Research Progress on Extraction, Functional Properties and Modification Approach of Quinoa Protein
-
摘要: 藜麦被认为是一种伪谷物,联合国粮农组织推荐其为最适宜人类食用的“全营养食品”。随着大健康产业的迅速发展,市场对藜麦产品需求也不断增加。据FAO标准,藜麦蛋白有均衡的氨基酸组成,含有人体必需的9种氨基酸,相较于其他谷物和豆类含有高水平的赖氨酸和蛋氨酸。因此,越来越多的研究关注藜麦蛋白的营养价值和功能特性。本文主要综述了有关藜麦蛋白的组成、营养价值、提取方法及乳化性、起泡性、凝胶性、消化性等功能特性的研究进展。除此之外,由于藜麦蛋白改性之后的功能特性增强,本文也概述了藜麦蛋白的物理和生物改性对藜麦蛋白功能特性的影响。藜麦蛋白作为优质蛋白,可以在植物蛋白加工领域被更多的挖掘和使用,推动藜麦蛋白的产业化。Abstract: Quinoa is considered as a pseudo-cereal and recommended by FAO as the most suitable "whole food" for human consumption. With the rapid development of the health industry, the demand for quinoa products is increasing. According to the FAO standards, quinoa protein has a balanced amino acid composition, containing nine essential amino acids. It is also rich in lysine and methionine compared with other grains and legumes. Therefore, more and more studies have focused on the nutritional value and functional properties of quinoa protein. In this study, the composition, nutritional value and extraction methods of quinoa protein are reviewed, and the research progress in the functional properties such as emulsification, foaming, gelation and digestion properties of quinoa protein are also discussed. In addition, due to the enhanced functional properties of quinoa protein after modification, the effects of physical and biological modification on the functional properties of quinoa protein are also summarized in this paper. Quinoa protein, as a high-quality protein, can be deeply explored and applied in the processing of plant proteins, promoting the industrialization of quinoa protein.
-
藜麦(Chenopodium quinoa Willd.),是一种原产于南美洲的假谷物,被称为南美的“超级谷物”,由于其具有卓越的营养品质而被广泛认可[1−2]。藜麦对寒冷、高海拔、干燥等严苛的环境有很好的耐受性,因此现代藜麦的种植区域已经从玻利维亚、秘鲁、厄瓜多尔和智利等主产国扩散到中国、澳大利亚和英国等国家[3−5]。藜麦种子是FAO认定的重要营养来源。联合国粮农组织(FAO)报道称,藜麦种子对盐分和胁迫条件的耐受性以及在边缘地区生长的潜力有助于提高21世纪的农业生产力[6]。
藜麦被认为是改善世界粮食安全的重要作物[7]。不仅含有人体所需的所有必需氨基酸,而且富含不饱和脂肪酸与多糖等营养素,还含有矿物质和维生素等微量营养素[8−9]。藜麦的蛋白质含量约为12%~23%,高于大麦、水稻、玉米和小麦。大多数谷物蛋白缺乏赖氨酸,而藜麦蛋白中的赖氨酸含量为5.1%~6.4%,是大米和玉米的两倍[10]。藜麦蛋白富含色氨酸,含硫氨基酸如蛋氨酸和半胱氨酸的含量也较高[10−13]。藜麦蛋白不仅营养价值高,含有全部必需氨基酸,氨基酸比例均衡,而且具有溶解性、起泡性和凝胶性等功能特性。近年来,藜麦蛋白作为全营养蛋白质已经得到广泛的认可,已添加在人造肉、烘焙制品和挤压制品中,这说明藜麦蛋白具有广泛的应用范围及潜力[14−15]。深入研究藜麦蛋白的功能特性,了解改性方式对藜麦蛋白功能特性的影响,对于改善藜麦蛋白的加工适应性以及提高藜麦蛋白的利用率均具有重要的理论指导意义[6,16]。
本文主要综述了目前关于藜麦蛋白的营养价值和常用的提取方法如碱提酸沉法、盐溶法和酶辅助提取法的研究进展,概述了藜麦蛋白的功能特性及不同改性方式对藜麦蛋白性质的影响,为藜麦蛋白的深入研究提供参考。
1. 藜麦蛋白的组成及营养价值
藜麦中蛋白质含量较高,体外消化率高且氨基酸种类多,藜麦蛋白可以代替肉类和奶制品为人体提供蛋白质,同时也是生物活性肽的良好来源[3]。Ferreira等[17]测定了78份取自巴西、玻利维亚和秘鲁的藜麦,构成校正集和预测集,其中校正集的蛋白质含量为23.94%±5.04%,预测集的蛋白含量为24.0%±3.05%。藜麦蛋白主要包括11S球蛋白(37%)和2S清蛋白(35%),其次是含量较低的醇溶蛋白和7S球蛋白[18]。11S球蛋白与大豆11S球蛋白结构相似,是由六对酸、碱多肽组成的六聚体,酸、碱多肽的分子量分别为30~40 kDa和20~25 kDa,通过二硫键连接组成[19−20]。与11S球蛋白相比,7S球蛋白的亚基是由疏水相互作用连接[21]。清蛋白在还原条件下分子质量为8~9 kDa,而藜麦蛋白质不同组分的比例会由于产地不同而有所不同[17,19]。
藜麦是优质蛋白质,含有人体必需的9种氨基酸,即缬氨酸、亮氨酸、异亮氨酸、苯丙氨酸、色氨酸、蛋氨酸、赖氨酸、苏氨酸和组氨酸,并且氨基酸组成与人体中的相似[22−23]。藜麦不含限制性氨基酸,如赖氨酸、蛋氨酸和色氨酸[24]。Dakhili等[25]发现藜麦的赖氨酸含量(5.4 g/100 g蛋白)是小麦(2.7 g/100 g蛋白)的2倍,大米(3.8 g/100 g蛋白)的1.42倍,所以藜麦适宜赖氨酸缺乏症患者食用。与此同时,藜麦蛋白的消化率高于小麦及玉米等谷物,更易于被人体消化吸收[26]。藜麦、小麦、大豆、大米蛋白的氨基酸组成见表1。根据表1可知,藜麦中的赖氨酸、组氨酸和甘氨酸含量比其他谷物的含量高,其中组氨酸是孕产妇、婴幼儿所需的氨基酸[24]。除此之外,藜麦还富含谷氨酸、天冬氨酸和精氨酸。
