Processing math: 100%
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

海参内脏精深加工难点与对策

刘文亮, 周永波, 曾荣急, 单勇军, 黄世英, 李健

刘文亮,周永波,曾荣急,等. 海参内脏精深加工难点与对策[J]. 食品工业科技,2023,44(20):458−466. doi: 10.13386/j.issn1002-0306.2022120150.
引用本文: 刘文亮,周永波,曾荣急,等. 海参内脏精深加工难点与对策[J]. 食品工业科技,2023,44(20):458−466. doi: 10.13386/j.issn1002-0306.2022120150.
LIU Wenliang, ZHOU Yongbo, ZENG Rongji, et al. Difficulties and Countermeasures in Deep Processing of Sea Cucumber Viscera[J]. Science and Technology of Food Industry, 2023, 44(20): 458−466. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120150.
Citation: LIU Wenliang, ZHOU Yongbo, ZENG Rongji, et al. Difficulties and Countermeasures in Deep Processing of Sea Cucumber Viscera[J]. Science and Technology of Food Industry, 2023, 44(20): 458−466. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120150.

海参内脏精深加工难点与对策

基金项目: 国家自然科学基金面上项目(32272322);全国农业教指委面上课题(2021-NYYB-20);福建省教育教学研究重大项目(FBJG20220205);福建省财政厅项目(闽财指[2021]848号)。
详细信息
    作者简介:

    刘文亮(1999−),男,硕士研究生,研究方向:食品科学,E-mail:1729264752@qq.com。

    通讯作者:

    李健(1980−),男,博士,教授,研究方向:天然活性物质,E-mail:lijian2013@jmu.edu.cn。

  • 中图分类号: TS254.9

Difficulties and Countermeasures in Deep Processing of Sea Cucumber Viscera

  • 摘要: 海参具有抗肿瘤、抗凝血、抗氧化和调节免疫力等多种生理功能,有很高的食用和药用价值,在营养保健方面备受重视。国内外对海参内脏的开发利用研究较少,对海参内脏的活性成分缺乏认识,并且海参内脏往往作为加工副产物而被随意丢弃,得不到充分利用。目前,海参内脏的利用主要集中于活性成分的鉴定和产品的脱腥,对产品的开发研究较少。本文以海参内脏的营养物质及活性成分为导向,从论文、授权专利和保健食品三个方面,阐述了海参肠、卵、精、生殖腺和海参内脏的加工利用、脱腥方法的建立以及潜在的产品开发方向。总体而言,目前普遍存在海参内脏活性成分加工方式不统一,保健食品效用成分不明确等缺点。随着加工技术的发展,运用酶解、提取等手段对海参内脏进行综合利用将成为重要方向。
    Abstract: Sea cucumber has many physiological functions, such as anti-tumor, anti-coagulation, anti-oxidation and immunity regulation. It has high edible and medicinal value, and has received much attention in nutrition and health care. There are few researches on the exploitation and utilization of sea cucumber viscera at home and abroad, and a lack of knowledge about the active components of sea cucumber viscera. The viscera of sea cucumber is often discarded as a by-product of processing and can not be fully utilized. At present, the utilization of sea cucumber viscera mainly focuses on the identification of active components and the removal of fishy products, and the research on the development of products is less. Based on the nutrients and active components of sea cucumber viscera, this paper expounds the processing and utilization of sea cucumber intestines, eggs, sperms, gonads and viscera, the establishment of removing fishy smell methods and the potential development direction of products from three aspects of papers, authorized patents and health food. In general, at present, there are generally shortcomings such as inconsistent processing methods of active components of sea cucumber offal and unclear practical ingredients of health food. With the development of processing technology, the comprehensive utilization of sea cucumber viscera by enzymatic hydrolysis and extraction will become an important direction.
  • 我国是海参养殖和消费大国,根据历年中国渔业统计年鉴公布,2010年~2021年全国海参养殖面积保持增长趋势,2021年养殖面积达到371.1万亩(图1),海参总产量达到22.27万吨,山东、辽宁和福建仍为其主要产区,海参产业全产业链产值已经突破1000亿元。海参(Stichopus japonicus)属于棘皮动物门、海参纲,是一种海洋无脊椎动物,广泛分布于世界各地的底栖区和深海[1]。海参被公认为是一种补药和传统药物,除了富含氨基酸、脂肪酸和微量元素等成分之外[2-3],还含有多糖、蛋白质、皂苷等多种生物活性物质[4-5]。已有研究证明,海参在抗肿瘤[6]、抗凝血[7]、抗氧化[8]、增强免疫力[9]等方面具有显著的作用。然而,在海参深加工过程中,海参内脏往往作为加工副产物而被随意处理,在对海参内脏营养成分的深入研究上还有很大的空白,并且缺乏对海参内脏的回收加工,从而造成严重的资源浪费和环境污染。

    图  1  海参养殖面积与产量(2010~2021年)
    注:数据来源于历年中国渔业统计年鉴。
    Figure  1.  Cultivation area and yield of sea cucumber (2010~2021)

    目前,国内外在海参内脏精深加工方面的研究较少,张永勤等[10]对海参内脏的主要结构、组成及其生物活性成分等进行了综述和回顾,阐明了海参内脏综合利用的可行性。同时,杨兰苹等[11]也报道了相关的研究进展,比较系统的阐述了海参内脏的化学成分、功能活性等,并且对相关活性成分的提取与纯化进行了系统的介绍,为海参内脏相关食品、保健品的研究与开发提供了理论依据。另外,李天骄等[12]采用超临界CO2萃取装置对海星内脏油进行萃取,表明海星内脏油具有明显体外抗肝癌及结直肠癌作用,此研究为我们对海参内脏相关方面的加工利用提供了新的参考。本文对海参肠、卵、精、生殖腺及海参内脏的化学成分和功能活性成分的提取加工(图2)进行了详细的论述,并且简要概述了海参内脏的脱腥方法。同时,本文从论文、授权专利和保健食品等方面对海参内脏酶解、活性成分的提取与纯化以及产品加工等方向进行了介绍,为海参内脏成分的利用以及相关功能食品和药物的开发与研究提供了依据。

    图  2  海参内脏精深加工技术图
    注:字母A~M表示部位与方法相对应。
    Figure  2.  Deep processing technology of sea cucumber viscera

    海参肠的主要化学组分为蛋白质、脂肪、多糖和皂苷,还含有少量的酚类、黄酮类化合物和一些微量元素[13-14],蛋白质、脂肪、多糖和皂苷的含量分别可达到11.36%±0.31%、1.93%±0.15%、0.92%±0.09%和1.03%±0.06%,其中蛋白质、脂肪和皂苷含量明显高于体壁。此外,研究发现海参肠中的总酚(236 mg/100 g)和总类黄酮(44.1 mg/100 g)含量均高于体壁,并且主要以肉桂酸、原儿茶酸和对香豆酸等酚类化合物为主。参肠中必需氨基酸的含量显著高于体壁中氨基酸的含量,其中EAA/TAA为37.77%,比体壁更接近于蛋白质理想模式,并且在参肠中检测到海参体壁中未发现的牛磺酸,其含量为2.3 g/100 g(干重),不过参肠中羟脯氨酸的含量近乎为零[15]。海参肠中营养成分的极大丰富,在深加工和开发营养产品方面具有很大的潜能。

