性功能成分微胶囊的消化研究进展[J]. 食品科学,2019,40(9):296−301. [MA T Z, QIAN Q Y, WANG J. Recent progress in the digestibility of microcapsules containing lipids and fat-soluble functional ingredients[J]. Food Science,2019,40(9):296−301. doi: 10.7506/spkx1002-6630-20180508-127 MA T Z, QIAN Q Y, WANG J. Recent progress in the digestibility of microcapsules containing lipids and fat-soluble functional ingredients[J]. Food Science, 2019, 40(9): 296-301. doi: 10.7506/spkx1002-6630-20180508-127
[65] MILINKOVIĆ-BUDINČIĆ J, PETROVIĆ L, ĐEKIĆ L, et al. Chitosan/sodium dodecyl sulfate complexes for microencapsulation of vitamin E and its release profile-Understanding the effect of anionic surfactant[J]. Pharmaceuticals,2021,15(1):54. doi: 10.3390/ph15010054
[66] GANGURDE A B, ALI M T, PAWAR J N, et al. Encapsulation of vitamin E acetate to convert oil to powder microcapsule using different starch derivatives[J]. Journal of Pharmaceutical Investigation,2017,47(6):559−574. doi: 10.1007/s40005-016-0287-3
[67] 蒋敏. pH敏感型淀粉基微胶囊制备及其对维生素E释放特性的影响[D]. 无锡: 江南大学, 2019 JIANG M. Preparation of pH-sensitive starch-based microcapsules and their effect on the release characteristics of vitamin E[D]. Wuxi: Jiangnan University, 2019.
[68] 马铁铮, 赵宏亮, 王静. 复合凝聚法制备脂溶性食品配料微胶囊的壁材研究进展[J]. 食品工业科技,2016,37(13):365−369,375. [MA T Z, ZHAO H L, WANG J. Research progress in wall materials for microencapsulating lipophilic food ingredients by complex coacervation[J]. Science and Technology of Food Industry,2016,37(13):365−369,375. doi: 10.13386/j.issn1002-0306.2016.13.067 MA T Z, ZHAO H L, AND WANG J. Research progress in wall materials for microencapsulating lipophilic food ingredients by complex coacervation[J]. Science and Technology of Food Industry, 2016, 37 (13): 365-369, 375. doi: 10.13386/j.issn1002-0306.2016.13.067
[69] PARTHASARATHI S, ANANDHARAMAKRISHNAN C. Enhancement of oral bioavailability of vitamin E by spray-freeze drying of whey protein microcapsules[J]. Food and Bioproducts Processing,2016,100:469−476. doi: 10.1016/j.fbp.2016.09.004
[70] 董焕焕, 乌斯嘎勒, 冯稳稳, 等. 热变性牛血清白蛋白对三种活性物质的复合和保护作用[J]. 食品工业科技,2019,40(15):59−65. [DONG H H, USIGALE, FENG W W, etc. Effect of heat-denatured bovine serum albumin on complexation and protection of α-tocopherol, resveratrol and (-)-epigallocatechin-3-gallate[J]. Science and Technology of Food Industry,2019,40(15):59−65. DONG H H, USIGALE, FENG W W, etc. Effect of heat-denatured bovine serum albumin on complexation and protection of α-tocopherol, resveratrol and (-) -epigallocatechin-3-gallate[J]. Science and Technology of Food Industry, 2019, 40(15): 59-65.
[71] XU W, LV K, MU W, et al. Encapsulation of α-tocopherol in whey protein isolate/chitosan particles using oil-in-water emulsion with optimal stability and bioaccessibility[J]. LWT,2021,148:111724. doi: 10.1016/j.lwt.2021.111724
[72] CARPENTIER J, CONFORTO E, CHAIGNEAU C, et al. Microencapsulation and controlled release of α-tocopherol by complex coacervation between pea protein and tragacanth gum: A comparative study with arabic and tara gums[J]. Innovative Food Science & Emerging Technologies,2022,77:102951.
