• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
杜妹玲,陈志红,朱轩池,等. 响应面和粒子群-人工神经网络模型优化微波辅助提取赤芍总苷工艺[J]. 食品工业科技,2023,44(15):248−257. doi: 10.13386/j.issn1002-0306.2022110133.
引用本文: 杜妹玲,陈志红,朱轩池,等. 响应面和粒子群-人工神经网络模型优化微波辅助提取赤芍总苷工艺[J]. 食品工业科技,2023,44(15):248−257. doi: 10.13386/j.issn1002-0306.2022110133.
DU Meiling, CHEN Zhihong, ZHU Xuanchi, et al. Response Surface and Particle Swarm-Artificial Neural Network Model Optimize the Microwave-assisted Extraction of Paeoniflorin[J]. Science and Technology of Food Industry, 2023, 44(15): 248−257. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110133.
Citation: DU Meiling, CHEN Zhihong, ZHU Xuanchi, et al. Response Surface and Particle Swarm-Artificial Neural Network Model Optimize the Microwave-assisted Extraction of Paeoniflorin[J]. Science and Technology of Food Industry, 2023, 44(15): 248−257. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110133.

响应面和粒子群-人工神经网络模型优化微波辅助提取赤芍总苷工艺

Response Surface and Particle Swarm-Artificial Neural Network Model Optimize the Microwave-assisted Extraction of Paeoniflorin

  • 摘要: 以赤芍(Paeoniae Radix Rubra)为原料,建立单因素-Box-Behnken试验,探究微波功率、提取时间、提取次数、乙醇浓度和液固比对赤芍总苷提取量的影响,并评价提取物的体外抗氧化活性。通过建立响应面模型和粒子群-人工神经网络模型对微波辅助提取赤芍总苷的工艺进行优化。结果表明:响应面模型和粒子群-人工神经网络模型的决定系数R2分别为0.9099和0.9925,表明粒子群-人工神经网络具有更好的预测能力。采用粒子群-人工神经网络模型优化提取工艺条件:乙醇浓度81%、液固比30 mL/g、提取时间22 s、提取5次、微波功率420 W,在此条件下,赤芍总苷的提取量为378.977±1.982 mg PE/g d.w.;赤芍苷提取物(100 μg/mL)对DPPH自由基和ABTS+自由基的清除率分别为87.61%和80.74%,接近阳性对照。提取物还具有一定的还原能力。本研究结果为优化提取工艺提供了新的方法,也为赤芍有效成分作为添加剂的应用提供了理论基础。

     

    Abstract: The effects of the following independent variables-micro intensity, extraction time, ethanol concentration, and solvent-to-solid ratio on the extraction yield of paeoniflorin from Paeoniae Radix Rubra were examined by single factor test and Box-Behnken design. The antioxidant activity in vitro of extractions was also assessed. Then, the paeoniflorin extraction process was optimized using the response surface methodology (RSM) and particle swarm optimization-artificial neural network (PSO-ANN). Results showed that the prediction and optimization performance of PSO-ANN was better than RSM, that with the correlation coefficient R2 was 0.9925 and 0.9099, respectively. The optimized extraction conditions by PSO-ANN were as follows: Ethanol concentration (81% v/v), solvent-to-solid ratio (30 mL/g), extraction time (22 s), extractions (5 times), and micro intensity (420 W). Under the optimized parameters, the extraction yield of paeoniflorin was 378.977±1.982 mg PE/g d.w.. The scavenging rates of paeoniflorin extract (100 μg/mL) on DPPH and ABTS+ free radicals were 87.61% and 80.74% respectively, that closed to the positive control. The extract also had a certain reduction ability. The results of this study provide a new method for optimizing the extraction process, as well as provide a theoretical basis for the application of effective components of Paeoniae Radix Rubra as additives.

     

/

返回文章
返回