Research Progress on the Effect of Rapeseed Oil Preparation Technology on Polyphenols
-
摘要: 多酚是菜籽油中重要的活性成分,具有抗氧化、抗炎、抑菌等生物活性。但由于菜籽毛油中含有胶质、色素、游离脂肪酸等影响其产品质量的物质,要经过脱胶、脱色及脱臭等工序后才能食用。不同加工工艺对其含量存在较大影响。本文重点综述了现代油菜籽预处理、榨油方式、菜籽油萃取方法和精炼工艺对多酚保留和活性的影响,为进一步阐明菜籽油加工过程中多酚的变化、提升菜籽油加工技术水平和加强产品质量控制提供有价值的参考依据。Abstract: Polyphenols are important active ingredients in rapeseed oil with biological activities such as antioxidant, anti-inflammatory and antibacterial. However, since crude rapeseed oil contains gums, pigments, free fatty acids and other substances that affect its product quality, it can only be consumed after degumming, decolorization and deodorization processes. Different processing technologies have great influence on their contents. The main contents of this review focuses on the effects of modern rapeseed pretreatment, oil extraction methods, rapeseed oil extraction methods and refining processes on polyphenols in rapeseed oil. This may provide valuable references for further elucidating the changes of polyphenols during processing, improving rapeseed oil processing technology and enhancing product quality control.
-
Keywords:
- rapeseed oil /
- polyphenols /
- processing technology
-
油菜(Brassica rapa var. oleifera DC.
)是芸薹属植物中的一种冬季或春季一年生油料作物,在几种油籽作物中,油菜籽的全球总产量估计为7300万吨,仅次于大豆,位列第二重要油籽作物[1],约占中国油料作物总产量的40%[2],菜籽油占全国食用植物油消费量的21.6%[3]。菜籽多酚含量是其他油料种子的10~30倍[4]。压榨和浸出菜籽油微量活性成分中含量最高的为多酚类物质,高达139.83 mg/kg[5]。其存在形式主要有酚酸和缩合单宁,酚酸又分为游离酚酸、酯化酚酸和结合不可溶酚酸。游离酚酸约占总酚的9%~16%,最主要的是芥子酸,占总游离酚酸的70%以上。2003年Koski等[6]首次报道了一种新的菜籽油多酚(Vinylsyringol),也就是芥子酸脱羧衍生物乙烯基丁香醇(2,6-二甲氧基-4-乙基苯酚,Canolol,CA),一般浓度为0.25~0.70 mg/g[7]。芥子酸和CA均具有较强的抗氧化能力,有效清除氧自由基的同时可以提高细胞氧化应激反应能力的活性[8],具有潜在开发为防癌剂、心血管保护剂、神经退化抑制剂等价值[9]。Roy等[10]细胞毒性实验揭示,在一定浓度范围内阿魏酸和对香豆酸能够有效地杀死结肠直肠癌细胞,具有抗癌作用,其中CA二聚体活性极显著高于单体[11]。鉴于菜籽多酚良好的抗氧化、抑菌[12]、抑癌[10]等活性,通过改良菜籽油加工方法,最大程度地保留或提升菜籽油中的多酚含量成为现代菜籽油加工技术发展的重点研究方向。 Zacchi等[13]在榨油前,将油菜籽置于145 ℃高温蒸汽下处理,发现加热处理1、5、15 min条件下,CA分别增加了145、199和197 mg/100 g,同时总酚和芥子酸含量都分别较未处理组显著提升。Yang等[14]采用微波处理油菜籽后,发现控制原料水分为9%,微波处理7 min时,菜籽油中总酚含量由34 mg/100 g升高至97 mg/100 g。随着学者对油菜籽基础理论和菜籽油加工研究的不断深入,菜籽油多酚提升技术及机制研究不断取得新的进展。本文通过对近年来菜籽油传统榨油技术(热榨法、冷榨法)、新型提油技术(超声波处理、水酶法、超临界CO2萃取)以及精炼技术(脱胶、脱酸、脱色、脱臭)等对菜籽油中多酚的影响进行综述,以期为高品质菜籽油加工的可持续快速发展提供参考。
1. 热榨对菜籽油多酚的影响
热榨菜籽油加工工艺一般是将油菜籽先经高温蒸炒,籽粒内部结构发生变化,促进其中的蛋白质变性,菜籽油黏度降低,传质速率增加,提升出油率,得到的菜籽油风味浓郁,深受消费者喜爱,容易实现工业化生产,对环境污染影响较小[15],是目前该产业常用的加工方式。
