• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

明胶改善海藻酸钠水凝胶膜的物理性能研究

范旭, 朱迎澳, 朱嘉敏, 陈倩, 王辉

范旭,朱迎澳,朱嘉敏,等. 明胶改善海藻酸钠水凝胶膜的物理性能研究[J]. 食品工业科技,2023,44(15):108−115. doi: 10.13386/j.issn1002-0306.2022100006.
引用本文: 范旭,朱迎澳,朱嘉敏,等. 明胶改善海藻酸钠水凝胶膜的物理性能研究[J]. 食品工业科技,2023,44(15):108−115. doi: 10.13386/j.issn1002-0306.2022100006.
FAN Xu, ZHU Ying'ao, ZHU Jiamin, et al. Gelatin Improves the Physical Properties of Sodium Alginate Hydrogel Films[J]. Science and Technology of Food Industry, 2023, 44(15): 108−115. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100006.
Citation: FAN Xu, ZHU Ying'ao, ZHU Jiamin, et al. Gelatin Improves the Physical Properties of Sodium Alginate Hydrogel Films[J]. Science and Technology of Food Industry, 2023, 44(15): 108−115. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100006.

明胶改善海藻酸钠水凝胶膜的物理性能研究

基金项目: 黑龙江省自然科学基金联合引导项目(LH2021C048);黑龙江省科技厅,百千万工程重大科技专项(2021ZX12B05)。
详细信息
    作者简介:

    范旭(1996−),男,硕士,研究方向:畜产品加工,E-mail:fanxu2020@126.com

    通讯作者:

    陈倩(1988−),女,博士,教授,研究方向:畜产品加工工程,E-mail:chenqianego7@126.com

    王辉(1989−),女,博士,讲师,研究方向:食品包装和活性物质递送,E-mail:huiwang@neau.edu.cn

  • 中图分类号: TS206.4

Gelatin Improves the Physical Properties of Sodium Alginate Hydrogel Films

  • 摘要: 本研究旨在解决Ca2+交联海藻酸钠水凝胶膜极易脱水收缩,三维网络结构单一及热机械性能较差等问题,具体是以海藻酸钠和明胶为成膜基材,以碳酸钙和葡糖酸内酯为交联剂,通过流延法制备水凝胶膜,探究明胶/海藻酸钠的不同比例(0:6、1:6、2:6、3:6、4:6、5:6)对水凝胶膜物理性能的影响。本实验利用傅里叶变换红外光谱对水凝胶膜分子间作用力进行分析,并通过微观结构、溶胀率、凝胶含量、水接触角、机械性能和热性能等指标对水凝胶膜物理性能进行表征。结果表明:明胶和海藻酸钠之间的作用力主要为氢键和聚电解质相互作用,明胶的引入有效改善了单一海藻酸钠水凝胶膜的三维网络结构,提高了水凝胶膜的凝胶含量和疏水性,增强了水凝胶膜的机械性能和热性能,但明胶/海藻酸钠的比例过大也会造成明胶与海藻酸钠相容性和机械性能的下降。综上,当明胶/海藻酸钠的比例为3:6时,水凝胶膜的拉伸强度(29.6 MPa)、弹性模量(164.99 MPa)、凝胶含量(38.91%)和溶胀率(2942.50%)最高,此时水凝胶膜的物理性能最佳,在诸多领域具有潜在的应用价值。
    Abstract: This study aimed to solve the problems of Ca2+ crosslinked sodium alginate hydrogel film, such as easy syneresis, single three-dimensional network structure, and poor thermomechanical properties. Specifically, sodium alginate and gelatin were used as filming substrates, calcium carbonate and gluconolactone were used as crosslinking agents to prepare hydrogel films by casting method. To investigate the effects of different ratios of gelatin or sodium alginate (0:6, 1:6, 2:6, 3:6, 4:6, 5:6) on the hydrogel films physical performance. In this experiment, the intermolecular forces of hydrogel films were analyzed by Fourier transform infrared spectroscopy, and the physical properties of hydrogel films were characterized by microstructure, swelling ratio, gel fraction, water contact angle, mechanical properties and thermal properties. The results showed that the interaction between gelatin and sodium alginate was mainly hydrogen bonding and polyelectrolyte interaction. The introduction of gelatin effectively improved the three-dimensional network structure of the single sodium alginate hydrogel film, increased the gel fraction and hydrophobicity of the hydrogel film, and enhanced the mechanical properties and thermal properties of the hydrogel film. However, the ratio of gelatin/sodium alginate was too high resulting in poor compatibility and mechanical properties of gelatin and sodium alginate. In summary, the tensile strength (29.6 MPa), elastic modulus (164.99 MPa), gel fraction (38.91%) and swelling ratio (2942.50%) of the hydrogel film were optimal when the ratio of gelatin/sodium alginate was 3:6, at which time the physical properties of the hydrogel film were optimal and had potential applications in many fields.
  • 随着社会的发展与进步,可生物降解材料比传统石油基材料愈加受到研究人员的青睐。传统石油基材料难以降解,极易造成“白色污染”,且其自身材料的安全性也有待提高,而可生物降解材料除对环境友好之外,还具有安全性高等特点[1-2]。生物基水凝胶作为其中的一种,除具有上述优点外,还具有高吸湿性、高保湿型、优良的闭合性、优异的生物相容性及功能可设计性等,已被广泛应用于组织修复与再生、伤口敷料、药物与活性物质的递送、食品包装与保鲜和环保等领域[3]。水凝胶是聚合物链构成的三维网络结构,是通过物理作用或化学键随机交联的一种聚合物基质,它能够在其三维网络中吸收大量的水,吸水率可达其重量的100%[3-4]。生物基水凝胶按来源可以分为蛋白质基水凝胶、多糖基水凝胶和多糖/蛋白基水凝胶[3],如乳清蛋白水凝胶、酪蛋白水凝胶、大豆蛋白水凝胶、纤维素水凝胶、壳聚糖水凝胶和壳聚糖/乳清蛋白水凝胶等[4]