    海参肠中含有丰富的蛋白质组分,曹荣等[16]采用中性蛋白酶与木瓜蛋白酶复配的形式,将刺参肠进行酶解,经过离心浓缩、过滤、冷冻干燥后得到刺参肠多肽,并测定多肽的水解度和抗氧化活性,结果显示刺参肠多肽的水解度可达到53.63%,其中可溶性蛋白质量浓度为4.62 mg/mL,清除DPPH·、·OH、O2·的IC50分别可达到3.31、9.53、6.4 mg/mL,体外抗氧化效果显著。Esther等[17]采用热水提取法提取海参肠多糖,多糖的平均得率可达到4.43%±0.17%,平均分子量为4.91×106 Da,探究其理化性质发现海参多糖为均质多糖,主要由甘露糖、阿拉伯糖、半乳糖、葡萄糖和岩藻糖组成。海参肠冻干粉在肥胖和相关代谢紊乱方面同样具有显著作用,Surendiran等[18]以C57BL/6为动物模型,通过对高脂肪饮食(high fat diet, HFD)小鼠喂食海参肠冻干粉,持续喂养12周后,结果发现,喂食富含海参肠冻干粉的HFD小鼠显著减少了体重和脂肪重量的增加,并且显著降低了HFD小鼠血浆葡萄糖、总胆固醇、三酰甘油、非酯化脂肪酸的水平,同时增加了粪便胆固醇的排泄以及ABCG-5和-8基因表达水平。此外,刺参肠中还含有多种内源酶,采用明胶酶谱法检测到刺参肠中胶原蛋白酶的活性,发现刺参肠中具有能够降解体壁胶原蛋白的内源酶,并且在自溶中发挥重要作用[19]。酶解和浸提作为一种有效的加工策略,海参肠及海参多肽在抗氧化和抗肥胖等方面具有显著作用。并且研究认为海参多糖具有抗凝血、抗肿瘤等多种生物活性,拥有很高的开发和应用价值[20]

    海参卵营养均衡,具有较高含量的粗蛋白和粗多糖,分别可达到51.80和26.98 g/100 g,粗脂肪含量可达到10.18 g/100 g左右,多以磷脂的形式存在。氨基酸总量与必需氨基酸总量分别为354.6和180.03 mg/g,其中Glu、Asp、Leu和Lys含量较高。不饱和脂肪酸含量可达到73.22 g/100 g,EPA和DHA含量丰富,并且含有多种矿质元素,如Ca、Zn等[21-22]。海参卵营养素种类齐全、含量均衡,具有开发高品质营养品的潜在价值。

    潘芸芸等[23]在参卵酶解液中加入0.3%乳酸菌进行发酵,将发酵液进行喷雾干燥成粉,进行条件优化后所得到的肽粉蛋白含量可达到12.5 g/100 g,集粉率可达68.69%,所制备的海参卵肽粉色泽呈淡黄色,组织细腻均匀,无腥味异味,溶解性好。仿刺参卵多肽具有增强免疫力的功能,利用木瓜蛋白酶酶解后进行超滤、分离纯化,得到粗蛋白含量为64.74 g/100 g,分子质量在130~1600 Da的多肽组分。对小鼠口服灌胃不同剂量的多肽,30 d后,小鼠的细胞免疫功能和单核-巨噬细胞吞噬功能显著提高,并且多肽对小鼠淋巴细胞增殖能力同样具有促进作用[24]。刘昕等[25]向仿刺参卵中加入木瓜蛋白酶进行酶解,取酶解液上清进行超滤、加入95%乙醇进行醇沉后分离纯化得到3种不同多糖组分SPS-1、SPS-2、SPS-3,其多糖结构中存在α-糖苷键,且3种多糖组分对人宫颈癌细胞HeLa、人胃癌细胞HGC-27均表现出一定的抑制作用,其中SPS-1抑制作用最强,并且对人宫颈癌细胞HeLa和人胃癌细胞HGC-27细胞的最高抑制率分别为98.04%、99.4%。以海参内源酶自溶海参卵,先以混合蛋白酶(木瓜蛋白酶:复合蛋白酶=1:1)酶解4 h,煮沸灭酶后添加风味蛋白酶酶解1 h得到的海参多肽水解度达到77.11%,经过超滤得到分子质量<650 Da、650 Da~1 kDa、1~10 kDa的多肽均具有抗氧化活性和增殖巨噬细胞数量的能力[22]。将海参卵进行酶解作为一种常用的加工方法,其多肽具有增强免疫力、抗氧化活性好等优点,并且多糖组分在抗肿瘤方面具有显著的优势,或许酶解将成为一种有力的加工手段。

    海参精是海参的雄性生殖腺组织,富含蛋白质、多糖、多种活性物质,营养成分丰富,其粗蛋白和粗脂肪含量分别可达到74.31 g/100 g和4.26 g/100 g,粗多糖含量为9.93 g/100 g。氨基酸总量与必需氨基酸总量分别为550.89和257.25 mg/g,不饱和脂肪酸含量可达到62.61 g/100 g,并且含有丰富的Mg、Fe、Ca、Zn等微量元素[21,26]。海参精含有多种营养素,尽管其含量不够均衡,但在高值产品开发与利用方面仍不容小觑。

    以木瓜、复合、风味蛋白酶为工具酶,研究多酶复配酶解海参精多肽的自由基清除活性,发现木瓜蛋白酶水解产物水解度为32.14%,体外抗氧化活性表现最优异[26]。利用木瓜蛋白酶酶解、超滤后得到三个多肽组分,发现分子质量<1 kDa的多肽对DPPH·、·OH、O2·的清除能力最强,其清除率IC50值分别可达到4.92、5.14、15.29 mg/mL,具有很强的浓度依赖性,并且多肽中疏水性氨基酸和酸性氨基酸比例均较高, 具有极佳的耐盐性和热稳定性。通过构建细胞模型发现,多肽对H2O2损伤的RAW 264.7巨噬细胞均体现出显著的保护作用(P<0.05)[27-28]。张健等[29]利用木瓜蛋白酶对海参精进行酶解,经过超滤、纯化后,选择清除·OH能力较好的低分子质量多肽组分,以低、中、高剂量组(100、200、600 mg/kg)、模型对照组和空白对照组进行42 d小鼠灌胃实验,结果发现,高剂量多肽组小鼠体内超氧化物歧化酶(superoxide dismutase,SOD)活力显著提高(P<0.05),谷胱甘肽(glutathione,GSH)的含量极显著提高(P<0.01),谷胱甘肽过氧化物氧化酶(glutathione peroxidase,GSH-Px)的活力也呈现剂量依赖性,丙二醛和蛋白质羰基的含量得到有效降低。以木瓜蛋白酶为工具酶,酶解液超滤后加入同体积95%乙醇得到海参精粗多糖,其多糖得率为10.64%,进一步进行分离纯化得到5种多糖组分SCSCP、SCSPA1、SCSPA2、SCSPB1、SCSPB2,对人宫颈癌细胞Hela和HepG2肿瘤细胞均具有良好的抑制作用,并且对DPPH·、·OH和O2·均显示出不同程度的体外清除能力,其中SCSPB2效果最好[30]。经过实验证明,木瓜蛋白酶处理后得到的多肽具有很好的抗氧化能力,并且显著优于其他蛋白酶处理后得到的多肽,而且低分子质量多肽组分的抗氧化能力高于其他组分。在加工前处理方面,木瓜蛋白酶或许可成为优选工具。

    海参生殖腺富含优质蛋白,含有多糖、皂苷、活性脂质、酚类和黄酮类物质等多种活性组分,并且含有大量游离氨基酸,其中Glu含量最高。脂肪和脂肪酸在生殖腺中含量较低,其中不饱和脂肪酸所占比例最高,可达62%~74%[11,21,31]

    海参生殖腺酶解多肽具有抗氧化作用,选用Protomax复合蛋白酶对海参生殖腺进行酶解,所获得的多肽·OH、O2·抑制率均大于0.1 mg/mL的维生素C溶液,FRAR值也大于0.1 mg /mL的维生素C溶液,其抗氧化效果显著[32]。Zhong等[33]利用商业复合蛋白酶制备出具有血管紧张素转换酶(ACE)抑制活性的生物活性肽,从中纯化并鉴定出EIYR、LF和NAPHMR,发现NAPHMR抑制ACE的活性最高并且IC50可达到260.22±3.71 μmol/L。通过分子对接研究,NAPHMR中的Arg、His、和Asn残基通过氢键或π-键与ACE的S2口袋或Zn2+结合,从而达到抑制ACE活性的目的。并且发现,其酶解后游离氨基酸中谷氨酸、甘氨酸和丙氨酸含量增加,以二甲基硫醚为代表的腥味物质含量显著降低[34]。酶解后,多肽具有很好的抗氧化效果和多种生物活性,并且可以有效降低其腥味。