氨基酸含量(g/100 g) 藜麦蛋白 小麦蛋白 大豆蛋白 大米蛋白 必需氨基酸 组氨酸(His) 2.9 2.3 2.2 2.1 亮氨酸(Leu) 5.9 6.8 6.8 8.2 异亮氨酸(Ile) 3.6 3.6 4.2 4.1 赖氨酸(Lys) 5.4 2.7 5.3 3.8 苏氨酸(Thr) 3.0 2.9 3.2 3.8 缬氨酸(Val) 4.2 4.4 4.2 6.1 非必需氨基酸 丙氨酸(Ala) 4.2 3.6 3.5 5.4 甘氨酸(Gly) 4.9 4.2 3.6 4.3 丝氨酸(Ser) 4.0 4.6 4.4 4.8 谷氨酸(Glu) 13.2 31.7 16.7 17.2 天冬氨酸(Asp) 8.0 5.1 9.7 8.6 精氨酸(Arg) 7.7 4.7 6.6 9.1 2. 藜麦蛋白的提取方法
目前,藜麦蛋白分离提取的方法主要有碱提酸沉法、盐溶法、酶辅助提取法、有机溶剂法和水提法等[19],本文主要介绍应用较多的前三种方法。
2.1 碱提酸沉法
碱提酸沉法主要是通过添加碱溶液使植物中的蛋白质增溶,之后加酸调节pH至蛋白质的等电点沉淀蛋白[30]。现阶段关于藜麦蛋白的提取大多数都采用简单、快速的碱提酸沉法[16],碱提酸沉法的提取率较高。但是用此方法提取蛋白易造成环境污染,过酸或过碱也会导致蛋白质变性,而且消耗水、碱和酸的量大。马洪鑫等[31]采用碱提酸沉法提取藜麦蛋白,发现其提取率最高可达76.84%。王棐等[16]以脱皮藜麦为原料提取藜麦蛋白,发现在最佳提取条件下藜麦蛋白的提取率达到67.13%。用这种方法提取蛋白时需特别注意pH的变化,过酸或过碱的条件都会引起蛋白质结构的变化,使蛋白质变性失活,从而影响藜麦蛋白的功能特性[32]。Abugoch等[33]报道pH为9时的蛋白溶解度明显高于pH为11时的溶解度。Ruiz等[32]也研究发现,与在较高pH下(pH10、11)提取的蛋白相比,较低pH下(pH8、9)提取的蛋白质的溶解度更高。可能是因为在高pH下,蛋白变性程度较大,引起疏水基团暴露,从而导致溶解度较低。因此,本文建议碱提的pH为8~9。
2.2 盐溶法
盐溶法通过在蛋白溶液中加入少量的中性盐如NaCl,使蛋白分子表面的电荷增加,增强蛋白分子与水分子的相互作用,从而增大蛋白质在溶液中的溶解度,利用透析等方法除盐之后,冷冻干燥得到蛋白。与碱提酸沉法相比,盐溶法提取出的藜麦蛋白的纯度较高,可以达到77.75%,而且中性盐不容易导致蛋白质变性。但是,盐溶法提取率较低、提取时间长,而且会对蛋白表面结构造成破坏[31]。目前,较常用的盐有氯化钠、硫酸铵和磷酸钠,盐浓度是盐溶法提取蛋白的重要影响因素。Elsohaimy等[26]研究了不同NaCl浓度对藜麦蛋白提取率的影响,发现提取介质中添加较低浓度的NaCl(0~0.5 mol/L)能使藜麦蛋白的提取率显著提高,达到353.61~467.58 μg/mL。当盐浓度较低时,阳离子中和蛋白质表面的电荷,防止其聚集[34]。Guerreo-Ochoa等[35]研究发现,较高浓度的NaCl(1 mol/L)溶液对藜麦蛋白的提取有一定的负面影响。NaCl对提取蛋白的负面影响可能是由于在较高的盐浓度下,蛋白表面的静电斥力被屏蔽,在蛋白与蛋白的疏水相互作用力下,蛋白质发生聚集和沉淀[36]。碱提酸沉法和盐溶法提取出的藜麦蛋白的扫描电镜图呈现于图1中,碱溶蛋白整体结构完整,表面光滑,呈连续的聚集块状结构,而盐溶蛋白结构疏松,表面颗粒粗糙,不规则[37]。
2.3 酶辅助提取法
酶辅助提取蛋白质的应用是基于特定的酶降解纤维素、半纤维素和果胶,即植物细胞壁和纤维的主要成分,以及蛋白酶水解部分蛋白质以增加其溶解度,从而破坏细胞壁的完整性[38]。通过降解细胞壁,使蛋白质体的释放成为可能[39]。将含有蛋白的溶液进行离心,上清液冷冻干燥后得到蛋白粉末[40]。酶法提取藜麦蛋白,反应条件温和,操作相对比较简便,而且对蛋白品质无影响,但其成本较高[41]。目前关于酶法提取藜麦蛋白的文献较少。田格等[42]以藜麦种子为原料,通过复合酶(纤维素酶和糖化酶)协同超声提取藜麦蛋白,提取得到的藜麦蛋白提取率为76.82%。Miranda等[43]通过比较碱提和酶辅助碱提取扁豆蛋白,发现在中性(pH7.0)和碱性条件下后者的溶解度更高。但是目前酶辅助提取法与其它提取方法对藜麦蛋白功能特性影响的比较未见报道。
3. 藜麦蛋白功能特性
近年来,研究人员发现藜麦蛋白具有重要的功能和理化特性,如溶解性、消化性和凝胶性等,适合将其添加到不同的食品体系中,藜麦蛋白得到人们越来越多的关注[25−26]。藜麦蛋白也被认为是生物活性肽的良好来源。研究表明藜麦蛋白在胃肠道消化过程中能释放出具有生物活性的多肽,通过调节肠道菌群降低血压[14]。You等[44]研究发现,经胃蛋白酶-胰蛋白酶消化的藜麦蛋白水解物具有较高的二肽基肽酶抑制活性,说明藜麦多肽具有预防Ⅱ型糖尿病的功能。但是到目前为止,关于藜麦蛋白生理功能的研究较少,所以本文主要介绍藜麦蛋白的物理化学性质,未来关于藜麦蛋白生理功能的研究将有较广阔的前景。
3.1 溶解性
溶解性表现的是蛋白质在水相中的分散能力[39],且pH对藜麦蛋白的溶解性有较大影响。藜麦蛋白在酸性条件下溶解度较低,这与11S球蛋白的等电点在4~5左右有关。在碱性条件下,藜麦蛋白溶解度显著提高。Mir等[45]研究发现藜麦蛋白溶解度从60.22%(pH9)升高到75.34%(pH10),再降低到70.78%(pH12)。这是由于在碱性条件下蛋白质所带负电荷逐渐增加,静电斥力增大,导致藜麦蛋白溶解度增大,继续增大pH(pH12)会使蛋白质变性聚集,降低溶解度[41]。藜麦蛋白的溶解性也和温度有关系,较低温度时(20~35 ℃),藜麦蛋白的溶解度与温度成正相关,但当温度升高到35 ℃以上时,溶解度开始下降[42]。因此,需要根据不同的实验需求选择合适的pH和温度溶解藜麦蛋白。
3.2 乳化性
蛋白质的乳化特性是指它能在油-水体系中通过吸附在油水界面而形成稳定均一乳液的能力[46]。蛋白质的这一功能特性是由乳化活性指数(emulsifying activity index,EAI)和乳化稳定性指数(emulsifying stability index,ESI)确定的。研究发现,蛋白质的乳化性与溶解性有着密切的关系,溶解性的改善可能有利于乳化性的提高[47]。王棐等[16]通过研究发现藜麦蛋白的乳化性高于豌豆蛋白但低于大豆蛋白。目前有一些方法可以提高藜麦蛋白的乳化性,如Cen等[48]通过超声处理藜麦蛋白,发现随着超声强度的增大(150~450 W),藜麦分离蛋白的接触角会从56.89°增大到68.83°,这说明超声处理可以增强藜麦蛋白的表面疏水性,提高其乳化能力。且适当的盐离子添加,可以减少蛋白质间静电斥力,增加界面蛋白的吸附量,提高藜麦蛋白Pickering乳液凝胶的粘弹特性及冻融稳定性(图2)。郭思倩等[49]发现萌发之后提取的藜麦蛋白的乳化性显著提高,具体原因还尚不明确,有待进一步的研究。Dias等[40]研究表明,酶辅助法提取的扁桃仁蛋白的乳化性比水提法更强,但该方法是否可以应用于提高藜麦蛋白的乳化性,值得进一步的探索。
