Loading [MathJax]/jax/output/SVG/fonts/TeX/Size1/Regular/Main.js
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

藜麦蛋白肽的酶解制备及体外降血脂与降尿酸活性研究

钟婉滢, 苗建银, 叶灏铎, 马凤, 胡一晨

钟婉滢,苗建银,叶灏铎,等. 藜麦蛋白肽的酶解制备及体外降血脂与降尿酸活性研究[J]. 食品工业科技,2023,44(23):156−166. doi: 10.13386/j.issn1002-0306.2023010046.
引用本文: 钟婉滢,苗建银,叶灏铎,等. 藜麦蛋白肽的酶解制备及体外降血脂与降尿酸活性研究[J]. 食品工业科技,2023,44(23):156−166. doi: 10.13386/j.issn1002-0306.2023010046.
ZHONG Wanying, MIAO Jianyin, YE Haoduo, et al. Enzymatic Preparation of Quinoa Protein Peptides and Its Lipid-lowering and Uric Acid-Lowering Activity in Vitro[J]. Science and Technology of Food Industry, 2023, 44(23): 156−166. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010046.
Citation: ZHONG Wanying, MIAO Jianyin, YE Haoduo, et al. Enzymatic Preparation of Quinoa Protein Peptides and Its Lipid-lowering and Uric Acid-Lowering Activity in Vitro[J]. Science and Technology of Food Industry, 2023, 44(23): 156−166. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010046.

藜麦蛋白肽的酶解制备及体外降血脂与降尿酸活性研究

基金项目: 成都大学农业农村部杂粮加工重点实验室开放基金(2022CC011)。
详细信息
    作者简介:

    钟婉滢(1999−),女,硕士研究生,研究方向:食品加工与安全,E-mail:aomame99@163.com

    通讯作者:

    苗建银(1981−),男,博士,副教授,研究方向:食品科学,E-mail:miaojy8181@scau.edu.cn

  • 中图分类号: TS201.1

Enzymatic Preparation of Quinoa Protein Peptides and Its Lipid-lowering and Uric Acid-Lowering Activity in Vitro

  • 摘要: 为研究藜麦蛋白降血脂肽的最佳酶解工艺条件和降尿酸活性,本研究以藜麦为原料提取蛋白,采用胰脂肪酶抑制率为活性指标,通过单因素实验和响应面分析法优化降血脂肽的制备工艺,并对藜麦蛋白肽的胰脂肪酶抑制活性、牛磺胆酸钠结合活性、胆固醇酯酶抑制活性、黄嘌呤氧化酶抑制活性和氨基酸组成进行分析表征。结果表明,藜麦降血脂肽的最优酶解条件为pH1.6、酶解温度42.9 ℃、底物浓度3.03%、酶解时间1 h和酶底比0.2%,所得酶解液的胰脂肪酶抑制率理论值为90.43%,实际值为90.93%±0.10%。该条件下制备的最优酶解物表现出优异的体外降血脂效果,其胰脂肪酶抑制率和胆固醇酯酶抑制率的IC50分别为7.49 μg/mL和4.73 mg/mL,牛磺胆酸钠结合率的EC50为0.53 mg/mL。此外,最优酶解物显示出良好的黄嘌呤氧化酶抑制效果(IC50=5.97 mg/mL),表明其具有体外降尿酸的作用。氨基酸分析表明,藜麦蛋白肽的必需氨基酸含量丰富(34.23%),并且疏水性氨基酸和酸性氨基酸百分含量分别为34.11%和31.66%。藜麦蛋白肽具有较高的体外降血脂和降尿酸活性,这为藜麦蛋白肽的高值化应用提供理论依据。
    Abstract: To study the optimal enzymatic hydrolysis conditions and uric acid-lowering activity of lipid-lowering peptides from quinoa protein, this study used quinoa as raw material to extract protein, and used pancreatic lipase inhibition rate as the activity index. The enzymatic hydrolysis process of lipid-lowering peptides was optimized by single factor experiment and response surface analysis. The pancreatic lipase inhibitory activity, sodium taurocholate binding activity, cholesterol esterase inhibitory activity, xanthine oxidase inhibitory activity and amino acid composition of quinoa protein peptides were analyzed and characterized. The results showed that the optimal enzymatic hydrolysis conditions of lipid-lowering peptides from quinoa were as follows: pH1.6, enzymatic hydrolysis temperature 42.9 ℃, substrate concentration 3.03%, enzymatic hydrolysis time 1 h and enzyme to substrate ratio 0.2%. The theoretical value of inhibition rate of pancreatic lipase was 90.43%, and the actual value was 90.93%±0.10%. The optimal enzymatic hydrolysates showed excellent effect of lowering lipid in vitro. The IC50 of pancreatic lipase inhibition rate and cholesterol esterase inhibition rate were 7.49 μg/mL and 4.73 mg/mL, respectively. Meanwhile, the EC50 of taurocholic sodium binding rate was 0.53 mg/mL. In addition, the optimal enzymatic hydrolysates showed good xanthine oxidase inhibition effect (IC50=5.97 mg/mL), indicating that it had the uric acid-lowering effect in vitro. Amino acid analysis showed that quinoa protein peptides were rich in essential amino acids (34.23%), and the percentage of hydrophobic amino acid and acidic amino acid were 34.11% and 31.66%, respectively. The quinoa protein peptides had high lipid-lowering and uric acid-lowering activities in vitro, which provided a theoretical basis for the high-value application of quinoa protein peptides.
  • 高脂血症是全身性代谢综合征,患者因自身体内的低密度脂蛋白清除功能较差和低密度脂蛋白受体表达不活跃,导致体内甘油三酯、胆固醇和低密度脂蛋白指标出现异常的升高[12]。血脂异常与人类大多数疾病有关,包括心血管疾病和脂肪肝疾病[3]。据统计,2018年中国国民的非高密度脂蛋白胆固醇整体水平超过了多数西方国家[4]。因此,高脂血症正逐步危害国民健康,并影响人们的生活质量。常见的降血脂药物有他汀类药物和非他汀类药物,他汀类药物会刺激血糖升高从而导致糖尿病的危害发生,而非他汀类药物的疗效不如前者[5]。研究发现,多数天然提取物能有效抑制高血脂症,如多糖[6]、蛋白质及其多肽[7]、黄酮[8]、脂肪酸[9]等,其中多肽中特有的氨基酸能影响脂类物质的代谢,阻碍后者与胆酸的作用,从而达到机体吸收脂类物质水平量下降的目的[10]。已经发现食物中蛋白质组分能调节血脂异常的情况,其降血脂效应来源于它们的肽片段和精氨酸残基的存在[1112]。降血脂肽的活性机制主要通过破坏胶束溶解度和膳食胆固醇的吸收从而改变肝肠胆汁酸、促进胆固醇分解代谢以及调节致脂蛋白和基因的表达[13]。因此,从天然食品原料中开发安全有效的降血脂活性成分对国民的健康水平起关键作用。

    藜麦(Chenopodium quinoa Willd.)属于苋菜科植物,在我国北方地区大面积推广栽种[1415],其蛋白质含量在13.1%至16.7%之间,超过大米、大麦、玉米和黑麦的蛋白含量,其中藜麦的赖氨酸、蛋氨酸和苏氨酸含量高于常规谷物中的限制性氨基酸水平[16]。从健康角度出发,藜麦由于具有优质的蛋白质而被认为是一种功能性食品[17]。藜麦蛋白经酶水解后释放的多肽酶解物含有较高的生物活性[1820],如抗氧化活性[21]、血管紧张素转换酶(ACE)抑制活性[22]、调节血糖[23]等。然而,藜麦蛋白肽对于降血脂和降尿酸功效的研究较少。现阶段对植物源蛋白降血脂肽的研究非常丰富[24],如燕麦多肽[25]、大豆多肽[26]等。此外,多数植物源蛋白肽具有降尿酸的效果,如茶蛋白肽[27],核桃多肽[28]。因此,藜麦蛋白肽的降血脂和降尿酸双重功效值得深入研究。

    本研究利用碱提酸沉法从藜麦提取蛋白,以胰脂肪酶抑制率为响应值,根据单因素和响应面试验确定藜麦蛋白降血脂肽的最优酶解工艺条件,通过体外降血脂、降尿酸活性实验和氨基酸组成深入分析藜麦多肽的功能活性。本研究为综合利用藜麦资源,开发具有降血脂和降尿酸功效的功能性食品提供科学参考。

    藜麦原料(采收于2021年10月) 来自农业农村部杂粮加工重点实验室;胰蛋白酶(25万 U/g)、木瓜蛋白酶(20万 U/g)、碱性蛋白酶(20万 U/g)、胃蛋白酶(300万 U/g)、中性蛋白酶(10万 U/g) 广西南宁庞博生物工程有限公司;黄嘌呤氧化酶(50 U/mg)、别嘌呤醇、黄嘌呤 上海麦克林生化有限公司;月桂酸-4-硝基苯酯 天津市富宇精细化工有限公司;4-硝基苯丁酸酯 西安市晶博生物科技有限公司;牛磺胆酸钠(STC) 上海源叶生物科技有限公司;胰脂肪酶(来自猪胰腺)(3~9万 U/g) 上海阿拉丁生物科技公司; 100 mmol/L Tris-HCl溶液 广州亿涛生物科技有限公司;胆固醇酯酶(15万 U/g)、Triton X-100 北京索莱宝科技有限公司;其他试剂均属于分析纯。

    SC-3610低速离心机 安徽中科中佳科学仪器有限公司;HH-1数显恒温水浴锅 常州澳华仪器有限公司;SG-5402A四联磁力加热搅拌器 上海硕光电子科技有限公司;PHS-3CpH计 上海力辰邦西仪器科技公司;恒温培养箱 常州澳华仪器有限公司;2300 EnSpireTM多功能酶标仪 美国PerkinElmer公司。