1.1 炒籽技术对菜籽油多酚的影响
炒籽是小榨菜籽油生产过程中极为关键的工序,行业内人士称“七分炒,三分榨”。其主要目的就是通过高温处理改变油料种子状态与质构,促进蛋白质、糖类和酚类等物质变化,提升出油率和产品的风味与质量。扈柏文等[16]在研究不同炒籽工艺对低芥酸浓香菜籽油风味的影响中发现,炒籽温度和炒籽时间与焦糊味感官属性得分成正比。炒籽过程中一定的炒籽温度和增加水分能够明显提升消费者喜好度。蒋林利[17]通过感官分析得出提油方式对菜籽油风味影响显著,炒籽-压榨所得菜籽油风味物质更多,风味更好。现有炒籽方式主要有滚筒炒籽、干法炒籽、红外炒籽和微波炒籽四种方式。
于杰[18]发现滚筒炒籽处理使菜籽油中酚酸含量迅速增加,在150 ℃炒制 40 min时达到最高,约为325 mg GAE/kg,但在170 ℃炒制时,可能会出现菜籽受热不均匀、菜籽油颜色深黑、油脂稳定性不佳以及焦糊味等问题,同时伴随酚酸的损失。因此,滚筒炒籽温度和时间须控制在合理范围内。
干法炒籽能促进菜籽中微量成分的释放,增加油中多酚含量,从而显著改善菜籽油的氧化稳定性[19]。王未君等[20]研究发现,随着炒籽温度从110 ℃上升至160 ℃,总酚含量增加了27.4倍。可能是因为破坏了菜籽细胞结构,压榨出油率增加,多酚随油脂溶出更多,或者因为破坏了结合酚的交联结构,使其变成游离酚而更容易释放到油中。
红外加热是一种利用红外线辐射加热物料的加热手段,红外炒籽预处理使菜籽油中的酚酸含量显著升高,在150 ℃时炒制40 min,酚酸含量超过传统滚筒炒制和微波炒籽处理的菜籽油[18]。并且,经红外焙炒获得的菜籽油较传统炒籽菜籽油风味有显著改善,油脂味和辛辣刺激味较后者更轻,烤香味相对更浓,同时多环芳烃种类和含量也较少[21]。
微波加热是一种利用微波电磁场对物料中极性化合物的定向干预,导致物料内部快速摩擦生热达到加热目的的加热技术,具有绿色高效、受热均匀和香味浓郁的特点[22]。于杰[18]发现经过微波处理的菜籽油,酚酸含量升高了38.65%。张苗等[23]发现随着微波处理时间的延续,菜籽油中总酚含量均呈先增加后减少的趋势,而CA的增加量与芥子酸和芥子碱减少量呈极显著正相关关系。油菜籽中芥子碱可能通过不同途径转化成CA[24]。黄颖等[25]发现微波后菜籽油的总酚含量提高了7.3~10.1倍,菜籽油的DPPH自由基清除率、FRAP值(铁离子还原法)分别为未微波处理的14.6~15.2倍、13.0~16.3倍。张欢欢等[26]发现微波0~1.5 min组比1.5~2 min组菜籽油中总酚含量的增长速度快,表明微波时间和初始含水量对多酚含量和油脂提取率的影响存在显著的交互作用。Cong等[27]研究发现经微波处理之后,菜籽中的CA含量从0增加到6.16~76.1 mg/100 g,而芥子酸衍生物含量却降低。
总体来讲,炒籽技术均能显著提高菜籽油多酚的含量,但炒籽条件需控制在一定的范围内才能最大程度保留和提升多酚的含量,另外,多酚含量的增加与芥子酸衍生物含量的减少之间存在内在的联系,具体原因还有待进一步研究。
1.2 蒸汽爆破油料种子技术对多酚的影响
蒸汽爆破技术正逐渐成为从植物性原料中提取生物活性物质,提高综合附加值的主要技术手段之一,它是利用蒸汽充分渗透润胀物料,并通过瞬间释压将物料破碎,以促进生物活性成分的释放溶出[28],具有处理时间短、能耗低、效率高和工业化适应性强的特点[29]。榨油时采用此技术不仅可以增加多酚提取率,还能使多酚降解成低分子形式,从而提高抗氧化活性,但强度过高的处理条件会产生相反效果[30]。Yu等[31]比较了蒸汽爆破处理与传统的高温焙烧和流行的微波预处理制备菜籽油,发现当蒸汽爆炸压力达到1.0 MPa时,CA含量增加了52.63倍,原因是芥子碱通过水解转化为中间体(芥子酸),然后再通过脱羧作用转化为CA。蒸汽爆破预处理产生的瞬时高能环境强化了芥子碱和芥子酸的水解和脱羧反应,从而显著增加油中的CA含量。Wang等[32]发现与传统冷榨菜籽油相比,甘蓝型油菜、白菜型油菜油菜和芥菜型油菜中的总生育酚和植物甾醇含量分别增加了5.3%、4.8%、7.4%和2.1%、3.2%和5.1%。蒸汽爆破预处理对三种油菜籽及其加工产品的总酚含量和抗氧化能力也有显著影响(P<0.05)。这些发现将为蒸汽爆破技术在不同类型油菜上的应用和发展提供数据支持和参考依据。
可见,菜籽油多酚含量在蒸汽爆破处理下增加的原因有两方面:一方面是强化了物质反应,促进了物质的转化,另一方面是由于蒸汽爆破导致菜籽结构疏松多孔,致使菜籽油多酚大量溶出。
2. 冷榨对菜籽油多酚的影响
冷榨法是完全通过物理机械作用的制油方式。冷榨法整个过程在低温下进行,所获得冷榨油无需像常规油脂进一步精炼,仅通过过滤即可满足食用油标准,是一种绿色环保的生产技术,适合高含油油料压榨生产高品质的油脂。冷榨是指在室温到65 ℃之间,对油菜籽进行压榨[15]。冷榨油富含不饱和脂肪酸、多酚、植物甾醇、生育酚、β-胡萝卜素和叶黄素等脂溶性营养成分,具有良好的抗氧化和抗癌能力[15]。此外,值得注意的是,冷榨油是多不饱和脂肪酸(PUFA)的良好来源,主要包括亚油酸,其营养价值远远高于精炼油[33]。