藜麦蛋白浓度对蛋白的乳化稳定性具有重要影响,当蛋白质浓度较低时,不足以覆盖油滴表面,使得油相部分暴露,此时油滴为了趋于稳定,和邻近油滴共用蛋白,从而导致絮凝,形成不稳定的乳液体系。蛋白浓度逐渐增加时,界面蛋白浓度增加,油滴表面完全被蛋白分子包裹,形成致密的蛋白膜,油滴粒径随着膜厚度的增加逐渐减小,乳液稳定性增强[50]。
3.3 起泡性
泡沫是具有连续相液体或固体的气泡分散体[51−52]。研究人员发现泡沫的起泡能力(foaming capacity,FC)和起泡稳定性(foaming stability,FS)主要受物理化学性能的影响[52−54]。Lopez等[55]针对藜麦分离蛋白的起泡性能,采用混合法制备泡沫,用30 min后记录的泡沫剩余体积计算其起泡稳定性,运用泡沫形成体积与液体初始体积的比值计算藜麦蛋白的起泡能力。藜麦蛋白的起泡性和泡沫稳定性均强于大豆蛋白,但低于蛋清蛋白[44]。蛋白质的起泡性会受到外部环境的影响,如藜麦分离蛋白的起泡能力随着藜麦蛋白浓度的增加而显著增加。当藜麦分离蛋白的浓度为0.1%时,其起泡量为58.37%±2.14%,而当藜麦分离蛋白的浓度为3%时,其起泡量为78.62%±2.54%。藜麦分离蛋白具有形成高稳定泡沫的能力,提高了其在食品加工中的应用潜力[26]。
3.4 持水性与持油性
持水和持油能力分别表示蛋白质在特定测试条件下吸收和保留水和油的能力,对蛋白质产品的质地和口感等有重要的影响[56−57]。高持水性有助于保持中等和高水分食品的多汁性和柔软性,如香肠和肉类模拟食品。目前研究发现藜麦分离蛋白的持水性高于小麦分离蛋白,与大豆分离蛋白相似[32,58]。尹丽莎等[59]发现藜麦分离蛋白的持水性和持油性都随着超声处理时间的延长呈现先下降再上升的趋势。这可能是因为在超声过程中,蛋白结构变得疏松,水分子更容易与蛋白结合。且空化效应使得蛋白颗粒变小,比表面积增大,同时蛋白的空间结构被破坏,暴露了埋藏在分子内的疏水基团,增加了蛋白的吸附和结合脂质的能力,进而改善了藜麦蛋白的持水和持油性[59]。由于藜麦蛋白具有较强的持水力,所以未来可将其应用于不同的食品中以改善食品的持水力和质地。如添加到肉制品中,提高肉制品的多汁性。
3.5 凝胶性
食品蛋白质,特别是球状蛋白质,在变性后能够通过聚集和其他蛋白质/化合物相互作用形成凝胶[60]。藜麦蛋白凝胶性较弱,形成凝胶强度较低且持水力弱[61]。Xu等[62]报道在蛋白质形成凝胶时,加入适量的盐离子可以增强凝胶强度。离子类型、浓度和pH对凝胶的结构与性质有显著影响[61]。Yang等[61]比较了不同浓度的NaCl和CaCl2对藜麦分离蛋白热诱导凝胶的影响,研究结果表明,未加盐的藜麦分离蛋白凝胶的微观结构最细、最均匀。当NaCl浓度逐渐增大时(0~200 mmol/L),G'明显增加。可能是由于盐离子所带的电荷减弱了蛋白间的静电斥力,从而增强了蛋白质分子之间的吸引力,形成更紧密的凝胶网络结构[63]。有研究表明,碱性条件下(pH10和pH11)提取的藜麦蛋白在加热时不形成凝胶,冷却后也只形成软凝胶[18]。这是因为在强碱性条件下蛋白变性程度较高,导致大颗粒聚集增多,小颗粒聚集减少,降低了凝胶网络结构的紧密性[18]。未来研究也可以通过酶交联(TG酶等)、复合油脂形成混合凝胶以增强藜麦蛋白凝胶的凝胶性质。
3.6 消化特性
蛋白质的消化率是评估其营养品质的参数之一[64]。藜麦蛋白的消化率较高,利于人体消化。Mu等[11]通过研究藜麦全麦粉及藜麦分离蛋白的消化率发现后者的消化率高于藜麦全麦粉的消化率,其原因可能是藜麦全麦粉中含有更多能阻碍蛋白酶和蛋白质结合的皂苷。目前有研究发现小麦籽粒蛋白的体外消化率为45.98%~59.12%,藜麦蛋白的体外消化率为76.3%~80.5%,即藜麦蛋白的消化率高于小麦籽粒蛋白消化率[48,65]。Nasir等[66]研究发现藜麦蛋白的消化率为75.95%~78.11%。藜麦浓缩蛋白的消化率高于藜麦分离蛋白的消化率,并且在较高的温度下预热时,消化率会降低。这可能与淀粉的存在有关,淀粉在加热到糊化温度(64.5 ℃)以上之后粘度增加,减弱了胃蛋白酶对蛋白质的作用[67]。藜麦蛋白的高消化率使其在人的胃中易于消化,从而对人体健康有益[14]。
4. 藜麦蛋白的改性研究
蛋白质改性是提高蛋白质功能特性的一种重要方法[68]。通过适当的改性,能够改善藜麦蛋白的功能特性,拓展藜麦蛋白在食品工业中的应用[69]。藜麦蛋白的改性技术主要有物理改性和酶法改性,化学改性应用于藜麦蛋白改性的研究仍较少。本文介绍的两种改性方式对蛋白的负作用小,而且不易破坏藜麦蛋白的营养价值。
4.1 物理改性
物理改性主要是指通过加压、超声和加热等物理手段改变蛋白质的结构及蛋白质分子间的聚集方式,从而改变蛋白质的功能特性[70]。例如,超声可以使蛋白质部分展开,改变蛋白质的二、三级结构进而改变其功能特性[71]。Li等[72]发现超声处理(400 W)之后,经碱性蛋白酶处理的水解产物的溶解度提高。在此过程中,α-螺旋含量减少,无规卷曲含量增多。这表明超声处理诱导蛋白展开,增多与酶接触的机会,进而提高了溶解度。Mir等[45]通过高强度超声处理藜麦蛋白之后发现其乳化性明显提高。因为超声产生的剪切力使蛋白质的颗粒减小,比表面积增大,增强了蛋白质溶液的稳定性,此外,超声引起的空化力破坏了维持蛋白质空间结构稳定的非共价键,使蛋白质的疏水基团暴露出来,让蛋白质分子更容易扩散到油水界面,进而改善了蛋白质的乳化性[73−74]。Huang等[75]研究发现,在水浴加热和微波处理条件下,藜麦蛋白的溶解度随温度的升高(40~90 ℃)而下降。因为热诱导使藜麦蛋白结构展开,暴露了蛋白质分子内的疏水基团,从而导致蛋白质表面极性降低,蛋白质的溶解度随表面极性的降低而下降。
4.2 酶法改性
酶法改性主要是利用酶制剂使蛋白质的氨基酸残基和多肽链发生变化,改变蛋白质的结构,从而达到改善蛋白质功能特性的目的[76]。酶法改性条件温和,副产物少。酶解蛋白一般具有较好的溶解性和界面性质,例如乳化性和起泡性。Hesam等[77]以藜麦浓缩蛋白为原料,经胰酶水解制备了藜麦蛋白水解物,结果发现,酶解后蛋白质的溶解度提高。可能是因为藜麦蛋白分子量降低,且不溶性蛋白会产生新的可溶性多肽,所以其溶解度增加[38]。Aluko等[78]研究发现,碱性蛋白酶水解的藜麦蛋白比藜麦浓缩蛋白的起泡能力强,可能是由于藜麦蛋白的球状特性,降低了其在气泡周围形成界面膜的能力,而酶解降低了藜麦蛋白的分子量,增加了藜麦蛋白的柔韧性,促进了气泡周围界面膜的形成和泡沫的产生。
5. 总结与展望
目前,提取藜麦蛋白较常用的传统方法是碱提酸沉法和盐溶法,新方法提取藜麦蛋白的研究鲜有报道。而且对藜麦中总蛋白提取的研究较多,分级提取7S和11S的研究较少。由于不同蛋白组分的功能特性不同,所以分级提取不同的蛋白组分进行研究具有重要意义。藜麦蛋白营养价值和功能特性的研究处于起步阶段,有很多深入的研究机理仍较缺乏。例如藜麦蛋白的凝胶性较弱,形成的凝胶强度低且持水力差,严重限制了其在食品加工领域中的应用,但是导致其凝胶性弱的原因尚未见报道。由于较弱的凝胶性会限制藜麦蛋白在植物蛋白凝胶食品中的应用,因此如何有效调控藜麦蛋白凝胶性的机理及如何通过绿色有效的方法提高其凝胶性是未来值得探索的方向。目前国内外对藜麦蛋白改性的研究主要集中在物理改性和酶法改性方面,但是单一的改性方法限制了藜麦蛋白的应用。因此,在未来可以结合不同领域中的新方法,进一步优化蛋白的功能特性,提高蛋白的利用率,从而拓宽藜麦蛋白的应用范围。综上所述,藜麦蛋白具有丰富的营养价值,突出的功能特性,在当今健康食品和营养产业快速发展的时代背景下,其在食品中的应用将会更加广泛。
