Preparation and Structural Characterization of Garlic Polysaccharide Liposomes
-
摘要: 本研究利用大蒜多糖、大豆卵磷脂和胆固醇制备了一种新型多糖脂质体并对其进行结构表征。以膜材比、脂药比和超声时间为因素,包封率为响应值,采用单因素和响应面试验确定了大蒜多糖脂质体最优制备条件,并对其微观形态、粒径、紫外扫描光谱、红外扫描光谱及稳定性进行了研究。结果表明,大蒜多糖脂质体的最优制备条件为膜材比4:1,脂药比24:1,超声时间14 min,最大包封率为61.00%±0.73%;所得脂质体为球状小囊泡结构、分散均匀、稳定性较好,粒径为213.50±1.85 nm、聚合物分散性指数(Polymer Dispersity Index,PDI)为0.187±0.005、Zeta电位为−21.07±1.27 mV;紫外和红外光谱表明大蒜多糖被成功包埋进脂质材料中,并且包埋过程不形成新化学键,仅产生静电相互作用;稳定性试验显示4 ℃保存28 d后,大蒜多糖脂质体粒径由211.13±0.54 nm增至225.70±0.65 nm,PDI由0.187±0.003增至0.236±0.001,包封率由60.96%±0.32%降至56.97%±0.74%,体系仍较为稳定。因此,本研究制备的大蒜多糖脂质体包封率较高、粒径小、分散性好、稳定性高,可为开发大蒜多糖衍生产品提供参考依据。Abstract: In this study, a novel polysaccharide liposome was prepared using garlic polysaccharides, soybean lecithin and cholesterol and structurally characterized. The optimal preparation conditions of garlic polysaccharide liposomes were determined by single-factor and response surface tests using the film-material ratio, lipid-drug ratio and ultrasonic time as factors and the encapsulation efficiency as response values. The obtained liposomes were characterized in terms of micromorphology, particle size, UV spectrum, IR spectrum and stability. The results showed that the optimal preparation conditions of garlic polysaccharide liposomes were as follows: Film-material ratio of 4:1, lipid-drug ratio of 24:1, ultrasonic time of 14 min, with the maximum encapsulation efficiency of 61.00%±0.73%. The obtained liposomes appeared as spherical vesicles with uniform dispersion and good stability. Their particle size, polymer dispersity index and zeta potential were 213.50±1.85 nm, 0.187±0.005 and −21.07±1.27 mV, respectively. UV and IR spectra confirmed that garlic polysaccharides were successfully encapsulated into the lipid material through electrostatic interactions, without the formation of new chemical bonds. After 28 days of storage at 4 ℃, the particle size of garlic polysaccharide liposomes increased from 211.13±0.54 nm to 225.70±0.65 nm, the PDI increased from 0.187±0.003 to 0.236±0.001, and the encapsulation efficiency decreased from 60.96%±0.32% to 56.97%±0.74%, exhibiting a relative stability. Therefore, the garlic polysaccharide liposomes prepared in this study had high encapsulation efficiency, small particle size, good dispersion and high stability, which could provide a reference for the development of garlic polysaccharide derivatives.
-
大蒜(Allium sativum L.)属百合科葱属植物,药食两用[1]。大蒜多糖作为大蒜中的主要功能成分,占干重70%以上,具有抗氧化、降血脂、免疫调节、抗凝血、抑菌、抗癌、抗炎和增强矿物质吸收等诸多生物活性[2-5]。大蒜多糖易溶于水,主要消化部位在结肠,但大蒜多糖易被酸水解,在到达结肠前易于被分解,导致其口服生物利用度降低[6-7]。