    参考叶灏铎等[29]方法并稍作改动。将藜麦打磨后的粉末过20目筛,以料液比1:20加入定量的藜麦粉末和95%乙醇用于脱脂,在室温下用磁力搅拌器以1000 r/min均匀搅拌12 h,烘干获得脱脂藜麦粉。以1:40加入定量的脱脂藜麦粉和0.1 mol/L的NaOH溶液,在45 ℃恒温水浴锅中用玻璃棒不断搅拌3 h,离心获取碱提清液。加入0.1 mol/L的HCl溶液将上清液的pH调为4.5,静置至再无沉淀生成后离心,收集蛋白沉淀,冷冻干燥后称重,参考杨丽娥等[30]的方法按下式计算粗蛋白得率。粗蛋白含量分析参照GB 5009.5-2016中《食品中蛋白质的测定》的凯氏定氮法[31]。冻干蛋白放置于−20 ℃储存备用。

    (%)=AB×100
    (1)

    式中:A为粗蛋白粉质量,mg;B为原料总质量,mg。

    加入适量水于一定量的藜麦蛋白粗提物中,根据所添加酶调节溶液相应的pH,使用恒温水浴进行酶解反应,3 h后对反应液进行灭酶,静置冷却,以4000 r/min下离心,20 min后收集酶解上清液,冷冻干燥于后续实验使用。

    配制3%的藜麦蛋白溶液,以酶底比0.3%分别加入胰蛋白酶、木瓜蛋白酶、胃蛋白酶、碱性蛋白酶和中性蛋白酶,调节各自pH为8.0、6.5、1.5、9.5和7.0,酶解温度分别为37、55、37、55和45 ℃,酶解时间为3 h。以胰脂肪酶抑制率为指标,挑选效果明显的蛋白酶。

    参考叶灏铎等[29]方法并稍作改动。选择最优蛋白酶,考察不同因素对胰脂肪酶抑制率的影响,优化条件为:酶解时间(0.5、1、2、3、4、5 h)、pH(1.0、1.5、2.0、2.5、3.0)、酶解温度(32、37、42、47、52 ℃)、酶底比(0.1%、0.2%、0.3%、0.4%、0.5%)和底物浓度(1%、2%、3%、4%、5%)。除考察因素外,初始条件不变:底物浓度3%,酶底比为0.3%,pH1.5,酶解温度37℃。

    采用Desigh Expert 8.0.6.1软件建立响应面试验。在最优酶解时间和酶底比的基础下,探究不同水平的pH、酶解温度和底物浓度对胰脂肪酶抑制率的影响。设计见表1

    表  1  响应面试验条件
    Table  1.  Response surface experiment conditions
    因素 水平
    −1 0 1
    A酶解温度(℃) 37 42 47
    B pH 1.0 1.5 2.0
    C底物浓度(%) 2 3 4
    下载: 导出CSV 
    | 显示表格

    参照万林[32]的方法并作出略微改动。分别制备5 mg/mL胰脂肪酶溶液、缓冲液(pH8.2,0.1 mol/L Tris缓冲液)和反应底物(1% Triton X-100、5 mmol/L醋酸钠水溶液、1 mg/mL月桂酸-4-硝基苯酯)。样品组依次加入200 μL样品溶液、500 μL底物溶液、400 μL缓冲液和300 μL脂肪酶溶液。于37 ℃培养箱静置2 h,将反应液离心收集上层清液,测定420 nm波长下的吸光值。按下式计算并求IC50

    (%)=(1ABC)×100
    (2)

    式中:A为样品组吸光值;B为无脂肪酶组的吸光值;C为无样品组吸光值。

    使用磷酸缓冲溶液配制不同样品溶液浓度(10、50、100、200、500 μg/mL),测定胰脂肪酶抑制率,并计算IC50值。

    参考李成龙[33]的方法作出略微改动。将0.01 mol/L HCl溶液和样品溶液各取1 mL在37 ℃反应1 h,调节pH至6.3,加入1 mmol/L牛磺胆酸钠(STC)标准溶液和磷酸盐缓冲液各5 mL,37 ℃反应1 h,离心取2 mL上层清液和6 mL 60%硫酸溶液在70 ℃恒温水浴中反应30 min,随后静置冷却。于387 nm波长处测量每组吸光度。牛磺胆酸钠溶液在不同浓度下(0、0.05、0.1、0.15、0.2、0.25 mmol/L)测定吸光度,制定胆酸盐标准曲线。以下式计算并求EC50

    (%)=ABA×100
    (3)

    式中:A是胆酸盐加入量,μmol;B是胆酸盐剩余量,μmol。

    参照苏建辉等[34]的方法作出略微改动。制备4.2 μg/mL的猪胰腺胆固醇酶溶液,将0.1 mol/L NaCl、0.2 mmol/L 4-硝基苯丁酸酯、5.16 mmol/L STC配制成pH7.0的0.1 mol/L磷酸钠缓冲液。以1:2.5:5:5的比例依次加入底物溶液(4-硝基苯丁酸酯)、样品溶液、缓冲液和胆固醇酯酶溶液,在25 ℃恒温水浴锅中反应5 min,于405 nm波长下测定每组上清液的吸光值。空白组不加样品,样品对照组不加酶液,空白对照组不加酶液和样品。按下式计算,并求IC50

    (%)=(1CDAB)×100
    (4)

    式中:A是空白组吸光值;B是空白对照组吸光值;C是样品组吸光值;D是样品对照组吸光值。

    参考叶灏铎等[27]的方法检测黄嘌呤氧化酶抑制率,并作稍微修改。使用缓冲溶液配制不同浓度的样品溶液(0.5、1、2、4、8 mg/mL)。以比例1:1:1先后加入样品溶液、0.04 U/mL黄嘌呤氧化酶溶液和0.48 mmol/L黄嘌呤溶液,室温条件下振荡混匀30 min,随后测定波长为290 nm下各组分上清液的吸光值,随后计算IC50值。使用下式计算黄嘌呤氧化酶抑制作用:

    (%)=(1ABCD)×100
    (5)

    式中:A是样品组吸光值;B是不加酶组吸光值;C是不加样品组吸光值;D是不加酶和样品组吸光值。

    参照GB 5009.124-2016《食品中氨基酸的测定》[35]

    使用EXCEL 2019软件处理数据;使用SPSS 21.0软件进行多组间差异的方差分析(单因素ANOVA检验中Duncan法),其中,不同字母表示相同指标下的差异显著(P<0.05);部分数据使用GraphPad Prism 8软件绘制图表。数据以平均值±标准差表示。每组实验至少重复3次后求平均值。

    根据碱提酸沉的原理,经过95%乙醇浸没的藜麦原料除去脂肪后,在碱液中提取藜麦水溶蛋白,将pH调节到等电点4.5后获得藜麦蛋白沉淀,冷冻干燥后的粗蛋白得率为23.90%,提取过程基本除去多糖等成分[27]。经凯氏定氮法测得粗蛋白的质量分数为55.74%,说明大部分蛋白得到有效提取。根据以上条件提取的粗蛋白用于后续实验。

    蛋白酶的底物专一性决定了酶解反应的作用位点,导致不同蛋白酶作用下酶解产物产生不一样的组成和特性[36]。以胰脂肪酶抑制率作为蛋白酶酶解藜麦蛋白的活性指标,选用五种不同的蛋白酶制备藜麦蛋白水解物。结果由图1所示,与其他四种酶相比,胃蛋白酶所得藜麦蛋白多肽的胰脂肪酶抑制率最高,其胰脂肪酶抑制率可达到81.64%±0.46%,说明胃蛋白酶酶解藜麦蛋白所得肽段有较强的抑制胰脂肪酶作用。藜麦蛋白与胃消化酶系进行反应得到的酶解物,随后酶解物作用于体内靶目标才能达到降血脂的作用,因此选择胃蛋白酶体系可以模拟藜麦蛋白与胃消化酶系的反应[3738]。后续将使用胃蛋白酶作为工具酶进行酶解工艺优化试验。

    图  1  不同蛋白酶对胰脂肪酶抑制率影响
    注:不同字母表示组间存在差异性显著(P<0.05);图1~图6图8~图11同。
    Figure  1.  Effect of different proteases on the inhibition rate of pancreatic lipase

    图2可知,酶解时间的增加会导致酶解物的胰脂肪酶抑制率先上升后下降,酶解1 h的抑制率达到最大值85.13%±0.83%,反应1 h后酶活性逐步降低。这可能是因为酶在反应初始阶段酶活力较高,与藜麦蛋白的酶切位点较多,获得的多肽对脂肪酶的抑制效果最佳,而酶解时间越长会导致多肽的活性结构逐步被破坏水解成游离的氨基酸,降低抑制脂肪酶的活性[39]。因此,选择酶解时间为1 h进行下一步酶解工艺优化试验。

    图  2  酶解时间对胰脂肪酶抑制率影响
    Figure  2.  Effect of enzymolysis time on the inhibition rate of pancreatic lipase

    图3所示,胰脂肪酶抑制率随pH的增加呈先升高后降低的趋势,当pH为1~1.5时胰脂肪酶抑制率缓慢增加(P>0.05),增加至pH2呈现显著性下降(P<0.05),随后继续增大pH呈现缓慢下降(P>0.05),其中,在pH1.5时得到最大值为81.29%±2.02%。胃蛋白酶的最佳酶活力在1.0~2.0之间,低于或超出该范围下的pH会影响酶的三维结构,导致抑制胰脂肪酶的活性下降[40]。因此,后续将选择pH1、1.5和2进行响应面优化。

    图  3  pH对胰脂肪酶抑制率影响
    Figure  3.  Effect of pH on the inhibition rate of pancreatic lipase

    图4所示,随着酶解温度的变化,多肽酶解物抑制胰脂肪酶的活性先上升后下降(P<0.05)。当酶解温度达到42 ℃时,酶解物的胰脂肪酶抑制率为87.77%±1.73%并达到最高值。胃蛋白酶在最适合的温度下发挥最大的活性效果,加速分子热运动使溶剂渗透和溶质扩散,因此藜麦蛋白得到充分的酶解,获得的酶解物多肽的活性更好[41]。此外,超过最适酶解温度的范围时蛋白酶可能因变性而失去了酶活力,酶解得到多肽的数量下降,导致酶解物抑制胰脂肪酶抑制率的活性也下降[42]。高佩佩[43]的研究中有类似报道,牛乳酪蛋白在不同温度下进行酶解,当酶解温度达到40 ℃时胰脂肪酶抑制率达到最大值。因此,选择37、42和47 ℃进行下一步的响应面优化。