Chew[34]比较了冷榨和微波预处理对菜籽油提取率和生物活性物质的影响。冷榨菜籽油中酚类化合物、生育酚、植物甾醇和类胡萝卜素含量高,具有调节血脂、胰岛素敏感性和血糖控制等健康益处,并具有抗氧化和细胞毒性活性。从艳霞等[35]发现微波与冷榨技术结合处理油料种子能显著提高冷榨出油率,增加油中天然维生素E、植物甾醇和多酚等微量营养成分含量并改善油的氧化稳定性。微波预处理后,菜籽油中CA含量提高了76.8倍,使油的氧化稳定性得到明显改善。
3. 萃取新技术对菜籽油多酚的影响
超声波具有良好空化效应、热效应和机械效应等,被广泛应用于活性成分提取。Teh等[36]发现室温超声波强化处理能使菜籽多酚提取率和抗氧化能力比传统提取方法提高2倍。通过正交设计试验优化后的最佳参数组合为50 mL溶剂体积、20 min提取时间和70 ℃超声温度。王淑珍等[37]研究发现超声波预处理植物油后,植物油中总酚含量是未处理组的1.10~1.55倍,原因在于超声波预处理的空化作用使样品细胞壁及细胞膜破裂,并形成一些微通道,这些微观结构的变化使得植物细胞内生物活性成分更易于溶出[38]。但Dzah等[39]在研究超声辅助萃取对酚类提取物抗氧化、抗癌和抗菌性能的影响中发现,高于50 ℃的较高提取温度会降解提取物中的多酚,功率超声范围低于40 kHz的较低频率是最有效,多酚产量通常随着功率的增加而增加,但有一个阈值,超过该阈值时,不再显著增加,但在高水分含量状态下,更高的超声功率将产生降解多酚的自由羟基自由基,因此,选择合适的超声条件对最大程度发挥其效果非常重要。
水酶法是利用机械外力粉碎油料原料后,用水浸泡使原料充分吸水膨胀,之后用酶进一步破坏细胞结构使油料细胞中的油脂释放出来,通过离心去除杂质获得菜籽油。杨晓宇[8]对水酶法菜籽油中的酚类物质进行提取,发现水酶法菜籽油中含量最高的酚类物质为CA,含量为174.76±8.02 μmol/g,占检测酚酸的99%以上,其次分别为芥子酸、水杨酸和丁香酸。魏松丽等[40]使用超声波辅助水酶法萃取方式,在单因素试验基础上进行响应面优化,从而确定了使菜籽油破乳的新工艺。张亮等[41]研究发现,水酶法对于菜籽油中的微量成分影响较大,水酶法制得菜籽油的微量成分β-胡萝卜素、植物多酚等含量最高,浸出菜籽毛油经过精炼所得菜籽油的微量成分最少。目前,水酶法因其绿色高效的特点获得了广泛关注,已用于多种活性物质的提取过程中,但关于其成本高,不适用于工业化生产,用水量大等缺点仍有待进一步解决[42]。
超临界CO2萃取技术对油脂有很好的溶解性,得到的菜籽油的品质和纯度高。与用常规有机溶剂提取的油相比,用超临界CO2提取的油具有许多优点。它们实际上不含磷酸和糖脂,气味和味道与传统精制油相似,与传统溶剂萃取相比,这可以减少分离所需的成本和时间[43]。Koubaa等[44]比较了冷榨和超临界CO2萃取菜籽油效果。结果表明,超临界CO2萃取获得的菜籽油中酚类化合物的含量约为机械压榨获得油的2倍。Fernández-Acosta等[45]通过使用Plackett–Burman统计设计研究,发现超临界CO2萃取技术不但增加了多酚的含量,而且提高了油的抗氧化活性。Dauber等[46]研究发现超临界CO2提取的菜籽油组比对照和浸渍提取物组有更高的诱导期,并且过氧化物值增加较慢,说明该处理可以延缓植物油氧化。
4. 现代精炼技术对菜籽油多酚的影响
从菜籽中压榨或提取的毛油一般都含有较多色素、胶质及游离脂肪酸,这些物质能影响油脂的外观和稳定性,因此需要对菜籽毛油进行精炼。油脂的精炼包括脱胶、脱酸、脱色、脱臭等工艺,精炼后的油脂色泽透明度高且更易于保存。
脱胶是油脂精炼初始关键环节之一,磷脂是毛油中最关键的胶质成分,磷脂去除不完全可能会导致返酸、返色。所有工业化生产菜籽油均需经过脱胶处理。目前,关于脱胶过程中脱胶率和多酚的保留率的研究相对比较多。常用的脱胶方法有水法脱胶、电解质脱胶、酸法脱胶、膜法脱胶和酶法脱胶。Yao等[47]发现将二氧化硅应用于浓香菜籽油脱胶,多酚保留率高达96%,磷脂脱除率高达85%,可以作为传统水化脱胶方法的补充。电解质脱胶是一种新的物理脱胶方式,通过使用氯化钾溶液从粗植物油中萃取。Zhang等[48]比较了电解质脱胶与传统水化脱胶对菜籽油总酚和甾醇类物质的影响,发现电解质脱胶两类物质保留率远高于传统水化脱胶,并认为该法简单,具有良好潜在的工业应用价值。而酶法脱胶因为受到酶的高成本的限制,目前应用较少。
脱色是食用油精炼过程中的重要工序,目的是去除色素、皂粒和其他杂质[49]。目前,多使用吸附脱色法、氧化法等,但均需要经过90~100 ℃的高温处理。而随着精炼程度的加剧,高温会造成很多不良影响,如氧化加快、酸价升高、热敏性生物活性成分损失等,进而影响油脂的品质[50]。Kraljic等[51]研究脱酸脱色对菜籽油多酚含量的影响时发现,在用磷酸中和与酸性白土脱色过程中,菜籽油中CA二聚体形成,并认为要提升菜籽油中多酚和CA含量,了解其高抗氧化性的原因,需要进一步了解二聚体形成的原因。丁新杰[52]在研究温度、常规和负压方式下脱色脱臭对菜籽油微量活性成分时,发现碱炼脱酸温度对菜籽油多酚的含量有显著影响,同时,负压脱色与传统脱色方式相比,更有利于菜籽油中多酚的保留。
5. 结论与展望
本文通过对传统菜籽油制备技术以及近些年来国内外新型提油技术和精炼技术进行探讨,分别对各技术对多酚含量的影响进行了系统归纳。尽管微波炒籽、蒸汽爆破技术、水酶法提取技术在菜籽油得率和多酚等活性成分的活性保留上具有很好的提升优势,但对多酚保留机制及其在加工过程中的结构变化规律研究较少,同时,由于这些工艺流程相对复杂、能耗和成本相对较高,目前采用传统炒籽工艺和水化脱胶工艺较多。因此,为进一步提升菜籽油多酚含量、简化菜籽油制备工艺和降低成本,需要进一步研究油菜籽中多酚含量、结构、活性及其与油菜籽品种之间的关系,探讨不同新技术对多酚含量、结构和生物活性的影响机制。此外,也可采用多种技术复合制备菜籽油,以期获得新型菜籽油加工技术,制备出更安全、更高品质的菜籽油。
