• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

植物精油纳米乳液对肉源腐败菌和致病菌的抑菌作用研究进展

郭玮, 刘苗苗, 潘越, 冯明星, 姚现琦, 张欢, 黄峻榕, 曹云刚

郭玮,刘苗苗,潘越,等. 植物精油纳米乳液对肉源腐败菌和致病菌的抑菌作用研究进展[J]. 食品工业科技,2023,44(18):468−475. doi: 10.13386/j.issn1002-0306.2022110175.
引用本文: 郭玮,刘苗苗,潘越,等. 植物精油纳米乳液对肉源腐败菌和致病菌的抑菌作用研究进展[J]. 食品工业科技,2023,44(18):468−475. doi: 10.13386/j.issn1002-0306.2022110175.
GUO Wei, LIU Miaomiao, PAN Yue, et al. Antimicrobial Effect of Plant Essential Oil Nanoemulsion Against Meat Spoilage Bacteria and Pathogenic Bacteria: A Review[J]. Science and Technology of Food Industry, 2023, 44(18): 468−475. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110175.
Citation: GUO Wei, LIU Miaomiao, PAN Yue, et al. Antimicrobial Effect of Plant Essential Oil Nanoemulsion Against Meat Spoilage Bacteria and Pathogenic Bacteria: A Review[J]. Science and Technology of Food Industry, 2023, 44(18): 468−475. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110175.

植物精油纳米乳液对肉源腐败菌和致病菌的抑菌作用研究进展

基金项目: 国家自然科学基金青年科学基金项目(32301978);陕西科技大学博士启动项目(2019BJ-37);西安市科学技术局农业技术研发项目(22NYYF057)。
详细信息
    作者简介:

    郭玮(1997−),男,硕士研究生,研究方向:天然活性物质的抗菌功能及保鲜应用,E-mail:guowei972021@163.com

    通讯作者:

    刘苗苗(1991−),女,博士,讲师,研究方向:天然活性物质的抗菌功能及保鲜应用,E-mail:liumm2018@126.com

    曹云刚(1985−),男,博士,副教授,研究方向:肉制品绿色加工与保鲜,E-mail:caoyungang@sust.edu.cn

  • 中图分类号: TS251.5

Antimicrobial Effect of Plant Essential Oil Nanoemulsion Against Meat Spoilage Bacteria and Pathogenic Bacteria: A Review

  • 摘要: 植物精油是一类天然的抑菌剂,能够有效抑制多种肉源腐败菌和致病菌,在肉类工业中应用前景广泛。纳米乳液作为一种纳米级包埋系统,在改善精油的水溶性、稳定性和抑菌活性方面有明显效果,目前已成为肉类防腐保鲜领域的研究热点。因此,本文介绍了植物精油纳米乳液的构建方法(乳化方式、乳化剂)、基本特性(稳定性和生物利用率),重点探讨了植物精油纳米乳液对肉源腐败菌和致病菌的抑菌活性、影响因素(精油种类、乳化方式、乳化剂、乳液粒径和微生物种类),及其通过靶向结合、持续释放、被动运输等提高纯精油抑菌活性的内在机制,以期为植物精油纳米乳液在肉制品防腐保鲜中的研究及开发利用提供理论参考。
    Abstract: Plant essential oil is a class of natural bacteriostatic agents that could effectively inhibit numerous meat spoilage and pathogenic bacteria, which has broad application prospects in the meat industry. As a nanoscale embedding system, nanoemulsion is efficient in improving the water solubility, stability and antibacterial activity of essential oil, and has become a research hotspot in the field of meat preservation. In this review, the construction methods (emulsification methods and emulsifiers), basic characteristics (stability and bioavailability) of plant essential oil nanoemulsion are introduced. The antibacterial activity and influencing factors (essential oil types, emulsification methods, emulsifiers, emulsion particle size and microbial species) of plant essential oil nanoemulsion were discussed. And the internal mechanism of plant essential oil nanoemulsion improving the antibacterial activity of pure essential oils through targeted binding, sustained release, and passive transportation were explored. The review may provide a theoretical reference for the further research, development and utilization of plant essential oil nanoemulsions in meat preservation field.
  • 肉及肉制品营养丰富,感官独特,是人类日常膳食的重要组成,也是当前预制食品生产加工的重要原料。然而,肉制品在屠宰、加工、运输、销售等各环节均易受到微生物的污染,导致腐败变质,造成经济损失和食品安全问题的发生。食品防腐剂[1]是一类可以抑制微生物生长繁殖、防止食品腐败变质、延长保质期的食品添加剂。传统的食品防腐剂,如:苯甲酸、山梨酸、对羟基苯甲酸酯、二氧化硫、亚硫酸盐及亚硝酸盐等,多为化学合成防腐剂[2]。该类防腐剂的长期、过量使用不仅易诱发食物中毒事件,还存在致癌、致畸等潜在风险,严重危害人体健康[3]。因此,亟需寻找安全、高效的替代型防腐剂。

    天然防腐剂[4]是指从植物、动物和微生物或其代谢产物中分离提取的一类具有抑菌防腐败作用的天然产物,具有绿色、安全等特点,是目前食品安全领域关注的焦点。植物精油是从草本植物的花、叶、根、茎、皮、果实等部位经过特定的提取、纯化等工艺得到的一种具有特殊的芳香气味的次级代谢产物。植物精油种类丰富,其含量较为丰富的植物类别有:伞形花科、唇形花科、菊科、芸香科、柏科、木兰科、樟科、姜科、桃金娘科、龙脑香科和禾本科等[5]。植物精油所含成分复杂,按化学结构又可以分为萜类、芳香族化合物、脂肪族化合物、含氮和含硫化合物四类[6]

    不同来源和成分的植物精油所具有的生物活性不尽相同,近来植物精油的抑菌防腐作用受到广泛关注。大量研究表明,植物精油具有显著的抑菌活性,能够高效抑制诸如假单胞菌、金黄色葡萄球菌、大肠杆菌、单增李斯特菌、芽孢杆菌等多种食品腐败菌和致病菌[7],延长食品保质期,是极具潜力的天然防腐剂[8]。然而,大部分植物精油在常温下呈油状,水溶性极差;同时其挥发性强,一些精油中的含氮、含硫化合物具有强烈的刺激性气味[9],严重影响食品感官;另外,精油极易被氧化,光、热等环境因子均可促使精油发生氧化、聚合等化学反应,造成精油香气质量和生物活性的大幅下降[10-11]

    纳米乳液是一种纳米级包埋系统,能够包埋各类天然活性成分,具有粒径小、比表面积大、稳定性好、分散均匀、生物活性高等特点,是目前解决植物精油应用局限性的有效方式。研究表明,相较纯精油,植物精油纳米乳液能够通过增强精油在食品基质中的分散性和稳定性进而增强其抗菌活性,同时减少对食品感官品质的不良影响[12]。目前,植物精油纳米乳液的抑菌保鲜作用已被大量研究证实[13-14],在肉制品防腐保鲜领域具有广阔的发展前景。然而,植物精油纳米乳液对于肉源有害细菌的抑制作用及相关机制尚缺乏系统总结分析。因此,本文将从植物精油纳米乳液对肉源腐败菌和致病菌的抑菌作用、影响因素和抑菌机制等方面进行综述,以期为植物精油纳米乳液在肉类防腐保鲜中的研究及开发利用提供理论参考。