功能成分递送系统可以改善有效成分在机体内的利用度,脂质体便是该系统中重要的纳米颗粒[8]。脂质体主要由排列有序的磷脂双分子层包埋有效成分构成,直径在25~1000 nm范围内,可通过口服、注射、透皮给药等多种方式作用于机体[9-10]。脂质体因其可提高有效成分稳定性、减缓药物不良反应、缓释及靶向输送药物且具备高生物相容性等诸多优势[11-15],迅速成为各界研究热点,更是被美国食品药品管理局批准为可用于市场营销的纳米药物制剂之一。
植物多糖脂质体的研究已成为当下热点。Gao等[16]通过薄膜分散法制备得到淫羊藿多糖脂质体并作用于注射ND疫苗的鸡,发现1 mg mL−1脂质体在第7、14、21、28 d淋巴细胞增殖较同剂量多糖分别增加了31.02%、17.76%、21.80%、26.69%,说明淫羊藿多糖制备成脂质体后可显著提高其佐剂活性。此外,脂质体还可以提高枸杞多糖和麦冬多糖的免疫增强活性[17-18]。Zhang等[19]证实了黄芪多糖脂质体和黄芪多糖均可提高大黄鱼血清超氧化物歧化酶的活性,并降低过氧化产物丙二醛的含量,且黄芪多糖剂量为脂质体的5倍时,脂质体抗氧化能力优于多糖。阚晓月[20]发现葛根多糖PLR1脂质体组急性高脂血症小鼠血清总胆固醇、甘油三酯和低密度脂蛋白胆固醇含量较多糖组分别降低16.86%、22.73%、6.05%,表现出了更强的降血脂活性。大量研究表明,植物多糖制备成脂质体后,其生物活性和生物利用度均可得到明显提高。然而,目前关于制备大蒜多糖脂质体的报道较少。本研究采用反相蒸发法结合微孔滤膜挤压法制备大蒜多糖脂质体,以大豆卵磷脂、胆固醇和大蒜多糖为原料,利用响应面优化制备工艺并对其进行结构表征,旨在提供一种稳定高效的大蒜多糖脂质体制备方法,以提高大蒜多糖的生物利用度、开阔其应用领域,为大蒜多糖的开发利用及相关功能性产品的研发提供一定技术支撑。
1. 材料与方法
1.1 材料与仪器
大蒜 购于莱芜;大豆卵磷脂(纯度>98%)、胆固醇(纯度>95%) 上海麦克林生化科技有限公司;磷酸二氢钠、磷酸氢二钠、葡萄糖、乙酸乙酯 天津市凯通化学试剂有限公司;苯酚 天津市巴斯夫化工贸易有限公司;浓硫酸 天津市科密欧化学试剂有限公司;所有试剂 均为分析纯。
旋转蒸发器、SHB-Ⅲ型循环水式多用真空泵 郑州长城科工贸有限公司;SCIENTZ-12N型冷冻离心机 艾本德生命科学公司;AX224ZH型万分之一天平 常州奥豪斯仪器有限公司;KQ-500DE型数控超声波清洗器 昆山市超声仪器有限公司;酶标仪、Nicolet Is10型傅里叶红外光谱仪 赛默飞世尔科技公司;JY92-Ⅱ型超声波细胞粉碎机 宁波新芝生物科技股份有限公司;Zetasizer-Nano-ZS型激光纳米粒度分析仪 英国马尔文公司;UV-2450型全波长紫外可见分光光度计 北京普析通用仪器有限责任公司;JEM-1400PLUS型透射式电子显微镜 日本电子株式会社(JEOL)。
1.2 实验方法
1.2.1 大蒜多糖的制备
通过水提醇沉法从新鲜大蒜中提取大蒜多糖[21]。新鲜去皮大蒜按照料液比1:6打浆,80 ℃浸提约2.5 h后使用纱布滤去蒜渣,5000 r/min下离心10 min,上清液浓缩,除去浸提液中的果胶和蛋白质,醇沉,透析,冻干,得到纯度为91.63%的大蒜多糖。
1.2.2 大蒜多糖脂质体的制备
通过反相蒸发结合膜挤压法制备大蒜多糖脂质体[22]。将一定比例大豆卵磷脂和胆固醇溶于15 mL乙酸乙酯中制为油相,一定质量的大蒜多糖溶于5 mL pH 7.4磷酸缓冲液中制为水相,两相室温下超声混匀10 min,超声功率为400 W;旋蒸至凝胶状,加20 mL磷酸盐缓冲液水化20 min,使用超声细胞破碎仪进行超声破碎,分别使用0.45 μm和0.22 μm滤膜处理三次,得脂质体悬浮液,放入冰箱4 ℃下保存备用。空白脂质体同样采取上述方法制备,整个过程不加入大蒜多糖。
1.2.3 大蒜多糖脂质体包封率的测定
通过超速离心法测定包封率[23]。吸取1 mL脂质体至离心管中,13000 r/min冷冻离心30 min,吸取上清液,定容至10 mL,以空白脂质体为对照,采用苯酚-浓硫酸法测定其多糖含量[24],计算其上清液中游离多糖质量,进而可得包封率。
包封率的计算公式为:
式中,W投为投入的大蒜多糖质量,mg;W游为游离的大蒜多糖质量,mg。
1.2.4 单因素实验
1.2.4.1 大豆卵磷脂与胆固醇质量比(膜材比)对大蒜多糖脂质体包封率的影响
固定大豆卵磷脂质量为180 mg,大豆卵磷脂与大蒜多糖质量比(脂药比)为25:1,超声时间15 min,考察膜材比在3:1、4:1、5:1、6:1和7:1时对大蒜多糖脂质体包封率的影响。
1.2.4.2 脂药比对大蒜多糖脂质体包封率的影响
固定大豆卵磷脂质量为180 mg,膜材比为4:1,超声时间15 min,考察脂药比在15:1、20:1、25:1、30:1和35:1时对大蒜多糖脂质体包封率的影响。
1.2.4.3 超声时间对大蒜多糖脂质体包封率的影响
固定大豆卵磷脂质量为180 mg,脂药比为4:1,膜材比为25:1,考察超声时间在5、10、15、20和25 min时对大蒜多糖脂质体包封率的影响。
1.2.5 响应面法设计
根据上述单因素实验结果,选择膜材比(A)、脂药比(B)和超声时间(C)为自变量,每个因素设置三个水平,以包封率为响应值,利用Design-Expert. V8.0.6选择Box-Behnken模型软件进行响应面设计,具体见表1。根据响应面试验结果预测最佳工艺,按照预测的最佳制备工艺,制备大蒜多糖脂质体3组,测定其包封率并与预测值进行比较。