    图  4  酶解温度对胰脂肪酶抑制率影响
    Figure  4.  Effect of enzymolysis temperature on the inhibition rate of pancreatic lipase

    图5可得知,酶底比含量越高,酶解物抑制胰脂肪酶抑制率水平先增大后减少(P<0.05),其中酶底比为0.2%时的抑制率达到最大值85.85%±2.89%,与李瑞霞等[44]的实验结果一致。当酶底比少于0.2%时,酶解反应未饱和,藜麦蛋白得不到充分的酶解;当酶底比大于0.2%后,胃蛋白酶和藜麦蛋白酶解反应过饱和,多余的酶和底物形成物料浪费[45]。因此,将选0.2%的酶底比作为后续的酶解工艺优化试验。

    图  5  酶底比对胰脂肪酶抑制率影响
    Figure  5.  Effect of enzyme to substrate ratio on inhibition rate of pancreatic lipase

    图6所示,胰脂肪酶抑制率随底物浓度的增加呈显著上升趋势(P<0.05),在3%达到最大值81.53%±1.53%后逐渐下降,在4%后趋于平衡(P>0.05)。随着底物浓度的增加,酶促反应速率先提升后下降,这可能是因为当底物浓度超过最适合的范围,会导致多肽的反应位点受阻,并且底物之间发生相互作用从而降低抑制活性。此外,底物与胃蛋白酶已经发生完全反应,酶促反应受到限制[46]。因此,后续将选择底物浓度为2%、3%和4%进行响应面优化。

    图  6  底物浓度对胰脂肪酶抑制率影响
    Figure  6.  Effect of substrate concentration on the inhibition rate of pancreatic lipase

    通过单因素实验确定因素水平的范围,响应面拟合方程只在狭窄区域内近似真实情况,因此需先从单因素实验结果获取最佳值区域后才能建立有效的响应面拟合方程[47]。根据单因素实验结果,选择最佳水平中有显著性差异的因素进行优化,自变量分别为酶解温度、pH和底物浓度,以胰脂肪酶抑制率为评价指数,设计3因素3水平实验表(见表2)。

    表  2  响应面试验结果
    Table  2.  Results of response surface experiment
    实验号 因素 胰脂肪酶抑制率(%)
    A:酶解温度 B:pH C:底物浓度
    1 1 1 0 84.96±0.90
    2 0 0 0 91.50±0.62
    3 1 −1 0 78.43±0.72
    4 −1 1 0 79.08±0.50
    5 0 1 1 81.05±0.77
    6 1 0 −1 83.01±0.15
    7 0 −1 −1 75.82±0.56
    8 0 0 0 89.54±0.25
    9 0 −1 1 80.39±0.25
    10 −1 0 −1 81.05±0.25
    11 −1 0 1 80.39±0.43
    12 −1 −1 0 77.78±0.15
    13 0 0 0 89.54±0.11
    14 0 0 0 89.54±0.81
    15 0 0 0 90.85±0.55
    16 0 1 −1 80.39±0.10
    17 1 0 1 81.70±0.10
    下载: 导出CSV 
    | 显示表格

    根据表2的响应面结果进行多元回归拟合,获得酶解温度(A)、pH(B)和底物浓度(C)与胰脂肪酶抑制率(Y)三个因素的二次多项回归方程:

    Y=90.2+1.23A+1.63B+0.41C+1.31AB−0.16AC−0.98BC−4A2−6.13B2−4.66C2

    显著性检验表3中的F值和P值可以反映胰脂肪酶抑制率与每个因素之间的关联性和显著性,F值的高低反映各因素对实验模型的影响效果[48]。验证回归模型及方程的显著性,结果显示F值=25.65,P值=0.0002<0.01,表明设计模型具有极显著差异,试验办法可信赖度高[49]。在回归方程中,一次项B和二次项A2、B2和C2表明差异极显著(P<0.01),一次项A表明差异显著(P<0.05),一次项C和交互项的差异不显著(P>0.05),说明酶解温度和pH对酶解反应有显著影响,但底物浓度和交互作用的酶解作用不明显。回归模型中F(A)=6.97,F(B)=12.39,F(C)=0.77,据此表明影响胰脂肪酶抑制率的三种因素顺序为pH>酶解温度>底物浓度。其中模型的失拟项F值为3.38,P值为0.1353>0.05,差异不显著表明建立的回归模型受到实验操作等偶然因素的影响较小,变异系数CV值=1.58%<10%,实验结果可信赖度高[41]。以上结果表明所建立的响应面实验具有可靠性,模型的拟合度较高[50],符合藜麦蛋白酶解物在不同实验条件下的变化规律,从而获得胰脂肪酶抑制率较高下的最优藜麦蛋白酶解条件。

    表  3  方差分析
    Table  3.  Variance analysis
    方差来源 平方和 自由度 均方 F P值(Prob>F 显著性
    模型 397.98 9 44.22 25.65 0.0002 **
    A-酶解温度 12.01 1 12.01 6.97 0.0334 *
    B-pH 21.36 1 21.36 12.39 0.0097 **
    C-底物浓度 1.33 1 1.33 0.77 0.4081
    AB 6.83 1 6.83 3.96 0.0867
    AC 0.11 1 0.11 0.062 0.8106
    BC 3.84 1 3.84 2.23 0.179
    A2 67.48 1 67.48 39.14 0.0004 **
    B2 158.09 1 158.09 91.7 < 0.0001 **
    C2 91.31 1 91.31 52.96 0.0002 **
    残差 12.07 7 1.72
    失拟项 8.65 3 2.88 3.38 0.1353 不显著
    纯误差 3.42 4 0.85
    总和 410.05 16
    注:P<0.05,差异显著,以*表示;P<0.01,差异极显著,以**表示;P>0.05,差异不显著。
    下载: 导出CSV 
    | 显示表格

    相应等高线图与曲面图能反映A、B或C三者中的两个因素之间的相互作用效果[51]。如图7所示,酶解温度、pH和底物浓度的交互作用对胰脂肪酶抑制率的影响先上升后下降,存在一定范围内的最大值。在一定的底物浓度下,随着pH和酶解温度的变化,途中响应面中部曲线聚集效果明显,说明藜麦蛋白酶解物抑制胰脂肪酶实验模型主要由pH和酶解温度的影响,与表3中方差分析结果一致。

    图  7  酶解温度、pH和底物浓度对胰脂肪酶抑制率影响的响应面
    Figure  7.  Response surface of the effect of temperature, pH, and substrate concentration on the inhibition rate of pancreatic lipase

    综合考虑酶解温度、pH和底物浓度对胰脂肪酶抑制率的影响,获得藜麦降血脂肽的最佳制备工艺为酶解温度42.88 ℃、pH1.57、底物浓度3.03%、酶解时间1 h和酶底比0.2%,考虑到实际操作,酶解工艺优化为:酶解温度42.9 ℃、pH1.6、底物浓度3.03%、时间1 h和酶底比0.2%。此时藜麦多肽对胰脂肪酶抑制率为90.43%。对预测的最佳条件进行实验验证,得到的藜麦降血脂肽与胰脂肪酶的实际抑制率为90.93%±0.10%,与预测结果值相当接近。

    当机体摄入高脂肪食物后,脂肪不能直接吸收,而是通过胰脂肪酶的作用水解得到脂肪酸和3-单酰基甘油酯,进而与胆汁盐类混合,以胶粒状进入肠道的脂质细胞和上皮细胞膜的顶部[52]。降低脂肪酶的水解效果可影响肠道对脂肪的同化[53]。如图8所示,随着藜麦多肽浓度的增加,对胰脂肪酶的抑制作用呈上升趋势。500 μg/mL时获得最高值62.53%±0.11%(P<0.05),并且IC50是7.49 μg/mL(表4)。刘晓静[54]用响应面优化亚麻籽蛋白的酶解工艺并进行分级制备,测得≤1 kDa的亚麻籽肽的胰脂肪酶抑制作用的IC50为6.20 mg/mL。霍世欣等[55]使用聚酰胺柱色谱分离法获得荷叶的黄酮提取物,检测提取物的胰脂肪酶抑制作用IC50为0.0076 mg/mL。王建成等[56]将红松仁蛋白酶解物超滤得到5种分子质量不同的组分,其中1~5 kDa组分的胰脂肪酶抑制作用最强(IC50=194.43 μg/mL)。此外,藜麦多肽能抑制胰脂肪酶的活性,推测藜麦多肽影响胰脂肪酶的结构变化,导致胰脂肪酶对底物的分解作用受阻,达到降血脂功效[57]。综上所述,藜麦多肽还没有经过进一步分离纯化就具有较强的胰脂肪酶抑制作用,后续实验通过筛选将获得胰脂肪酶抑制作用更好的单体。

    图  8  最佳酶解物对胰脂肪酶抑制率的影响
    Figure  8.  Effect of optimal enzymatic hydrolysate on the inhibition rate of pancreatic lipase
    表  4  藜麦多肽活性评价
    Table  4.  Evaluation of peptides activity in quinoa
    活性指标EC50/IC50
    胰脂肪酶抑制作用7.49 μg/mL
    牛磺胆酸钠结合能力0.53 mg/mL
    胆固醇酯酶抑制作用4.73 mg/mL
    黄嘌呤氧化酶抑制作用5.97 mg/mL
    下载: 导出CSV 
    | 显示表格

    胆固醇经过体内代谢分解成胆酸盐,肝肠中胆酸盐含量下降可促进胆固醇的分解代谢,肠道吸收胆固醇的能力下降,进而促进降血脂的功效[5859]。如图9所示,在0.1~2 mg/mL范围内,牛磺胆酸钠结合率随浓度的增加而呈现递增的趋势。藜麦多肽浓度为2 mg/mL时,牛磺胆酸钠结合率达到最大值76.95%±0.37%(P<0.05),通过SPSS软件分析EC50值为0.53 mg/mL(表4)。姜欣洋等[60]用50%的乙醇提取补骨脂,测定提取物的牛磺胆酸钠结合作用,EC50达到1.26 mg/mL。宋玲钰[61]对花生蛋白的酶解工艺进行优化,花生蛋白酶解物在10 mg/mL下牛磺胆酸盐抑制率为55.47%。结合相关研究可知,藜麦多肽的胆酸盐结合能力较强,这可能是因为藜麦多肽与胆酸盐结合能力显示藜麦多肽可以发挥降血脂的可能性,通过阻碍胆酸盐进入肠道,使胆酸盐随排泄物排出,使胆固醇分解成胆酸盐的水平下降,实现降血脂的效果[58]