    植物精油纳米乳液是由水相、油相和乳化剂按一定比例组成的大小均匀、透明、半透明或乳白色的胶体分散体系[15]。其粒径大小一般为50~200 nm[16],也有部分文献定义为50~500 nm[17]

    纳米乳液可以通过多种方式构建,通常可分为高能乳化法和低能乳化法。高能乳化方式主要包括高压均质法、超声乳化法、微射流法、膜乳化法和微孔道乳化法等[18],其是通过高压设备输入能量获得纳米乳液,制备过程可控,操作便捷,是目前制备植物精油纳米乳液的常用实验方法。然而高能乳化法往往需要较为昂贵的专业设备,较高的成本与冷却问题限制了其工业化和规模化应用。低能乳化法可分为自乳化法和相转化(相转化温度和相转化成分)法等[19]。该类方法相比高能法更节约成本,乳液更均一,但多适用于低黏度油相和小分子表面活性剂,且所需表面活性剂也较多,可能存在食品安全隐患和异味问题,另外,由于低能乳化是在热力学驱动下完成的,更易受外界温度、压力和搅拌等热力学参数的影响。

    在纳米乳液构建过程中,油相和水相是两种互不相溶的相,因而乳化剂作为中间相,是乳液的重要组成部分。乳化剂能够降低水油界面的张力,防止颗粒聚集、沉降、絮凝、奥氏熟化等现象,促进纳米乳液的形成并提高其稳定性。常用乳化剂包括合成乳化剂和天然乳化剂两种。在食品行业中,使用最广泛的合成类乳化剂主要有吐温、司盘等小分子表面活性剂及聚丙烯酰胺、聚甘油酯等[20]。天然乳化剂按其成分可分为多糖类乳化剂(如阿拉伯树胶、黄蓍胶、果胶、大豆多糖、改性淀粉等)、蛋白类乳化剂(如明胶、乳清蛋白、乳铁蛋白、豌豆蛋白、酪蛋白等)以及磷脂乳化剂(如卵磷脂、大豆磷脂等)[21-22]。然而,合成乳化剂对人体健康可能存在潜在隐患。因此,在实际食品工业中更倾向于天然乳剂的研究与应用。

    植物精油纳米乳液通常具有良好的稳定性。一方面,纳米乳液的粒径较小,微小的液滴能够通过布朗运动克服重力作用,因而不易发生聚集、絮凝、沉淀等不利变化[23]。另一方面,包埋在乳液系统内部的植物精油受外界因素(如光、热、氧气、pH等)的影响也较小,相比游离的纯精油而言具有更强的稳定性。Kreutz等[24]研究发现,卡尼里拉精油在纳米乳液体系中的稳定性优于甲醇溶液体系,经光处理和热处理后,纳米乳液中精油主要化合物的保留率更高。

    植物精油纳米乳液的稳定性受到多种因素的影响。就纳米乳液自身而言,其稳定性与表面活性剂、乳化方式(平均粒径、PDI)和Zeta电位等有关[25]。粒径越小,乳液越稳定;PDI<0.2、净电位值>30 mV,乳液稳定性越高[26]。粗乳液受到的作用力越大,得到的纳米乳液粒径越小越均一,乳液越稳定;一定范围内纳米乳液的粒径随着乳化剂含量的升高和精油含量的降低而趋于更小和更稳定[27];随贮藏时间的延长,乳液稳定性逐渐下降[28]。就外界因素而言,纳米乳液受到pH、离子强度、冻融、温度等的影响。研究表明,纳米乳液在pH为7~10范围内乳液相对稳定;在一定范围内(−2~+3价)随离子强度的增加,乳液稳定性降低,且一价阳离子对乳液稳定性的影响显著弱于二价阳离子;冻融后纳米乳液的平均粒径增大,乳液稳定性降低[29]。因此,可以过调控其组分(如油、水相)和微观结构(如粒径大小),或加入某些稳定剂(如乳化剂、品质改良剂或缓凝剂)等方法来进一步提高纳米乳液的稳定性。

    植物精油纳米乳液还可在一定程度上提高植物精油的生物利用率。植物精油的不稳定性是导致生物利用率降低的主要原因,而纳米乳液可以提高精油在体系中的分散性、生物可及率和机体对植物精油的吸收能力来提高植物精油的生物利用率[17]。纳米乳液的理化特性和组成对植物精油的生物利用率有显著影响:当精油包埋在纳米乳液中时,其生物利用率随乳液粒径的减小而增加[30];乳化剂的不同也会影响生物利用率,其效果大小依次为:非离子型表面活性剂>磷脂酰胆碱>蛋白,且随分子多分枝结构和分散密度的降低生物利用率逐渐增加;还可通过调控乳液的成分来改变液滴间的聚集状态,从而改变精油活性成分的利用率[31]

    植物精油纳米乳液中含有抑菌的植物精油,因而其对多种肉源有害细菌均具有一定抑制作用。研究表明,在培养基体系中,佛手精油纳米乳液对大肠杆菌、金黄色葡萄球菌、空肠弯曲杆菌的最小抑菌浓度(minimum inhibitory concentration,MIC)为3.125、6.25、12.5 mg/mL[32];鼠尾草精油纳米乳液在浓度为6.25 mg/mL时可抑制假单胞菌、液化沙雷氏菌、肺炎雷克伯菌和甲型副伤寒沙门氏菌的生长,浓度为12.5 mg/mL时可抑制大肠杆菌、奇异变形杆菌和粪肠球菌的生长[33];柠檬精油纳米乳液在浓度为6.25 mg/mL时可抑制肺炎克雷伯菌、液化沙雷氏菌和黄绿假单胞菌的生长,浓度为12.5 mg/mL时可抑制甲型副伤寒沙门氏菌和粪肠球菌的生长[34]。可见,植物精油纳米乳液能够有效抑制多种肉源腐败菌和致病菌的生长,但不同植物精油纳米乳液对不同细菌的抑菌能力有显著差异。同时,现有研究多集中在植物精油纳米乳液对致病菌的防控研究上,而对肉源腐败菌的关注较少。鉴于肉源腐败菌种类繁多,组成复杂,防控难度大,因而亟需加强植物精油纳米乳液对腐败菌的研究。