-
[1] SECCHI M A, CORRENDO A A, STAMM M J, et al. Suitability of different environments for winter canola oil production in the United States of America[J]. Field Crops Research,2022,287:108658. doi: 10.1016/j.fcr.2022.108658
[2] QING Y R, LI Y M, XU L Z, et al. Oilseed rape (Brassica napus L. ) pod shatter resistance and its relationship with whole plant and pod characteristics[J]. Industrial Crops & Products,2021,166:301−312.
[3] 毛晓慧. 炒籽过程中浓香菜籽油产香机制的研究[D]. 杨凌: 西北农林科技大学, 2020 MAO X H. Study on the mechanism of aroma production of concentrated caraway seed oil in the process of frying seeds[D]. Yangling: Northwest Agricultural and Forestry University, 2020.
[4] 郑畅, 杨湄, 张苗, 等. 菜籽多酚研究进展[J]. 中国油料作物报,2017,39(2):269−280. [ZHENG C, YANG M, ZHANG M, et al. Research progress of rapeseed polyphenols[J]. Chinese Journal of Oil Crop Sciences,2017,39(2):269−280. ZHENG C, YANG M, ZHANG M, et al. Research progress of rapeseed polyphenols[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(2): 269-280.
[5] 刘阳, 王春立, 曹培让, 等. 7种食用植物油物性及氧化稳定性评价[J]. 中国油脂,2017,42(10):63−68. [LIU Y, WANG C L, CAO P R, et al. Evaluation of physical properties and oxidation stability of seven edible vegetable oils[J]. Chinese Oil,2017,42(10):63−68. doi: 10.3969/j.issn.1003-7969.2017.10.014 LIU Y, WANG C L, CAO P R, et al. Evaluation of physical properties and oxidation stability of seven edible vegetable oils[J]. Chinese Oil, 2017, 42(10): 63-68. doi: 10.3969/j.issn.1003-7969.2017.10.014
[6] KOSKI A, PEKKARINEN S, HOPIA A, et al. Processing of rapeseed oil: Effects on sinapic acid derivative content and oxidative stability[J]. European Food Research and Technology,2003,217(2):110−114. doi: 10.1007/s00217-003-0721-4
[7] KHATTAB R, ESKIN M, ALIANI M, et al. Determination of sinapic acid derivatives in canola extracts using highâ performance liquid chromatography[J]. Journal of the American Oil Chemists' Society,2010,87(2):147−155. doi: 10.1007/s11746-009-1486-0
[8] 杨晓宇. 菜籽油中酚酸的定量分析及其对HepG2肝细胞脂毒性损伤的抑制研究[D]. 无锡: 江南大学, 2019 YANG X Y. Quantitative analysis of phenolic acid in rapeseed oil and its inhibition on lipotoxic injury of HepG2 hepatocytes[D]. Wuxi: Jiangnan University, 2019.