    在各种生物聚合物中,海藻酸钠(sodium alginate,SA)由于来源广泛、成本低廉,具有较好的凝胶性和成膜性而被广泛应用[5-6]。海藻酸钠是由β-D-甘露糖醛酸(β-D-mannuronic,M)和α-L-古洛糖醛酸(α-L-guluronic,G)按(1→4)糖苷键连接成的两个结构单元,主要有GG、MM和GM三种连接方式[6-8]。海藻酸钠能通过离子交联和物理交联形成三维网状的水凝胶,离子交联是海藻酸钠与二价金属阳离子Cu2+、Zn2+和Ca2+等形成稳定“蛋盒结构”的过程,物理交联则是利用海藻酸钠作为阴离子多糖,引入阳离子电解质后使二者之间发生聚电解质交联的过程[9-11]。刘云等[12]以京尼平与CaCl2为交联剂,制备了明胶/海藻酸钠互穿网络膜,相似的,Saarai等[13]以Ca2+与戊二醛为交联剂,制备了明胶/海藻酸钠水凝胶。徐梦洁等[14]以聚乙烯醇与海藻酸钠为原料,利用CaCl2/硼酸进行化学交联,制备出聚乙烯醇与海藻酸钠水凝胶。但京尼平与戊二醛等交联剂具有细胞毒性,不宜应用在食品和医疗领域,而仅通过外源Ca2+交联的海藻酸钠水凝胶膜通常存在不均匀、易脱水收缩造成较差的机械性能与热性能等问题[9-10, 13-15]。Tang等[16]研究发现,基于蛋白和多糖的复合凝胶可以改善基于蛋白和多糖单一凝胶的三维网络结构和功能特性。明胶(gelatin,G)是胶原蛋白部分水解得到的蛋白质,其氨基酸组成与胶原蛋白分子十分接近,具有较好的生物相容性和生物可降解性[17]。此外,明胶是一种两性聚电解质,A型明胶等电点为6.0~9.0,当体系pH低于其等电点时,明胶分子带正电荷,当体系pH高于其等电点时,明胶分子带负电荷[9, 18],因此可通过调节体系的pH使明胶具有阳离子聚电解质的性质。闫慧敏等[19]研究了明胶和沙蒿胶共混提升Ca2+交联海藻酸钠水凝胶的机械性能与溶胀率,但外源Ca2+交联会导致水凝胶不均匀易收缩。王雨生等[20]制备高G型海藻酸钠-明胶复合水凝胶,研究两者比例合水凝胶性质的影响,但对水凝胶的热稳定性没有涉及。

    基于此,针对Ca2+交联海藻酸钠水凝胶膜极易脱水收缩、热稳定性和机械性能不佳等问题,本研究选用海藻酸钠和明胶作为基质,通过加入碳酸钙(calcium carbonate,CaCO3)和葡糖酸内酯(gluconolactone,GDL)来制备水凝胶膜,探讨明胶/海藻酸钠的不同比例对水凝胶膜物理性能的影响。一方面,GDL释放的H+可将CaCO3中Ca2+解离出来,从而使其与海藻酸钠发生交联;另一方面,体系的pH也会因H+的释放而降低至明胶的等电点以下,进而使海藻酸钠和明胶发生聚电解作用,由此来制备一种双交联的水凝胶膜。