表 1 响应面试验的因素及水平Table 1. Factors and levels of response surface methodology水平 因素 A 膜材比(w/w) B 脂药比(w/w) C 超声时间(min) −1 3:1 20:1 10 0 4:1 25:1 15 1 5:1 30:1 20 1.2.6 微观形态观察
吸取少量PBS稀释十倍的大蒜多糖脂质体悬浮液,通过磷酸钨-负染色法[25]进行处理。具体来说,吸取适量样品滴至铜网上,5 min后吸去多余样液,滴加2%磷酸钨溶液,染色5 min,吸取多余液体,室温晾干,使用透射电镜观察大蒜多糖脂质体微观形态。
1.2.7 粒径分布、PDI及Zeta电位
吸取少量PBS稀释十倍的大蒜多糖脂质体悬浮液,室温下置于激光粒度仪样品池中,检测其粒径、PDI及Zeta电位[26]。
1.2.8 紫外吸收光谱测定
吸取大蒜多糖溶液、大蒜多糖脂质体和空白脂质体,以去离子水为对照,在200~400 nm范围内进行紫外扫描[27]。
1.2.9 红外吸收光谱测定
使用红外光谱仪在500~4000 cm−1范围内对大蒜多糖和大蒜多糖脂质体进行红外光谱扫描[28]。
1.2.10 稳定性试验
将大蒜多糖脂质体分装密封好,分别置于4 ℃和室温环境下,在0、7、14、21和28 d取样,测其包封率、粒径及PDI。
1.3 数据处理
利用SPSS 19.0 软件中的LSD和Duncan检验对各数据进行统计学分析,P<0.05或P<0.01表示数据有统计学差异;采用Origin 2017软件和Excel软件对数据进行绘图;采用Design Expert V 8.0.6软件设计响应面试验;每组试验重复三次,结果表示为平均值±标准偏差(SD)。
2. 结果与分析
2.1 大蒜多糖脂质体制备单因素结果分析
由图1A可知,膜材比为4:1时,包封率最大,为60.89%±0.13%。胆固醇为脂质体形成过程中的一种膜稳定剂,能保证脂质体在外界温度、pH等因素变化时,依旧保持脂质体膜的稳定性,因此适量胆固醇的加入可在一定程度上调节脂质体膜的流动性,改善脂质体自身稳定性,进而提高包封率[29]。过多或过少的胆固醇均会使多糖脂质体包封率降低、稳定性变差,因此后续试验选择膜材比在3:1~5:1范围内。
由图1B可知,脂药比为25:1时,多糖脂质体包封率最高,为60.73%±0.54%。脂质体膜包附药物时具有一定的饱和度,在未达到饱和度前,随着多糖添加量的增大,包封率逐步升高;多糖添加量超过膜材自身成膜饱和度会使部分多糖未被完全包裹,处于游离状态,致使包封率降低[30-31]。因此,选取脂药比在20:1~30:1范围内进行后续试验。
由图1C可知,随着超声时间的增加,多糖脂质体的包封率呈现出先上升后下降的趋势,当超声时间为15 min时,脂质体包封率达到最大值,为58.34%±1.60%。超声操作可以增加分散相体积,减小脂质体粒径,促进粒径均一分布,进而辅助脂质体形成[32]。超声时间过短,体系处于不均匀状态,随着超声时间的增加,体系趋于均匀分布,多糖脂质体包封率逐渐上升;超声过长则会使脂质体发生一定程度地泄漏,致使包封率下降。因此,选取超声时间在10~20 min范围内进行后续试验。
2.2 响应面试验结果分析
2.2.1 响应面模型建立与分析
响应面试验结果见表2。采用Design Expert 8.0.6软件对试验数据进行多元回归拟合,得到包封率(Y)对膜材比(A)、脂药比(B)、超声时间(C)多元回归分析。对回归模型进行方差分析以验证方程的有效性,分析各因素对包封率的影响程度,方差分析结果见表3。所得拟合模型响应值Y对影响因素A、B、C之间的二次多项回归方程为:Y=−287.14100+63.62850A+13.15800B+8.18640C−0.24500AB−0.36400AC+0.079000BC−6.20450A2−0.27998B2−0.30098C2(R2=0.9657)。
表 2 响应面法试验结果Table 2. 2 Experimental results of Box-Behnken design实验号 因素 包封率(%) A膜材比 B脂药比 C超声时间 1 1 0 −1 50.03 2 0 −1 −1 54.10 3 −1 0 −1 44.06 4 −1 −1 0 45.37 5 1 0 1 45.69 6 0 0 0 62.11 7 0 −1 1 44.37 8 0 1 1 41.65 9 −1 0 1 47.00 10 1 −1 0 55.12 11 0 0 0 61.01 12 0 0 0 59.60 13 −1 1 0 41.77 14 0 1 −1 43.48 15 0 0 0 60.05 16 0 0 0 59.35 17 1 1 0 46.62 表 3 响应面模型的方差分析Table 3. ANOVA of the response surface model类型 平方和 自由度 均方 F值 P值 显著性 模型 860.64 9 95.63 21.87 0.0003 ** A-膜材比 46.37 1 46.37 10.61 0.0139 * B-脂药比 80.9 1 80.9 18.5 0.0036 ** C-超声时间 21 1 21 4.8 0.0645 AB 6 1 6 1.37 0.2796 AC 13.25 1 13.25 3.03 0.1253 BC 15.6 1 15.6 3.57 0.1008 A2 162.09 1 162.09 37.07 0.0005 ** B2 206.29 1 206.29 47.18 0.0002 ** C2 238.39 1 238.39 54.53 0.0002 ** 残差 30.60 7 4.37 失拟项 25.45 3 8.48 6.58 0.0502 纯误差 5.16 4 1.29 总和 891.25 16 注∶**表示差异极显著,P<0.01;*表示差异显著,P<0.05。 回归方程中各变量对响应值的影响通过P值来判定,P值越小,则说明该变量对响应值的影响较其它变量更显著。变量A、B、C的P值分别为0.0139、0.0036和0.0645,说明脂药比对大蒜多糖脂质体的包封率的影响最大;同时,模型的方差分析检验出回归模型具有显著性,失拟项>0.05不显著,说明该模型适用于该工艺的筛选。