[9] 丰程凤, 崔文玉, 夏智慧, 等. 蒸汽爆破对植物多酚及抗氧化活性的影响研究进展[J]. 食品工业科技,2022,43(4):438−445. [FENG C F, CUI W Y, XIA Z H, et al. Research progress on effects of steam explosion on plant polyphenols and antioxidant activity[J]. Science and Technology of Food Industry,2022,43(4):438−445. doi: 10.13386/j.issn1002-0306.2021020198 FENG C F, CUI W Y, XIA Z H, et al. Research progress on effects of steam explosion on plant polyphenols and antioxidant activity[J]. Science and Technology of Food Industry, 2022, 43(4): 438-445. doi: 10.13386/j.issn1002-0306.2021020198
[10] ROY N, NARAYANANKUTTY A, NAZEEM P A, et al. Plant phenolicsferulic acid and p-coumaric acid inhibit colorectal cancer cell proliferation through EGFR down-regulation[J]. Asian Pacific Journal of Cancer Prevention,2016,17(8):4019−4023.
[11] KLARA K, VERONIKA B, DUBRAVKA Š, et al. Canolol dimer, a biologically active phenolic compound of edible rapeseed oil[J]. Lipids,2019,54(2-3):189−200. doi: 10.1002/lipd.12132
[12] 李典典, 郝晓庆, 张培培, 等. 植物多酚抑菌性及其复合保鲜技术在水产品中的应用进展[J]. 中国食品添加剂,2022,33(2):210−217. [LI D D, HAO X Q, ZHANG P P, et al. Advances in the application of plant polyphenol bacteriostasis and its compound fresh-keeping technology in aquatic products[J]. China Food Additives,2022,33(2):210−217. doi: 10.19804/j.issn1006-2513.2022.02.028 LI D D, HAO X Q, ZHANG P P, et al. Advances in the application of plant polyphenol bacteriostasis and its compound fresh-keeping technology in aquatic products[J]. China Food Additives, 2022, 33(2): 210-217. doi: 10.19804/j.issn1006-2513.2022.02.028
[13] ZACCHI P, EGGERS R. High-temperature pre-conditioning of rapeseed: A polyphenol-enriched oil and the effect of refining[J]. European Journal of Lipid Science and Technology,2008,110:111−119. doi: 10.1002/ejlt.200700135
[14] YANG M, HUANG F H, LIU C S, et al. Influence of microwave treatment of rapeseed on minor components content and oxidative stability of oil[J]. Food and Bioprocess Technology,2013,6:3206−3216. doi: 10.1007/s11947-012-0987-2
[15] 蒋璐, 廖卢艳, 吴卫国. 菜籽油加工技术研究进展[J/OL]. 中国粮油学报: 1−15[2023-05-18]. http://kns.cnki.net/kcms/detail/11.2864.TS.20220609.1616.025.html JIANG L, LIAO L Y, WU W G. Research progress of rapeseed oil processing technology[J/OL]. Chinese Journal of Cereals and Oils: 1−15[2023-05-18]. http://kns.cnki.net/kcms/detail/11.2864.TS.20220609.1616.025.html.
[16] 扈柏文, 武州, 于淼, 等. 不同炒籽工艺对低芥酸浓香菜籽油风味的影响[J]. 中国油脂,2022,47(7):33−37,55. [HU B W, WU Z, YU M, et al. Effects of different seed frying processes on the flavor of low erucic acid luzhou canola oil[J]. Chinese Journal of Oils and Fats,2022,47(7):33−37,55. doi: 10.19902/j.cnki.zgyz.1003-7969.210427 HU B W, WU Z, YU M, et al. Effects of different seed frying processes on the flavor of low erucic acid luzhou canola oil[J]. Chinese Journalof Oils and Fats, 2022, 47 (7): 33-37, 55. doi: 10.19902/j.cnki.zgyz.1003-7969.210427
[17] 蒋林利. 菜籽油加工与储藏过程中挥发性风味物质变化规律研究[D]. 成都: 西华大学, 2019 JIANG L L. Study on the change rule of volatile flavor substances in rapeseed oil processing and storage[D]. Chengdu: Xihua University, 2019.
[18] 于杰. 菜籽的红外预处理对其油脂氧化稳定性及风味的影响[D]. 无锡: 江南大学, 2021 YU J. Effect of infrared pretreatment of rapeseed on its oil oxidation stability and flavor[D]. Wuxi: Jiangnan University, 2021.