    图  9  最佳酶解物对牛磺胆酸钠结合率的影响
    Figure  9.  Effect of optimal enzymatic hydrolysate on the binding rate of sodium taurocholate

    胆固醇酯酶水解胆固醇酯从而获得两种生成物(胆固醇和脂肪酸),胆固醇溶于胆固醇胶束后才会被人体吸收,因此抑制胆固醇酯酶的活性是降低胆固醇的吸收的有效方法[54]。如图10所示,一定浓度范围内,藜麦多肽对抑制胆固醇酯酶作用呈现显著上升的趋势。在2 μg/mL时胆固醇酯酶抑制率达到最高值41.18%±0.20%(P<0.05),活性比香菇多酚[62](5 mg/mL下达到40.11%)明显。其中,藜麦多肽对胆固醇酯酶抑制作用的IC50为4.73 mg/mL(表4),与六堡茶茶褐素[53](IC50=57.2 mg/mL)和石榴皮多糖[63](IC50=25.00 mg/mL)相比,藜麦多肽的胆固醇酯酶抑制作用更强。这说明藜麦多肽具有良好的抑制胆固醇酯酶活性,推测藜麦蛋白经胃蛋白酶作用获得的酸性多肽和胆固醇酯酶结合从而降低对底物的催化作用[6465]。综上所述,藜麦多肽是具有降血脂功能的潜在天然活性肽。

    图  10  最佳酶解物对胆固醇酯酶抑制率的影响
    Figure  10.  Effect of the optimal enzymatic solution on the inhibition rate of cholesterol esterase

    黄嘌呤酶会促进体内嘌呤代谢,使次黄嘌呤变成黄嘌呤,从而氧化得到尿酸、嘧啶和嘌呤等代谢物质,尿酸在体内累积过多会导致通风或肾结石等症状[27]。因此,抑制黄嘌呤氧化酶的催化作用,可以降低尿酸积累[66]。如图11所示,当藜麦蛋白酶解物的浓度处于8 mg/mL时,黄嘌呤氧化酶抑制效果高达67.96%±0.90%(P<0.05)。利用SPSS软件分析IC50值为5.97 mg/mL,比鲣鱼合成肽(ACECD)(IC50=7.23 mg/mL)的抑制效果更好[67]。此外,詹苏泓等[68]将远东拟沙丁鱼蛋白经超滤得到分子质量小于1000 kDa的酶解物组分,其IC50达到15.89 g/L。实验结果表明,在最优酶解条件下的藜麦降血脂肽也兼具潜在的降尿酸活性。

    图  11  最佳酶解物对黄嘌呤氧化酶抑制率的影响
    Figure  11.  Effect of optimal enzymatic hydrolyzates on xanthine oxidase inhibition rate

    藜麦多肽的氨基酸组成如表5所示,多肽混合物中谷氨酸占比最高(19.85%),其次为精氨酸和天冬氨酸,含量分别为10.80%和9.58%,研究表明精氨酸在体内促进一氧化氮生产增加血流量,从而降低体内低密度脂蛋白胆固醇水平[69]。必需氨基酸的含量占总氨基酸的34.23%,接近WHO/FAO所倡议的36%必需氨基酸值,必需氨基酸的占比越高,说明藜麦蛋白的营养价值越高[70]。酸性氨基酸含量的比例为31.66%,对降血脂活性有积极的作用[71]。疏水性氨基酸的比例为34.11%,研究表明活性肽中含有高比例的疏水性氨基酸有助于降血脂作用[72]。宋淑敏等[73]发现汉麻降脂肽的5个肽段都有较高含量的疏水性氨基酸,与结合胆酸盐的活性可能有密切关系。高含量的疏水性氨基酸对胆汁酸结合的效果发挥重要的作用,疏水性氨基酸通过疏水相互作用与胆汁酸结合,生成不溶物排出[33,74]。此外,郑睿[75]从亚麻籽中获得胆固醇溶解度抑制率最高的4个肽,其氨基酸序列都具有大量疏水性氨基酸。还有研究指出疏水性氨基酸的含量越大,更有利于侵入脂质胶束中[76]。在降尿酸活性上,李宇娟[77]将鲣鱼分离纯化得到降尿酸肽,推测多肽发挥降尿酸作用是因为高比例的疏水性氨基酸能和黄嘌呤氧化酶结合,从而抑制酶活性。结合以上研究,经过最优酶解工艺的藜麦蛋白活性肽含有丰富的氨基酸,有降血脂和降尿酸的能力。

    表  5  藜麦多肽的氨基酸组成
    Table  5.  Amino acid composition of quinoa peptides
    氨基酸相对含量(%)
    天冬氨酸(Asp)9.58
    苏氨酸(Thr)3.43
    丝氨酸(Ser)4.80
    谷氨酸(Glu)19.85
    甘氨酸(Gly)5.36
    丙氨酸(Ala)4.33
    半胱氨酸(Cys)1.31
    缬氨酸(Val)5.89
    蛋氨酸(Met)1.82
    异亮氨酸(Ile)4.31
    亮氨酸(Leu)7.03
    酪氨酸(Tyr)3.83
    苯丙氨酸(Phe)4.50
    组氨酸(His)3.09
    赖氨酸(Lys)6.25
    精氨酸(Arg)10.80
    脯氨酸(Pro)3.83
    必需氨基酸(EAA)34.23
    疏水性氨基酸(HAA)34.11
    酸性氨基酸(AAA)31.66
    注:EAA:必需氨基酸;HAA:疏水性氨基酸(Ile、Ala、Pro、Phe、Val、Leu、Trp、Met);AAA:酸性氨基酸(Asp、Glu)。
    下载: 导出CSV 
    | 显示表格

    本研究以藜麦为原料,碱提酸沉法获取藜麦蛋白,利用胰脂肪酶抑制率评价藜麦蛋白酶解物单因素和响应面试验中的最优工艺参数:酶解温度42.9 ℃、pH1.6、底物浓度3.03%、酶解时间1 h和酶底比0.2%,此条件下获得的胰脂肪酶抑制率为90.93%±0.10%。初步验证了藜麦多肽的降血脂和降尿酸活性,结果表明藜麦多肽具有很强的胰脂肪酶抑制作用、牛磺胆酸钠结合作用、胆固醇酯酶抑制作用和黄嘌呤氧化酶抑制作用。氨基酸分析表明,藜麦蛋白肽中高比例的必需氨基酸、疏水性氨基酸和酸性氨基酸对活性有一定影响。本研究可提高藜麦的利用价值,同时为藜麦蛋白肽的研究提供新思路。实验仅从体外实验研究藜麦多肽的降血脂和降尿酸活性,后续将会对高活性肽组分进行纯化鉴定,测定体内降血脂和降血压活性,并深入探究具体的作用机制。

  • 图  1   不同蛋白酶对胰脂肪酶抑制率影响

    注:不同字母表示组间存在差异性显著(P<0.05);图1~图6图8~图11同。

    Figure  1.   Effect of different proteases on the inhibition rate of pancreatic lipase

    图  2   酶解时间对胰脂肪酶抑制率影响

    Figure  2.   Effect of enzymolysis time on the inhibition rate of pancreatic lipase

    图  3   pH对胰脂肪酶抑制率影响

    Figure  3.   Effect of pH on the inhibition rate of pancreatic lipase

    图  4   酶解温度对胰脂肪酶抑制率影响

    Figure  4.   Effect of enzymolysis temperature on the inhibition rate of pancreatic lipase

    图  5   酶底比对胰脂肪酶抑制率影响

    Figure  5.   Effect of enzyme to substrate ratio on inhibition rate of pancreatic lipase

    图  6   底物浓度对胰脂肪酶抑制率影响

    Figure  6.   Effect of substrate concentration on the inhibition rate of pancreatic lipase

    图  7   酶解温度、pH和底物浓度对胰脂肪酶抑制率影响的响应面

    Figure  7.   Response surface of the effect of temperature, pH, and substrate concentration on the inhibition rate of pancreatic lipase

    图  8   最佳酶解物对胰脂肪酶抑制率的影响

    Figure  8.   Effect of optimal enzymatic hydrolysate on the inhibition rate of pancreatic lipase

    图  9   最佳酶解物对牛磺胆酸钠结合率的影响

    Figure  9.   Effect of optimal enzymatic hydrolysate on the binding rate of sodium taurocholate

    图  10   最佳酶解物对胆固醇酯酶抑制率的影响

    Figure  10.   Effect of the optimal enzymatic solution on the inhibition rate of cholesterol esterase

    图  11   最佳酶解物对黄嘌呤氧化酶抑制率的影响

    Figure  11.   Effect of optimal enzymatic hydrolyzates on xanthine oxidase inhibition rate

    表  1   响应面试验条件

    Table  1   Response surface experiment conditions

    因素 水平
    −1 0 1
    A酶解温度(℃) 37 42 47
    B pH 1.0 1.5 2.0
    C底物浓度(%) 2 3 4
    下载: 导出CSV

    表  2   响应面试验结果

    Table  2   Results of response surface experiment

    实验号 因素 胰脂肪酶抑制率(%)
    A:酶解温度 B:pH C:底物浓度
    1 1 1 0 84.96±0.90
    2 0 0 0 91.50±0.62
    3 1 −1 0 78.43±0.72
    4 −1 1 0 79.08±0.50
    5 0 1 1 81.05±0.77
    6 1 0 −1 83.01±0.15
    7 0 −1 −1 75.82±0.56
    8 0 0 0 89.54±0.25
    9 0 −1 1 80.39±0.25
    10 −1 0 −1 81.05±0.25
    11 −1 0 1 80.39±0.43
    12 −1 −1 0 77.78±0.15
    13 0 0 0 89.54±0.11
    14 0 0 0 89.54±0.81
    15 0 0 0 90.85±0.55
    16 0 1 −1 80.39±0.10
    17 1 0 1 81.70±0.10
    下载: 导出CSV