    海参生殖腺还可以增强其免疫活性,钟静诗等[35]采用60%的乙醇冷浸提取、正丁醇萃取的方法制得海参雌性生殖腺皂苷,发现生殖腺皂苷可以提高小鼠体外巨噬细胞吞噬能力,促进TNF-α、IL-6、IFN-γ的分泌。并且显著提高免疫低下模型小鼠胸腺、脾脏指数、碳廓清指数和吞噬指数,显著增强腹腔巨噬细胞和脾细胞增殖活性、NK细胞的活性和CD4+/CD8+水平,促进TNF-α、IL-6、IFN-γ的分泌,表现出很好的增强免疫的活性。Wang等[36]用木瓜蛋白酶和Protamex酶混合酶解海参性腺(蛋白酶/底物为1%),将酶解物离心后取上清、冻干得到海参性腺水解物(SCGH),SCGH主要由分子量小于3 kDa的多肽组成,并且Glu、Gly、Asp、Arg、Pro和Ala含量较高。通过对链脲霉素联合高脂饮食诱导的Ⅱ型糖尿病大鼠模型喂食SCGH,发现SCGH可以显著降低大鼠摄水量、空腹血糖水平和糖化血红蛋白水平,并且其口服糖耐量、胰岛素抵抗和血脂水平得到改善。同时,机制研究表明,SCGH是通过激活IRS/Akt信号通路和AMPK信号通路来改善糖代谢和脂质代谢,说明海参生殖腺水解物对Ⅱ型糖尿病同样可以起到改善作用。

    海参内脏中含有丰富的多肽,陶海英等[37]利用菠萝蛋白酶和胰蛋白酶复配(加酶量8000 U/g,酶活力配比为1:3)的形式得到内脏蛋白酶解物,随后给小鼠颈背部皮下注射D-半乳糖建立衰老模型,然后对小鼠进行内脏蛋白酶解物灌胃给药42 d后发现,灌胃内脏蛋白酶解物可显著提高小鼠肝脏和心脏中SOD和GSH-Px活力,并显著降低丙二醛含量(P<0.05),说明一定程度上可以提高D-半乳糖致衰老模型小鼠的抗氧化能力。以碱性蛋白酶[38]或胰蛋白酶[39]为工具酶,可以得到具有ACE抑制活性和抗氧化活性的活性肽,其ACE抑制活性、DPPH·清除率和Fe2+螯合能力IC50分别可达到1.7、3.8和1.6 mg/mL。另外,采用超声波辅助碱法[40]提取海参内脏多肽的蛋白提取率可到达84.53%。杨东达[41]利用木瓜蛋白酶酶解海参内脏,经过95%乙醇溶液醇沉获得海参内脏粗多糖,平均得率可达4.90%。其中组分SCVP-1可以通过MAPKs和NF-κB信号转导通路激活巨噬细从而提高巨噬细胞的吞噬作用,发现TLR4受体是SCVP-1激活巨噬细胞的作用靶点;SCVP-2通过调控MAPKs和NF-κB信号转导通路影响炎症细胞因子的过量释放。通过对环磷酰胺致免疫低下小鼠喂食SCVP-1发现,SCVP-1能够显著提升小鼠免疫脏器指数,并且有效促进小鼠溶血素抗体的生成以及小鼠血清IL-2、IL-4和IFN-γ的分泌水平,具有很好的免疫增强活性。

    Kwon等[42]将海参内脏冻干后磨成粉末,通过水萃取得到水溶液提取物,并且发现水溶液提取物可以减低黑色素细胞中的黑色素含量,可能是通过酪氨酸酶的酶抑制发挥作用。通过人体皮肤体外模型发现,水溶液提取物可以显著增强Ⅳ型胶原蛋白和Ki-67的表达,下调MMP-9的表达水平,从而促进胶原蛋白的合成。海参内脏中含有丰富的皂苷成分,Bahrami等[43]利用70%乙醇浸提从海参内脏中至少发现了39种结构多样性较高的新皂苷,另有36种含有不同苷元和糖基的三萜苷,具有潜在的生物活性。酶解是一种海参内脏加工处理的有效手段,辅助其他方法可以得到多种功能活性成分,具有广阔的应用空间。

    目前,海参加工过程中针对脱腥的研究方法较少,陈增鑫等[44]以海参肠、卵酶解液为原料,采用生姜掩盖法、活性炭吸附法、大孔树脂吸附法、酵母发酵法和乳酸菌发酵法进行脱腥处理,利用电子舌、电子鼻等进行脱腥效果分析,发现乳酸菌发酵法的脱腥效果较好,腥味值较低,且庚醛、反,顺-2,6-壬二烯醛等腥味物质显著降低,刺激性气味减少,可以有效减少腥味物质。并且,汪韬等[45]通过分析表明,海参经过乳酸菌发酵后不愉快气味的挥发性化合物种类减少,愉快气味的挥发性化合物由18种增加到33种,其富含乳酸菌的海参肽冻干粉无腥味且具有发酵产生的良好风味。酶解后,其腥味物质含量显著降低[34],经过发酵可以进一步达到脱腥的目的。

    本文对现有海参内脏成分的加工应用及产品开发等相关研究进行了归纳,统计得到论文和授权专利共107篇。经过统计分析发现(图3),目前针对海参肠、海参内脏和海参卵的相关研究占较大部分,分别占比36%、28%和18%。并且,研究主要集中于海参多肽的加工应用、内源酶的筛选和多糖的提取纯化,在脂质的提取及皂苷的分离纯化等方面研究较少。已有研究表明,脂质和皂苷作为海参的重要功能成分,在保肝[46]、抗肥胖[47]和调节代谢紊乱[48]等方面发挥重要作用,具有很好的开发潜力。

    图  3  海参内脏组成成分加工应用所占比例(a)和海参内脏加工方向所占比例(b)
    Figure  3.  The proportion of processing and application of each component of sea cucumber viscera (a) and the proportion of viscera processing direction of sea cucumber (b)

    目前,针对海参加工副产物的开发主要基于对多肽、多糖或海参提取物等活性物质的利用,以口服液、肽粉、胶囊等形式存在(表1)。并且,在保健食品方面(表2),已有大量含有海参相关成分的保健食品上市。海参内脏成分经过酶解技术的加工和营养物质的提取,得到更易于人体吸收小分子活性肽和活性成分,然后利用提取到的活性肽组分添加枸杞、人参等制取的天然植物提取液,从而制得具有抗衰老、抗肿瘤、增强免疫力等功效的功能产品。

    表  1  以海参内脏为基础原料的授权专利
    Table  1.  Authorized patent for raw material based on sea cucumber viscera
    营养功能部位功效成分加工工艺产品形态参考文献
    增强免疫力、抗氧化、抗疲劳肠卵多肽酶解肽粉[4950]
    精巢酶解液酶解糖果[51]
    卵巢酶解液酶解糖果[52]
    内脏多糖、皂甙、多肽酶解、醇沉、萃取[5356]
    多肽酶解口服液[57]
    膳食补充内脏海参油CO2超临界萃取油制品[5859]
    内脏海参油CO2超临界萃取胶囊[60]
    肠卵多肽酶解调味汁[61]
    多肽酶解、发酵营养粉[6263]
    酵素酶解、发酵[64]
    抗肿瘤多肽酶解[65]
    多肽酶解胶囊[66]
    肠卵多肽酶解复合补充剂[67]
    改善血液循环、增强记忆力肠或卵多肽酶解胶囊[68]
    降压内脏多肽酶解肽粉[69]
    促骨生成作用多肽酶解[70]
    注:“−”表示无。
    下载: 导出CSV 
    | 显示表格
    表  2  以海参为原料的保健食品
    Table  2.  Health food with sea cucumber as raw material
    产品名称保健功能产品形态批准日期国产/进口
    喜康片免疫调节片剂1997.4.24进口
    鲁之参牌润酒增强免疫力液体2022.1.25国产
    康业尚膳牌海参茶油胶囊缓解体力疲劳胶囊2022.1.25国产
    健博尔牌海参牡蛎胶囊增强免疫力胶囊2022.1.25国产
    珍康牌海参王浆胶囊增强免疫力、辅助降血脂胶囊2021.4.7国产
    海中堂牌芦荟红花海参胶囊祛黄褐斑胶囊2021.2.26国产
    必源牌海参三七银杏叶胶囊辅助降血脂胶囊2020.12.17国产
    棒棰岛牌海参丹参葡萄籽胶囊抗氧化胶囊2020.10.28国产
    贡参宝牌海参胶囊增强免疫力胶囊2020.6.23国产
    维尼莱牌叶黄素越橘片缓解视疲劳片剂2019.8.23国产
    注:信息来源于中国国家市场监督管理总局。
    下载: 导出CSV 
    | 显示表格