    在肉制品中,植物精油纳米乳液亦可显著抑制细菌生长,延长保质期。Sun等[35]研究发现,茴香精油/肉桂醛可食性纳米乳液可有效抑制猪肉饼中大肠杆菌和金黄色葡萄球菌的生长,使保质期从6 d延长到10 d,另外纳米乳液处理组菌落总数在第12 d时仅为4.85 lg(CFU/g),显著低于对照组5.79 lg(CFU/g)。王婧[36]研究发现,氯代肉桂醛纳米乳可抑制低温冷藏保鲜草鱼片中微生物的繁殖,延长货架期,对照组在第4 d时菌落总数已超标(6.88 lg(CFU/g)),而纳米乳处理组菌落总数在第6 d时才超标(6.1 lg(CFU/g))。郗泽文[37]用柠檬精油纳米乳液制备可食性涂膜用于卤鸭脖的保鲜,结果发现产品保质期从8 d延长至12 d,且对照组菌落总数在第8 d时达到4.91 lg(CFU/g),超过国家标准(4.903 lg(CFU/g)),而处理组菌落总数在第12 d时为4.85 lg(CFU/g),仍未超标。由此可见,植物精油纳米乳液在肉及肉制品中均具有良好的保鲜效果和开发应用潜力。

    植物精油在纳米乳液中能够以微小粒子形式存在,比表面积显著提高,因而其抑菌效力也发生一定改变。大部分研究者发现,经过纳米乳化后,植物精油的抑菌活性显著高于纯精油。例如,王雪薇等[38]研究表明,与纯精油相比,黑皮油松松针精油纳米乳液对大肠杆菌和金黄色葡萄球菌的抑菌活性更强。邱亦亦[39]对昆仑雪菊油树脂的研究表明,经纳米乳化后的油树脂与纯树脂精油相比,纳米乳液对大肠杆菌和金黄色葡萄球菌的抑菌活性更强。然而,也有一些研究者发现,经过乳化后,精油的抑菌活性出现不变或下降的结果。Mansouri等[40]发现,百里香精油经吐温80乳化后,其对鼠伤沙门氏菌、大肠埃希氏菌和单增李斯特菌的抑菌活性低于纯精油;Mendes等[41]也发现,紫叶精油纳米乳液对假单胞菌的抑菌活性显著低于纯精油。纳米乳化包埋技术虽可以在一定程度上改变植物精油的抑菌能力,但对其具体的影响因素目前尚无准确定论。

    就纳米乳液自身而言,精油种类、乳化方式、乳化剂、乳液粒径等是影响植物精油纳米乳化前后抑菌活性变化的重要因素(表1)。a.精油种类。在相同的乳化剂(吐温80)和超声乳化方式下,百里香精油[42]、鼠尾草精油[33]、月桂精油[43]的纳米乳液对创伤弧菌的抑菌活性低于纯精油,而柠檬精油纳米乳液[34]对创伤弧菌的抑菌活性则高于纯精油。b.乳化方式。以辛烯基琥珀酸淀粉钠为乳化剂,利用高压均质法[44]制备的肉桂精油纳米乳液,其对大肠杆菌的抑菌活性相比纯精油无显著变化,而利用高频超声法[45]和超声均质法[46]制备的肉桂纳米乳液,其对大肠杆菌活性相较于纯精油明显升高。c.乳化剂。Donsì等[47]分别以棕榈油和吐温20为乳化剂,经高压均质法制备柠檬烯纳米乳液,研究发现,以棕榈油为乳化剂制备的纳米乳液对大肠杆菌的抑菌活性相较于纯柠檬烯没有变化,而以吐温20为乳化剂制备的纳米乳液相较于纯柠檬烯对大肠杆菌的抑菌活性升高。d.乳液粒径。Liu等[48]利用超声波乳化技术制备不同粒径的大蒜精油纳米乳液,结果发现,随着纳米乳液粒径的减小(820.3→215.0 nm),其抑菌活性显著增强。Gahruie等[49]也发现,随着纳米乳液粒径的减小(210.5→90.9 nm),花泽兰精油纳米乳液制备的可食性薄膜抑菌活性显著增加。

    表  1  植物精油纳米乳化前后抑菌活性的变化
    Table  1.  Changes in bacteriostatic activity of plant essential oils before and after nanoemulsification
    精油种类乳化方式乳化剂乳液粒径(nm)菌种活性变化参考文献
    百里香超声均质法吐温80448金黄色葡萄球菌、丹泽氏梭菌、
    液化沙雷氏菌、甲型副伤寒沙门氏菌
    升高[42]
    粪肠球菌、创伤弧菌、
    奇异变形杆菌、黄体假单胞菌
    降低
    鼠尾草超声均质法吐温80204.4丹氏发光杆菌、创伤弧菌、
    液化沙雷氏菌、黄体假单胞菌
    降低[33]
    粪肠球菌、奇异变形杆菌升高
    月桂超声均质法吐温80247.52丹氏发光杆菌、创伤弧菌、奇异变形杆菌、
    液化沙雷氏菌、黄体假单胞菌
    降低[43]
    柠檬超声均质法吐温80181.5丹氏发光杆菌、奇异变形杆菌、
    液化沙雷氏菌、黄体假单胞菌
    降低
    [34]
    粪肠球菌、创伤弧菌升高
    肉桂高压均质法辛烯基琥珀酸淀粉酯112大肠杆菌、沙门氏菌、金黄色葡萄球菌不变[44]
    高频超声法吐温80267大肠杆菌、单增李斯特菌升高[45]
    超声均质法酪蛋白酸钠和
    二羟丙基-β-
    环糊精
    233.93大肠杆菌、金黄色葡萄球菌[46]
    柠檬烯高压均质法固体脂肪乳剂
    (棕榈油)
    365大肠杆菌不变[47]
    吐温20/单
    油酸甘油酯
    升高
    迷迭香高频超声法吐温80226大肠杆菌、单增李斯特菌升高[45]
    牛至546
    柑橘自发乳化法吐温8073金黄色葡萄球菌、大肠杆菌升高[50]
    生姜溶剂置换法吐温20和
    阿拉伯胶
    353金黄色葡萄球菌、大肠杆菌升高[51]
    下载: 导出CSV 
    | 显示表格

    另外,微生物种类的不同也会使精油纳米乳液的抑菌活性表现出较大差异。例如,百里香精油经纳米乳化后,其对金黄色葡萄球菌、丹泽氏梭菌、液化沙雷氏菌、甲型副伤寒沙门氏菌的抑菌活性高于纯精油,但对粪肠球菌、创伤弧菌、奇异变形杆菌、黄体假单胞菌的抑菌活性低于纯精油[40]。鼠尾草精油和柠檬精油也发现类似结果[33-34]。鉴于以上差异,在实际应用中应针对具体的微生物种类,选用适当的植物精油纳米乳液,以达到最佳抑制效果。同时,尽管植物精油纳米乳液抑菌活性的影响因素已有大量研究报道,但是纳米乳化调控精油抑菌活性的关键因素尚不明确,还需进一步研究。

    植物精油具有广谱抗菌作用,其抑菌机制已得到大量研究。目前研究者认为,植物精油抑菌的主要作用靶点是微生物的细胞膜,其通过破坏细胞膜的磷脂双分子层,增加膜的通透性,诱导膜结构坍塌、功能紊乱,进而造成胞内重要物质的泄漏,最终导致菌体的死亡[52]。同时,精油在进入菌体内部后,还能够产生以下影响,如降低ATP的合成,影响菌体的能量代谢;诱导细菌蛋白质和核酸的正常合成和代谢;造成氨基酸代谢紊乱等[53-55],具体如图1所示。