-
表 1 藜麦蛋白和其他谷物蛋白的氨基酸组成[19,25−29]
Table 1 Amino acid composition of protein from quinoa and other cereals[19,25−29]
氨基酸含量(g/100 g) 藜麦蛋白 小麦蛋白 大豆蛋白 大米蛋白 必需氨基酸 组氨酸(His) 2.9 2.3 2.2 2.1 亮氨酸(Leu) 5.9 6.8 6.8 8.2 异亮氨酸(Ile) 3.6 3.6 4.2 4.1 赖氨酸(Lys) 5.4 2.7 5.3 3.8 苏氨酸(Thr) 3.0 2.9 3.2 3.8 缬氨酸(Val) 4.2 4.4 4.2 6.1 非必需氨基酸 丙氨酸(Ala) 4.2 3.6 3.5 5.4 甘氨酸(Gly) 4.9 4.2 3.6 4.3 丝氨酸(Ser) 4.0 4.6 4.4 4.8 谷氨酸(Glu) 13.2 31.7 16.7 17.2 天冬氨酸(Asp) 8.0 5.1 9.7 8.6 精氨酸(Arg) 7.7 4.7 6.6 9.1 -
[1] CEN K Y, YU X, GAO C C, et al. Effects of quinoa protein Pickering emulsion on the properties, structure and intermolecular interactions of myofibrillar protein gel[J]. Food Chemistry,2022,394:133456. doi: 10.1016/j.foodchem.2022.133456
[2] 延莎, 邢洁雯, 王晓闻. 不同菌种发酵对藜麦蛋白质特性及脂质构成的影响[J]. 中国农业科学,2020,53(10):2045−2054. [YAN S, XING J W, WANG X W. Effects of different strain fermentation on protein hydrolysis and lipid profile of quinoa[J]. Scientia Agricultura Sinica,2020,53(10):2045−2054. doi: 10.3864/j.issn.0578-1752.2020.10.011 YAN S, XING J W, WANG X W . Effects of different strain fermentation on protein hydrolysis and lipid profile of quinoa[J]. Scientia Agricultura Sinica,2020 ,53 (10 ):2045 −2054 . doi: 10.3864/j.issn.0578-1752.2020.10.011[3] PEREIAR E, ENCINA-ZELADA C, BARROS L, et al. Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains:A good alternative to nutritious food[J]. Food Chemistry,2019,280:110−114. doi: 10.1016/j.foodchem.2018.12.068
[4] SHARMA S, KATARIA A, SINGH B. Effect of thermal processing on the bioactive compounds, antioxidative, antinutritional and functional characteristics of quinoa ( Chenopodium quinoa)[J]. LWT-Food Science and Technology,2022,160:113256. doi: 10.1016/j.lwt.2022.113256
[5] TABATABAEI I, ALSEEKH S, SHAHID M, et al. The diversity of quinoa morphological traits and seed metabolic composition[J]. Scientific Data,2022,9(1):1−7. doi: 10.1038/s41597-021-01104-5
[6] ALROSAN M, TAN T C, MAT E A, et al. Recent updates on lentil and quinoa protein-based dairy protein alternatives:Nutrition, technologies, and challenges[J]. Food Chemistry,2022,383:132386. doi: 10.1016/j.foodchem.2022.132386
[7] JARVIS D E, HO Y S, LIGHTFOOT D J, et al. The genome of Chenopodium quinoa[J]. Nature,2017,542(7641):307−312. doi: 10.1038/nature21370
[8] REPO-CARRASCO-VALENCIA R, HELLSTRÖM J K, PIHLAVA J-M, et al. Flavonoids and other phenolic compounds in Andean indigenous grains:Quinoa ( Chenopodium quinoa), kañiwa ( Chenopodium pallidicaule) and kiwicha ( Amaranthus caudatus)[J]. Food Chemistry,2010,120(1):128−133. doi: 10.1016/j.foodchem.2009.09.087
[9] WANG S, ZHU F. Formulation and quality attributes of quinoa food products[J]. Food and Bioprocess Technology,2016,9(1):49−68. doi: 10.1007/s11947-015-1584-y