    如今,海洋天然产物被认为是药物开发化合物的主要来源之一。海参是具有制药价值的天然产品的潜在来源[71]。其中,海参内脏富含多种营养物质及活性成分,显示出开发新型食品和应用于生物医学领域的巨大潜力。海参内脏中蛋白质含量丰富,其多肽成分的获取大多为利用蛋白酶进行酶解[72-73],并且酶解产物普遍拥有抗氧化[74]、抗炎[75]、增强免疫力等功效,为相关功能食品的研究与开发提供了依据。多糖和皂苷等功能成分由于提取条件的不同,其结构和活性有所区别[76-77],其抗肿瘤[78]、抗炎等功能为未来药物研发提供了可能。

    目前,针对海参内脏的开发利用主要集中于海参肠、卵等,在海参多肽的加工应用及内源酶的筛选等方面占较大比例,并且针对海参内脏产品的开发利用在相关授权专利和保健产品中已有部分应用,为未来海参内脏的开发初步指明了方向。海参加工脱腥工艺主要集中于物理、化学和微生物发酵[44,79],相关的研究较少、方法较为单一。其中利用微生物进行发酵的方法取得了较为有效的效果,但仍存在局限性,采用联合脱腥[80]的方法可以满足海参加工产品对脱腥方面的要求。因此,多种方法的联合脱腥将成为潜在方向和主流趋势。在活性开发方面,海参加工副产物的利用更多趋向于对海参内脏酶解产物或者提取物的利用,对其具体活性成分的了解较少,很难进行有效的靶向定位。加强对海参内脏加工利用的深入研究,解决精深加工难题,以药物为导向进一步开发海参内脏的活性成分,对其结构和功效成分进行深入研究,从而实现海参内脏目标营养成分及活性物质的精准利用。

  • 图  1   海参养殖面积与产量(2010~2021年)

    注:数据来源于历年中国渔业统计年鉴。

    Figure  1.   Cultivation area and yield of sea cucumber (2010~2021)

    图  2   海参内脏精深加工技术图

    注:字母A~M表示部位与方法相对应。

    Figure  2.   Deep processing technology of sea cucumber viscera

    图  3   海参内脏组成成分加工应用所占比例(a)和海参内脏加工方向所占比例(b)

    Figure  3.   The proportion of processing and application of each component of sea cucumber viscera (a) and the proportion of viscera processing direction of sea cucumber (b)

    表  1   以海参内脏为基础原料的授权专利

    Table  1   Authorized patent for raw material based on sea cucumber viscera

    营养功能部位功效成分加工工艺产品形态参考文献
    增强免疫力、抗氧化、抗疲劳肠卵多肽酶解肽粉[4950]
    精巢酶解液酶解糖果[51]
    卵巢酶解液酶解糖果[52]
    内脏多糖、皂甙、多肽酶解、醇沉、萃取[5356]
    多肽酶解口服液[57]
    膳食补充内脏海参油CO2超临界萃取油制品[5859]
    内脏海参油CO2超临界萃取胶囊[60]
    肠卵多肽酶解调味汁[61]
    多肽酶解、发酵营养粉[6263]
    酵素酶解、发酵[64]
    抗肿瘤多肽酶解[65]
    多肽酶解胶囊[66]
    肠卵多肽酶解复合补充剂[67]
    改善血液循环、增强记忆力肠或卵多肽酶解胶囊[68]
    降压内脏多肽酶解肽粉[69]
    促骨生成作用多肽酶解[70]
    注:“−”表示无。
    下载: 导出CSV

    表  2   以海参为原料的保健食品

    Table  2   Health food with sea cucumber as raw material

    产品名称保健功能产品形态批准日期国产/进口
    喜康片免疫调节片剂1997.4.24进口
    鲁之参牌润酒增强免疫力液体2022.1.25国产
    康业尚膳牌海参茶油胶囊缓解体力疲劳胶囊2022.1.25国产
    健博尔牌海参牡蛎胶囊增强免疫力胶囊2022.1.25国产
    珍康牌海参王浆胶囊增强免疫力、辅助降血脂胶囊2021.4.7国产
    海中堂牌芦荟红花海参胶囊祛黄褐斑胶囊2021.2.26国产
    必源牌海参三七银杏叶胶囊辅助降血脂胶囊2020.12.17国产
    棒棰岛牌海参丹参葡萄籽胶囊抗氧化胶囊2020.10.28国产
    贡参宝牌海参胶囊增强免疫力胶囊2020.6.23国产
    维尼莱牌叶黄素越橘片缓解视疲劳片剂2019.8.23国产
    注:信息来源于中国国家市场监督管理总局。
    下载: 导出CSV
  • [1]

    BORDBAR S, ANWAR F, SAARI N. High-value components and bioactives from sea cucumbers for functional foods: A review[J]. Mar Drugs,2011,9(10):1761−1805. doi: 10.3390/md9101761

    [2] 刘东竹, 于笛, 郑杰, 等. 海参加工产品开发现状及研究进展[J]. 食品与发酵工业,2022,48(23):344−351. [LIU D Z, YU D, ZHENG J, et al. Development status and research progress of sea cucumber processing products[J]. Food and Fermentation Industries,2022,48(23):344−351.

    LIU D Z, YU D, ZHENG J, et al. Development status and research progress of sea cucumber processing products[J]. Food and Fermentation Industries, 2022, 48(23): 344-351.

    [3] 孙伟红, 冷凯良, 林洪, 等. 刺参不同部位中主要营养成分分析与评价(英文)[J]. 动物营养学报,2010,22(1):212−220. [SUN W H, LENG K L, LIN H, et al. Analysis and evaluation of chief nutrient composition in different parts of Stichopus japonicus[J]. Chinese Journal of Animal Nutrition,2010,22(1):212−220. doi: 10.3969/j.issn.1006-267x.2010.01.033

    SUN W H, LENG K L, LIN H, et al. Analysis and evaluation of chief nutrient composition in different parts of Stichopus japonicus[J]. Chinese Journal of Animal Nutrition, 2010, 22(01): 212-220. doi: 10.3969/j.issn.1006-267x.2010.01.033

    [4]

    ABEDIN M Z, KARIM A A, AHMED F, et al. Isolation and characterization of pepsin-solubilized collagen from the integument of sea cucumber (Stichopus vastus)[J]. J Sci Food Agric,2013,93(5):1083−1088. doi: 10.1002/jsfa.5854

    [5]

    PARK S Y, LIM H K, LEE S, et al. Pepsin-solubilised collagen (PSC) from Red Sea cucumber (Stichopus japonicus) regulates cell cycle and the fibronectin synthesis in HaCaT cell migration[J]. Food Chem,2012,132(1):487−492. doi: 10.1016/j.foodchem.2011.11.032

    [6]

    MOHAMED A S, MAHMOUD S A, SOLIMAN A M, et al. Antitumor activity of saponin isolated from the sea cucumber, holothuria arenicola against ehrlich ascites carcinoma cells in swiss albino mice[J]. Nat Prod Res,2021,35(11):1928−1932. doi: 10.1080/14786419.2019.1644633

    [7]

    MAO H, CAI Y, LI S, et al. A new fucosylated glycosaminoglycan containing disaccharide branches from Acaudina molpadioides: Unusual structure and anti-intrinsic tenase activity[J]. Carbohydr Polym,2020,245:116503. doi: 10.1016/j.carbpol.2020.116503

    [8]

    LIU X, SUN Z, ZHANG M, et al. Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus[J]. Carbohydr Polym,2012,90(4):1664−1670. doi: 10.1016/j.carbpol.2012.07.047

    [9]

    YANG W S, QI X R, XU Q Z, et al. A new sulfated triterpene glycoside from the sea cucumber Colochirus quadrangularis, and evaluation of its antifungal, antitumor and immunomodulatory activities[J]. Bioorg Med Chem,2021,41:116188. doi: 10.1016/j.bmc.2021.116188

    [10] 张永勤, 常海燕. 海参内脏组成成分结构、功能及其应用研究进展[J]. 食品工业科技,2014,35(13):382−386. [ZHANG Y Q, CHANG H Y. Research progress on the structural components and function of sea cucumber viscera and their application[J]. Science and Technology of Food Industry,2014,35(13):382−386.