    图  1  植物精油及其纳米乳液的抑菌机制图
    Figure  1.  Antibacterial mechanism of plant essential oils and their nanoemulsions

    植物精油纳米乳液中含有精油成分,因而其能够通过与纯精油相似的作用机制发挥抑菌活性。如茶皂素基香芹酚乳液可使微生物细胞膜的完整性被破坏,细胞内电解质离子和蛋白质的流出,改变细胞膜的通透性,致使细胞死亡[56];柠檬精油纳米乳液可显著破坏菌体形态,损伤细胞膜,使细胞壁溶解和缺失,细胞内环境被破坏,导致胞内核酸、蛋白质、K+等内溶物大量泄露,致使细胞死亡[57]。纳米包埋后的植物精油进入细胞后可使胞内的氨基酸代谢、嘌呤代谢、氨基糖代谢、嘧啶代谢等代谢通路发生改变;还可抑制细胞能量代谢,降低能量代谢过程中关键调解酶的活性;降解核糖体、膜受体及能量代谢从而使得相关调控基因发生变化[58-59]

    然而相比纯精油,植物精油纳米乳液对菌体细胞膜的破坏作用又存在显著不同。植物精油纳米乳液具有液滴粒径小,比表面积大、稳定性好等特点,对微生物作用时靶向性更强,更易附着在微生物表面,因而对微生物的抑制效果更加显著。刘如楠等[60]研究发现,褚橙精油纳米乳液抗菌活性高于纯精油的原因是纳米乳液中的小脂质颗粒能够将更多的精油带到微生物细胞膜表面,而纯精油水溶性低,由于疏水作用,不易与细胞膜发生靶向作用。王雪薇[61]研究表明,黑皮油松松针精油纳米乳液较纯精油抑菌活性升高,其机理为以细菌的细胞膜为目标,纳米乳液通过与细胞膜的靶向作用,使细菌的亲水性增强,导致细胞死亡。Li等[62]认为,精油纳米乳液与微生物细胞膜的磷脂双分子层间的吸附促进了精油在所需位点的靶向释放;Chang等[63]认为,带正电的纳米乳液液滴与带负电的微生物细胞壁间的静电相互作用增加了作用部位的精油浓度。除此之外,Donsì等[64]认为,在油水相的双重驱动下,纳米乳液包埋的精油随释放时间的增加,延长了油水相间精油的生物活性;Moghimi等[65]认为,精油纳米乳液表面积的增大提高了细胞膜的被动运输,提高微生物细胞的可及性。可见,植物精油纳米乳液的靶向结合、持续释放、被动运输等是其发挥抑菌作用的重要途径(图1),但相关机制仍有待进一步阐明。

    上述研究表明,纳米乳液的包埋有助于植物精油中的活性成分进入菌体细胞内,此外,还可增加植物精油在水介质中的分散性和溶解性,从而使植物精油更加充分地与目标微生物接触,表现出更强的抑菌活性。

    腐败菌和致病菌是引起肉类食品保鲜和安全问题的重要因素。随着人们对绿色、健康食品需求的提升,开发新型防腐保鲜剂已经当下的研究热点。天然的植物精油具有广谱抑菌作用,在肉制品防腐保鲜领域应用前景广泛。经纳米乳液包埋后,植物精油的亲水性和稳定性均显著提升,其生物利用率和抑菌活性也得到改善。植物精油纳米乳液能够有效抑制多种肉源腐败菌和致病菌的生长,但其抑菌活性受到精油种类、乳化方式、乳化剂、乳液粒径和微生物种类的显著影响。相比纯精油,植物精油纳米乳液能够通过靶向结合、持续释放、被动运输等增强被包埋精油对菌体细胞的膜损伤作用及对胞内重要代谢过程的干扰,最终促使菌体死亡。然而,目前植物精油纳米乳液的研究与应用仍存在一些局限性,包括以下几个方面:a.植物精油纳米乳液的抑菌活性研究多集中于肉源致病菌,对肉源腐败菌的研究仍较为有限;b.纳米乳化过程中,影响精油抑菌活性的关键因素尚不明确;c.植物精油纳米乳液的抑菌机制仍未被充分阐明,目前对其抑菌机制的研究多停留在菌体细胞形态结构的观察,后续可从菌体内部代谢和分子层面进行深入探究。同时,植物精油纳米乳液的靶向结合、持续释放、被动运输等是其发挥抑菌作用的潜在重要途径,但内在机制仍有待进一步阐明;d.在实际应用中,精油的添加限量很低,可通过探讨几种精油纳米乳液的协同抑菌作用,或与其他物质的协同作用进行改进,同时需综合考量其对肉制品感官品质的影响。总之,植物精油纳米乳液作为新型高效的防腐剂在肉制品的高质保鲜中仍存在巨大的潜力和挑战。

  • 图  1   植物精油及其纳米乳液的抑菌机制图

    Figure  1.   Antibacterial mechanism of plant essential oils and their nanoemulsions

    表  1   植物精油纳米乳化前后抑菌活性的变化

    Table  1   Changes in bacteriostatic activity of plant essential oils before and after nanoemulsification

    精油种类乳化方式乳化剂乳液粒径(nm)菌种活性变化参考文献
    百里香超声均质法吐温80448金黄色葡萄球菌、丹泽氏梭菌、
    液化沙雷氏菌、甲型副伤寒沙门氏菌
    升高[42]
    粪肠球菌、创伤弧菌、
    奇异变形杆菌、黄体假单胞菌
    降低
    鼠尾草超声均质法吐温80204.4丹氏发光杆菌、创伤弧菌、
    液化沙雷氏菌、黄体假单胞菌
    降低[33]
    粪肠球菌、奇异变形杆菌升高
    月桂超声均质法吐温80247.52丹氏发光杆菌、创伤弧菌、奇异变形杆菌、
    液化沙雷氏菌、黄体假单胞菌
    降低[43]
    柠檬超声均质法吐温80181.5丹氏发光杆菌、奇异变形杆菌、
    液化沙雷氏菌、黄体假单胞菌
    降低
    [34]
    粪肠球菌、创伤弧菌升高
    肉桂高压均质法辛烯基琥珀酸淀粉酯112大肠杆菌、沙门氏菌、金黄色葡萄球菌不变[44]
    高频超声法吐温80267大肠杆菌、单增李斯特菌升高[45]
    超声均质法酪蛋白酸钠和
    二羟丙基-β-
    环糊精
    233.93大肠杆菌、金黄色葡萄球菌[46]
    柠檬烯高压均质法固体脂肪乳剂
    (棕榈油)
    365大肠杆菌不变[47]
    吐温20/单
    油酸甘油酯
    升高
    迷迭香高频超声法吐温80226大肠杆菌、单增李斯特菌升高[45]
    牛至546
    柑橘自发乳化法吐温8073金黄色葡萄球菌、大肠杆菌升高[50]
    生姜溶剂置换法吐温20和
    阿拉伯胶
    353金黄色葡萄球菌、大肠杆菌升高[51]
    下载: 导出CSV
  • [1] 朱安. 食品防腐剂的分类、安全性及应用研究[J]. 农业灾害研究,2012,2(7):41−44, 50. [ZHU An. Classification, security and application of food preservatives[J]. Research on Agricultural Disasters,2012,2(7):41−44, 50.