2.2.2 响应面分析结果
各因素两两相互作用对大蒜多糖脂质体包封率的影响见图2A~图2C。从图中可以看出,随着各交互因素水平的提升,大蒜多糖脂质体包封率呈先升高再下降的趋势。其中图2C固定膜材比编码水平为0,考察脂药比和超声时间对包封率的影响,包封率随着脂药比和超声时间的增加逐步增大而后减小,与回归模型分析结果一致。通过比较三组响应面陡峭度变化,图2C响应面曲面陡峭度最大,表明在以下两因素相互作用的三组中,脂药比和超声时间交互作用对大蒜多糖脂质体包封率影响更明显。
2.2.3 模型预测结果的验证
响应面试验优化得到的大蒜多糖脂质体最优制备条件为膜材比4.25:1,脂药比23.63:1,超声时间14.13 min,所得大蒜多糖脂质体包封率为61.30%。结合实际操作情况,将最终制备工艺修正为膜材比4:1,脂药比24:1,超声时间14 min,在此条件下进行3组平行验证试验,得到大蒜多糖脂质体包封率为61.00%±0.73%,与预测值的相对偏差仅0.30%,无显著性差异。
2.3 微观形态观察
如图3所示,大蒜多糖脂质体为球形或类球形的小囊泡结构;粒径在200 nm左右,体系稳定、无破裂、粒径均一、分布均匀且外观圆整规范,与玉屏风多糖脂质体[33]和枸杞多糖脂质体[34]等形态相似。
2.4 粒径分布、PDI及Zeta电位
图4展示了大蒜多糖脂质体的粒径分布情况,大蒜多糖脂质体的平均粒径为213.50±1.85 nm,其粒径分布较窄且呈正态分布;PDI为0.187±0.005,Zeta电位为−21.07±1.27 mV,说明所制脂质体分散性和稳定性良好。
2.5 紫外吸收光谱测定
大蒜多糖、大蒜多糖脂质体及空白脂质体的紫外吸收光谱如图5所示。大蒜多糖在200~400 nm范围内无较明显紫外吸收峰,表明大蒜多糖纯度较高且其中不含蛋白质和核酸等杂质;大蒜多糖脂质体紫外图谱与大蒜多糖趋势基本相同;而卵磷脂和胆固醇在紫外波长区内吸收相对较弱[35],使得空白脂质体较前两者在200~400 nm范围内整体吸光度极低;以上说明大蒜多糖与脂质体膜材料之间没有形成新的化学键,大蒜多糖被成功地包埋于脂质材料中。
2.6 红外吸收光谱测定
大蒜多糖和大蒜多糖脂质体的红外光谱吸收情况见图6,两者在3277、2932、1465和1144 cm−1等处出现了较为接近的吸收峰,说明大蒜多糖脂质体中含有大蒜多糖;2850、1740、1220和1060 cm−1吸收峰为两者的差异峰。其中,2850 cm−1为卵磷脂脂肪酸酯部分的亚甲基(-CH2-)对称伸缩振动引起,1740 cm−1为磷脂头基酯链上羰基(C=O)的伸缩振动峰,1220 cm−1为磷酸基团磷酰基(P=O)伸缩振动峰,1060 cm−1为磷酸基团磷酸酯键(P-O-C)的伸缩振动峰[36-37]。经过比较亦证明大蒜多糖经过脂质体包埋后并没有产生新的化学键,而是通过静电相互作用连接。
2.7 稳定性试验
大蒜多糖脂质体在4 ℃和室温下放置28 d过程中的稳定性变化情况见表4,其中,大蒜多糖脂质体初始粒径为211.13±0.54 nm,PDI为0.187±0.003,包封率为60.96%±0.32%;4 ℃环境放置下28 d,大蒜多糖脂质体粒径和PDI分别增至225.70±0.65 nm和0.236±0.001、包封率则降至56.97%±0.74%;室温下放置28 d的大蒜多糖脂质体粒径、PDI分别增至252.43±1.39 nm和0.330±0.003、包封率降至42.55%±1.18%;两种环境下的多糖脂质体虽与初始状态相比均有明显差异(P<0.05),但4 ℃环境下各个指标相对变化量明显较小,说明大蒜多糖脂质体在4 ℃下体系更趋于稳定,有利于大蒜多糖脂质体的保存。
表 4 大蒜多糖脂质体稳定性结果Table 4. Stability of garlic polysaccharide liposome suspension因素 0 d 7 d 14 d 21 d 28 d 4 ℃ 25 ℃ 4 ℃ 25 ℃ 4 ℃ 25 ℃ 4 ℃ 25 ℃ 粒径(nm) 211.13±0.54Ee 214.17±0.50D 222.90±0.43d 217.40±0.36C 231.60±1.51c 222.83±0.33B 243.47±1.07b 225.70±0.65A 252.43±1.39a PDI 0.187±0.003Ee 0.197±0.004D 0.215±0.003d 0.205±0.003C 0.286±0.004c 0.213±0.002B 0.312±0.003b 0.236±0.001A 0.330±0.003a 包封率(%) 60.96±0.32Aa 60.11±0.31A 57.15±0.52b 59.56±0.56AB 53.22±0.31c 58.20±0.92BC 47.92±0.53d 56.97±0.74C 42.55±1.18e 注:A~E:4 ℃下,大蒜多糖脂质体各个时间段下粒径、PDI及包封率差异显著(P<0.05);a~e:25 ℃下,大蒜多糖脂质体各个时间段下粒径、PDI及包封率差异显著(P<0.05)。 3. 结论
本研究构建了大蒜多糖脂质体运载体系,获得了一种粒径较小、包埋率较高、分散性较好、稳定性较好的大蒜多糖脂质体,可为亲水性功能因子输送体系的构建提供理论支持,为大蒜多糖产品开发提供参考依据。试验以大蒜多糖脂质体包封率为主要评价指标,通过单因素及响应面试验确定了大蒜多糖脂质体最优制备工艺为膜材比4:1,脂药比24:1,超声时间14 min,所得的大蒜多糖脂质体包封率为61.00%±0.73%,其形态规则且均一,平均粒径为213.50±1.85 nm,分散均匀;紫外扫描光谱、红外扫描光谱证实了大蒜多糖脂质体的形成仅与静电相互作用相关;稳定性试验证实了大蒜多糖脂质体在4 ℃下保存28 d,其粒径、PDI及包封率变化较小,脂质体体系依旧保持着相对稳定的状态。