    ZHANG Y Q, CHANG H Y. Research progress on the structural components and function of sea cucumber viscera and their application[J]. Science and Technology of Food Industry, 2014, 35(13): 382-386.

    [11] 杨兰苹, 郑立勇, 饶煜, 等. 海参内脏的活性成分、保健功能与开发研究进展[J]. 食品安全质量检测学报,2018,9(10):2426−2432. [YANG L P, ZHENG L Y, RAO Y, et al. Research progress of active components, health function and development of sea cucumber viscera[J]. Journal of Food Safety & Quality,2018,9(10):2426−2432. doi: 10.3969/j.issn.2095-0381.2018.10.025

    YANG L P, ZHENG L Y, RAO Y, et al. Research progress of active components, health function and development of sea cucumber viscera[J]. Journal of Food Safety & Quality, 2018, 9(10): 2426-2432. doi: 10.3969/j.issn.2095-0381.2018.10.025

    [12] 李天娇, 郑莹, 包永睿, 等. 超临界萃取的海星内脏油成分分析及体外抗肿瘤活性研究[J]. 化学试剂,2021,43(10):1337−1341. [LI T J, ZHENG Y, BAO Y R, et al. Composition analysis and anti-tumor effect of starfish visceral oil extracted by supercritical fluid[J]. Chemical Reagents,2021,43(10):1337−1341.

    LI T J, ZHENG Y, BAO Y R, et al. Composition analysis and anti-tumor effect of starfish visceral oil extracted by supercritical fluid[J]. Chemical Reagents, 2021, 43(10): 1337-1341.

    [13]

    HOSSAIN A, YEO J, DAVE D, et al. Phenolic compounds and antioxidant capacity of sea cucumber (Cucumaria frondosa) processing discards as affected by high-pressure processing (HPP)[J]. Antioxidants (Basel),2022,11(2):337. doi: 10.3390/antiox11020337

    [14]

    MAMELONA J, SAINT-LOUIS R, PELLETIER E. Nutritional composition and antioxidant properties of protein hydrolysates prepared from echinoderm byproducts[J]. Food Science and Technology,2010,45(1):147−154.

    [15] 袁文鹏, 刘昌衡, 王小军, 等. 仿刺参不同部位营养成分的分析及综合评价[J]. 食品工业科技,2010,31(5):348−350. [YUAN W P, LIU C H, WANG X J, et al. Evaluation and analysis of nutritional composition of different parts of sea cucumber Apostichopus joponicy[J]. Science and Technology of Food Industry,2010,31(5):348−350.

    YUAN W P, LIU C H, WANG X J, et al. Evaluation and analysis of nutritional composition of different parts of sea cucumber Apostichopus joponicy[J]. Science and Technology of Food Industry, 2010, 31(5): 348-350.

    [16] 曹荣, 李冬燕, 刘淇, 等. 刺参肠、性腺酶解多肽体外抗氧化作用研究[J]. 南方水产科学,2013,9(6):47−51. [CAO R, LI D Y, LIU Q, et al. Antioxidation effects of polypeptides from intestines and gonads of sea cucumber (Apostichopus japonicus) by enzymatic hydrolyzation[J]. South China Fisheries Science,2013,9(6):47−51. doi: 10.3969/j.issn.2095-0780.2013.06.008

    CAO R, LI D Y, LIU Q, et al. Antioxidation effects of polypeptides from intestines and gonads of sea cucumber (Apostichopus japonicus) by enzymatic hydrolyzation[J]. South China Fisheries Science, 2013, 9(6): 47-51. doi: 10.3969/j.issn.2095-0780.2013.06.008

    [17] ESTHER M M, 王艺瑾, 吴剑夫, 等. 海参肠多糖的提取工艺优化及其理化性质研究[J]. 食品工业科技,2023,44(2):196−203. [ESTHER M M, WANG Y J, WU J F, et al. Study on optimization of extraction technology and physicochemical properties of polysaccharide from sea cucumber intestines[J]. Science and Technology of Food Industry,2023,44(2):196−203.

    ESTHER M M, WANG Y J, WU J F, et al. Study on optimization of extraction technology and physicochemical properties of polysaccharide from sea cucumber intestines[J]. Science and Technology of Food Industry: 2023, 44(2): 196-203.

    [18]

    SURENDIRAN G, SUKHINDER K C. A high fat diet enriched with sea cucumber gut powder provides cardio-protective and anti-obesity effects in C57BL/6 mice[J]. Food Research International,2017,99(1):799−806.

    [19] 齐申, 吴海涛, 王成成, 等. 刺参肠内源酶对体壁胶原蛋白的降解作用[J]. 大连工业大学学报,2017,36(5):313−317. [QI S, WU H T, WANG C C, et al. Effect of endogenous enzyme from gut on body wall collagen degradation in Stichpus japonicu[J]. Journal of Dalian Polytechnic University,2017,36(5):313−317.

    QI, S, WU H T, WANG C C, et al. Effect of endogenous enzyme from gut on body wall collagen degradation in Stichpus japonicu[J]. Journal of Dalian Polytechnic University, 2017, 36(5): 313-317.

    [20]

    LI X, SUN H, NING Z, et al. Mild acid hydrolysis on fucan sulfate from Stichopus herrmanni: Structures, depolymerization mechanism and anticoagulant activity[J]. Food Chem,2022,395:133559. doi: 10.1016/j.foodchem.2022.133559

    [21] 张健, 王茂剑, 马晶晶, 等. 仿刺参生殖腺营养成分分析[J]. 食品科学,2013,34(14):232−236. [ZHANG J, WANG M J, MA J J, et al. Nutrient composition of Apostichopus japonicas gonad[J]. Food Science,2013,34(14):232−236.

    ZHANG J, WANG M J, MA J J, et al. Nutrient composition of apostichopus japonicas gonad[J]. Food Science, 2013, 34(14): 232-236.

    [22] 王共明. 仿刺参卵多肽、多糖的制备及多肽活性研究[D]. 上海: 上海海洋大学, 2013

    WANG G M. Preparations of peptide and polysaccharide and activities research of Apostichopus japonicus Spawn peptide[D]. Shanghai: Shanghai Ocean University, 2013.

    [23] 潘芸芸, 陈增鑫, 于嘉慧, 等. 喷雾干燥制备海参肠卵肽粉的工艺条件优化[J]. 食品研究与开发,2021,42(16):144−151. [PAN Y Y, CHEN Z X, YU J H, et al. Optimization of technological conditions for preparing egg peptide powder from sea cucumber intestine using spray drying method[J]. Food Research and Development,2021,42(16):144−151. doi: 10.12161/j.issn.1005-6521.2021.16.021

    PAN Y Y, CHEN Z X, YU J H, et al. Optimization of technological conditions for preparing egg peptide powder from sea cucumber intestine using spray drying method[J]. Food Research and Development, 2021, 42(16): 144-151. doi: 10.12161/j.issn.1005-6521.2021.16.021

    [24] 张健, 王共明, 刘少伟, 等. 仿刺参卵和体壁多肽的制备及免疫活性[J]. 食品科学,2018,39(19):188−195. [ZHANG J, WANG G M, LIU S W, et al. Preparation of peptides from eggs and body wall of Apostichopus japonicus and their immunoenhancing effect[J]. Food Science,2018,39(19):188−195.