    表  3   方差分析

    Table  3   Variance analysis

    方差来源 平方和 自由度 均方 F P值(Prob>F 显著性
    模型 397.98 9 44.22 25.65 0.0002 **
    A-酶解温度 12.01 1 12.01 6.97 0.0334 *
    B-pH 21.36 1 21.36 12.39 0.0097 **
    C-底物浓度 1.33 1 1.33 0.77 0.4081
    AB 6.83 1 6.83 3.96 0.0867
    AC 0.11 1 0.11 0.062 0.8106
    BC 3.84 1 3.84 2.23 0.179
    A2 67.48 1 67.48 39.14 0.0004 **
    B2 158.09 1 158.09 91.7 < 0.0001 **
    C2 91.31 1 91.31 52.96 0.0002 **
    残差 12.07 7 1.72
    失拟项 8.65 3 2.88 3.38 0.1353 不显著
    纯误差 3.42 4 0.85
    总和 410.05 16
    注:P<0.05,差异显著,以*表示;P<0.01,差异极显著,以**表示;P>0.05,差异不显著。
    下载: 导出CSV

    表  4   藜麦多肽活性评价

    Table  4   Evaluation of peptides activity in quinoa

    活性指标EC50/IC50
    胰脂肪酶抑制作用7.49 μg/mL
    牛磺胆酸钠结合能力0.53 mg/mL
    胆固醇酯酶抑制作用4.73 mg/mL
    黄嘌呤氧化酶抑制作用5.97 mg/mL
    下载: 导出CSV

    表  5   藜麦多肽的氨基酸组成

    Table  5   Amino acid composition of quinoa peptides

    氨基酸相对含量(%)
    天冬氨酸(Asp)9.58
    苏氨酸(Thr)3.43
    丝氨酸(Ser)4.80
    谷氨酸(Glu)19.85
    甘氨酸(Gly)5.36
    丙氨酸(Ala)4.33
    半胱氨酸(Cys)1.31
    缬氨酸(Val)5.89
    蛋氨酸(Met)1.82
    异亮氨酸(Ile)4.31
    亮氨酸(Leu)7.03
    酪氨酸(Tyr)3.83
    苯丙氨酸(Phe)4.50
    组氨酸(His)3.09
    赖氨酸(Lys)6.25
    精氨酸(Arg)10.80
    脯氨酸(Pro)3.83
    必需氨基酸(EAA)34.23
    疏水性氨基酸(HAA)34.11
    酸性氨基酸(AAA)31.66
    注:EAA:必需氨基酸;HAA:疏水性氨基酸(Ile、Ala、Pro、Phe、Val、Leu、Trp、Met);AAA:酸性氨基酸(Asp、Glu)。
    下载: 导出CSV
  • [1]

    LEE S, YOUN B. Hypolipidemic roles of casein-derived peptides by regulation of trans-intestinal cholesterol excretion and bile acid synthesis[J]. Nutrients,2020,12(10):3058. doi: 10.3390/nu12103058

    [2]

    CHAVOLLA O Y B, ANUAR K G, MONSERRATTE R R, et al. Familial combined hyperlipidemia:current knowledge, perspectives, and controversies[J]. Revista De Investigacion Clinica,2018,70(5):224−236.

    [3]

    PIRILLO A. Global epidemiology of dyslipidaemias[J]. Nature Reviews Cardiology,2021,18(10):689−700. doi: 10.1038/s41569-021-00541-4

    [4]

    TADDEI C, ZHOU B, BIXBY H, et al. Repositioning of the global epicentre of non-optimal cholesterol[J]. Nature,2020,582(7810):73−77. doi: 10.1038/s41586-020-2338-1

    [5]

    LIN P, SHEN N, YIN F, et al. Sea cucumber-derived compounds for treatment of dyslipidemia:A review[J]. Front Pharmacol,2022,13:1000315. doi: 10.3389/fphar.2022.1000315

    [6] 钱雅雯, 魏佳, 张政, 等. 籽瓜多糖提取工艺的响应面优化及其体外降血脂活性[J]. 食品工业科技,2020,41(2):101−107. [QIAN Yawen, WEI Jia, ZHANG Zheng, et al. Optimization of polysaccharides extraction from seed melon by response surface methodology and its hypolipidemic effects in vitro[J]. Science and Technology of Food Industry,2020,41(2):101−107.

    QIAN Yawen, WEI Jia, ZHANG Zheng, et al. Optimization of polysaccharides extraction from seed melon by response surface methodology and its hypolipidemic effects in vitro[J]. Science and Technology of Food Industry, 2020, 412): 101107.

    [7] 王凯. 美藤果粕多肽降血糖和降血脂活性研究[D]. 广州:华南理工大学, 2021. [WANG Kai. Hypoglycemic and hypolipidemic activity of peptides from the meal of Plukenetia volubilis L[D]. Guangzhou:South China University of Technology, 2021.

    WANG Kai. Hypoglycemic and hypolipidemic activity of peptides from the meal of Plukenetia volubilis L[D]. Guangzhou: South China University of Technology, 2021.

    [8] 李珊, 刘耀耀, 刘哲, 等. 狭果茶藨子黄酮提取工艺优化及其体外降血脂活性[J]. 食品研究与开发,2021,42(3):73−79. [LI Shan, LIU Yaoyao, LIU Zhe, et al. Optimization of the extraction process of flavonoids from Ribes stenocarpum Maxim. and its hypolipidemic activity in vitro[J]. Food Research and Development,2021,42(3):73−79.

    LI Shan, LIU Yaoyao, LIU Zhe, et al. Optimization of the extraction process of flavonoids from Ribes stenocarpum Maxim. and its hypolipidemic activity in vitro[J]. Food Research and Development, 2021, 423): 7379.

    [9] 郭剑霞, 张谨华, 潘玉峰, 等. 华山松籽油亚油酸的富集纯化及降血脂活性研究[J]. 中国油脂,2019,44(11):131−136. [GUO Jianxia, ZHANG Jinhua, PAN Yufeng, et al. Enrichment of linoleic acid from Pinus armandi Franch seed oil and its lipid-lowering activity[J]. China Oils and Fats,2019,44(11):131−136.

    GUO Jianxia, ZHANG Jinhua, PAN Yufeng, et al. Enrichment of linoleic acid from Pinus armandi Franch seed oil and its lipid-lowering activity[J]. China Oils and Fats, 2019, 4411): 131136.

    [10] 黄尚林. 西藏黑木耳粗多糖降血脂活性的研究[D]. 林芝:西藏农牧学院, 2021. [HUANG Shanglin. Study on hypolipidemic activity of crude polysaccharide from Xizang Auricularia auriculata[D]. Linzhi:Agricultural and Animal Husbandry College of Tibet University, 2021.

    HUANG Shanglin. Study on hypolipidemic activity of crude polysaccharide from Xizang Auricularia auriculata[D]. Linzhi: Agricultural and Animal Husbandry College of Tibet University, 2021.

    [11]

    CHEN Q, WOOD C, GAGNON C, et al. The α′subunit of β-conglycinin and the A1–5 subunits of glycinin are not essential for many hypolipidemic actions of dietary soy proteins in rats[J]. European Journal of Nutrition,2014,53(5):1195−1207. doi: 10.1007/s00394-013-0620-9

    [12]

    BÄHR M, FECHNER A, KIEHNTOPF M, et al. Consuming a mixed diet enriched with lupin protein beneficially affects plasma lipids in hypercholesterolemic subjects:A randomized controlled trial[J]. Clinical Nutrition,2015,34(1):7−14. doi: 10.1016/j.clnu.2014.03.008

    [13]

    UDENIGWE C C, ROUVINEN-WATT K. The role of food peptides in lipid metabolism during dyslipidemia and associated health conditions[J]. International Journal of Molecular Sciences,2015,16(5):9303−9313.

    [14]

    ATEFI M, MIRZAMOHAMMADI S, DARAND M, et al. Meta-analysis of the effects of quinoa ( Chenopodium quinoa) interventions on blood lipids[J]. Journal of Herbal Medicine,2022,34:100571. doi: 10.1016/j.hermed.2022.100571

    [15] 任贵兴, 杨修仕, 么杨. 中国藜麦产业现状[J]. 作物杂志,2015(5):1−5. [REN Guixing, YANG Xiushi, YAO Yang. Current situation of quinoa industry in China[J]. Crops,2015(5):1−5.

    REN Guixing, YANG Xiushi, YAO Yang. Current situation of quinoa industry in China[J]. Crops, 20155): 15.

    [16]

    VILCACUNDO R, HERNÁNDEZ-LEDESMA B. Nutritional and biological value of quinoa ( Chenopodium quinoa Willd.)[J]. Current Opinion in Food Science,2017,14:1−6.

    [17] 和丽媛, 王玲, 吕俊梅. 藜麦营养组成及生物学功能研究进展[J]. 粮食与油脂,2022,35(4):11−15. [HE Liyuan, WANG Ling, LÜ Junmei. Research progress on nutritional composition and biological function of quinoa[J]. Cereals & Oils,2022,35(4):11−15.

    HE Liyuan, WANG Ling, LÜ Junmei. Research progress on nutritional composition and biological function of quinoa[J]. Cereals & Oils, 2022, 354): 1115.

    [18]

    FAN X, GUO H, TENG C, et al. Anti-colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in Caco-2 cells[J]. Foods,2022,11(2):11020194.

    [19]

    YOU H, WU T, WANG W, et al. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein[J]. Food Research International,2022,156:111176. doi: 10.1016/j.foodres.2022.111176

    [20]

    GUO H, HAO Y, RICHEL A, et al. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization[J]. Journal of the Science of Food and Agriculture,2020,100(15):5569−5576. doi: 10.1002/jsfa.10609

    [21] 谷俊华, 邢晓轲. 不同酶对藜麦蛋白肽制备的影响及其抗氧化活性研究[J]. 中国食品添加剂,2022,33(1):69−74. [GU Junhua, XING Xiaoke. Study on the effect of different enzymes on preparation of quinoa protein peptides and their antioxidant activities[J]. China Food Additives,2022,33(1):69−74.

    GU Junhua, XING Xiaoke. Study on the effect of different enzymes on preparation of quinoa protein peptides and their antioxidant activities[J]. China Food Additives, 2022, 331): 6974.