    葡糖酸内酯 分析纯,上海麦克林生化科技有限公司;海藻酸钠、A型明胶 分析纯,上海源叶生物科技有限公司;甘油、碳酸钙 分析纯,国药试剂化学有限公司。

    ZNCL-BS智能数显恒温磁力搅拌器 上海越众仪器设备有限公司;SU8020场发射扫描电子显微镜 日本日立公司;OCA200视频光学角测量仪 德国dataphysics公司;DTG-60热重分析仪 日本岛津公司;DSC-50示差扫描量热分析仪 美国TA Instruments公司;Nicolet iS50傅里叶变换红外光谱仪 美国赛默飞科技有限公司;ME204电子天平 上海梅特勒托利多仪器有限公司;TA-XT质构仪 英国Stable Micro System公司。

    取一定体积的水,加入海藻酸钠并使其体积分数为2%(w/v),然后加入明胶,使明胶/海藻酸钠的质量比为0:6、1:6、2:6、3:6、4:6、5:6,随后加入CaCO3使其体积分数为0.3%(w/v),并在60 ℃加热搅拌2 h使其混合均匀。随后加入与海藻酸钠等量的甘油增塑,混匀后将1%(w/v)的葡萄酸内酯缓慢滴加到混合液中,滴加的过程快速搅拌,然后再将混合液搅拌30 s即可。将此时的溶液倒入培养皿中,在25 ℃下自然干燥后置于恒温恒湿箱中(25 ℃,50%相对湿度)平衡48 h,即得到不同比例明胶/海藻酸钠水凝胶膜(膜厚为0.23 mm),用以下字母表示不同的比例:SA(0:6)、G/SA-1(1:6)、G/SA-2(2:6)、G/SA-3(3:6)、G/SA-4(4:6)和G/SA-5(5:6)。

    参考Soltanzadeh等[21]的方法,使用傅里叶变换红外光谱仪对海藻酸钠粉末(SA Powder)、明胶(G)和CaCO3以及SA(0:6)、G/SA-1(1:6)、G/SA-2(2:6)、G/SA-3(3:6)、G/SA-4(4:6)、G/SA-5(5:6)水凝胶膜进行红外光谱分析。波数范围为500~4000 cm−1,分辨率为4 cm−1,扫描32次。

    使用钨灯丝扫描电子显微镜(SEM)观察水凝胶膜的表面形态,并对水合后冻干的水凝胶膜表面与断裂面的结构进行观察,扫描电镜电压为10 kV,电流为69 μA。

    参考Mayachiew等[22]的方法,将样品剪裁为10 mm×30 mm的矩形,称重后置于盛有水的烧杯中,浸泡24 h后取出,用滤纸擦干表面的水分后称重。水凝胶膜的溶胀率按式(1)计算。

    (%)=M2M1M1×100
    (1)

    式中:M1为初始重量(g);M2为浸泡后擦干水后的重量(g)。

    参考Wang等[23]的方法将样品裁剪为10 mm×30 mm的矩形并称重(M3),在10 mL蒸馏水中浸泡24 h后,在70 ℃下烘干至恒重,并记录其重量(M4)。水凝胶膜的凝胶含量按式(2)计算。

    (%)=M4M3×100
    (2)

    式中:M3为初始质量(g);M4为干燥后样品的质量(g)。

    参考Soltanzadeh等[21]的方法用视频光学角测量仪测量水凝胶膜的水接触角,对其表面亲疏水性进行表征。测试过程在室温下进行,液滴在膜表面的平衡时间为3 s,每个样品3次重复测定。

    参考Ding等[24]的方法,使用TA.XT Plus C质构仪测定样品的机械性能。将水凝胶膜裁剪成10 mm×50 mm的矩形,初始夹持间距设定为30 mm,测试速度为0.5 mm/s,根据应力应变曲线计算薄膜的弹性模量、拉伸强度和断裂伸长率,对每个样品分别进行5次重复测定。

    参考Qin等[25]的方法,对水凝胶膜进行示差扫描量热分析(DSC)。将5 mg样品密封于铝盘中,以10 ℃/min的升温速率从25 ℃加热到170 ℃。整个加热过程以氮气为载气,速率为50 mL/min。