-
表 1 响应面试验的因素及水平
Table 1 Factors and levels of response surface methodology
水平 因素 A 膜材比(w/w) B 脂药比(w/w) C 超声时间(min) −1 3:1 20:1 10 0 4:1 25:1 15 1 5:1 30:1 20 表 2 响应面法试验结果
Table 2 2 Experimental results of Box-Behnken design
实验号 因素 包封率(%) A膜材比 B脂药比 C超声时间 1 1 0 −1 50.03 2 0 −1 −1 54.10 3 −1 0 −1 44.06 4 −1 −1 0 45.37 5 1 0 1 45.69 6 0 0 0 62.11 7 0 −1 1 44.37 8 0 1 1 41.65 9 −1 0 1 47.00 10 1 −1 0 55.12 11 0 0 0 61.01 12 0 0 0 59.60 13 −1 1 0 41.77 14 0 1 −1 43.48 15 0 0 0 60.05 16 0 0 0 59.35 17 1 1 0 46.62 表 3 响应面模型的方差分析
Table 3 ANOVA of the response surface model
类型 平方和 自由度 均方 F值 P值 显著性 模型 860.64 9 95.63 21.87 0.0003 ** A-膜材比 46.37 1 46.37 10.61 0.0139 * B-脂药比 80.9 1 80.9 18.5 0.0036 ** C-超声时间 21 1 21 4.8 0.0645 AB 6 1 6 1.37 0.2796 AC 13.25 1 13.25 3.03 0.1253 BC 15.6 1 15.6 3.57 0.1008 A2 162.09 1 162.09 37.07 0.0005 ** B2 206.29 1 206.29 47.18 0.0002 ** C2 238.39 1 238.39 54.53 0.0002 ** 残差 30.60 7 4.37 失拟项 25.45 3 8.48 6.58 0.0502 纯误差 5.16 4 1.29 总和 891.25 16 注∶**表示差异极显著,P<0.01;*表示差异显著,P<0.05。 表 4 大蒜多糖脂质体稳定性结果
Table 4 Stability of garlic polysaccharide liposome suspension
因素 0 d 7 d 14 d 21 d 28 d 4 ℃ 25 ℃ 4 ℃ 25 ℃ 4 ℃ 25 ℃ 4 ℃ 25 ℃ 粒径(nm) 211.13±0.54Ee 214.17±0.50D 222.90±0.43d 217.40±0.36C 231.60±1.51c 222.83±0.33B 243.47±1.07b 225.70±0.65A 252.43±1.39a PDI 0.187±0.003Ee 0.197±0.004D 0.215±0.003d 0.205±0.003C 0.286±0.004c 0.213±0.002B 0.312±0.003b 0.236±0.001A 0.330±0.003a 包封率(%) 60.96±0.32Aa 60.11±0.31A 57.15±0.52b 59.56±0.56AB 53.22±0.31c 58.20±0.92BC 47.92±0.53d 56.97±0.74C 42.55±1.18e 注:A~E:4 ℃下,大蒜多糖脂质体各个时间段下粒径、PDI及包封率差异显著(P<0.05);a~e:25 ℃下,大蒜多糖脂质体各个时间段下粒径、PDI及包封率差异显著(P<0.05)。 -
[1] 赵辰, 沙如意, 张黎明, 等. 基于响应面法的水环境-酶法辅助提取大蒜多糖及其抗油脂氧化效果研究[J]. 食品工业科技,2019,40(20):180−187. [ZHAO Chen, SHA Ruyi, ZHANG Liming, et al. Optimization of enzyme-assisted extraction conditions in water for garlic polysaccharide by response surface methodology and its antioxidant activity against oil[J]. Science and Technology of Food Industry,2019,40(20):180−187. ZHAO Chen, SHA Ruyi, ZHANG Liming, et al. Optimization of enzyme-assisted extraction conditions in water for garlic polysaccharide by response surface methodology and its antioxidant activity against oil[J]. Science and Technology of Food Industry, 2019, 40(20): 180-187.