    ZHANG J, WANG G M, LIU S W, et al. Preparation of peptides from eggs and body wall of Apostichopus japonicus and their immunoenhancing effect[J]. Food Science, 2018, 39(19): 188-195.

    [25] 刘昕, 刘京熙, 张健, 等. 仿刺参卵多糖的分离纯化及体外抗肿瘤活性[J]. 食品科学,2016,37(23):105−110. [LIU X, LIU J X, ZHANG J, et al. Purification and antitumor activity in vitro of polysaccharides from Apostichopus japonicus spawn[J]. Food Science,2016,37(23):105−110.

    LIU X, LIU J X, ZHANG J, et al. Purification and antitumor activity in vitro of polysaccharides from Apostichopus japonicus spawn[J]. Food Science, 2016, 37(23): 105-110.

    [26] 张健, 刘少伟, 张毅, 等. 仿刺参精酶解工艺条件优化及体外抗氧化[J]. 食品工业科技,2017,38(5):232−237. [ZHANG J, LIU S W, ZHANG Y, et al. Optimization of enzymolysis technology of Apostichopus japonicus spermary and antioxidant activities in vitro of hydrolysates[J]. Science and Technology of Food Industry,2017,38(5):232−237.

    ZHANG J, LIU S W, ZHANG Y, et al. Optimization of enzymolysis technology of Apostichopus japonicus spermary and antioxidant activities in vitro of hydrolysates[J]. Science and Technology of Food Industry, 2017, 38(5): 232-237.

    [27] 孙小飞, 罗国瑞, 李英美, 等. 仿刺参精酶解工艺的优化及酶解液的抗氧化活性[J]. 中国食品学报,2022,22(4):217−224. [SUN X F, LUO G R, LI Y, et al. Optimization of enzymatic hydrolysis technology and antioxidant activity of hydrolysate of Apostichopus japonicus[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(4):217−224.

    SUN X F, LUO G R, LI Y, et al. Optimization of enzymatic hydrolysis technology and antioxidant activity of hydrolysate of Apostichopus japonicus[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(4): 217-224.

    [28] 王共明, 张健, 李来好, 等. 仿刺参精、卵多肽体外抗氧化及对H2O2诱导巨噬细胞氧化损伤的保护作用[J]. 食品安全质量检测学报,2022,13(15):4933−4941. [WANG G M, ZHANG J, LI L H, et al. Antioxidative effects of Apostichopus japonicus sperm and egg polypeptidein vitro and their protective effects on H2O2-induced macrophage oxidative damage[J]. Journal of Food Safety and Quality,2022,13(15):4933−4941.

    WANG G M, ZHANG J, LI L H, et al. Antioxidative effects of Apostichopus japonicus sperm and egg polypeptide in vitro and their protective effects on H2O2-induced macrophage oxidative damage[J]. Journal of Food Safety and Quality, 2022, 13(15): 4933-4941.

    [29] 张健, 刘少伟, 张毅, 等. 仿刺参精低分子质量多肽的制备及抗氧化作用[J]. 食品科学,2016,37(23):248−253. [ZHANG J, LIU S W, ZHANG Y, et al. Preparation and antioxidant activity of low molecular weight peptide from Apostichopus japonicus sperm[J]. Food Science,2016,37(23):248−253.

    ZHANG J, LIU S W, ZHANG Y, et al. Preparation and antioxidant activity of low molecular weight peptide from Apostichopus japonicus sperm[J]. Food Science, 2016, 37(23): 248-253.

    [30] 王婷. 仿刺参精多糖的提取纯化及其活性研究[D]. 上海: 上海海洋大学, 2017

    WANG T. Extraction, purification and activities of polysaccharides from Apostichopus japonicus sperm[D]. Shanghai: Shanghai Ocean University, 2017.

    [31]

    MAMELONA J, PELLETIER É, GIRARD-LALANCETTE K, et al. Quantification of phenolic contents and antioxidant capacity of Atlantic sea cucumber, Cucumaria frondosa[J]. Food Chemistry,2007,104(3):1040−1047. doi: 10.1016/j.foodchem.2007.01.016

    [32] 徐仰丽, 叶剑, 余海, 等. 南方刺参性腺多肽酶解工艺优化及抗氧化活性分析[J]. 食品工业科技,2018,39(19):181−187. [XU Y L, YE J, YU H, et al. Optimization of the enzymatic hydrolysis process and analysis of the antioxidant activity of polypeptide from Apostichopus japonicus gonads[J]. Science and Technology of Food Industry,2018,39(19):181−187.

    XU Y L, YE J, YU H, et al. Optimization of the enzymatic hydrolysis process and analysis of the antioxidant activity of polypeptide from Apostichopus japonicus gonads[J]. Science and Technology of Food Industry, 2018, 39(19): 181-187.

    [33]

    ZHONG C, SUN L C, YAN L J, et al. Production, optimisation and characterisation of angiotensin converting enzyme inhibitory peptides from sea cucumber (Stichopus japonicus) gonad[J]. Food Funct,2018,9(1):594−603. doi: 10.1039/C7FO01388D

    [34] 李倩, 夏光丽, 曹荣, 等. 仿刺参性腺酶解过程风味变化[J]. 渔业科学进展,2022,43(6):239−248. [LI Q, XIA G L, CAO R, et al. Changes in the flavor of Apostichopus japonicas gonads during enzymatic hydrolysis[J]. Progress in Fishery Sciences,2022,43(6):239−248.

    LI Q, XIA G L, CAO R, et al. Changes in the flavor of Apostichopus japonicas gonads during enzymatic hydrolysis[J]. Progress in Fishery Sciences: 2022, 43(6): 239-248.

    [35] 钟静诗, 王共明, 张健, 等. 仿刺参雌性生殖腺皂苷的免疫增强活性研究[J]. 食品工业科技,2022,43(23):378−386. [ZHONG J S, WANG G M, ZHANG J, et al. Optimizations of extraction and separation process of saponins and invitro antioxidant activity from the female gonad of Apostichopus japonicu[J]. Science and Technology of Food Industry,2022,43(23):378−386.

    ZHONG J S, WANG G M, ZHANG J, et al. Optimizations of extraction and separation process of saponins and invitro antioxidant activity from the female gonad of Apostichopus japonicu[J]. Science and Technology of Food Industry: 2022, 43(23): 378-386.

    [36]

    WANG T T, ZHENG L, WANG S G, et al, Anti-diabetic and anti-hyperlipidemic effects of sea cucumber (Cucumaria frondosa) gonad hydrolysates in type II diabetic rats[J]. Food Science and Human Wellness, 2022, 1614-1622.

    [37] 陶海英, 闫鸣艳, 尹利端. 刺参内脏蛋白酶解液抗氧化活性研究[J]. 食品研究与开发,2015,36(11):58−61. [TAO H Y, YAN M Y, YI L D. Studies on antioxidant activities of protein hydrolysates from sea cucumber viscera[J]. Food Research and Development,2015,36(11):58−61.

    TAO H Y, YAN M Y, YI L D. Studies on antioxidant activities of protein hydrolysates from sea cucumber viscera[J]. Food Research and Development, 2015, 36(11): 58-61.

    [38] 胡杨. 利用海参内脏制备生物活性肽及其功能分析[D]. 厦门: 集美大学, 2017

    HU Y. Preparation and functional analysis of bioactive peptides derived from viscera of sea cucumber[D]. Xiamen: Jimei University, 2017.

    [39] 杨东达, 秦洪, 黄雅燕, 等. 海参内脏酶解制备海参肽工艺[J]. 华侨大学学报(自然科学版),2017,38(4):531−536. [YANG D D, QIN H, HUANG Y Y, et al. Study on preparation of sea cucumber peptides by enzymatic hydrolysis of sea cucumber viscera[J]. Journal of Huaqiao University (Natural Sicience),2017,38(4):531−536.