[19] 陈萌, 杨湄, 刘昌盛, 等. 菜籽多酚的制备、检测及其在加工过程中的变化研究进展[J]. 中国油料作物学报,2013,35(1):102−108. [CHEN M, YANG M, LIU C S, et al. Research progress in preparation, detection and changes of rapeseed polyphenols during processing[J]. Chinese Journal of Oil Crops,2013,35(1):102−108. doi: 10.7505/j.issn.1007-9084.2013.01.018 CHEN M, YANG M, LIU C S, et al. Research progress in preparation, detection and changes of rapeseed polyphenols during processing[J]. Chinese Journal of Oil Crops, 2013, 35(1): 102-108. doi: 10.7505/j.issn.1007-9084.2013.01.018
[20] 王未君, 李文林, 刘昌盛, 等. 干法炒籽对油菜籽多酚和菜籽油品质的影响[J]. 中国粮油学报,2021,36(3):98−103. [WANG W J, LI W L, LIU C S, et al. Effect of dry frying on rapeseed polyphenols and rapeseed oil quality[J]. Chinese Journal of Cereals and Oils,2021,36(3):98−103. doi: 10.3969/j.issn.1003-0174.2021.03.017 WANG W J, LI W L, LIU C S, et al. Effect of dry frying on rapeseed polyphenols and rapeseed oil quality[J]. Chinese Journal of Cereals and Oils, 2021, 36(3): 98-103. doi: 10.3969/j.issn.1003-0174.2021.03.017
[21] 于杰, 周宇林, 刘元法, 等. 红外焙炒对菜籽油风味的影响机制[J]. 中国油脂,2022,47(1):36−42. [YU J, ZHOU Y L, LIU Y F, et al. Effect mechanism of infrared roasting on rapeseed oil flavor[J]. Chinese Oil,2022,47(1):36−42. doi: 10.19902/j.cnki.zgyz.1003-7969.210148 YU J, ZHOU Y L, LIU Y F, et al. Effect mechanism of infrared roasting on rapeseed oil flavor[J]. Chinese Oil, 2022, 47(1): 36-42. doi: 10.19902/j.cnki.zgyz.1003-7969.210148
[22] 胡爱鹏, 魏芳, 黄凤洪, 等. 微波预处理对油菜籽及其低温压榨油脂肪酸含量的影响[J]. 中国油料作物学报,2021,43(5):923−932. [HU A P, WEI F, HUANG F H, et al. Effect of microwave pretreatment on fatty acid content of rapeseed and its low temperature pressed oil[J]. Chinese Journal of Oil Crops,2021,43(5):923−932. doi: 10.19802/j.issn.1007-9084.2020154 HU A P, WEI F, HUANG F H, et al. Effect of microwave pretreatment on fatty acid content of rapeseed and its low temperature pressed oil[J]. Chinese Journal of Oil Crops, 2021, 43 (5): 923-932. doi: 10.19802/j.issn.1007-9084.2020154
[23] 张苗, 杨湄, 郑畅, 等. 微波预处理时间对油菜籽及产品中芥子酸衍生物的影响[J]. 中国油料作物学报,2015,37(6):881−888. [ZHANG M, YANG M, ZHENG C, et al. Effect of microwave pretreatment time on erucic acid derivatives in rapeseed and its products[J]. Chinese Journal of Oil Crops,2015,37(6):881−888. doi: 10.7505/j.issn.1007-9084.2015.06.021 ZHANG M, YANG M, ZHENG C, et al. Effect of microwave pretreatment time on erucic acid derivatives in rapeseed and its products[J]. Chinese Journal of Oil Crops, 2015, 37(6): 881-888. doi: 10.7505/j.issn.1007-9084.2015.06.021
[24] 张苗. 微波预处理对油菜籽及其加工产品中主要芥子酸衍生物和抗氧化活性的影响[D]. 北京: 中国农业科学院, 2015 ZHANG M. Effect of microwave pretreatment on the main erucic acid derivatives and antioxidant activity in rapeseed and its processed products[D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[25] 黄颖, 郑畅, 刘昌盛, 等. 催熟与微波预处理对菜籽油品质的影响[J]. 中国油脂,2019,44(7):39−43. [HUANG Y, ZHENG C, LIU C S, et al. Effect of ripening and microwave pretreatment on the quality of rapeseed oil[J]. Chinese Oil,2019,44(7):39−43. HUANG Y, ZHENG C, LIU C S, et al. Effect of ripening and microwave pretreatment on the quality of rapeseed oil[J]. Chinese Oil, 2019, 44(7): 39-43.
[26] 张欢欢, 高飞虎, 黄桃翠, 等. 预处理技术对冷榨双低菜籽油中脂质伴随物含量的影响[J]. 食品科学,2020,41(8):57−61. [ZHANG H H, HUANG F H, HUANG T C, et al. Effect of pretreatment technology on the content of lipid concomitant in cold pressed double low rapeseed oil[J]. Food Science,2020,41(8):57−61. doi: 10.7506/spkx1002-6630-20190401-002 ZHANG H H, HUANG F H, HUANG T C, et al. Effect of pretreatment technology on the content of lipid concomitant in cold pressed double low rapeseed oil[J]. Food Science, 2020, 41(8): 57-61. doi: 10.7506/spkx1002-6630-20190401-002
[27] CONG Y X, ZHENG M M, HUANG F H, et al. Sinapic acid derivatives in microwave-pretreated rapeseeds and minor components in oils[J]. Journal of Food Composition and Analysis,2020,87(C):103394.