[2] 叶迎, 许京, 王瑞海, 等. 大蒜多糖近10年在化学、工艺质量、药理及应用方面的总结[J]. 中国实验方剂学杂志,2017,23(10):227−234. [YE Ying, XU Jing, WANG Ruihai, et al. Research progress of garlic polysaccharide in chemical, process quality, pharmacology and application in past decade[J]. Chinese Journal of Experimental Traditional,2017,23(10):227−234. YE Ying, XU Jing, WANG Ruihai, et al. Research progress of garlic polysaccharide in chemical, process quality, pharmacology and application in past decade[J]. Chinese Journal of Experimental Traditional, 2017, 23(10): 227-234.
[3] KUMARI N, KUMAR M, RADHA, et al. Onion and garlic polysaccharides: A review on extraction, characterization, bioactivity, and modifications[J]. International Journal of Biological Macromolecules,2022,219:1047−1061. doi: 10.1016/j.ijbiomac.2022.07.163
[4] QIU Zhichang, QIAO Yiteng, ZHANG Bin, et al. Bioactive polysaccharides and oligosaccharides from garlic (Allium sativum L.): Production, physicochemical and biological properties, and structure-function relationships[J]. Comprehensive Reviews in Food Science and Food Safety,2022,21(4):3033−3095. doi: 10.1111/1541-4337.12972
[5] JIANG Xinyang, LIANG Jinyue, JIANG Siyuan, et al. Garlic polysaccharides: A review on their extraction, isolation, structural characteristics, and bioactivities[J]. Carbohydrate Research,2022,518:108599. doi: 10.1016/j.carres.2022.108599
[6] YUAN Ye, CHE Lihe, QI Chong, et al. Protective effects of polysaccharides on hepatic injury: A review[J]. International Journal of Biological Macromolecules,2019,141(C):822−830.
[7] 黄雪松, 李颖思, 石思迷. 大蒜多糖功能性质的研究[J]. 现代食品科技,2009,25(6):588−591. [HUANG Xuesong, LI Yingsi, SHI Simi. Study of functions and properties of garlic polysaccharide[J]. Modern Food Science and Technology,2009,25(6):588−591. HUANG Xuesong, LI Yingsi, SHI Simi. Study of functions and properties of garlic polysaccharide[J]. Modern Food Science and Technology, 2009, 25(6): 588-591.
[8] DYMEK M, SIKORA E. Liposomes as biocompatible and smart delivery systems–the current state[J]. Advances in Colloid and Interface Science,2022,309:102757. doi: 10.1016/j.cis.2022.102757
[9] ZHANG Weimin, MA Wuren, ZHANG Jing, et al. The immunoregulatory activities of astragalus polysaccharide liposome on macrophages and dendritic cells[J]. International Journal of Biological Macromolecules, 2017, 105(Pt 1): 852-861.
[10] BARROSO L, VIEGAS C, VIEIRA J, et al. Lipid-based carriers for food ingredients delivery[J]. Journal of Food Engineering,2021,295:110451. doi: 10.1016/j.jfoodeng.2020.110451
[11] ESPOSTO B S, JAUREGI P, TAPIA-BLÁCIDO D R, et al. Liposomes vs. chitosomes: Encapsulating food bioactives[J]. Trends in Food Science & Technology,2021,108:40−48.