    [22] 李帅, 袁亚宏, 岳田利. 益生菌发酵藜麦制备ACE抑制肽[J]. 食品与机械,2022,38(8):14−21. [LI Shuai, YUAN Yahong, YUE Tianli. Study on the preparation of ACE inhibitory peptides by probiotic fermentation of quinoa[J]. Food & Machinery,2022,38(8):14−21.

    LI Shuai, YUAN Yahong, YUE Tianli. Study on the preparation of ACE inhibitory peptides by probiotic fermentation of quinoa[J]. Food & Machinery, 2022, 388): 1421.

    [23]

    NONGONIERMA A B, MAUX S L, DUBRULLE C, et al. Quinoa ( Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties[J]. Journal of Cereal Science,2015,65:112−118. doi: 10.1016/j.jcs.2015.07.004

    [24] 邵素娟, 丁方莉, 刘迪迪, 等. 食物蛋白源降血脂肽的研究进展[J]. 食品工业科技,2018,39(1):323−326,332. [SHAO Sujuan, DING Fangli, LIU Didi, et al. Research progress of hypolipidemic peptides in dietary proteins source[J]. Science and Technology of Food Industry,2018,39(1):323−326,332.

    SHAO Sujuan, DING Fangli, LIU Didi, et al. Research progress of hypolipidemic peptides in dietary proteins source[J]. Science and Technology of Food Industry, 2018, 391): 323326,332.

    [25] 马超月. 燕麦多肽的制备及其降血脂和降血压效果研究[D]. 镇江:江苏大学, 2018. [MA Chaoyue. Study on the preparation of oat peptides and its hypolipidemic and anti-hypertensive effects[D]. Zhenjiang:Jiangsu University, 2018.

    MA Chaoyue. Study on the preparation of oat peptides and its hypolipidemic and anti-hypertensive effects[D]. Zhenjiang: Jiangsu University, 2018.

    [26] 褚斌杰, 祁高富, 梁运祥. 大豆肽减肥降血脂作用的研究[J]. 食品科技,2011,36(11):65−68. [CHU Binjie, QI Gaofu, LIANG Yunxiang. The effects of soybean peptide on reducing obesity and blood lipids in rat[J]. Food Science and Technology,2011,36(11):65−68.

    CHU Binjie, QI Gaofu, LIANG Yunxiang. The effects of soybean peptide on reducing obesity and blood lipids in rat[J]. Food Science and Technology, 2011, 3611): 6568.

    [27] 叶灏铎, 管晓盛, 马凤, 等. 英红九号茶蛋白降尿酸肽的酶解制备及不同分子量组分的活性对比[J]. 现代食品科技, 2022:1−10. [YE Haoduo, GUAN Xiaosheng, MA Feng, et al. Enzymatic preparation, amino acid composition and activity comparison of different molecular weight components of uric acid-lowering peptides from tea protein of Yinghong NO.9[J]. Modern Food Science and Technology, 2022:1−10.

    YE Haoduo, GUAN Xiaosheng, MA Feng, et al. Enzymatic preparation, amino acid composition and activity comparison of different molecular weight components of uric acid-lowering peptides from tea protein of Yinghong NO.9[J]. Modern Food Science and Technology, 2022: 1−10.

    [28] 黎青勇. 核桃源降尿酸肽靶向抑制黄嘌呤氧化酶活性的构效机制研究[D]. 广州:华南理工大学, 2018. [LI Qingyong. Study on the structure-activity mechanism of targeting inhibition of xanthine oxidase by uric acid-loweringpeptides derived from walnut[D]. Guangzhou:South China University of Technology, 2018.

    LI Qingyong. Study on the structure-activity mechanism of targeting inhibition of xanthine oxidase by uric acid-loweringpeptides derived from walnut[D]. Guangzhou: South China University of Technology, 2018.

    [29] 叶灏铎, 苗建银, 李龙星, 等. 勐库大叶茶蛋白降血脂肽的酶解制备及活性分析[J]. 食品工业科技,2022,43(9):212−221. [YE Haoduo, MIAO Jianyin, LI Longxing, et al. Preparation and activity of hypolipidemic peptides from Mengkudayecha protein by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2022,43(9):212−221.

    YE Haoduo, MIAO Jianyin, LI Longxing, et al. Preparation and activity of hypolipidemic peptides from Mengkudayecha protein by enzymatic hydrolysis[J]. Science and Technology of Food Industry, 2022, 439): 212221.

    [30] 杨丽娥, 胡雪华, 安渊, 等. 叶蛋白提取方法研究[J]. 上海交通大学学报(农业科学版),2003,21(A):66−70, 82. [YANG Lie, HU Xuehua, AN Yuan, et al. Study on the extraction method of leaf protein[J]. Journal of Shanghai Jiaotong University (Agricultural Science),2003,21(A):66−70, 82.

    YANG Lie, HU Xuehua, AN Yuan, et al. Study on the extraction method of leaf protein[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2003, 21A): 6670, 82.

    [31] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京:中国标准出版社, 2016. [The State Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB 5009.5-2016 National standard for food safety. Determination of protein in food[S]. Beijing:Standards Press of China, 2016.

    The State Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB 5009.5-2016 National standard for food safety. Determination of protein in food[S]. Beijing: Standards Press of China, 2016.

    [32] 万林. 首乌藤活性成分的提取及减肥降脂活性的研究[D]. 广州:华南理工大学, 2019. [WAN Lin. Study on extraction of active ingredients from Caulis Polygoni Multiflori and their weight loss and lipid-lowering activity[D]. Guangzhou:South China University of Technology, 2019.

    WAN Lin. Study on extraction of active ingredients from Caulis Polygoni Multiflori and their weight loss and lipid-lowering activity[D]. Guangzhou: South China University of Technology, 2019.

    [33] 李成龙. 发酵酸肉降血脂肽的分离纯化、特性研究及其对血管内皮细胞的影响[D]. 重庆:西南大学, 2016. [LI Chenglong. Purification of blood lipid lowering peptides from fermented sour meat and studing of physicochemical properties and its effects on vascular endothelial cells[J]. Chongqing:Southwest University, 2016.

    LI Chenglong. Purification of blood lipid lowering peptides from fermented sour meat and studing of physicochemical properties and its effects on vascular endothelial cells[J]. Chongqing: Southwest University, 2016.

    [34] 苏建辉, 马朝阳, 杨鹿, 等. 槲皮素、EGCG对胆固醇酯酶活性和胆固醇胶束抑制作用研究[J]. 食品工业科技,2015,36(11):346−349. [SU Jianhui, MA Chaoyang, YANG Lu, et al. Inhibition of pancreatic cholesterol esterase activities and cholesterol micelle of EGCG and quercetin[J]. Science and Technology of Food Industry,2015,36(11):346−349.

    SU Jianhui, MA Chaoyang, YANG Lu, et al. Inhibition of pancreatic cholesterol esterase activities and cholesterol micelle of EGCG and quercetin[J]. Science and Technology of Food Industry, 2015, 3611): 346349.

    [35] 中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.124-2016 食品安全国家标准 食品中氨基酸的测定[S]. 北京:中国标准出版社, 2016. [The State Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB 5009.124-2016 National standard for food safety. Determination of amino acids in food[S]. Beijing:Standards Press of China, 2016.

    The State Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB 5009.124-2016 National standard for food safety. Determination of amino acids in food[S]. Beijing: Standards Press of China, 2016.

    [36] 郭婷婷, 万楚筠, 黄凤洪. 响应面法优化葵花籽粕蛋白酶解工艺研究[J]. 粮食与油脂,2019,32(8):50−53. [GUO Tingting, WAN Chuyun, HUANG Fenghong. Optimization of sunflower seed meal proteolysis technology by response surface methodology[J]. Cereals & Oils,2019,32(8):50−53.

    GUO Tingting, WAN Chuyun, HUANG Fenghong. Optimization of sunflower seed meal proteolysis technology by response surface methodology[J]. Cereals & Oils, 2019, 328): 5053.

    [37] 徐雯, 王振南, 蒲仕文, 等. 体外消化模型研究进展及其在食品中的应用[J]. 食品与发酵工业,2022,48(10):321−327. [XU Wen, WANG Zhennan, PU Shiwen, et al. Research progress of in vitro digestion model and its application in food[J]. Food and Fermentation Industries,2022,48(10):321−327.

    XU Wen, WANG Zhennan, PU Shiwen, et al. Research progress of in vitro digestion model and its application in food[J]. Food and Fermentation Industries, 2022, 4810): 321327.

    [38] 刘丽媛, 彭晨, 赵楠, 等. 鲫鱼肽胰脂肪酶抑制活性稳定性的研究[J]. 食品科技,2013,38(10):245−248. [LIU Liyuan, PENG Chen, ZHAO Nan, et al. Stability of pancreatic lipase inhibitory activity of peptide derived from crucian[J]. Food Science and Technology,2013,38(10):245−248.

    LIU Liyuan, PENG Chen, ZHAO Nan, et al. Stability of pancreatic lipase inhibitory activity of peptide derived from crucian[J]. Food Science and Technology, 2013, 3810): 245248.

    [39] 李瑞杰, 胡晓, 李来好, 等. 罗非鱼皮酶解物钙离子结合能力及其结合物的抗氧化活性[J]. 南方水产科学,2019,15(6):106−111. [LI Ruijie, HU Xiao, LI Laihao, et al. Calcium ion binding ability of tilapia skin hydrolysate and its antioxidant activity[J]. South China Fisheries Science,2019,15(6):106−111.

    LI Ruijie, HU Xiao, LI Laihao, et al. Calcium ion binding ability of tilapia skin hydrolysate and its antioxidant activity[J]. South China Fisheries Science, 2019, 156): 106111.

    [40] 黄文, 余可楠, 廖婉雯, 等. 响应面法优化罗非鱼鳞钙结合肽酶解工艺及其特性表征[J]. 食品工业科技,2021,42(21):190−196. [HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of enzymatic hydrolysis of tilapia scale calcium binding peptides by response surface methodology and its structural characterization[J]. Science and Technology of Food Industry,2021,42(21):190−196.

    HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of enzymatic hydrolysis of tilapia scale calcium binding peptides by response surface methodology and its structural characterization[J]. Science and Technology of Food Industry, 2021, 4221): 190196.