    参考Qin等[25]的方法对水凝胶膜进行热重分析(TGA)。将10 mg样品以10 ℃/min的速率从30 ℃加热至600 ℃。整个过程以氮气为载气,速率为50 mL/min。

    实验共进行3次重复,每个测试进行3个平行,结果以平均值±标准差表示。使用Statistix 8.1软件对数据进行统计分析,使用Tukey HSD程序进行显著性分析(以P<0.05为差异有统计学意义),使用Origin 2019软件进行绘图。

    傅里叶变换红外光谱分析是一种常用于分析水凝胶膜中各组分间作用力的方法。图1为海藻酸钠粉末、明胶和CaCO3的红外光谱图。如图所示,海藻酸钠粉末在3278、1594和1408 cm−1处出现了特征吸收峰,它们分别对应着海藻酸钠的O-H拉伸振动峰、−COO非对称和对称伸缩振动峰[26]。对比图2中海藻酸钠的红外光谱可以发现,由于CaCO3和GDL的交联破坏了海藻酸钠分子间氢键,海藻酸钠的O-H拉伸振动峰、−COO非对称和对称伸缩振动峰移动到3290、1599和1426 cm−1处,由此可以证明Ca2+与海藻酸钠的成功交联。明胶在1637和1554 cm−1处出现了吸收峰,这是由−CO、−CN的拉伸振动和−NH的弯曲振动引起的[27]。CaCO3在2517 cm−1处出现了特征吸收峰,1428、1873和731 cm−1处则分别对应了C=O的不对称伸缩振动峰、CO32−的面内弯曲和面外弯曲伸缩振动峰[28]

    图  1  海藻酸钠、明胶和CaCO3的红外光谱图
    Figure  1.  Infrared spectra of sodium alginate, gelatin and CaCO3
    图  2  不同比例明胶/海藻酸钠水凝胶膜的红外光谱图
    Figure  2.  Infrared spectra of hydrogel film with different proportions of gelatin/sodium alginate

    图2为G/SA水凝胶膜的红外光谱图。如图2所示,海藻酸钠水凝胶膜的羟基特征吸收峰在3290 cm−1处被观察到,随着G/SA比例的升高,即随着水凝胶膜中明胶添加量的增多,该峰逐渐向高波数移动(从3290 cm−1到3317 cm−1),这可能与海藻酸钠和明胶之间的氢键相互作用有关[29]。海藻酸钠的−COO非对称和对称伸缩振动吸收峰在1599和1426 cm−1处被观察到,随着G/SA比例的升高,海藻酸钠的−COO非对称伸缩振动吸收峰和对称伸缩振动吸收峰均向高波数移动(1599 cm−1到1627 cm−1;1426 cm−1到1464 cm−1[30]。同时,位于1647 cm−1明胶的特征吸收峰(−CO和−CN的拉伸振动和−NH的弯曲振动)也随着明胶/海藻酸钠比例的升高逐渐向高波数移动(1647 cm−1到1660 cm−1),表明海藻酸钠与明胶之间发生了聚电解质和氢键相互作用[31]。结果表明,明胶/海藻酸钠水凝胶膜被成功制备,且明胶和海藻酸钠之间的作用力主要为聚电解质相互作用和分子间氢键。

    图3分别为不同比例G/SA水凝胶膜的表面微观结构。由图3可以看出,在未添加明胶时,海藻酸钠水凝胶膜表面存在一些皱褶和孔洞,但随着G/SA比例的升高,水凝胶膜表面的皱褶和孔洞逐渐消失,并在G/SA-3处理组中达到最佳,此时的膜表面平整,基本没有裂纹,仅有少量碳酸钙颗粒存在。但随着G/SA比例的继续升高,明胶和海藻酸钠相容性变差,在G/SA-4和G/SA-5处理组中出现了片层部分脱离膜基质的现象,说明上述两种比例不利于水凝胶膜的形成[30]

    图  3  不同比例明胶/海藻酸钠水凝胶膜的微观结构
    Figure  3.  Surface microstructure of hydrogel film with different proportions of gelatin/sodium alginate

    图4为不同比例G/SA水凝胶膜的断裂面的微观结构。由图4可以看出,在未添加明胶时,海藻酸钠水凝胶膜断裂面的三维结构较为单一,但随着明胶/海藻酸钠比例的升高,水凝胶膜的三维网状结构得到明显改善,这可能与海藻酸钠和明胶之间的聚电解质作用和分子间氢键的作用有关[32-34],这与Wang等[5]的研究结果一致。但当明胶/海藻酸钠的比例高于G/SA-3处理组中的比例时,水凝胶膜的三维网络结构就不能保持其原有形态,这可能是因为海藻酸钠和明胶之间发生了过度交联从而造成了其三维网状结构的堆积[35]。综上,G/SA-3处理组的水凝胶膜具有最佳的三维网状结构。