    ZHU An. Classification, security and application of food preservatives[J]. Research on Agricultural Disasters, 2012, 2(7): 41-44, 50.

    [2] 董欣旖, 赵英侠. 食品防腐剂在食品中应用现状分析[J]. 中国食品添加剂,2020,31(11):5. [DONG Xinyi, ZHAO Yingxia. Analysis of current situation of food preservatives application in food[J]. China Food Additive,2020,31(11):5.

    DONG Xinyi, ZHAO Yingxia. Analysis of current situation of food preservatives application in food[J]. China Food Additive, 2020, 31(11): 5.

    [3] 胡民强, 张辉华. 大蒜素在动物生产以及肉制品防腐保鲜中的应用[J]. 养殖与饲料,2014(7):37−39. [HU Minqiang, ZHANG Huihua. Application of allicin in animal production and preservation of meat products[J]. Culture and Feed,2014(7):37−39. doi: 10.3969/j.issn.1671-427X.2014.07.020

    HU Minqiang, ZHANG Huihua. Application of allicin in animal production and preservation of meat products[J]. Culture and Feed, 2014(7): 37-39. doi: 10.3969/j.issn.1671-427X.2014.07.020

    [4] 王真真, 翟心慧. 食品防腐剂的种类及应用和发展趋势概述[J]. 生物学教学,2018,43(6):2. [WANG Zhenzhen, ZHAI Xinhui. Types, application and development trend of food preservatives[J]. Biology Teaching,2018,43(6):2. doi: 10.3969/j.issn.1004-7549.2018.06.001

    WANG Zhenzhen, ZHAI Xinhui. Types, application and development trend of food preservatives[J]. Biology Teaching, 2018, 43(6): 2. doi: 10.3969/j.issn.1004-7549.2018.06.001

    [5] 王广要, 周虎, 曾晓峰. 植物精油应用研究进展[J]. 食品科技,2006,31(5):11−14. [WANG Guangyao, ZHOU Hu, ZENG Xiaofeng. Research progress of plant essential oil application[J]. Food Science and Technology,2006,31(5):11−14.

    WANG Guangyao, ZHOU Hu, ZENG Xiaofeng. Research progress of plant essential oil application[J]. Food Science and Technology, 2006, 31(5): 11-14.

    [6] 唐寅, 王莹, 吕晓帆, 等. 植物精油的护肤应用研究进展[J]. 广州化工,2022,50(8):30−33. [TANG Yin, WANG Ying, LÜ Xiaofan, et al. Research progress of plant essential oil application in skin care[J]. Guangzhou Chemical Industry,2022,50(8):30−33. doi: 10.3969/j.issn.1001-9677.2022.08.010

    TANG Yin, WANG Ying, LÜ Xiaofan, et al. Research progress of plant essential oil application in skin care[J]. Guangzhou Chemical Industry, 2022, 50(8): 30-33. doi: 10.3969/j.issn.1001-9677.2022.08.010

    [7]

    MITH H, DURE R, DELCENSERIE V, et al. Antimicrobial activities of commercial essential oils and their components against food-borne pathogens and food spoilage bacteria[J]. Food Science & Nutrition,2014,2(4):403−416.

    [8] 汤友军, 鲁晓翔. 植物精油稳定性的改善及其在食品中应用研究进展[J]. 食品工业科技,2020,41(7):5. [TANG Youjun, LU Xiaoxiang. Research progress on improvement of stability of plant essential oil and its application in food[J]. Science and Technology of Food Industry,2020,41(7):5.

    TANG Youjun, LU Xiaoxiang. Research progress on improvement of stability of plant essential oil and its application in food[J]. Science and Technology of Food Industry, 2020, 41(7): 5.

    [9] 姚依妮, 孙建明, 李昭, 等. 植物精油在果蔬保鲜中的研究进展[J]. 轻工科技,2021(5):3. [YAO Yini, SUN Jianming, LI Zhao, et al. Research progress of plant essential oil in fruit and vegetable preservation[J]. Science and Technology of Light Industry,2021(5):3.

    YAO Yini, SUN Jianming, LI Zhao, et al. Research progress of plant essential oil in fruit and vegetable preservation[J]. Science and Technology of Light Industry, 2021(5): 3.

    [10] 牛小杰, 孙鲁阳. 植物精油化学成分的研究进展[J]. 生物化工,2021,7(5):160−162. [NIU Xiaojie, SUN Luyang. Research progress on chemical constituents of plant essential oils[J]. Biochemistry,2021,7(5):160−162. doi: 10.3969/j.issn.2096-0387.2021.05.043

    NIU Xiaojie, SUN Luyang. Research progress on chemical constituents of plant essential oils[J]. Biochemistry, 2021, 7(5): 160-162. doi: 10.3969/j.issn.2096-0387.2021.05.043

    [11] 史冬辉. 几种木本植物精油对植物病原物的抑制活性研究[D]. 杭州: 浙江林学院, 2008

    SHI Donghui. Study on the inhibitory activity of several woody plant essential oils against plant pathogens[D]. Hangzhou: Zhejiang Forestry College, 2008.

    [12]

    DONSì F, FERRARI G. Essential oil nanoemulsions as antimicrobial agents in food[J]. Journal of Biotechnology,2016,233:106−120. doi: 10.1016/j.jbiotec.2016.07.005

    [13]

    SNOUSSI A, CHOUAIBI M, KOUBAIER H B H, et al. Encapsulation of Tunisian thyme essential oil in O/W nanoemulsions: Application for meat preservation[J]. Meat Science,2022,188:108785. doi: 10.1016/j.meatsci.2022.108785

    [14]

    CHRISTAKI S, MOSCHAKIS T, HATZIKAMARI M, et al. Nanoemulsions of oregano essential oil and green extracts: Characterization and application in whey cheese[J]. Food Control,2022,141:109190. doi: 10.1016/j.foodcont.2022.109190

    [15]

    SALAVIA-TRUJILLO L, SOLIVA-FORTUNY R, ROJAS-GRAU M A, et al. Edible nanoemulsions as carriers of active ingredients: A review[J]. Annual Review of Food Science and Technology,2017,8:439−466. doi: 10.1146/annurev-food-030216-025908

    [16] 康波, 齐军茹, 杨晓泉, 等. 纳米乳液的制备及稳定性研究进展[J]. 中国食品添加剂,2008(3):102−104. [KANG Bo, QI Junru, YANG Xiaoquan, et al. Research progress on preparation and stability of nano-emulsion[J]. China Food Additives,2008(3):102−104. doi: 10.3969/j.issn.1006-2513.2008.03.019

    KANG Bo, QI Junru, YANG Xiaoquan, et al. Research progress on preparation and stability of nano-emulsion[J]. China Food Additives, 2008(3): 102-104. doi: 10.3969/j.issn.1006-2513.2008.03.019

    [17] 董曼, 文红, 黄亚平, 等. 脂质和表面活性剂对精油纳米乳液稳定性的影响及其应用研究进展[J]. 食品工业科技,2019,40(22):358−363. [DONG Man, WEN Hong, HUANG Yaping, et al. Effects of lipids and surfactants on the stability of essential oil nanoemulsion and its application research progress[J]. Science and Technology of Food Industry,2019,40(22):358−363.