    [41] 侯珮琳, 赵肖通, 张彦青, 等. 绿豆蛋白降血脂水解物的制备及纯化工艺[J]. 食品工业科技,2020,41(9):186−192,199. [HOU Peilin, ZHAO Xiaotong, ZHANG Yanqing, et al. Preparation and purification of hydrolysate of mung bean protein for reducing blood lipids[J]. Science and Technology of Food Industry,2020,41(9):186−192,199.

    HOU Peilin, ZHAO Xiaotong, ZHANG Yanqing, et al. Preparation and purification of hydrolysate of mung bean protein for reducing blood lipids[J]. Science and Technology of Food Industry, 2020, 419): 186192,199.

    [42] 徐霞. 藜麦蛋白质及多肽对高脂血症小鼠降脂作用及其降脂产品开发研究[D]. 成都:成都大学, 2020. [XU Xia. Effect of quinoa proteins and peptides on lipid-lowering of hyperlipidemia mice and development of lipid-lowering products[D]. Chengdu:Chengdu University, 2020.

    XU Xia. Effect of quinoa proteins and peptides on lipid-lowering of hyperlipidemia mice and development of lipid-lowering products[D]. Chengdu: Chengdu University, 2020.

    [43] 高佩佩. 牛乳酪蛋白胰脂肪酶抑制肽的制备及其结构鉴定[D]. 杨凌: 西北农林科技大学, 2017. [GAO Peipei. Structure identification and preparation of pancreatic lipase inhibitory peptides from bovine casein[D]. Yangling: Northwest A&F University, 2017.

    GAO Peipei. Structure identification and preparation of pancreatic lipase inhibitory peptides from bovine casein[D]. Yangling: Northwest A&F University, 2017.

    [44] 李瑞霞, 淡洁, 吕金潇, 等. 鸡肉蛋白源脂肪酶抑制肽的制备及影响因素[J]. 肉类研究,2019,33(8):29−34. [LI Ruixia, DAN Jie, LÜ Jinxiao, et al. Preparation of lipase inhibitory peptides from chicken myofibrillar protein and factors influencing anti-lipase activity[J]. Meat Research,2019,33(8):29−34.

    LI Ruixia, DAN Jie, LÜ Jinxiao, et al. Preparation of lipase inhibitory peptides from chicken myofibrillar protein and factors influencing anti-lipase activity[J]. Meat Research, 2019, 338): 2934.

    [45] 刘静, 李诚, 胡迤萧, 等. 酶解法制备牦牛骨胶原多肽及其加工性能评价[J]. 食品与生物技术学报,2018,37(5):547−554. [LIU Jing, LI Cheng, HU Yixiao, et al. Preparation by hydrolysis method and functional properties of yak bone collagen polypeptides[J]. Journal of Food Science and Biotechnology,2018,37(5):547−554.

    LIU Jing, LI Cheng, HU Yixiao, et al. Preparation by hydrolysis method and functional properties of yak bone collagen polypeptides[J]. Journal of Food Science and Biotechnology, 2018, 375): 547554.

    [46] 宁诗文, 崔珊珊, 尚宏丽. 响应面法优化大黄花鱼肉蛋白水解工艺及多肽抗氧化性研究[J]. 食品工业科技,2020,41(13):219−226. [NING Shiwen, CUI Shanshan, SHANG Hongli. Optimization of the protein hydrolysis process by response surface method and the antioxidant properties of polypeptides in large yellow croaker[J]. Science and Technology of Food Industry,2020,41(13):219−226.

    NING Shiwen, CUI Shanshan, SHANG Hongli. Optimization of the protein hydrolysis process by response surface method and the antioxidant properties of polypeptides in large yellow croaker[J]. Science and Technology of Food Industry, 2020, 4113): 219226.

    [47] 郝学财, 余晓斌, 刘志钰, 等. 响应面方法在优化微生物培养基中的应用[J]. 食品研究与开发,2006,27(1):38−41. [HAO Xuecai, YU Xiaobin, LIU Zhiyu, et al. The application of response surface methodology in optimization of microbial media[J]. Food Research and Development,2006,27(1):38−41.

    HAO Xuecai, YU Xiaobin, LIU Zhiyu, et al. The application of response surface methodology in optimization of microbial media[J]. Food Research and Development, 2006, 271): 38−41.

    [48] 赵丛枝, 寇天舒, 张子德. 发酵型无花果果酒加工工艺的研究[J]. 食品研究与开发,2014(13):79−82. [ZHAO Congzhi, KOU Tianshu, ZHANG Zide. Study on the processing technology of fermented wind of fig fruit[J]. Food Research and Development,2014(13):79−82.

    ZHAO Congzhi, KOU Tianshu, ZHANG Zide. Study on the processing technology of fermented wind of fig fruit[J]. Food Research and Development, 201413): 7982.

    [49] 李积华, 郑为完, 张斌, 等. 绿豆蛋白的酶法水解—工艺研究[J]. 食品研究与开发,2007(3):69−73. [LI Jihua, ZHENG Weiwan, ZHANG Bin, et al. Study on the enzymatical hydrosis of mungbean protein[J]. Food Research and Development,2007(3):69−73. doi: 10.3969/j.issn.1005-6521.2007.03.019

    LI Jihua, ZHENG Weiwan, ZHANG Bin, et al. Study on the enzymatical hydrosis of mungbean protein[J]. Food Research and Development, 20073): 6973. doi: 10.3969/j.issn.1005-6521.2007.03.019

    [50] 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索,2015,34(8):41−45. [LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory,2015,34(8):41−45.

    LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory, 2015, 348): 4145.

    [51] 冯结铧, 娄华, 钟先锋, 等. 响应面分析法优化亚麻籽粕水解工艺研究[J]. 中国调味品,2019,44(8):99−104. [FENG Jiehua, LOU Hua, ZHONG Xianfeng, et al. Study on optimization of flaxseed meal hydrolysis process by response surface methodology[J]. China Condiment,2019,44(8):99−104.

    FENG Jiehua, LOU Hua, ZHONG Xianfeng, et al. Study on optimization of flaxseed meal hydrolysis process by response surface methodology[J]. China Condiment, 2019, 448): 99104.

    [52] 张晶, 郑毅男, 李向高, 等. 西洋参总皂苷及单体皂苷对胰脂肪酶活性的影响[J]. 吉林农业大学学报,2002,24(1):62−63,87. [ZHANG Jing, ZHENG Yinan, LI Xianggao, et al. Effects of saponins from Panax quinquefolium linne on the metabolism of lipid[J]. Journal of Jilin Agricultural University,2002,24(1):62−63, 87.

    ZHANG Jing, ZHENG Yinan, LI Xianggao, et al. Effects of saponins from Panax quinquefolium linne on the metabolism of lipid[J]. Journal of Jilin Agricultural University, 2002, 241): 6263, 87.

    [53] 龚受基, 滕翠琴, 梁东姨, 等. 六堡茶茶褐素体外降脂功效研究[J]. 茶叶科学,2020,40(4):536−543. [GONG Shouji, TENG Cuiqin, LIANG Dongyi, et al. In vitro study on hypolipidemic effects of theabrownins in Liupao tea[J]. Journal of Tea Science,2020,40(4):536−543.

    GONG Shouji, TENG Cuiqin, LIANG Dongyi, et al. In vitro study on hypolipidemic effects of theabrownins in Liupao tea[J]. Journal of Tea Science, 2020, 404): 536543.

    [54] 刘晓静. 亚麻籽肽降胆固醇作用的研究[D]. 呼和浩特:内蒙古农业大学, 2020. [LIU Xiaojing. Study on the cholesterol-lowering effect of flaxseed peptide[D]. Hohhot:Inner Mongolia Agricultural University, 2020.

    LIU Xiaojing. Study on the cholesterol-lowering effect of flaxseed peptide[D]. Hohhot: Inner Mongolia Agricultural University, 2020.

    [55] 霍世欣, 周陶忆, 司晓晶, 等. 荷叶黄酮化合物对胰脂肪酶抑制作用的研究[J]. 天然产物研究与开发,2008,20(2):328−331. [HUO Shixin, ZHOU Taoyi, SI Xiaojing, et al. Inhibitory effect on pancreatic lipase of flavonoids derived from lotus leaf[J]. Natural Product Research and Development,2008,20(2):328−331.

    HUO Shixin, ZHOU Taoyi, SI Xiaojing, et al. Inhibitory effect on pancreatic lipase of flavonoids derived from lotus leaf[J]. Natural Product Research and Development, 2008, 202): 328331.

    [56] 王建成, 邢岩, 张丽梅. 红松仁多肽酶解工艺优化及活性研究[J]. 中国油脂, 2022:1−15. [WANG Jiancheng, XING Yan, ZHANG Limei. Optimization of enzymatic hydrolysis process and activity of Korean pine kernel polypeptide[J]. China Oils and Fats, 2022:1−15.

    WANG Jiancheng, XING Yan, ZHANG Limei. Optimization of enzymatic hydrolysis process and activity of Korean pine kernel polypeptide[J]. China Oils and Fats, 2022: 1−15.

    [57]

    BRADY L, BRZOZOWSKI A M, DEREWENDA Z S, et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase[J]. Nature,1990,343(6260):767−70. doi: 10.1038/343767a0

    [58] 魏连会, 宋淑敏, 董艳, 等. 汉麻籽多肽的氨基酸营养组成与体外结合胆酸盐能力的研究[J]. 中国粮油学报,2020,35(1):62−66. [WEI Lianhui, SONG Shumin, DONG Yan, et al. Evaluation of amino acid nutritional composition and in vitro binding of bile salts power of hemp seed polypeptide[J]. Journal of the Chinese Cereals and Oils,2020,35(1):62−66. doi: 10.3969/j.issn.1003-0174.2020.01.011

    WEI Lianhui, SONG Shumin, DONG Yan, et al. Evaluation of amino acid nutritional composition and in vitro binding of bile salts power of hemp seed polypeptide[J]. Journal of the Chinese Cereals and Oils, 2020, 351): 6266. doi: 10.3969/j.issn.1003-0174.2020.01.011

    [59] 朱晓连, 陈华, 蔡冰娜, 等. 具有结合胆酸盐作用卵形鲳鲹蛋白酶解物的制备和分子量分布研究[J]. 南方水产科学,2017,13(2):101−108. [ZHU Xiaolian, CHEN Hua, CAI Bingna, et al. Production of bile acid salts binding hydrolysate from Trachinotus ovatus and its molecular weight distribution[J]. South China Fisheries Science,2017,13(2):101−108.