[10] ABBASI S, MOSLEHISHAD M, SALAMI M. Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa[J]. International Journal of Biological Macromolecules,2022,213:602−609. doi: 10.1016/j.ijbiomac.2022.05.189
[11] MU J, QI Y, GONG K, et al. Influence of substituting wheat flour with quinoa flour on quality characteristics and in vitro starch and protein digestibility of fried-free instant noodles[J]. LWT-Food Science and Technology,2022,165:113686. doi: 10.1016/j.lwt.2022.113686
[12] 王棐. 藜麦蛋白和淀粉的分离提取及性质研究[D]. 无锡:江南大学, 2018. [WANG F. Study on the extraction and properties of quinoa protein and starch[D]. Wuxi:Jiangnan University, 2018. WANG F. Study on the extraction and properties of quinoa protein and starch[D]. Wuxi: Jiangnan University, 2018.
[13] BRINEGAR C, SINE B, NWOKOCHA L. High-cysteine 2S seed storage proteins from quinoa ( Chenopodium quinoa)[J]. Journal of Agricultural and Food Chemistry,1996,44(7):1621−1623. doi: 10.1021/jf950830+
[14] GUO H M, HAO Y Q, FAN X, et al. Administration with quinoa protein reduces the blood pressure in spontaneously hypertensive rats and modifies the fecal microbiota[J]. Nutrients,2021,13(7):2446−2446. doi: 10.3390/nu13072446
[15] SHEN Y T, TANG X, LI Y H. Drying methods affect physicochemical and functional properties of quinoa protein isolate[J]. Food Chemistry,2021,339:127823. doi: 10.1016/j.foodchem.2020.127823
[16] 王棐, 张文斌, 杨瑞金, 等. 藜麦蛋白质的提取及其功能性质研究[J]. 食品科技,2018,43(2):228−234. [WANG F, ZHANG W B, YANG R J, et al. Extraction and functional properties of quinoa protein isolates[J]. Food Science and Technology,2018,43(2):228−234. doi: 10.13684/j.cnki.spkj.2018.02.043 WANG F, ZHANG W B, YANG R J, et al . Extraction and functional properties of quinoa protein isolates[J]. Food Science and Technology,2018 ,43 (2 ):228 −234 . doi: 10.13684/j.cnki.spkj.2018.02.043[17] FERREIRA D S, PALLONE J A L, POPPI R J. Direct analysis of the main chemical constituents in Chenopodium quinoa grain using Fourier transform near-infrared spectroscopy[J]. Food Control,2015,48:91−95. doi: 10.1016/j.foodcont.2014.04.016
[18] RUIZ G A, XIAO W K, VAN B M, et al. Effect of extraction pH on heat-induced aggregation, gelation and microstructure of protein isolate from quinoa ( Chenopodium quinoa Willd.)[J]. Food Chemistry,2016,209:203−210. doi: 10.1016/j.foodchem.2016.04.052
[19] 王雷, 董吉林, 申瑞玲. 藜麦蛋白的提取及功能性质与生物活性概述[J]. 中国粮油学报,2020,35(7):188−194. [WANG L, DONG J L, SHEN R L. Overview of the extration, functional properties and biological activity of quinoa protein[J]. Journal of the Chinese Cereals and Oils Association,2020,35(7):188−194. WANG L, DONG J L, SHEN R L . Overview of the extration, functional properties and biological activity of quinoa protein[J]. Journal of the Chinese Cereals and Oils Association,2020 ,35 (7 ):188 −194 .[20] 徐祖东. 藜麦对鲷鱼鱼糜凝胶性能及挥发性风味影响的研究[D]. 杭州:浙江工商大学, 2018. [XU Z D. Gel properties and volatile components of pagrosomus major surimi gels with adding Chenopodium quinoa[D]. Hangzhou:Zhejiang Gongshang University, 2018. XU Z D. Gel properties and volatile components of pagrosomus major surimi gels with adding Chenopodium quinoa[D]. Hangzhou: Zhejiang Gongshang University, 2018.