[12] SEBAALY C, JRAIJ A, FESSI H, et al. Preparation and characterization of clove essential oil-loaded liposomes[J]. Food Chemistry,2015,178(Jul.1):52−62.
[13] REHMAN A, JAFARI S M, TONG Q Y, et al. Drug nanodelivery systems based on natural polysaccharides against different diseases[J]. Advances in Colloid and Interface Science,2020,284:102251. doi: 10.1016/j.cis.2020.102251
[14] LI Mingyuan, DU Chunyang, GUO Na, et al. Composition design and medical application of liposomes[J]. European Journal of Medicinal Chemistry,2019,164:640−653. doi: 10.1016/j.ejmech.2019.01.007
[15] ALLEN T M, CULLIS P R. Liposomal drug delivery systems: From concept to clinical applications[J]. Advanced Drug Delivery Reviews,2013,65(1):36−48. doi: 10.1016/j.addr.2012.09.037
[16] GAO Huan, FAN Yunpeng, WANG Deyun, et al. Optimization on preparation condition of epimedium polysaccharide liposome and evaluation of its adjuvant activity[J]. International Journal of Biological Macromolecules,2012,50(1):207−213. doi: 10.1016/j.ijbiomac.2011.10.021
[17] BO Ruonan, LIU Zhenguang, ZHANG Jing, et al. Mechanism of Lycium barbarum polysaccharides liposomes on activating murine dendritic cells[J]. Carbohydrate Polymers,2019,205(1):540−549.
[18] FAN Yunpeng, MA Xia, MA Lin, et al. Antioxidative and immunological activities of ophiopogon polysaccharide liposome from the root of Ophiopogon japonicus[J]. Carbohydrate Polymers,2016,135:110−120. doi: 10.1016/j.carbpol.2015.08.089
[19] ZHANG Weini, ZHANG Mengxin, CHENG Anyi, et al. Immunomodulatory and antioxidant effects of Astragalus polysaccharide liposome in large yellow croaker (Larimichthys crocea)[J]. Fish and Shellfish Immunology,2020,100:126−136. doi: 10.1016/j.fsi.2020.03.004
[20] 阚晓月. 葛根多糖降血脂活性及其脂质体的制备研究[D]. 镇江: 江苏大学, 2019. KAN Xiaoyue. Study on hypolipidemic activity and liposomal formulation of Pueraria lobata polysaccharides[D]. Zhenjiang: Jiangsu University, 2019.
[21] 崔亥迪. 大蒜多糖对低酰结冷胶的改良作用及应用[D]. 泰安: 山东农业大学, 2021. CUI Haidi. Improvement effect and application of garlic polysaccharide on low-acyl gellan gum[D]. Taian: Shandong Agricultural University, 2021.
[22] WU Yi, YI Lei, LI Entao, et al. Optimization of Glycyrrhiza polysaccharide liposome by response surface methodology and its immune activities[J]. International Journal of Biological Macromolecules:Structure, Function and Interactions,2017,102:68−75.
[23] WU Yujie, MOU Bolin, SONG Shuang, et al. Curcumin-loaded liposomes prepared from bovine milk and krill phospholipids: Effects of chemical composition on storage stability, in-vitro digestibility and anti-hyperglycemic properties[J]. Food Research International,2020,136:109301. doi: 10.1016/j.foodres.2020.109301
[24] DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017
[25] 蔡婧婧. 生姜姜黄素纯化、脂质体制备及对小鼠溃疡性结肠炎治疗的研究[D]. 泰安: 山东农业大学, 2020. CAI Jingjing. Studies on purification of curcumin, preparation of liposomes and treatment of ulcerative colitis in mice[D]. Taian: Shandong Agricultural University, 2020.
[26] 邰克东, 赵苏茂, 杨紫恒, 等. 高压均质对脂质体囊泡特性和稳定性的影响[J]. 食品科学,2019,40(17):169−177. [TAI Kedong, ZHAO Sumao, YANG Ziheng, et al. Effect of high-pressure homogenization on vesicle characteristics and stability of liposomes[J]. Food Science,2019,40(17):169−177. doi: 10.7506/spkx1002-6630-20180916-158 TAI Kedong, ZHAO Sumao, YANG Ziheng, et al. Effect of high-pressure homogenization on vesicle characteristics and stability of liposomes[J]. Food Science, 2019, 40(17): 169-177. doi: 10.7506/spkx1002-6630-20180916-158
[27] BAI Xinyan, QIU Zhichang, ZHENG Zhenjia, et al. Preparation and characterization of garlic polysaccharide-Zn (II) complexes and their bioactivities as a zinc supplement in Zn-deficient mice[J]. Food Chemistry:X,2022,15:100361. doi: 10.1016/j.fochx.2022.100361
[28] ZHAO Ruixuan, ZHANG Bin, SUN Jieru, et al. Evaluation of degradation of pigments formed during garlic discoloration in different pH[J]. Food Research International,2021,140:109957. doi: 10.1016/j.foodres.2020.109957
[29] SANTOS N D, MAYER L D, ABRAHAM S A, et al. Improved retention of idarubicin after intravenous injection obtained for cholesterol-free liposomes[J]. Biochimica et Biophysica Acta (BBA)-Biomembranes,2002,1561(2):188−201. doi: 10.1016/S0005-2736(02)00345-0
[30] 李妍, 方芳, 曹珂珂, 等. 枸杞多糖脂质体制备工艺[J]. 食品与发酵工业,2018,44(5):176−181. [LI Yan, FANG Fang, CAO Keke, et al. Liposome preparation technology of Lycium barbarum polysaccharide[J]. Food and Fermentation Industries,2018,44(5):176−181. LI Yan, FANG Fang, CAO Keke, et al. Liposome preparation technology of Lycium barbarum polysaccharide[J]. Food and Fermentation Industries, 2018, 44(5): 176-181.