    ZHU Xiaolian, CHEN Hua, CAI Bingna, et al. Production of bile acid salts binding hydrolysate from Trachinotus ovatus and its molecular weight distribution[J]. South China Fisheries Science, 2017, 132): 101108.

    [60] 姜欣洋, 陈华, 蔡冰娜, 等. 补骨脂乙醇提取物活性成分与抗氧化及胆酸盐结合能力的关联性分析[J]. 食品工业科技,2022,43(13):381−388. [JIANG Xinyang, CHEN Hua, CAI Bingna, et al. Correlation analysis between the active ingredients and the antioxidant or cholate-binding ability of ethanol extracts from Psoralea corylifolia L[J]. Science and Technology of Food Industry,2022,43(13):381−388.

    JIANG Xinyang, CHEN Hua, CAI Bingna, et al. Correlation analysis between the active ingredients and the antioxidant or cholate-binding ability of ethanol extracts from Psoralea corylifolia L[J]. Science and Technology of Food Industry, 2022, 4313): 381388.

    [61] 宋玲钰. 花生降胆固醇肽的制备及饮料开发[D]. 泰安:山东农业大学, 2016. [SONG Lingyu. Preparation of cholesterol lowering peanut polypeptide and development of beverage[D]. Taian:Shandong Agricultural University, 2016.

    SONG Lingyu. Preparation of cholesterol lowering peanut polypeptide and development of beverage[D]. Taian: Shandong Agricultural University, 2016.

    [62] 刘馥源. 香菇多酚提取工艺、生物活性及残渣利用研究[D]. 南昌:江西农业大学, 2021. [LIU Fuyuan. Study on extraction technology, biological activity of Lentinus edodes polyphenols and residue utilization[D]. Nanchang:Jiangxi Agricultural University, 2021.

    LIU Fuyuan. Study on extraction technology, biological activity of Lentinus edodes polyphenols and residue utilization[D]. Nanchang: Jiangxi Agricultural University, 2021.

    [63] 武媛. 石榴皮多糖的提取纯化、结构表征及体外降脂活性研究[D]. 西安:陕西师范大学, 2021. [WU Yuan. Extraction, purification, structural characterization and lipid-lowering activity of pomegranate peel polysaccharide in vitro[D]. Xi'an:Shaanxi Normal University, 2021.

    WU Yuan. Extraction, purification, structural characterization and lipid-lowering activity of pomegranate peel polysaccharide in vitro[D]. Xi'an: Shaanxi Normal University, 2021.

    [64]

    AHHMED A M, MUGURUMA M. A review of meat protein hydrolysates and hypertension[J]. Meat Science,2010,86(1):110−8. doi: 10.1016/j.meatsci.2010.04.032

    [65] 龚受基, 蒙彦妃, 曹惠怡, 等. 凡纳滨对虾蛋白体外降脂作用分析[J]. 食品工业科技,2020,41(11):316−321. [GONG Shouji, MENG Yanfei, CAO Huiyi, et al. Hypolipidemic effects of protein from Penaeus vannamei in vitro[J]. Science and Technology of Food Industry,2020,41(11):316−321.

    GONG Shouji, MENG Yanfei, CAO Huiyi, et al. Hypolipidemic effects of protein from Penaeus vannamei in vitro[J]. Science and Technology of Food Industry, 2020, 4111): 316321.

    [66]

    OSADA Y, TSUCHIMOTO M, FUKUSHIMA H, et al. Hypouricemic effect of the novel xanthine oxidase inhibitor, TEI-6720, in rodents[J]. European Journal of Pharmacology,1993,241(2):183−188.

    [67] 邹琳. 鲣鱼黄嘌呤氧化酶抑制肽的酶解制备及功能活性评价[D]. 杭州:浙江大学, 2019. [ZOU Lin. Enzymatic preparation and functional evaluation of xanthine oxidase inhibitory peptides from skipjack tuna[D]. Hangzhou:Zhejiang University, 2019.

    ZOU Lin. Enzymatic preparation and functional evaluation of xanthine oxidase inhibitory peptides from skipjack tuna[D]. Hangzhou: Zhejiang University, 2019.

    [68] 詹苏泓, 吉宏武, 张迪, 等. 远东拟沙丁鱼黄嘌呤氧化酶抑制肽的制备及其降尿酸活性的研究[J]. 食品与发酵工业,2022,48(16):79−86. [ZHAN Suhong, JI Hongwu, ZHANG Di, et al. Preparation of the xanthine oxidase inhibitory peptide from Sardinops sagax and its activity on reducing uric acid[J]. Food and Fermentation Industries,2022,48(16):79−86.

    ZHAN Suhong, JI Hongwu, ZHANG Di, et al. Preparation of the xanthine oxidase inhibitory peptide from Sardinops sagax and its activity on reducing uric acid[J]. Food and Fermentation Industries, 2022, 4816): 7986.

    [69]

    JIANG C, WANG Q, WEI Y, et al. Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice[J]. Journal of Ethnopharmacology,2015,176:17−26. doi: 10.1016/j.jep.2015.10.006

    [70] 徐向英. 燕麦蛋白提取、性质以及降血脂活性研究[D]. 郑州:河南工业大学, 2012. [XU Xiangying. The studies on extraction, properties and lipid-lowering activity of oat protein[D]. Zhengzhou:Henan University of Technology, 2012.

    XU Xiangying. The studies on extraction, properties and lipid-lowering activity of oat protein[D]. Zhengzhou: Henan University of Technology, 2012.

    [71]

    ZHONG F, ZHANG X, MA J, et al. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalase hydrolysates[J]. Food Research International,2007,40(6):756−762. doi: 10.1016/j.foodres.2007.01.005

    [72] 高婕. 具有降胆固醇活性的亚麻籽肽的制备及其对大鼠降胆固醇作用的研究[D]. 呼和浩特:内蒙古农业大学, 2018. [GAO Jie. A novel hypocholesterolemic peptide derived from flaxseed protein and its effect on hyperlipidemic rats[D]. Hohhot:Inner Mongolia Agricultural University, 2018.

    GAO Jie. A novel hypocholesterolemic peptide derived from flaxseed protein and its effect on hyperlipidemic rats[D]. Hohhot: Inner Mongolia Agricultural University, 2018.

    [73] 宋淑敏, 魏连会, 董艳, 等. 汉麻降脂肽氨基酸序列分析[J]. 中国粮油学报,2021,36(3):51-59. [SONG Shumin, WEI Lianhui, DONG Yan, et al. Analysis on amino acid sequence of hemp seed hypolipidemic polypeptided[J]. Journal of the Chinese Cereals and Oils,2021,36(3):51-59.

    SONG Shumin, WEI Lianhui, DONG Yan, et al. Analysis on amino acid sequence of hemp seed hypolipidemic polypeptided[J]. Journal of the Chinese Cereals and Oils, 2021, 363): 51-59.

    [74]

    TAKESHITA T, OKOCHI M, KATO R, et al. Screening of peptides with a high affinity to bile acids using peptide arrays and a computational analysis[J]. Journal of Bioscience and Bioengineering,2011,112(1):92−97. doi: 10.1016/j.jbiosc.2011.03.002

    [75] 郑睿. 降胆固醇亚麻籽蛋白酶解肽的制备及结构表征[D]. 呼和浩特:内蒙古农业大学, 2016. [ZHENG Rui. Structure identification and preparation of peptide from flaxseed protein with hypocholesterolemic[D]. Hohhot:Inner Mongolia Agricultural University, 2016.

    ZHENG Rui. Structure identification and preparation of peptide from flaxseed protein with hypocholesterolemic[D]. Hohhot: Inner Mongolia Agricultural University, 2016.

    [76]

    KONGO-DIA J U, NSOR-ATIND J, ZHANG H. Hypocholesterolemic activity and characterization of protein hydrolysates from defatted corn protein[J]. Asian Journal of Biochemistry,2011,6(6):439−449. doi: 10.3923/ajb.2011.439.449

    [77] 李宇娟. 鲣鱼降尿酸肽的制备分离、结构表征及功效机制研究[D]. 广州:华南理工大学, 2019. [LI Yujuan. Preparation, isolation, structural characterization, and the effect mechanism of uric acid-lowering peptides derived from bonito[D]. Guangzhou:South China University of Technology, 2019.

    LI Yujuan. Preparation, isolation, structural characterization, and the effect mechanism of uric acid-lowering peptides derived from bonito[D]. Guangzhou: South China University of Technology, 2019.

  • 期刊类型引用(5)

    1. 王静静,范硕,潘道东,曾小群,吴振,杜启伟,涂茂林. 食源性降血脂肽的研究进展:来源、作用机制及其构效关系. 食品安全质量检测学报. 2024(06): 124-132 . 百度学术
    2. 周亚利,江泉. 藜麦蛋白肽QPP-Ⅰ对小鼠抗运动性疲劳作用的研究. 食品科技. 2024(07): 196-204 . 百度学术
    3. 张笑莹,钟婉滢,马凤,叶灏铎,苗建银,李静,巩发永. 苦荞蛋白降血脂肽的酶解制备、氨基酸组成及活性研究. 食品工业科技. 2024(21): 129-139 . 本站查看
    4. 蒋丽,张文慧,马丽霞,欧阳瑞文. 具有降尿酸功效的食品原料成分和机理研究. 现代食品. 2024(17): 11-16 . 百度学术
    5. 郭子渊,邓晓青,平椿源,吴晓蒙,李想,李道通,肖鑫鑫,孔瑞雪. 藜麦营养组分及功能活性研究进展. 食品安全质量检测学报. 2024(22): 49-57 . 百度学术

    其他类型引用(3)

图(11)  /  表(5)
计量
  • 文章访问数:  185
  • HTML全文浏览量:  22
  • PDF下载量:  40
  • 被引次数: 8
出版历程
  • 收稿日期:  2023-01-09
  • 网络出版日期:  2023-09-24
  • 刊出日期:  2023-11-24

目录

/

返回文章
返回
x 关闭 永久关闭