    图  4  不同比例明胶/海藻酸钠水凝胶膜的断裂面微观结构
    Figure  4.  Microstructure of fracture surface of hydrogel film with different proportions of gelatin/sodium alginate

    表1为不同比例G/SA水凝胶膜的溶胀率及凝胶含量。由表可知,随着G/SA比例的升高,水凝胶膜的溶胀率呈现先显著升高后降低的趋势(P<0.05),并在G/SA-3处理组中达到最大的溶胀率2942.50%。这可能是因为海藻酸钠和明胶发生了聚电解质反应,使交联密度增大,改善了水凝胶膜的三维网状结构,同时抑制了海藻酸钠凝胶膜在水溶液中的分解,从而使溶胀率升高[36]。但过高的G/SA比例会使二者的交联密度过大,形成致密的三维网状结构,此结构不利于水分子的进入,抑制了水凝胶膜的吸水溶胀,从而导致溶胀率下降[33]。Geng等[37]的研究也发现溶胀率与交联密度有关,交联密度越大溶胀率越小。

    表  1  不同比例明胶/海藻酸钠水凝胶膜的凝胶含量和溶胀率
    Table  1.  Gel fraction and swelling ratio of hydrogel film with different proportions of gelatin/sodium alginate
    样品名称凝胶含量(%)溶胀率(%)
    SA28.92±0.43e1617.30±126.97d
    G/SA-130.69±0.37d2272.50±119.01c
    G/SA-235.69±0.58c2591.00±223.57b
    G/SA-338.91±0.45bc2942.50±247.86a
    G/SA-439.86±0.54ab2546.00±206.46bc
    G/SA-541.69±0.61a1074.20±104.46e
    注:同列不同字母表示差异显著(P<0.05);表2同。
    下载: 导出CSV 
    | 显示表格

    表1所示,水凝胶膜的凝胶含量随明胶/海藻酸钠比例的升高而显著升高(P<0.05),但在G/SA-3处理组之后,即使G/SA比例继续升高,处理组之间的凝胶含量也未表现出显著差异(P>0.05)。这可能是由于明胶/海藻酸钠比例的升高,水凝胶膜的交联密度逐渐增大,表现为凝胶含量的增加。而当明胶/海藻酸钠的比例过高时,二者的交联度趋于饱和,表现为处理组间的凝胶含量无显著差异(P>0.05)[38]。综上,明胶可以提高单一海藻酸钠水凝胶膜的凝胶含量和溶胀率,且G/SA-3(3:6)处理组具有最佳的溶胀率和凝胶含量。

    水接触角(WCA)是评价膜性能的一个重要参数,它能反映膜的亲水或疏水性能。一般来说,膜的水接触角越大,其表面疏水性越强。图5为不同比例G/SA水凝胶膜的WCA,海藻酸钠水凝胶膜的WCA为36.82°,表现出很强的亲水性,这与海藻酸钠表面具有较多的亲水基团有关[39]。添加明胶之后水凝胶膜的WCA都在90°以上,且随着G/SA比例的升高,WCA逐渐升高,G/SA-1、G/SA-2、G/SA-3、G/SA-4和G/SA-5的WCA分别为93.87°、103.28°、109.31°、113.09°和115.28°。这一结果归因于海藻酸钠和明胶之间聚电解质相互作用及氢键作用,减少了水凝胶膜表面的亲水基团,同时明胶的加入提升了交联密度,分子间排列更为紧密,形成了更为致密的三维网络,改善了疏水性[30, 40]。Bishnoi等[41]研究发现海藻酸钠水凝胶膜中引入乳清蛋白可以发生聚电解质交联,有效改善海藻酸钠水凝胶薄膜的水溶性和水蒸气透过率。综上,明胶可以显著增强海藻酸钠水凝胶膜的表面疏水性,且随着明胶/海藻酸钠比例的升高,水凝胶膜的表面疏水性逐渐增强。

    图  5  不同比例明胶/海藻酸钠水凝胶膜的水接触角
    Figure  5.  Water contact angle of hydrogel film with different proportions of gelatin/sodium alginate