    DONG Man, WEN Hong, HUANG Yaping, et al. Effects of lipids and surfactants on the stability of essential oil nanoemulsion and its application research progress[J]. Science and Technology of Food Industry, 2019, 40(22): 358-363.

    [18] 甘亮, 邓建军, 胡流云, 等. 纳米乳液制备技术及其在化妆品中的应用[J]. 日用化学品科学,2020,43(11):46−52. [GAN Liang, DENG Jianjun, HU Liuyun, et al. Preparation technology of nano-emulsion and its application in cosmetics[J]. Detergent & Cosmetics,2020,43(11):46−52.

    GAN Liang, DENG Jianjun, HU Liuyun, et al. Preparation technology of nano-emulsion and its application in cosmetics[J]. Detergent & Cosmetics, 2020, 43(11): 46-52.

    [19]

    SOLANS C, SOLE I. Nano-emulsions: Formation by low-energy methods[J]. Current Opinion in Colloid & Interface Science,2012,17(5):246−254.

    [20] 江连洲, 李佳妮, 姜楠, 等. 纳米乳液制备技术及功能应用研究进展[J]. 中国食物与营养,2017,23(6):33−38. [JIANG Lianzhou, LI Jiani, JIANG Nan, et al. Research progress on preparation technology and functional application of nano-emulsion[J]. Food and Nutrition of China,2017,23(6):33−38. doi: 10.3969/j.issn.1006-9577.2017.06.008

    JIANG Lianzhou, LI Jiani, JIANG Nan, et al. Research progress on preparation technology and functional application of nano-emulsion[J]. Food and Nutrition of China, 2017, 23(6): 33-38. doi: 10.3969/j.issn.1006-9577.2017.06.008

    [21]

    TAHA A, AHMED E, ISMAIEL A, et al. Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions[J]. Trends in Food Science & Technology,2020,105:363−377.

    [22]

    LIU C, PEI R, HEINONEN M. Faba bean protein: A promising plant-based emulsifier for improving physical and oxidative stabilities of oil-in-water emulsions[J]. Food Chemistry,2022,369:130879. doi: 10.1016/j.foodchem.2021.130879

    [23]

    MCCLEMENTS D J, RAO J. Food-grade nanoemulsions: Formulation, fabrication, properties, performance, biological fate, and potential toxicity[J]. Critical Reviews in Food Science and Nutrition,2011,51(4):285−330. doi: 10.1080/10408398.2011.559558

    [24]

    KREUTZ T, CARNEIRO S B, SOARES K D, et al. Aniba canelilla (Kunth) Mez essential oil-loaded nanoemulsion: Improved stability of the main constituents and in vitro antichemotactic activity[J]. Industrial Crops and Products,2021,171:113949. doi: 10.1016/j.indcrop.2021.113949

    [25] 李杨, 胡淼, 谢凤英, 等. 超高压均质对紫苏油纳米乳液稳定性的影响[J]. 农业机械学报,2018,49(8):381−387. [LI Yang, HU Miao, XIE Fengying, et al. Effect of ultra-high pressure homogenization on stability of Perilla oil nanoemulsion[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(8):381−387. doi: 10.6041/j.issn.1000-1298.2018.08.046

    LI Yang, HU Miao, XIE Fengying, et al. Effect of ultra-high pressure homogenization on stability of Perilla oil nanoemulsion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 381-387. doi: 10.6041/j.issn.1000-1298.2018.08.046

    [26] 李季楠, 吴艳, 胡浩, 等. 食品纳米乳液的研究进展[J]. 食品与机械,2019,35(2):217−225. [LI Jinan, WU Yan, HU Hao, et al. Research progress of food nanoemulsion[J]. Food & Machinery,2019,35(2):217−225.

    LI Jinan, WU Yan, HU Hao, et al. Research progress of food nanoemulsion[J]. Food & Machinery, 2019, 35(2): 217-225.

    [27] 黄剑钊, 黎攀, 许锦伟, 等. 美藤果油纳米乳液的制备及稳定性研究[J]. 食品与发酵工业,2020,46(11):216−222. [HUANG Jianzhao, LI Pan, XU Jinwei, et al. Preparation and stability of Meteng fruit oil nanoemulsion[J]. Food and Fermentation Industry,2020,46(11):216−222.

    HUANG Jianzhao, LI Pan, XU Jinwei, et al. Preparation and stability of Meteng fruit oil nanoemulsion[J]. Food and Fermentation Industry, 2020, 46(11): 216-222.

    [28] 江连洲, 綦玉曼, 马春芳, 等. 鱼油纳米乳液运载体系构建与稳定性研究[J]. 农业机械学报,2018,49(10):387−395. [JIANG Lianzhou, QI Yuman, MA Chunfang, et al. Construction and stability of fish oil nanoemulsion delivery system[J]. Transactions of the Chinese Society for Agricultural Machinery,2018,49(10):387−395. doi: 10.6041/j.issn.1000-1298.2018.10.045

    JIANG Lianzhou, QI Yuman, MA Chunfang, et al. Construction and stability of fish oil nanoemulsion delivery system[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 387-395. doi: 10.6041/j.issn.1000-1298.2018.10.045

    [29] 陈冬, 张晓阳, 刘尧政, 等. 姜油纳米乳液超声波乳化制备工艺及其稳定性研究[J]. 农业机械学报,2016,47(6):250−258. [CHEN Dong, ZHANG Xiaoyang, LIU Yaozheng, et al. Preparation and stability of ginger oil by nano-emulsion ultrasonic emulsion[J]. Transactions of the Chinese Society for Agricultural Machinery,2016,47(6):250−258.

    CHEN Dong, ZHANG Xiaoyang, LIU Yaozheng, et al. Preparation and stability of ginger oil by nano-emulsion ultrasonic emulsion[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(6): 250-258.

    [30] 买尔哈巴·塔西帕拉提, 阙斐, 张辉. 可食用纳米乳液的研究进展[J]. 中国食品学报,2014,14(1):213−223. [MAIERHABA Tasiparati, QUE Fei, ZHANG Hui. Research progress of edible nano-emulsion[J]. Acta Food Sinica,2014,14(1):213−223.

    MAIERHABA Tasiparati, QUE Fei, ZHANG Hui. Research progress of edible nano-emulsion[J]. Acta Food Sinica, 2014, 14(1): 213-223.