[21] YAN T Y, HUA Z, DENG Y, et al. Air nanobubbles induced reversible self-assembly of 7S globulins isolated from pea ( Pisum Sativum L.)[J]. Food Hydrocolloids,2022,133:107847. doi: 10.1016/j.foodhyd.2022.107847
[22] 汪晓璇, 张妤, 钱澄, 等. 藜麦的营养及其淀粉特性的研究进展[J]. 粮油食品科技,2021,29(4):12−19. [WANG X X, ZHANG S, QIAN C, et, al. Progress in the investigation on nutrition and starch properties of quinoa[J]. Science and Technology of Cereals, Oils and Foods,2021,29(4):12−19. doi: 10.16210/j.cnki.1007-7561.2021.04.002 WANG X X, ZHANG S, QIAN C, et, al . Progress in the investigation on nutrition and starch properties of quinoa[J]. Science and Technology of Cereals, Oils and Foods,2021 ,29 (4 ):12 −19 . doi: 10.16210/j.cnki.1007-7561.2021.04.002[23] 和丽媛, 王玲, 吕俊梅. 藜麦营养组成及生物学功能研究进展[J]. 粮食与油脂,2022,35(4):11−15. [HE L Y, WANG L, LÜ J M. Research progress on nutritional composition and biological function of quinoa[J]. Cereals & Oils,2022,35(4):11−15. doi: 10.3969/j.issn.1008-9578.2022.04.004 HE L Y, WANG L, LÜ J M . Research progress on nutritional composition and biological function of quinoa[J]. Cereals & Oils,2022 ,35 (4 ):11 −15 . doi: 10.3969/j.issn.1008-9578.2022.04.004[24] REPO-CARRASCO R, ESPINOZA C, JACOBSEN S-E. Nutritional value and use of the Andean crops quinoa ( Chenopodium quinoa) and Kaniwa ( Chenopodium pallidicaule)[J]. Food Reviews International,2003,19(1−2):179−189. doi: 10.1081/FRI-120018884
[25] DAKHILI S, ABDOLALIZADEH L, HOSSEINI S M, et al. Quinoa protein:Composition, structure and functional properties[J]. Food Chemistry,2019,299:125161. doi: 10.1016/j.foodchem.2019.125161
[26] ELSOHAIMY S A, REFAAY T M, ZAYTOUN M A M. Physicochemical and functional properties of quinoa protein isolate[J]. Annals of Agricultural Sciences,2015,60(2):297−305. doi: 10.1016/j.aoas.2015.10.007
[27] SHIBATA K, FUKUWATARI T, KAWAMURA T. Conversion percentage of tryptophan to nicotinamide is higher in rice protein diet than in wheat protein diet in rats[J]. Int J Tryptophan Res,2015,8:19−25.
[28] ADIAMO O Q, NETZEL M E, HOFFMAN L C, et al. Structure-function relationship of australian acacia seed protein concentrates:Amino acid composition, in vitro protein digestibility and molecular properties[J]. Food Bioscience,2023,51:102339. doi: 10.1016/j.fbio.2022.102339
[29] ABUGOCH J L E. Chapter 1 quinoa ( Chenopodium quinoa Willd.):Composition, chemistry, nutritional, and functional properties[J]. Advances in Food and Nutrition Research,2009,58:1−31.
[30] ZHANG Z Y, HE S D, LIU H Y, et al. Effect of pH regulation on the components and functional properties of proteins isolated from cold-pressed rapeseed meal through alkaline extraction and acid precipitation[J]. Food Chemistry,2020,327:126998. doi: 10.1016/j.foodchem.2020.126998
[31] 马洪鑫, 刘粟心, 杨许花, 等. 藜麦蛋白质提取工艺优化[J]. 农业科技与信息,2021(6):52−56. [MA H X, LIU S X, YANG X H, et al. Optimization of protein extraction technology from quinoa[J]. Agricultural Science-technology and Information,2021(6):52−56. doi: 10.3969/j.issn.1003-6997.2021.06.020 MA H X, LIU S X, YANG X H, et al . Optimization of protein extraction technology from quinoa[J]. Agricultural Science-technology and Information,2021 (6 ):52 −56 . doi: 10.3969/j.issn.1003-6997.2021.06.020[32] RUIZ G A, OPAZO-NAVARRETE M, MEURS M, et al. Denaturation and in vitro gastric digestion of heat-treated quinoa protein isolates obtained at various extraction pH[J]. Food Biophysics,2016,11(2):184−197. doi: 10.1007/s11483-016-9429-4
[33] ABUGOCH L E, NALDA R, TAPIA C A, et al. Study of some physicochemical and functional properties of quinoa ( Cheno podium quinoa Willd) protein isolates[J]. Journal of Agricultural and Food Chemistry,2008,56(12):4745−4750. doi: 10.1021/jf703689u
[34] DUONG-LY K C, GABELLI S B. Salting out of proteins using ammonium sulfate precipitation[J]. Methods Enzymol,2014,541:85−94.
[35] GUERREO-OCHOA M R, PEDRESCHI R, CHIRINOS R. Optimised methodology for the extraction of protein from quinoa ( Chenopodium quinoa Willd.)[J]. International Journal of Food Science & Technology,2015,50(8):1815−1822.