    不同比例G/SA水凝胶膜的机械性能如图6所示,包括膜的拉伸强度、断裂伸长率和弹性模量。由图可知,随着明胶/海藻酸钠比例的升高,水凝胶膜的拉伸强度和弹性模量显著上升(P<0.05),并在G/SA-3处理组中达到最大,随后显著降低(P<0.05)。结合红外光谱的结果可知,这是由于明胶与海藻酸钠发生聚电解质交联所致,但在G/SA-4和G/SA-5处理组中,明胶和海藻酸钠相容性变差,出现片层部分脱离膜基质(SEM),这些区域容易出现应力集中现象,从而导致拉伸强度和弹性模量的下降。不同比例G/SA水凝胶膜的断裂伸长率均显著低于SA水凝胶膜(P<0.05),且随着明胶/海藻酸钠比例的升高,水凝胶膜的断裂伸长率显著降低(P<0.05)。上述结果表明,当明胶/海藻酸钠的比例逐渐升高时,水凝胶膜展现出较强的刚性和较差的柔性,这可能与交联密度的增大有关[42]。通常水凝胶膜的交联密度越高,网络结构越紧凑,孔径越小,机械强度也就越高,Zhang等[43]的研究也有此发现。综上,G/SA-3处理组的水凝胶膜具有最佳的机械性能。

    图  6  不同比例明胶/海藻酸钠水凝胶膜的机械性能
    注:同一指标不同小写字母表示差异显著(P<0.05)。
    Figure  6.  Mechanical property of hydrogel film with different proportions of gelatin/sodium alginate

    采用DSC和TGA分析不同比例明胶/海藻酸钠水凝胶膜的热稳定性,结果如图7表2所示。由图7(a)可以看出,所有处理组的DSC曲线均只存在一个吸热峰,此峰对应的温度就是其熔化温度(Tm[44]。由表1知SA水凝胶膜的Tm为113.93 ℃,G/SA水凝胶膜的Tm均高于SA水凝胶膜(P<0.05),且随着G/SA比例的升高,即明胶添加量的增加,Tm也逐渐升高(118.85~132.72 ℃)。这可能是由于海藻酸钠和明胶之间的氢键作用和在葡糖酸内酯作用下的聚电解质作用增强了聚合物组分之间的相互作用,使海藻酸钠主链的迁移受到阻碍,增加了破坏聚合物内部结构所需的温度,从而使水凝胶膜的Tm升高[38, 45]

    图  7  不同比例明胶/海藻酸钠水凝胶膜的DSC曲线(a)、TGA曲线(b)和DTG曲线(c)
    Figure  7.  DSC curves (a), TGA curves (b) and DTG curves (c) of gelatin/sodium alginate hydrogel films with different proportions
    表  2  不同比例明胶/海藻酸钠水凝胶膜的熔化温度(Tm最大热降解速率温度(Td)和残碳率(YC
    Table  2.  Melting temperature (Tm), maximum thermal degradation rate temperature (Td) and carbon residue rate (YC) of gelatin/sodium alginate hydrogel films with different proportions
    样品名称Tm(℃)Td(℃)YC(%)
    SA113.93±0.40e219.24±0.32e18.39±0.10c
    G/SA-1118.85±0.88d228.12±0.74d19.31±0.29c
    G/SA-2121.96±0.97c231.16±0.29c19.37±0.52c
    G/SA-3125.64±0.46b236.67±0.91b21.32±0.36b
    G/SA-4127.68±0.88b241.42±0.55a22.23±0.56ab
    G/SA-5132.72±0.85a240.80±0.42a23.37±0.36a
    下载: 导出CSV 
    | 显示表格

    图7(b)可以看出,所有处理组均表现出相似的热降解行为,说明在海藻酸钠占主体的水凝胶膜中,明胶的加入没有改变海藻酸钠的热降解行为。水凝胶膜热降解过程可分为三个阶段:第一阶段的热降解范围为30~140 ℃,失重率为13%,这主要与水凝胶膜中水分的蒸发有关[46];第二阶段热分解发生在150~495 ℃,是主要的重量损失温度范围,重量损失率约为60%,这可能与海藻酸钠的碳链分解、明胶结构的破坏、肽链的断裂和甘油的热降解有关[47];第三阶段热降解过程发生在500~600 ℃,是缓慢的碳化过程,由表2可知,SA水凝胶膜的YC为18.39%,G/SA水凝胶膜的YC均高于SA组,且随着G/SA比例的升高,YC也逐渐升高,这也表明明胶的加入可以显著提升水凝胶膜的热性能[48]