[73] RIBEIRO A M, ESTEVINHO B N, ROCHA F. Improvement of vitamin E microencapsulation and release using different biopolymers as encapsulating agents[J]. Food and Bioproducts Processing,2021,130:23−33. doi: 10.1016/j.fbp.2021.08.008
[74] 高立营, 郅慧, 张远军, 等. 相变材料微胶囊的制备与表征分析方法综述[J]. 南京工业大学学报(自然科学版),2022,44(6):624−632. [GAO L Y, ZHI H, ZHANG Y J, et al. Review of the preparation and characterization of microencapsulated phase change materials[J]. Journal of Nanjing Tech University (Natural Science Edition),2022,44(6):624−632. doi: 10.3969/j.issn.1671-7627.2022.06.004 GAO L Y, ZHI H, ZHANG Y J, et al. Review of the preparation and characterization of microencapsulated phase change materials[J]. Journal of Nanjing Tech University (Natural Science Edition), 2022, 44(6): 624-632. doi: 10.3969/j.issn.1671-7627.2022.06.004
[75] 王新新, 许令侠, 卢艳慧, 等. 维生素E/抗菌肽缓释微胶囊的制备及表征[J]. 食品工业,2021,42(11):148−152. [WANG X X, XU L X, LU Y H, et al. Preparation and characterization of vitamin E/antimicrobial peptide microcapsules with slow-release properties[J]. The Food Industry,2021,42(11):148−152. WANG X X, XU L X, LU Y H, et al. Preparation and characterization of vitamin E/antimicrobial peptide microcapsules with slow-release properties[J]. The Food Industry, 2021, 42 (11): 148-152.
[76] SCHUCK P, JEANTET R, BHANDARI B, et al. Recent advances in spray drying relevant to the dairy industry: A comprehensive critical review[J]. Drying Technology,2016,34(15):1773−1790. doi: 10.1080/07373937.2016.1233114
[77] 孙欣, 黄国清, 王希彬, 等. 维生素E复凝聚微胶囊的制备及其稳定性研究[J]. 现代食品科技,2017,33(7):118−124. [SUN X, HUANG G Q, WANG X B, et al. Preparation of vitamin E microcapsules by complex coacervation and stability evaluation[J]. Modern Food Science and Technology,2017,33(7):118−124. SUN X, HUANG G Q, WANG X B, et al. Preparation of vitamin E microcapsules by complex coacervation and stability evaluation[J]. Modern Food Science and Technology, 2017, 33(7): 118-124.
[78] 彭金武. 分子结构中含有功能性大环的阴离子交换膜的制备和性能研究[D]. 长春: 吉林大学, 2020 PENG J W. Preparation and properties of the anion exchange membranes having functional macrocycle in molecular structure[D]. Changchun: Jilin University, 2020.
[79] 翟秀超. 挤压法制备抗菌包装膜及其性质研究[D]. 无锡: 江南大学, 2013 ZHAI X C. Preparation and characterization of antibacterial packaging film by extrusion[D]. Wuxi: Jiangnan University, 2013.
[80] CHEN Y, LIU Y. Cyclodextrin-based bioactive supramolecular assemblies[J]. Chemical Society Reviews,2010,39(2):495−505. doi: 10.1039/B816354P
[81] 欧阳玉祝, 麻成金, 石爱华, 等. 维生素E-β-环糊精包络物抗氧化及其动力学研究[J]. 食品科学,2007(4):23−27. [OUYANG Y Z, MA C J, SHI A H, et al. Study on antioxidation and kinetics of compound lnclusion of vitamin e with β-cyclodextrin[J]. Food Science,2007(4):23−27. OUYANG Y Z, MA C J, SHI A H, et al. , Study on antioxidation and kinetics of compound lnclusion of vitamin e with β-cyclodextrin[J]. Food Science, 2007 (4): 23-27.
[82] CHEN W, LIU D, ZHOU L, et al. Antioxidant activity of vitamin E enhanced by cyclodextrin inclusion complex[J]. British Food Journal,2021,123(12):3988−3998. doi: 10.1108/BFJ-08-2020-0719
[83] KE D, CHEN W, CHEN W, et al. Preparation and characterization of octenyl succinate β-cyclodextrin and vitamin E inclusion complex and its application in emulsion[J]. Molecules,2020,25(3):654. doi: 10.3390/molecules25030654
-
期刊类型引用(3)
1. 孙婷婷,魏彤竹,王晓丹,王伟杰,李雪. 辽宁省2021—2022年餐饮食品蜡样芽胞杆菌毒力基因和耐药特征检测. 中国热带医学. 2024(02): 223-227 . 百度学术
2. 杨景,王崇林,张蕾. 2017—2021年德州市食品风险监测蜡样芽孢杆菌检出情况. 中国当代医药. 2024(09): 141-143+148 . 百度学术
3. 贾伟娟,宋丽丽,张玲艳,王学理. 蜡样芽胞杆菌毒素的最新研究进展. 中国抗生素杂志. 2022(06): 534-542 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 222
- HTML全文浏览量: 101
- PDF下载量: 42
- 被引次数: 5