[36] YANO Y F, URUGA T, TANIDA H, et al. Protein salting out observed at an air-water interface[J]. The Journal of Physical Chemistry Letters,2011,2(9):995−999. doi: 10.1021/jz200111q
[37] 马洪鑫, 袁治浩, 刘洪海, 等. 比较不同方法提取藜麦蛋白[J]. 食品安全质量检测学报,2021,12(5):1890−1898. [MA H X, YUAN Z Y, LIU H H, et al. Comparison of different extraction methods of quinoa protein[J]. Journal of Food Safety and Quality,2021,12(5):1890−1898. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.05.044 MA H X, YUAN Z Y, LIU H H, et al . Comparison of different extraction methods of quinoa protein[J]. Journal of Food Safety and Quality,2021 ,12 (5 ):1890 −1898 . doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.05.044[38] JUNG S, LAMSAL B P, STEPIEN V, et al. Functionality of soy protein produced by enzyme-assisted extraction[J]. Journal of the American Oil Chemists' Society,2006,83(1):71−78. doi: 10.1007/s11746-006-1178-y
[39] SARI Y W, BRUINS M E, SANDERS J P M. Enzyme assisted protein extraction from rapeseed, soybean, and microalgae meals[J]. Industrial Crops and Products,2013,43:78−83. doi: 10.1016/j.indcrop.2012.07.014
[40] DIAS F F G, De MOURA B J M L N. Understanding the impact of enzyme-assisted aqueous extraction on the structural, physicochemical, and functional properties of protein extracts from full-fat almond flour[J]. Food Hydrocolloids,2022,127:107534. doi: 10.1016/j.foodhyd.2022.107534
[41] 商海军, 蒋丽君, 於春, 等. 酶法辅助提取藜麦秸秆蛋白工艺研究[J]. 安徽农业科学,2021,49(17):170−173. [SHANG H J, JIANG L J, YU C, et al. Study on the technology of extracting quinoa straw protein by enzymatic method[J]. Journal of Anhui Agricultural Sciences,2021,49(17):170−173. doi: 10.3969/j.issn.0517-6611.2021.17.045 SHANG H J, JIANG L J, YU C, et al . Study on the technology of extracting quinoa straw protein by enzymatic method[J]. Journal of Anhui Agricultural Sciences,2021 ,49 (17 ):170 −173 . doi: 10.3969/j.issn.0517-6611.2021.17.045[42] 田格, 张炜, 雷蕾, 等. 藜麦蛋白提取工艺优化及抗氧化活性研究[J]. 现代化工,2019,39(7):83−88. [TIAN G, ZHANG W, LEI L, et al. Optimization of extraction process for quinoa protein and study on its antioxidant activity[J]. Modern Chemical Industry,2019,39(7):83−88. doi: 10.16606/j.cnki.issn0253-4320.2019.07.018 TIAN G, ZHANG W, LEI L, et al . Optimization of extraction process for quinoa protein and study on its antioxidant activity[J]. Modern Chemical Industry,2019 ,39 (7 ):83 −88 . doi: 10.16606/j.cnki.issn0253-4320.2019.07.018[43] MIRANDA C G, SPERANZA P, KUROZAWA L E, et al. Lentil protein:Impact of different extraction methods on structural and functional properties[J]. Heliyon,2022,8(11):e11775. doi: 10.1016/j.heliyon.2022.e11775
[44] YOU H X, WU T L, WANG W, et al. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein[J]. Food Research International,2022,156:111176. doi: 10.1016/j.foodres.2022.111176
[45] MIR N A, RIAR C S, SINGH S. Structural modification of quinoa seed protein isolates (QPIs) by variable time sonification for improving its physicochemical and functional characteristics[J]. Ultrasonics-Sonochemistry,2019,58:104700. doi: 10.1016/j.ultsonch.2019.104700
[46] SHOKRI S, JAVANMARDI F, MOHAMMADI M, et al. Effects of ultrasound on the techno-functional properties of milk proteins:A systematic review[J]. Ultrasonics-Sonochemistry,2022,83:105938. doi: 10.1016/j.ultsonch.2022.105938
[47] GAO K, RAO J J, CHEN B C. Unraveling the mechanism by which high intensity ultrasound improves the solubility of commercial pea protein isolates[J]. Food Hydrocolloids,2022,131:107823. doi: 10.1016/j.foodhyd.2022.107823
[48] CEN K Y, YU X, GAO C C, et al. Effects of different vegetable oils and ultrasonicated quinoa protein nanoparticles on the rheological properties of Pickering emulsion and freeze-thaw stability of emulsion gels[J]. Journal of Cereal Science,2021,102:103350. doi: 10.1016/j.jcs.2021.103350
[49] 郭思倩, 杨肇兴, 姚洋, 等. 萌发对藜麦蛋白质结构与功能特性的影响[J/OL]. 中国粮油学报:1−11 [2023-09-18]. doi:10.20048/j.cnki.issn.1003-0174.000063. [GUO S Q, YANG Z X, YAO Y, et al. Influence of germination on qualitative properties of quinoa (Chenopodium quinoa Willd) protein[J/OL]. Journal of the Chinese Cereals and Oils Association:1−11 [2023-09-18]. doi:10.20048/j.cnki.issn.1003-0174.000063. GUO S Q, YANG Z X, YAO Y, et al. Influence of germination on qualitative properties of quinoa (Chenopodium quinoa Willd) protein[J/OL]. Journal of the Chinese Cereals and Oils Association: 1−11 [2023-09-18]. doi: 10.20048/j.cnki.issn.1003-0174.000063.
[50] LEERMAKERS F A M, ATKINSONP J, DICKINSON E, et al. Selfconsistent-field modeling of adsorbed β casein:Effects of pH and ionic strength on surface coverage and density profile[J]. Journal of Colloid and Interface Science,1996,178(2):681−693. doi: 10.1006/jcis.1996.0166
[51] DABBOUR M, XIANG J, MINTAH B, et al. Localized enzymolysis and sonochemically modified sunflower protein:Physical, functional and structure attributes[J]. Ultrasonics-Sonochemistry,2020,63:104957. doi: 10.1016/j.ultsonch.2019.104957
[52] KAUR R, GHOSHAL G. Sunflower protein isolates-composition, extraction and functional properties[J]. Advances in Colloid and Interface Science,2022,306:102725. doi: 10.1016/j.cis.2022.102725
[53] TIAN T , REN K Y, TONG X H, et al. Co-precipitates proteins prepared by soy and wheat:Structural characterisation and functional properties[J]. International Journal of Biological Macromolecules, 2022, 212:536-546.
[54] SHARMA G M, SU M, JOSHI A U, et al. Functional properties of select edible oilseed proteins[J]. Journal of Agricultural and Food Chemistry,2010,58(9):5457−5464. doi: 10.1021/jf1002446
[55] LOPEZ D N, GALANTE M, RAIMUNDO G, et al. Functional properties of amaranth, quinoa and chia proteins and the biological activities of their hydrolyzates[J]. Food Research International,2019,116:419−429. doi: 10.1016/j.foodres.2018.08.056
[56] SHEN Y T, DU Z X, WU X R, et al. Modulating molecular interactions in pea protein to improve its functional properties[J]. Journal of Agriculture and Food Research,2022,8:100313. doi: 10.1016/j.jafr.2022.100313
[57] ZHANG M, FENG X M, LIANG Y R, et al. Effects of electron beam irradiation pretreatment on the structural and functional properties of okara protein[J]. Innovative Food Science & Emerging Technologies,2022,79:103049.
[58] INGLETT G E, CHEN D, LIU S X. Antioxidant activities of selective gluten free ancient grains[J]. Food and Nutrition Sciences,2015,6(7):612−621. doi: 10.4236/fns.2015.67065
[59] 尹丽莎, 朱莹莹, 董吉林, 等. 超声处理对藜麦分离蛋白功能特性和微观结构的影响[J]. 轻工学报,2022,37(2):38−43. [YIN L S, ZHU Y Y, DONG J L, et al. Effects of ultrasonic treatment on the functional properties and microstructure of quinoa protein isolates[J]. Journal of Light Industry,2022,37(2):38−43. doi: 10.12187/2022.02.005 YIN L S, ZHU Y Y, DONG J L, et al . Effects of ultrasonic treatment on the functional properties and microstructure of quinoa protein isolates[J]. Journal of Light Industry,2022 ,37 (2 ):38 −43 . doi: 10.12187/2022.02.005[60] BESSADA S M F, BARREIRA J C M, OLIVEIRA M B P P. Pulses and food security:Dietary protein, digestibility, bioactive and functional properties[J]. Trends in Food Science & Technology,2019,93:53−68.