    图7(c)为不同比例明胶/海藻酸钠水凝胶膜的DTG图,如表2所示,SA水凝胶膜的最大热降解速率温度(Td)为219.24 ℃,G/SA水凝胶膜的Td均显著高于SA水凝胶膜(P<0.05),而且随着G/SA比例的升高,即明胶添加量的增加,Td也逐渐升高(228.12~241.42 ℃)。这是因为在GDL的作用下,海藻酸钠和明胶发生了聚电解质作用,使水凝胶膜的交联密度增大,而海藻酸钠和明胶分子间的氢键也增强了水凝胶膜的热稳定性,进而使多糖碳链的分解受到抑制[48-49]。Xiao等[50]的研究发现明胶的加入能显著提升海藻酸钠薄膜的热稳定性。上述结果表明:明胶的引入可以显著增强海藻酸钠水凝胶膜的热稳定性,且随着明胶/海藻酸钠比例的升高,水凝胶膜的热稳定逐渐增强。

    本研究针对Ca2+交联海藻酸钠水凝胶膜极易脱水收缩、热性能差和机械性能较差等问题,选用海藻酸钠和明胶作为基质,通过加入碳酸钙和葡糖酸内酯来制备水凝胶膜,并探讨明胶/海藻酸钠的不同比例(0:6、1:6、2:6、3:6、4:6、5:6)对水凝胶膜物理性能的影响。结果表明,明胶的引入明显改善了水凝胶膜的三维网状结构,提升了水凝胶膜的凝胶含量和疏水性,明胶和海藻酸钠之间的氢键和聚电解质相互作用显著提升了水凝胶膜的拉伸强度、弹性模量、熔化温度和最大热降解速率温度。但当明胶/海藻酸钠的比例过大时,会造成明胶与海藻酸钠的相容性变差及三维网状结构的堆叠,进而导致水凝胶膜溶胀率、拉伸强度和弹性模量的降低。故当明胶/海藻酸钠比例为3:6时,水凝胶膜具有最高的拉伸强度(29.6 MPa)、弹性模量(164.99 MPa)和溶胀率(2942.50%),此时凝胶含量(38.91%)、熔化温度(125.64 ℃)和最大热降解速率温度(236.67 ℃)也相对较高。因此,本研究制备的G/SA-3(3:6)水凝胶膜具有最佳的物理性能,在诸多领域具有良好的应用前景。

  • 图  1   海藻酸钠、明胶和CaCO3的红外光谱图

    Figure  1.   Infrared spectra of sodium alginate, gelatin and CaCO3

    图  2   不同比例明胶/海藻酸钠水凝胶膜的红外光谱图

    Figure  2.   Infrared spectra of hydrogel film with different proportions of gelatin/sodium alginate

    图  3   不同比例明胶/海藻酸钠水凝胶膜的微观结构

    Figure  3.   Surface microstructure of hydrogel film with different proportions of gelatin/sodium alginate

    图  4   不同比例明胶/海藻酸钠水凝胶膜的断裂面微观结构

    Figure  4.   Microstructure of fracture surface of hydrogel film with different proportions of gelatin/sodium alginate

    图  5   不同比例明胶/海藻酸钠水凝胶膜的水接触角

    Figure  5.   Water contact angle of hydrogel film with different proportions of gelatin/sodium alginate

    图  6   不同比例明胶/海藻酸钠水凝胶膜的机械性能

    注:同一指标不同小写字母表示差异显著(P<0.05)。

    Figure  6.   Mechanical property of hydrogel film with different proportions of gelatin/sodium alginate

    图  7   不同比例明胶/海藻酸钠水凝胶膜的DSC曲线(a)、TGA曲线(b)和DTG曲线(c)

    Figure  7.   DSC curves (a), TGA curves (b) and DTG curves (c) of gelatin/sodium alginate hydrogel films with different proportions

    表  1   不同比例明胶/海藻酸钠水凝胶膜的凝胶含量和溶胀率

    Table  1   Gel fraction and swelling ratio of hydrogel film with different proportions of gelatin/sodium alginate

    样品名称凝胶含量(%)溶胀率(%)
    SA28.92±0.43e1617.30±126.97d
    G/SA-130.69±0.37d2272.50±119.01c
    G/SA-235.69±0.58c2591.00±223.57b
    G/SA-338.91±0.45bc2942.50±247.86a
    G/SA-439.86±0.54ab2546.00±206.46bc
    G/SA-541.69±0.61a1074.20±104.46e
    注:同列不同字母表示差异显著(P<0.05);表2同。
    下载: 导出CSV