[28] SUI W J, XIE X, LIU R, et al. Effect of wheat bran modification by steam explosion on structural characteristics and rheological properties of wheat flour dough[J]. Food Hydrocolloids,2018,84:571−580.
[29] LI W Z, HE X Q, CHEN Y Y, et al. Improving antioxidant activity and modifying Tartary buckwheat bran by steam explosion treatment[J]. LWT,2022,1(170):114106.
[30] 夏智慧, 崔文玉, 丰程凤, 等. 蒸汽爆破对从植物中提取的多酚含量及抗氧化活性影响的研究进展[J]. 江苏农业学报,2021,37(5):1352−1360. [XIA Z H, CUI W Y, FENG C F, et al. Research progress in the effect of steam explosion on polyphenol content and antioxidant activity extracted from plants[J]. Journal of Jiangsu Agriculture,2021,37(5):1352−1360. doi: 10.3969/j.issn.1000-4440.2021.05.034 XIA Z H, CUI W Y, FENG C F, et al. Research progress in the effect of steam explosion on polyphenol content and antioxidant activity extracted from plants[J]. Journal of Jiangsu Agriculture, 2021, 37(5): 1352-1360. doi: 10.3969/j.issn.1000-4440.2021.05.034
[31] YU G W, GUO T T, HUANG Q D. Preparation of rapeseed oil with superhigh canolol content and superior quality characteristics by steam explosion pretreatment technology[J]. Food Science & Nutrition,2020,8(5):2271−2278.
[32] WANG W J, YANG B, LI W L, et al. Effects of steam explosion pretreatment on the bioactive components and characteristics of rapeseed and rapeseed products[J]. LWT,2021,143:111172. doi: 10.1016/j.lwt.2021.111172
[33] MIKOłAJCZAK N, TAŃSKA M, OGRODOWSKA D, et al. Efficacy of canolol and guaiacol in the protection of cold-pressed oils being a dietary source linoleic acid against oxidative deterioration[J]. Food Chemistry,2022,393:133390. doi: 10.1016/j.foodchem.2022.133390
[34] CHEW S C. Cold-pressed rapeseed (Brassica napus) oil: Chemistry and functionality[J]. Food Research International,2020,131(C):1−53.
[35] 从艳霞. 微波物理场下油菜籽中Canolol生成的分子机制研究[D]. 北京: 中国农业科学院, 2020 CONG Y X. Molecular mechanism of Canolol formation in rapeseed under microwave physical field[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
[36] TEH S-S, BIRCH E J. Effect of ultrasonic treatment on the polyphenol content and antioxidant capacity of extract from defatted hemp, flax and canola seed cakes[J]. Ultrasonics-Sonochemistry,2014,21(1):346−353. doi: 10.1016/j.ultsonch.2013.08.002
[37] 王淑珍, 王进英, 雷风, 等. 冻干和超声波预处理对植物油品质特性影响研究[J/OL]. 中国油脂: 1−9[2023-05-18]. http://kns.cnki.net/kcms/detail/61.1099.TS.20220926.1731.012.html WANG S Z, WANG J Y, LEI F, et al. Study on the influence of freeze-drying and ultrasonic pretreatment on the quality characteristics of vegetable oil [J/OL]. China Oils and Fats: 1−9[2023-05-18]. http://kns.cnki.net/kcms/detail/61.1099.TS.20220926.1731.012.html.
[38] JIANG N, LIU N J, LI C Q, et al. Evaluation of freeze drying combined with microwave vacuum drying for functional okra snacks: Antioxidant properties, sensory quality, and energy consumption[J]. LWT-Food Science and Technology,2017,82:216−226. doi: 10.1016/j.lwt.2017.04.015
[39] DZAH C S, DUAN Y Q, ZHANG H H, et al. The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: A review[J]. Food Bioscience,2020,35:100547. doi: 10.1016/j.fbio.2020.100547
[40] 魏松丽, 刘元法, 曹培让, 等. 水酶法制取菜籽油的超声辅助微波破乳工艺研究[J]. 中国油脂,2017,42(7):1−4, 9. [WEI S L, LIU Y F, CAO P R, et al. Study on ultrasonic assisted microwave demulsification of rapeseed oil by aqueous enzymatic method[J]. Chinese Oil,2017,42(7):1−4, 9. doi: 10.3969/j.issn.1003-7969.2017.07.001 WEI S L, LIU Y F, CAO P R, et al. Study on ultrasonic assisted microwave demulsification of rapeseed oil by aqueous enzymatic method[J]. Chinese Oil, 2017, 42(7): 1-4, 9. doi: 10.3969/j.issn.1003-7969.2017.07.001