    [31] 梁蓉, 麻建国, 钟芳. 纳米乳液包埋技术在功能性食品中的研究进展[J]. 食品与生物技术学报,2013,32(6):561−568. [LIANG Rong, MA Jianguo, ZHONG Fang. Research progress of nano-emulsion embedding technology in functional food[J]. Journal of Food and Biotechnology,2013,32(6):561−568. doi: 10.3969/j.issn.1673-1689.2013.06.001

    LIANG Rong, MA Jianguo, ZHONG Fang. Research progress of nano-emulsion embedding technology in Functional food[J]. Journal of Food and Biotechnology, 2013, 32(6): 561-568. doi: 10.3969/j.issn.1673-1689.2013.06.001

    [32] 孙小涵. 金华佛手精油的提取、纳米乳制备及活性研究[D]. 无锡: 江南大学, 2018

    SUN Xiaohan. Extraction of essential oil from Jinhua formosa, preparation and activity of nanoemulsion[D]. Wuxi: Jiangnan University, 2018.

    [33]

    YAZGAN H. Investigation of antimicrobial properties of sage essential oil and its nanoemulsion as antimicrobial agent[J]. LWT,2020,130:109669. doi: 10.1016/j.lwt.2020.109669

    [34]

    YAZGAN H, OZOGUL Y, KULEY E. Antimicrobial influence of nanoemulsified lemon essential oil and pure lemon essential oil on food-borne pathogens and fish spoilage bacteria[J]. International Journal of Food Microbiology,2019,306:108266. doi: 10.1016/j.ijfoodmicro.2019.108266

    [35]

    SUN Y, ZHANG M, BHANDARI B, et al. Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: Characterization, antimicrobial property and advantages in pork meat patties application[J]. Food Control,2021,127:108151. doi: 10.1016/j.foodcont.2021.108151

    [36] 王婧. 氯代肉桂醛纳米乳的制备及其在草鱼保鲜中的应用[D]. 新乡: 河南科技学院, 2018

    WANG Jing. Preparation of chlorinated cinnamaldehyde nanoemulsion and its application in the preservation of grass carp[D]. Xinxiang: Henan Institute of Science and Technology, 2018.

    [37] 郗泽文. 可食用涂膜在卤鸭脖保鲜中的应用[D]. 南昌: 南昌大学, 2019

    XI Zenwen. Application of edible coating on the preservation of braised duck neck[D]. Nanchang: Nanchang University, 2019.

    [38] 王雪薇, 李德海. 黑皮油松松针精油纳米乳液的制备及稳定性研究[J]. 中国农业大学学报,2021,26(11):123−132. [WANG Xuewei, LI Dehai. Preparation and stability of nanoemulsion for essential oil of Pinus tabulaeus and pinus pinus[J]. Journal of China Agricultural University,2021,26(11):123−132.

    WANG Xuewei, LI Dehai. Preparation and stability of nanoemulsion for essential oil of Pinus tabulaeus and pinus pinus[J]. Journal of China Agricultural University, 2021, 26(11): 123-132.

    [39] 邱亦亦. 昆仑雪菊油树脂的提取、纳米乳液制备及其抑菌活性评价[D]. 杭州: 浙江大学, 2020

    QIU Yiyi. Extraction of oil resin, preparation of nano-emulsion and evaluation of antibacterial activity of Chrysanthemum Kunlun[D]. Hangzhou: Zhejiang University, 2020.

    [40]

    MANSOURI S, PAJOHI-ALAMOTI M, AGANJANI N, et al. Stability and antibacterial activity of Thymus daenensis L. essential oil nanoemulsion in mayonnaise[J]. Journal of the Science of Food and Agriculture,2021,101(9):3880−3888. doi: 10.1002/jsfa.11026

    [41]

    MENDES J F, MARTINS H H A, OTONI C G, et al. Chemical composition and antibacterial activity of Eugenia brejoensis essential oil nanoemulsions against Pseudomonas fluorescens[J]. LWT,2018,93:659−664. doi: 10.1016/j.lwt.2018.04.015

    [42]

    OZOGUL Y, BOGA E K, AKYPL I, et al. Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens[J]. Food Bioscience,2020,36:100635. doi: 10.1016/j.fbio.2020.100635

    [43]

    ÖZOGUL Y, El ABED N, ÖZOHUL F. Antimicrobial effect of laurel essential oil nanoemulsion on food-borne pathogens and fish spoilage bacteria[J]. Food Chemistry,2022,368:130831. doi: 10.1016/j.foodchem.2021.130831

    [44] 刘晓丽, 康亚男, 吴克刚, 等. 肉桂精油纳米乳液制备工艺研究[J]. 现代食品科技,2017,33(8):161−167, 122. [LIU Xiaoli, KANG Yanan, WU Kegang, et al. Study on preparation of cinnamon essential oil nano-emulsion[J]. Modern Food Science and Technology,2017,33(8):161−167, 122.

    LIU Xiaoli, KANG Yanan, WU Kegang, et al. Study on preparation of cinnamon essential oil nano-emulsion[J]. Modern Food Science and Technology, 2017, 33(8): 161-167, 122.

    [45]

    DAVILA-RODRGUZE M, LOPEZ-MALO A, PALOU E, et al. Antimicrobial activity of nanoemulsions of cinnamon, rosemary, and oregano essential oils on fresh celery[J]. LWT-Food Science & Technology, 2019, 112: 108247.

    [46] 侯克洪, 冯潇, 高成成, 等. 肉桂精油纳米乳液的抑菌性和稳定性研究[J]. 中国粮油学报,2020,35(11):86−92. [HOU Kehong, FENG Xiao, GAO Chengcheng, et al. Study on bacteriostasis and stability of cinnamon essential oil nano-emulsion[J]. Journal of China Grain and Oils,2020,35(11):86−92. doi: 10.3969/j.issn.1003-0174.2020.11.015

    HOU Kehong, FENG Xiao, GAO Chengcheng, et al. Study on bacteriostasis and stability of cinnamon essential oil nano-emulsion[J]. Journal of China Grain and Oils, 2020, 35(11): 86-92. doi: 10.3969/j.issn.1003-0174.2020.11.015

    [47]

    DONSI F, ANNUNZIATA M, SESSA M, et al. Nanoencapsulation of essential oils to enhance their antimicrobial activity in foods[J]. LWT-Food Science and Technology,2011,44(9):1908−1914. doi: 10.1016/j.lwt.2011.03.003

    [48]

    LIU M, PAN Y, FENG M, et al. Garlic essential oil in water nanoemulsion prepared by high-power ultrasound: Properties, stability and its antibacterial mechanism against MRSA isolated from pork[J]. Ultrasonics Sonochemistry, 2022: 106201.

    [49]

    GAHRUIE H H, ZIAZZ E, ESKANDARI M H, et al. Characterization of basil seed gum-based edible films incorporated with Zataria multiflora essential oil nanoemulsion[J]. Carbohydrate Polymers,2017,166:93−103. doi: 10.1016/j.carbpol.2017.02.103

    [50]

    LOU Z, CHEN J, YU F, et al. The antioxidant, antibacterial, antibiofilm activity of essential oil from Citrus medica L. var. sarcodactylis and its nanoemulsion[J]. LWT,2017,80:371−377. doi: 10.1016/j.lwt.2017.02.037

    [51]

    FIROOZI M, REZAPOUR-JAHANI S, SHAHVEGHARASL Z, et al. Ginger essential oil nanoemulsions: Preparation and physicochemical characterization and antibacterial activities evaluation[J]. Journal of Food Process Engineering,2020,43(8):e13434.