    YANG D D, QIN H, HUANG Y Y, et al. Study on preparation of sea cucumber peptides by enzymatic hydrolysis of sea cucumber viscera[J]. Journal of Huaqiao University (Natural Sicience), 2017, 38(4): 531-536.

    [40] 梁杰, 陈熙. 海参内脏蛋白提取工艺研究[J]. 食品科技,2015,40(11):117−121. [LIAO J, CHEN X. Extracting of sea cucumber viscera protein[J]. Food Science and Technology,2015,40(11):117−121. doi: 10.13684/j.cnki.spkj.2015.11.024

    LIAO J, CHEN X. Extracting of sea cucumber viscera protein[J]. Food Science and Technology, 2015, 40(11): 117-121. doi: 10.13684/j.cnki.spkj.2015.11.024

    [41] 杨东达. 海参内脏多糖的分离、结构鉴定、免疫活性及其应用研究[D]. 厦门: 华侨大学, 2020

    YANG D D. Separation, structure identification, immunoactivity and application of polysaccharide from sea cucumber viscera [D]. Xiamen: Huaqiao University, 2020.

    [42]

    KWON T R, OH C T, BAK D H, et al. Effects on skin of Stichopus japonicus viscera extracts detected with saponin including holothurin A: Down-regulation of melanin synthesis and up-regulation of neocollagenesis mediated by ERK signaling pathway[J]. J Ethnopharmacol,2018,226:73−81. doi: 10.1016/j.jep.2018.08.007

    [43]

    BAHRAMI Y, ZHANG W, FRANCO C. Discovery of novel saponins from the viscera of the sea cucumber Holothuria lessoni[J]. Mar Drugs,2014,12(5):2633−2667. doi: 10.3390/md12052633

    [44] 陈增鑫, 刘咏霖, 潘芸芸, 等. 不同脱腥方法对海参肠卵酶解液脱腥效果的比较[J]. 食品与发酵工业,2022,48(5):187−192. [CHEN Z X, LIU Y L, PAN Y Y, et al. Effect of diffent deodorization methods on enzymatic hydrolysate of sea cucumber (Stichopus japonicas) intestines and gonads[J]. Food and Fermentation Industries,2022,48(5):187−192.

    CHEN Z X, LIU Y L, PAN Y Y, et al. Effect of diffent deodorization methods on enzymatic hydrolysate of sea cucumber (Stichopus japonicas) intestines and gonads[J]. Food and Fermentation Industries, 2022, 48(5): 187-192.

    [45] 汪韬, 温运启, 于娇, 等. 富含乳酸菌的脱腥海参肽粉的制备[J]. 食品与发酵工业,2020,46(18):187−191. [WANG T, WEN Y Q, YU J, et al. Preparation of deodorized sea cucumber peptide powder rich in lactic acid bacteria[J]. Food and Fermentation Industries,2020,46(18):187−191. doi: 10.13995/j.cnki.11-1802/ts.023819

    WANG T, WEN Y Q, YU J, et al. Preparation of deodorized sea cucumber peptide powder rich in lactic acid bacteria[J]. Food and Fermentation Industries, 2020, 46(18): 187-191. doi: 10.13995/j.cnki.11-1802/ts.023819

    [46]

    LI X, ZENG B, WEN L, et al. Sea cucumber saponins derivatives alleviate hepatic lipid accumulation effectively in fatty acids-induced HepG2 cells and orotic acid-induced rats[J]. Mar Drugs,2022,20(11):703. doi: 10.3390/md20110703

    [47]

    WEN L, LI R, ZHAO Y C, et al. A comparative study of the anti-obesity effects of dietary sea cucumber saponins and energy restriction in response to weight loss and weight regain in mice[J]. Mar Drugs,2022,20(10):629. doi: 10.3390/md20100629

    [48]

    WANG X, LAN H, SUN T, et al. Serum metabolomics analysis reveals amelioration effects of sea cucumber ether phospholipids on oxidative stress and inflammation in high-fat diet-fed mice[J]. Food Funct,2022,13(19):10134−10146. doi: 10.1039/D2FO00918H

    [49] 柯亚夫, 仇登宇. 海参肠卵多肽粉的制备方法及所得海参肠卵多肽粉: 中国, 110195090A[P]. 2019-09-03

    KE Y F, QIU D Y. Preparation method of polypeptide powder of sea cucumber enteroegg and its preparation: China, 110195090A[P]. 2019-09-03.

    [50] 王洪波. 一种海参肠卵精华提取物冻干粉及其制备方法: 中国, 112933029A[P]. 2021-06-11

    WANG H B. The invention relates to a freeze-dried powder of sea cucumber intestine egg extract and a preparation method thereof: China, 112933029A[P]. 2021-06-11.

    [51] 吴岩强, 封福鲜, 张君, 等. 含有海参及玛咖成分的糖果制品: 中国, 105053452B[P]. 2018-09-04

    WU Y Q, FENG F X, ZHANG J, et al. Candy products containing sea cucumber and maca ingredients: China, 105053452B[P]. 2018-09-04.

    [52] 吴岩强, 张君, 封福鲜, 等. 含有海参及雪莲成分的糖果制品: 中国, 105053451B[P]. 2018-09-04

    WU Y Q, ZHANG J, FENG F X, et al. Candy products containing sea cucumber and snow lotus ingredients: China, 105053451B[P]. 2018-09-04.

    [53] 袁坤山, 王宝杰, 王雷, 等. 一种从海参加工废弃物中提取活性物质的方法: 中国, 103265642B[P]. 2015-07-15

    YUAN K S, WANG B J, WANG L, et al. The invention relates to a method for extracting active substance from sea cucumber processing waste: China, 103265642B[P]. 2015-07-15.

    [54] 汪少芸, 李灵, 邵彪, 等. 一种海参抗氧化肽及其制备方法: 中国, 104402972B[P]. 2018-03-16

    WANG S Y, LI L, SHAO B, et al. The invention relates to a sea cucumber antioxidant peptide and a preparation method thereof: China, 104402972B[P]. 2018-03-16.

    [55] 翁武银, 胡颜寓, 石林凡, 等. 一种海参内脏蛋白肽的制备方法: 中国, 112375800A[P]. 2021-02-19

    WENG W Y, HU Y Y, SHI L F, et al. A method for preparing visceral protein peptide of sea cucumber: China, 112375800A[P]. 2021-02-19

    [56] 毛毛, 衣美艳, 郭红, 等. 一种海参内脏多肽的制备方法: 中国, 108753897B[P]. 2019-01-01

    MAO M, YI M Y, GUO H, et al. A method for preparing visceral polypeptide of sea cucumber: China, 108753897B[P]. 2019-01-01.

    [57] 袁文鹏, 刘昌衡, 孙永军, 等. 一种海参肠口服液的制备方法: 中国, 103719926B[P]. 2016-04-13

    YAN W P, LIU C H, SUN Y J, et al. The invention relates to a preparation method of sea cucumber intestinal oral liquid: China, 103719926B[P]. 2016-04-13

    [58] 邵俊杰, 焦健. 海参油制品及其制备方法: 中国, 101530127B[P]. 2011-12-07

    SHAO J J, JIAO J. Sea cucumber oil products and preparation method thereof: China, 101530127B[P]. 2011-12-07

    [59] 孙永军, 鞠文明, 胡炜, 等. 一种从海参内脏中提取海参油的方法: 中国, 107418708B[P]. 2020-11-17

    SUN Y J, JU W M, HU W, et al. A method for extracting sea cucumber oil from sea cucumber viscera: China, 107418708B[P]. 2020-11-17.

    [60] 宋方方, 宁建超. 一种利用海参内脏制备海参油胶囊的方法: 中国, 107874165B[P]. 2021-04-27

    SONG F F, NING J C. The invention relates to a method of preparing sea cucumber oil capsule from sea cucumber viscera: China, 107874165B[P]. 2021-04-27.