[41] 张亮, 李世刚, 曹培让, 等. 制油工艺对菜籽油微量成分和氧化稳定性的影响[J]. 中国油脂,2017,42(2):1−6. [ZHANG L, LI S G, CAO P R, et al. Effect of oil preparation technology on trace components and oxidation stability of rapeseed oil[J]. Chinese Oil,2017,42(2):1−6. doi: 10.3969/j.issn.1003-7969.2017.02.001 ZHANG L, LI S G, CAO P R, et al. Effect of oil preparation technology on trace components and oxidation stability of rapeseed oil[J]. Chinese Oil, 2017, 42(2): 1-6. doi: 10.3969/j.issn.1003-7969.2017.02.001
[42] 李天赐, 杨趁仙, 刘昆仑, 等. 水酶法提油技术及其对植物油脂品质影响的研究进展[J]. 食品与发酵工业,2023,49(9):365−372. [LI T C, YANG C X, LIU K L, et al. Research progress of aqueous enzymatic oil extraction technology and its effect on the quality of vegetable oils[J]. Food and Fermentation Industry,2023,49(9):365−372. doi: 10.13995/j.cnki.11-1802/ts.032113 LI T C, YANG C X, LIU K L, et al. Research progress of aqueous enzymatic oil extraction technology and its effect on the quality of vegetable oils [J]. Food and Fermentation Industry, 2023, 49(9): 365-372. doi: 10.13995/j.cnki.11-1802/ts.032113
[43] UQUICHE E, SÁNCHEZ B, MARILLÁN C, QUEVEDO R. Simultaneous extraction of lipids and minor lipids from microalga (Nannochloropsis gaditana) and rapeseed (Brassica napus) using supercritical carbon dioxide[J]. The Journal of Supercritical Fluids,2022,190:105753. doi: 10.1016/j.supflu.2022.105753
[44] KOUBAA M, MHEMDI H, VOROBIEV E. Influence of canola seed dehulling on the oil recovery by cold pressing and supercritical CO2 extraction[J]. Journal of Food Engineering,2016,182:18−25. doi: 10.1016/j.jfoodeng.2016.02.021
[45] FERNÁNDEZ-ACOSTA K, SALMERON I, CHAVEZ-FLORES D, et al. Evaluation of different variables on the supercritical CO2 extraction of oat (Avena sativa L.) oil; main fatty acids, polyphenols, and antioxidant content[J]. Journal of Cereal Science,2019,88(C):118−124.
[46] DAUBER C, CARRERAS T, GONZALEZ L, et al. Characterization and incorporation of extracts from olive leaves obtained through macerationand supercritical extraction in Canola oil: Oxidative stability evaluation[J]. LWT,2022,160:113274. doi: 10.1016/j.lwt.2022.113274
[47] YAO YZ, L CS, XIONG W, et al. Silicon dioxide as an efficient adsorbent in the degumming of rapeseed oil[J]. Journal of Cleaner Production,2020,268:122344. doi: 10.1016/j.jclepro.2020.122344
[48] ZHANG L Y, AKHYMETKAN S, CHEN J, et al. Convenient method for the simultaneous production of high-quality fragrant rapeseed oil and recovery of phospholipids via electrolyte degumming[J]. LWT,2022,155:112947. doi: 10.1016/j.lwt.2021.112947
[49] 王兴瑞, 陈昀昀, 韩玉泽, 等. 青海菜籽油精炼工艺优化[J]. 食品研究与开发,2021,42(4):107−111,155. [WANG X R, CHEN Y Y, HAN Y Z, et al. Optimization of Qinghai rapeseed oil refining process[J]. Food Research and Development,2021,42(4):107−111,155. doi: 10.12161/j.issn.1005-6521.2021.04.018 WANG X R, CHEN Y Y, HAN Y Z, et al. Optimization of Qinghai rapeseed oil refining process[J]. Food Research and Development, 2021, 42(4): 107-111, 155. doi: 10.12161/j.issn.1005-6521.2021.04.018
[50] 王未君, 黄凤洪, 刘昌盛, 等. 几种脱色剂对菜籽油脱色效果的研究[J]. 中国油脂,2020,45(1):17−21. [WANG W J, HUANG F H, LIU C S, et al. Study on decolorizationeffect of several decolorizing agents on rapeseed oil[J]. Chinese Oil,2020,45(1):17−21. doi: 10.12166/j.zgyz.1003-7969/2020.01.005 WANG W J, HUANG F H, LIU C S, et al. Study on decolorizationeffect of several decolorizing agents on rapeseed oil[J]. Chinese Oil, 2020, 45(1): 17-21. doi: 10.12166/j.zgyz.1003-7969/2020.01.005
[51] KRALJIC K, ŠKEVIN D, BARIŠIĆ L, et al. Changes in 4-vinylsyringol and other phenolics during rapeseed oil refining[J]. Food Chemistry,2015,187:236−242. doi: 10.1016/j.foodchem.2015.04.039
[52] 丁新杰. 精炼对大豆油和菜籽油中有益微量组分的影响[D]. 郑州: 河南工业大学, 2015 DING X J. Effect of refining on beneficial trace components in soybean oil and rapeseed oil[D]. Zhengzhou: Henan University of Technology, 2015.
-
期刊类型引用(1)
1. 焦健双,董晓丹,邱斌,张占守,张海龙,占晓广,彭立增,彭春娥. 油菜籽的加工现状与研究趋势. 食品科技. 2024(06): 187-193 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 125
- HTML全文浏览量: 33
- PDF下载量: 21
- 被引次数: 2