[31] 龚频, 方文静, 赵文婧, 等. 灵芝多糖脂质体制备工艺[J]. 食用菌学报,2022,29(5):101−108. [GONG Pin, FANG Wenjing, ZHAO Wenjing, et al. Preparation technology of Ganoderma lucidum polysaccharide liposome[J]. Acta Edulis Fungi,2022,29(5):101−108. GONG Pin, FANG Wenjing, ZHAO Wenjing, et al. Preparation technology of ganoderma lucidum polysaccharide liposome[J]. Acta Edulis Fungi, 2022, 29(5): 101-108.
[32] 张婷, 温鹤迪, 宋敬一, 等. 基于乙醇注入-高压均质的蛋清肽脂质体制备及体内外缓释效果[J]. 食品科学,2021,42(13):79−86. [ZHANG Ting, WEN Hedi, SONG Jingyi, et al. Preparation and in vivo and in vitro sustained-release characteristics of egg white peptide liposomes by ethanol injection combined with high-pressure homogenization[J]. Food Science,2021,42(13):79−86. ZHANG Ting, WEN Hedi, SONG Jingyi, et al. Preparation and in vivo and in vitro sustained-release characteristics of egg white peptide liposomes by ethanol injection combined with high-pressure homogenization[J]. Food Science, 2021, 42(13): 79-86.
[33] 张勇军, 巴娟, 巫辅达, 等. 玉屏风多糖脂质体的制备及表征研究[J]. 动物医学进展,2019,40(7):52−55. [ZHANG Yongjun, BA Juan, WU Fuda, et al. Preparation and characterization of Yupingfeng polysaccharide liposomes[J]. Progress in Veterinary Medicine,2019,40(7):52−55. ZHANG Yongjun, BA Juan, WU Fuda, et al. Preparation and characterization of Yupingfeng polysaccharide liposomes[J]. Progress in Veterinary Medicine, 2019, 40(7): 52-55.
[34] BO Ruonan, MA Xia, FENG Yibo, et al. Optimization on conditions of Lycium barbarum polysaccharides liposome by RSM and its effects on the peritoneal macrophages function[J]. Carbohydrate Polymers,2015,117:215−222. doi: 10.1016/j.carbpol.2014.09.060
[35] 扈瑞瑞, 申国明, 高林, 等. 烟草绿原酸纳米脂质体的制备工艺及其稳定性研究[J]. 中国农业科技导报,2017,19(4):128−137. [HU Ruirui, SHEN Guoming, GAO Lin, et al. Preparation of tobacco chlorogenic acid nanoliposome and its stability analysis[J]. Journal of Agricultural Science and Technology,2017,19(4):128−137. HU Ruirui, SHEN Guoming, GAO Lin, et al. Preparation of tobacco chlorogenic acid nanoliposome and its stability analysis[J]. Journal of Agricultural Science and Technology, 2017, 19(4): 128-137.
[36] 关明, 李浩, 艾散江·艾海提. 胡麻卵磷脂鉴别检查与紫外吸收光谱定量分析[J]. 光谱实验室,2013,30(3):1249−1254. [GUAN Ming, LI Hao, AI Sanjiang. Identification and examination of flax lecithin and quantitative analysis by ultraviolet absorbed spectroscopy[J]. Chinese Journal of Spectroscopy Laboratory,2013,30(3):1249−1254. GUAN Ming, LI Hao, AI Sanjiang. Identification and examination of flax lecithin and quantitative analysis by ultraviolet absorbed spectroscopy[J]. Chinese Journal of Spectroscopy Laboratory, 2013, 30(3): 1249-1254.
[37] 李啟彬, 吕丽铙, 富思逸, 等. 细菌素QY-C与虾青素复合纳米脂质体制备及其特性评价[J]. 食品与发酵工业, 2023, 49 ( 8 ) : 121−127. LI Qibin, LÜ Linao, FU Siyi, et al. Preparation and properties of complex nanoliposomes with bacteriocin QY-C and astaxanthin[J]. Food and Fermentation Industries, 2023, 49 ( 8 ) : 121−127.
-
期刊类型引用(1)
1. 陈士国,张唯希,朱凯,侯志强,叶兴乾. 食源性碳水化合物结构解析新技术前沿与展望. 中国食品学报. 2024(09): 1-17 . 百度学术
其他类型引用(1)