    [61] 董秀萍, 宋雪, 刘文涛, 等. 一种利用海参加工副产物制备调味汁的方法: 中国, 108925960B[P]. 2022-02-15

    DONG X P, SONG X, LIU W T, et al. The invention relates to a method for preparing sauce from sea cucumber processing by-products: China, 108925960B[P]. 2022-02-15.

    [62] 章骞, 曹敏杰. 一种海参肠处理方法以及应用该方法获得的海参肠产品: 中国, 106261970B[P]. 2019-07-23

    ZHANG Q, CAO M J. The invention relates to a sea cucumber intestine treatment method and a sea cucumber intestine product obtained by the application of the method: China, 106261970B[P]. 2019-07-23.

    [63] 牟海津, 刘燕妮. 一种海参肠肽的制备方法: 中国, 105325801B[P]. 2020-05-22

    MOU H J, LIU Y N, The invention relates to a preparation method of sea cucumber intestinal peptide: China, 105325801B[P]. 2020-05-22.

    [64] 闫泽文, 郑思凡, 姜竹茂, 等. 一种海参肠卵酵素及其制备方法: 中国, 110269249A[P]. 2019-09-24

    YAN Z W, ZHENG S F, JIANG Zhumao. The invention relates to sea cucumber intestinal oozyme and a preparation method thereof: China, 110269249A[P]. 2019-09-24.

    [65] 张九勋, 张学军, 田明展, 等. 一种海参肠肽及其制备方法和应用: 中国, 111592582B[P]. 2021-09-17

    ZHANG J X, ZHANG X J, TIAN M Z, et al. The invention relates to sea cucumber intestinal peptide, preparation method and application thereof: China, 111592582B[P]. 2021-09-17.

    [66] 袁文鹏, 刘昌衡, 孙永军, 等. 一种海参肠提取物复合软胶囊及其制备方法: 中国, 103735782B[P]. 2017-11-10

    YUAN W P, LIU C H, SUN Y J, et al. The invention relates to a compound soft capsule of sea cucumber intestine extract and a preparation method thereof: China, 103735782B[P]. 2017-11-10.

    [67] 姜竹茂, 杜广营, 潘芸芸, 等. 一种肿瘤患者海参肠卵营养补充剂及其制备方法: 中国, 114259045A[P]. 2022-04-01

    JIANG Z M, DU G Y, PAN Y Y, et al. The invention relates to sea cucumber enteroegg nutritional supplement for tumor patients and a preparation method thereof: China, 114259045A[P]. 2022-04-01.

    [68] 李长青, 夏芬. 海参多肽胶囊的制备方法: 中国, 101756248B[P]. 2013-07-10

    LI C Q, XIA F. Preparation method of sea cucumber polypeptide capsule: China, 101756248B[P]. 2013-07-10.

    [69] 刘凯, 徐莲, 高莹, 等. 海参内脏降压活性肽及其制备方法: 中国, 103911414B[P]. 2016-05-18

    LIU K, XU L, GAO Y, et al. Preparation of antihypertensive active peptide from sea cucumber viscera: China, 103911414B[P]. 2016-05-18.

    [70] 王静凤, 岳昊, 闫子怡, 等. 一种海参肠促成骨肽的制备方法及其应用[P]. 中国: CN113004384B, 2022-10-18

    WANG J F, YUE H, YAN Z Y, et al. Preparation method and application of a sea cucumber intestinal osteogenic peptide[P]. China: CN113004384B, 2022-10-18.

    [71]

    POPOV R S, IVANCHINA N V, DMITRENOK P S. Application of mS-based metabolomic approaches in analysis of starfish and sea cucumber bioactive compounds[J]. Mar Drugs,2022,20(5):320.

    [72]

    ZHANG Y, HE S, BONNEIL É, et al. Generation of antioxidative peptides from Atlantic sea cucumber using alcalase versus trypsin: In vitro activity, de novo sequencing, and in silico docking for in vivo function prediction[J]. Food Chem,2020,306:125581. doi: 10.1016/j.foodchem.2019.125581

    [73]

    FAN C, GE X, HAO J, et al. Identification of high iron-chelating peptides with unusual antioxidant effect from sea cucumbers and the possible binding mode[J]. Food Chem,2023,399:133912. doi: 10.1016/j.foodchem.2022.133912

    [74]

    HOSSAIN A, DAVE D, SHAHIDI F. Antioxidant potential of sea cucumbers and their beneficial effects on human health[J]. Mar Drugs,2022,20(8):521. doi: 10.3390/md20080521

    [75]

    ZHANG X, LI H, WANG L, et al. Anti-inflammatory peptides and metabolomics-driven biomarkers discovery from sea cucumber protein hydrolysates[J]. Journal of Food Science,2021,86(8):3540−3549. doi: 10.1111/1750-3841.15834

    [76]

    GAO N, CHEN R, MOU R, et al. Purification, structural characterization and anticoagulant activities of four sulfated polysaccharides from sea cucumber Holothuria fuscopunctata[J]. Int J Biol Macromol,2020,164:3421−3428. doi: 10.1016/j.ijbiomac.2020.08.150

    [77]

    KHATTAB R A, ELBANDY M, LAWRENCE A, et al. Extraction, identification and biological activities of saponins in sea cucumber pearsonothuria graeffei[J]. Comb Chem High Throughput Screen,2018,21(3):222−231. doi: 10.2174/1386207321666180212165448

    [78]

    ZHAO Y C, XUE C H, ZHANG T T, et al. Saponins from sea cucumber and their biological activities[J]. J Agric Food Chem,2018,66(28):7222−7237. doi: 10.1021/acs.jafc.8b01770

    [79] 郑金娃, 汪秋宽, 何云海, 等. 海参多肽脱色脱腥工艺的优化研究[J]. 大连海洋大学学报,2013,28(3):303−306. [ZHENG J W, WANG Q K, HE Y H, et al. Technique optimization of decolorization and deodorization for sea cucumber hydrolysates[J]. Journal of Dalian Ocean University,2013,28(3):303−306. doi: 10.3969/j.issn.2095-1388.2013.03.017

    ZHENG J W, WANG Q K, HE Y H, et al. Technique optimization of decolorization and deodorization for sea cucumber hydrolysates[J]. Journal of Dalian Ocean University, 2013, 28(3): 303-306. doi: 10.3969/j.issn.2095-1388.2013.03.017

    [80] 石友盛, 谢文强, 陈贤功, 等. 3种海参脱腥方法的效果比较研究[J]. 食品研究与开发,2021,42(20):79−85. [SHI Y S, XIE W Q, CHEN X G, et al. Comparative study on the effects of three deodorization methods on sea cucumber[J]. Food Research and Development,2021,42(20):79−85. doi: 10.12161/j.issn.1005-6521.2021.20.012

    SHI Y S, XIE W Q, CHEN X G, et al. Comparative study on the effects of three deodorization methods on sea cucumber[J]. Food Research and Development, 2021, 42(20): 79-85 doi: 10.12161/j.issn.1005-6521.2021.20.012

  • 期刊类型引用(3)

    1. 乔鑫,邹雪,李炜月,程雨菲,荆学毅,洪亮. 海参副产物的饲用价值及饲料化技术分析. 中国畜牧杂志. 2024(01): 74-79 . 百度学术
    2. 杨胜,孙永军,鞠文明,闫程振,李国正,王凯歌. 海参清洗剖切一体化设备设计. 渔业现代化. 2024(01): 98-105 . 百度学术
    3. 王志龙,王禹,段静瑶,苏岩峰,喻佩. 海参制品腥味化合物形成与脱腥技术研究进展. 中国调味品. 2024(06): 206-212 . 百度学术

    其他类型引用(0)

图(3)  /  表(2)
计量
  • 文章访问数:  223
  • HTML全文浏览量:  44
  • PDF下载量:  29
  • 被引次数: 3
出版历程
  • 收稿日期:  2022-12-17
  • 网络出版日期:  2023-07-30
  • 刊出日期:  2023-10-11

目录

/

返回文章
返回
x 关闭 永久关闭