[61] YANG Z , DE CAMPO L, GILBERT E P, et al. Effect of NaCl and CaCl2 concentration on the rheological and structural characteristics of thermally-induced quinoa protein gels[J]. Food Hydrocolloids, 2022, 124:107350.
[62] XU G, KANG J, YOU W, et al. Pea protein isolates affected by ultrasound and NaCl used for dysphagia's texture-modified food:Rheological, gel, and structural properties[J]. Food Hydrocolloids,2023,139:108566. doi: 10.1016/j.foodhyd.2023.108566
[63] IKEDA S, FOEGEDING E A, HAGIWARA T. Rheological study on the fractal nature of the protein gel structure[J]. Langmuir,1999,15(25):8584−8589. doi: 10.1021/la9817415
[64] REPO-CARRASCO-VALENCIA R A-M, SERNA L A. Quinoa (Chenopodium quinoa, Willd.) as a source of dietary fiber and other functional components[J]. Food Science and Technology, 2011, 31(1):225−230.
[65] CAPRITA A, CAPRITA R. Influence of thermal processing on in vitro protein digestibility of wheat and barley flour[J]. Current Opinion in Biotechnology,2013,24:S84.
[66] NASIR M A, PASHA I, BUTT M S, et al. Biochemical characterization of quinoa with special reference to its protein quality[J]. Pakistan Journal of Agricultural Sciences,2015,52(3):731−737.
[67] OPAZO-NAVARRETE M, SCHUTYSER M A I, BOOM R M, et al. Effect of pre-treatment on in vitro gastric digestion of quinoa protein ( Chenopodium quinoa Willd.) obtained by wet and dry fractionation[J]. International Journal of Food Sciences and Nutrition,2017,69(1):1−11.
[68] KAMANI M H, SEMWAL J, MOUSAVI KHANEGHAH A. Functional modification of grain proteins by dual approaches:Current progress, challenges, and future perspectives[J]. Colloids and Surfaces B:Biointerfaces,2022,211:112306. doi: 10.1016/j.colsurfb.2021.112306
[69] 田格. 藜麦蛋白的提取及其功能特性改善研究[D]. 西宁:青海师范大学, 2020. [TIAN G. Extraction of quinoa protein and improvement of its functional properties[D]. Xining:Qinghai Normal University, 2020. TIAN G. Extraction of quinoa protein and improvement of its functional properties[D]. Xining: Qinghai Normal University, 2020.
[70] FEYZZI S, MILANI E, GOLIMOVAHHED Q A. Grass pea ( Lathyrus sativus L.) protein isolate:The effect of extraction optimization and drying methods on the structure and functional properties[J]. Food Hydrocolloids,2018,74:187−196. doi: 10.1016/j.foodhyd.2017.07.031
[71] 吉静筠, 李洪岩, 王静. 藜麦蛋白功能特性研究进展[J]. 中国食品学报,2021,21(11):368−376. [JI J Y, LI H Y, WANG J. Research progress on the functional properties of quinoa protein[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(11):368−376. doi: 10.16429/j.1009-7848.2021.11.040 JI J Y, LI H Y, WANG J . Research progress on the functional properties of quinoa protein[J]. Journal of Chinese Institute of Food Science and Technology,2021 ,21 (11 ):368 −376 . doi: 10.16429/j.1009-7848.2021.11.040[72] LI X, DA S, LI C, et al. Effects of high-intensity ultrasound pretreatment with different levels of power output on the antioxidant properties of alcalase hydrolyzates from quinoa ( Chenopodium quinoa Willd.) protein isolate[J]. Cereal Chemistry,2018,95(4):518−526. doi: 10.1002/cche.10055
[73] CAO H G, SUN R L, SHI J R, et al. Effect of ultrasonic on the structure and quality characteristics of quinoa protein oxidation aggregates[J]. Ultrasonics-Sonochemistry,2021,77:105685. doi: 10.1016/j.ultsonch.2021.105685
[74] 袁孝瑞, 陈贺宇, 刘玉, 等. 超声波辅助热碱法提取藜麦蛋白的工艺优化[J]. 食品工业科技,2022,43(13):190−197. [YUAN X R, CHEN H Y, LIU Y, et al. Optimization of ultrasonic-assisted thermo-alkaline extraction for quinoa protein[J]. Science and Technology of Food Industry,2022,43(13):190−197. doi: 10.13386/j.issn1002-0306.2021100078 YUAN X R, CHEN H Y, LIU Y, et al . Optimization of ultrasonic-assisted thermo-alkaline extraction for quinoa protein[J]. Science and Technology of Food Industry,2022 ,43 (13 ):190 −197 . doi: 10.13386/j.issn1002-0306.2021100078[75] HUANG K, SHI J R, LI M Y, et al. Intervention of microwave irradiation on structure and quality characteristics of quinoa protein aggregates[J]. Food Hydrocolloids,2022,130:107677. doi: 10.1016/j.foodhyd.2022.107677
[76] 刘少博, 陈复生, 刘昆仑, 等. 酶改性大豆分离蛋白的研究进展[J]. 食品工业科技,2013,34(24):376−379. [LIU S B, CHEN F S, LIU K L, et al. Research progress in enzymatic modification of soybean protein isolate[J]. Science and Technology of Food Industry,2013,34(24):376−379. doi: 10.13386/j.issn1002-0306.2013.24.088 LIU S B, CHEN F S, LIU K L, et al . Research progress in enzymatic modification of soybean protein isolate[J]. Science and Technology of Food Industry,2013 ,34 (24 ):376 −379 . doi: 10.13386/j.issn1002-0306.2013.24.088[77] HESAM D, RAMAN A, AKRAM P, et al. Quinoa bioactive protein hydrolysate produced by pancreatin enzyme-functional and antioxidant properties[J]. LWT-Food Science and Technology,2021,150:111853. doi: 10.1016/j.lwt.2021.111853
[78] ALUKO R E, MONU E. Functional and bioactive properties of quinoa seed protein hydrolysates[J]. Journal of Food Science,2003,68(4):1254−1258. doi: 10.1111/j.1365-2621.2003.tb09635.x
-
期刊类型引用(1)
1. 蔡梦婷,刘荔,黄若楠,孙学宁,曾名湧. 亲水胶体调控全牡蛎-大豆分离蛋白热诱导凝胶的形成机制. 食品工业科技. 2024(23): 129-139 . 本站查看
其他类型引用(1)