    [52] 蓝蔚青, 郎艾, 梅俊, 等. 植物精油对微生物作用机制及在鱼类保鲜中的应用研究进展[J]. 食品与发酵工业,2021,47(13):296−302. [LAN Weiqing, LANG Ai, MEI Jun, et al. Research progress on the mechanism of plant essential oil on microorganism and its application in fish preservation[J]. Food and Fermentation Industry,2021,47(13):296−302.

    LAN Weiqing, LANG Ai, MEI Jun, et al. Research progress on the mechanism of plant essential oil on microorganism and its application in fish preservation[J]. Food and Fermentation Industry, 2021, 47(13): 296-302.

    [53]

    CLEMENT I, AZANR M, SILV F, et al. Antimicrobial properties and mode of action of mustard and cinnamon essential oils and their combination against foodborne bacteria[J]. Innovative Food Science & Emerging Technologies,2016,36:26−33.

    [54]

    JIANG B, WANG F, LIU L, et al. Antibacterial activity and action mechanism of the Echinops ritro L. essential oil against foodborne pathogenic bacteria[J]. Journal of Essential Oil Bearing Plants,2017,20(5):1172−1183. doi: 10.1080/0972060X.2017.1399090

    [55] 赵驰, 董玲, 张凤菊, 等. 青花椒精油抑制蜡样芽孢杆菌的活性与机理[J]. 食品科学,2022,43(17):64−73. [ZHAO Chi, DONG Ling, ZHANG Fengju, et al. Inhibitory activity and mechanism of essential oil of Zanthoxylum chinensis against Bacillus cereus[J]. Food Science,2022,43(17):64−73. doi: 10.7506/spkx1002-6630-20210906-072

    ZHAO Chi, DONG Ling, ZHANG Fengju, et al. Inhibitory activity and mechanism of essential oil of Zanthoxylum chinensis against Bacillus cereus[J]. Food Science, 2022, 43(17): 64-73. doi: 10.7506/spkx1002-6630-20210906-072

    [56] 朱薇多. 茶皂素基香芹酚抗菌乳液的制备、抗菌机理及应用研究[D]. 陕西: 陕西科技大学, 2020

    ZHU Weiduo. Preparation, antibacterial mechanism and application of tea saponin-based carvol antibacterial emulsion[D]. Shaanxi: Shaanxi University of Science and Technology, 2020.

    [57] 蒋书歌. 柑橘精油纳米乳制备表征及其对金黄色葡萄球菌抗菌活性研究[D]. 长沙: 湖南大学, 2021

    JIANG Shuge. Preparation and characterization of citrus essential oil nanoemulsion and its antibacterial activity against Staphylococcus aureus[D]. Changsha: Hunan University, 2021.

    [58] 王雯雯. 肉桂精油纳米乳的制备、抗菌机理及其在冷鲜鸡肉中的应用研究[D]. 郑州: 郑州轻工业大学, 2022

    WANG Wenwen. Preparation, antibacterial mechanism and application of Cinnamon essential oil nanoemulsion in chilled chicken[D]. Zhengzhou: Zhengzhou University of Light Industry, 2022.

    [59] 陈韵如. 山苍子精油纳米乳的制备及其对多重耐药大肠杆菌的抑菌作用研究[D]. 广西: 广西大学, 2020

    CHEN Yunru. Preparation of Litsea cubeba essential oil nanoemulsion and its antibacterial effect on multi-drug resistant Escherichia coli[D]. Guangxi: Guangxi University, 2020.

    [60] 刘如楠, 黄凯, 管骁, 等. 褚橙精油纳米乳的制备及抑菌性[J]. 食品与生物技术学报,2020,39(5):59−67. [LIU Runan, HUANG Kai, GUAN Xiao, et al. Preparation and bacteriostasis of Ocho orange essential oil nanoemulsion[J]. Journal of Food & Biotechnology,2020,39(5):59−67. doi: 10.3969/j.issn.1673-1689.2020.05.009

    LIU Runan, HUANG Kai, GUAN Xiao, et al. Preparation and bacteriostasis of Ocho orange essential oil nanoemulsion[J]. Journal of Food & Biotechnology, 2020, 39(5): 59-67. doi: 10.3969/j.issn.1673-1689.2020.05.009

    [61] 王雪薇. 黑皮油松松针精油纳米乳液的制备及其抑菌活性研究[D]. 哈尔滨: 东北林业大学, 2021

    WANG Xuewei. Preparation and antibacterial activity of nanoemulsion for essential oil of Pinus tabulaeformis and pinus[D]. Harbin: Northeast Forestry University, 2021.

    [62]

    LI W, CHEN H, HE Z, et al. Influence of surfactant and oil composition on the stability and antibacterial activity of eugenol nanoemulsions[J]. LWT-Food Science and Technology,2015,62(1):39−47. doi: 10.1016/j.lwt.2015.01.012

    [63]

    CHANG Y, MCLANDSBOROUGH L, MCCLEMENTS D J. Fabrication, stability and efficacy of dual-component antimicrobial nanoemulsions: Essential oil (thyme oil) and cationic surfactant (lauric arginate)[J]. Food Chemistry,2015,172:298−304. doi: 10.1016/j.foodchem.2014.09.081

    [64]

    DONSI F, ANNUNZIATA M, VINCENSI M, et al. Design of nanoemulsion-based delivery systems of natural antimicrobials: Effect of the emulsifier[J]. Journal of Biotechnology,2012,159(4):342−350. doi: 10.1016/j.jbiotec.2011.07.001

    [65]

    MOGHIMI R, GHADERI L, RAFATI H, et al. Superior antibacterial activity of nanoemulsion of Thymus daenensis essential oil against E. coli[J]. Food Chemistry,2016,194:410−415. doi: 10.1016/j.foodchem.2015.07.139

  • 期刊类型引用(4)

    1. 卢宗鑫,周桐妃,陈凤,顾立瑶,李攀,王一非,何守魁. 纳米乳液提升植物精油的抗菌性能及其在食品表面的消毒作用研究进展. 食品安全质量检测学报. 2024(02): 177-184 . 百度学术
    2. 易庆琳,张宏源,武丹瑛,陶思琪,李秋,魏文毅,韩齐. 新型天然植物精油纳米制剂在食品保藏中的研究及应用进展. 农产品加工. 2024(06): 86-90+96 . 百度学术
    3. 刘晓丽,吴乐萍,杨霞芳,吴克刚. 肉桂精油处理结合真空包装对冷鲜牛肉的保鲜作用. 食品研究与开发. 2024(15): 93-99 . 百度学术
    4. 李黄炜,梁茵瑜,范佳欣,陈旭,张书艳,朱杰. 酶解联合动态高压微射流制备淀粉/百里酚纳米乳液及其结构与性质分析. 食品工业科技. 2024(23): 121-128 . 本站查看

    其他类型引用(1)

图(1)  /  表(1)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  35
  • PDF下载量:  32
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-11-15
  • 网络出版日期:  2023-06-27
  • 刊出日期:  2023-09-07

目录

/

返回文章
返回
x 关闭 永久关闭