    表  2   不同比例明胶/海藻酸钠水凝胶膜的熔化温度(Tm最大热降解速率温度(Td)和残碳率(YC

    Table  2   Melting temperature (Tm), maximum thermal degradation rate temperature (Td) and carbon residue rate (YC) of gelatin/sodium alginate hydrogel films with different proportions

    样品名称Tm(℃)Td(℃)YC(%)
    SA113.93±0.40e219.24±0.32e18.39±0.10c
    G/SA-1118.85±0.88d228.12±0.74d19.31±0.29c
    G/SA-2121.96±0.97c231.16±0.29c19.37±0.52c
    G/SA-3125.64±0.46b236.67±0.91b21.32±0.36b
    G/SA-4127.68±0.88b241.42±0.55a22.23±0.56ab
    G/SA-5132.72±0.85a240.80±0.42a23.37±0.36a
    下载: 导出CSV
  • [1]

    LI J, YANG J, ZHONG J, et al. Development of sodium alginate-gelatin-graphene oxide complex film for enhancing antioxidant and ultraviolet-shielding properties[J]. Food Packaging and Shelf Life,2021,28:100672. doi: 10.1016/j.fpsl.2021.100672

    [2]

    REN P G, LIU X H, REN F, et al. Biodegradable graphene oxide nanosheets/poly (butylene adipate-co-terephthalate) nanocomposite film with enhanced gas and water vapor barrier properties[J]. Polymer Testing,2017,58:173−180. doi: 10.1016/j.polymertesting.2016.12.022

    [3]

    BATISTA R A, ESPITIA P J P, QUINTANS J S S, et al. Hydrogel as an alternative structure for food packaging systems[J]. Carbohydrate Polymers,2019,205:106−116. doi: 10.1016/j.carbpol.2018.10.006

    [4]

    FENG E, MA G, WU Y, et al. Preparation and properties of organic-inorganic composite superabsorbent based on xanthan gum and loess[J]. Carbohydrate Polymers,2014,111(1):463−468.

    [5]

    WANG Y, JIAO A, QIU C, et al. A combined enzymatic and ionic cross-linking strategy for pea protein/sodium alginate double-network hydrogel with excellent mechanical properties and freeze-thaw stability[J]. Food Hydrocolloids,2022,131:107737. doi: 10.1016/j.foodhyd.2022.107737

    [6]

    VARAPRASAD K, KARTHIKEYAN C, YALLAPU M M, et al. The significance of biomacromolecule alginate for the 3D printing of hydrogels for biomedical applications[J]. International Journal of Biological Macromolecules,2022,212:561−578. doi: 10.1016/j.ijbiomac.2022.05.157

    [7]

    DOU L X, LI B F, ZHANG K, et al. Physical properties and antioxidant activity of gelatin sodium alginate edible films with tea polyphenol[J]. International Journal of Biological Macromolecules,2018,118:1377−1383. doi: 10.1016/j.ijbiomac.2018.06.121

    [8]

    LIU X, QIN X, WANG Y, et al. Physicochemical properties and formation mechanism of whey protein isolate-sodium alginate complexes: Experimental and computational study[J]. Food Hydrocolloids,2022,131:107786. doi: 10.1016/j.foodhyd.2022.107786

    [9]

    RAMDHAN T, CHING S H, PRAKASH S, et al. Physical and mechanical properties of alginate based composite gels[J]. Trends in Food Science & Technology,2020,106(5):150−159.

    [10]

    DU M, LU W, ZHANG Y, et al. Natural polymer-sourced interpenetrating network hydrogels: Fabrication, properties, mechanism and food applications[J]. Trends in Food Science & Technology,2021,116(3):342−356.

    [11]

    CHEN S, CUI S, HU J, et al. Pectinate nanofiber mat with high absorbency and antibacterial activity: A potential superior wound dressing to alginate and chitosan nanofiber mats[J]. Carbohydrate Polymers,2017,174:591−600. doi: 10.1016/j.carbpol.2017.06.096

    [12] 刘云, 张传杰, 赵瑾朝, 等. 明胶/海藻酸钠(京尼平交联)互穿网络膜的制备与性能[J]. 复合材料学报,2015,32(4):997−1006. [LIU Y, ZHANG C J, ZHAO J C, et al. Preparation and properties of gelatin/sodium alginate (cross-linked with genipin) interpenetrating polymeric network films[J]. Acta Materiae Compositae Sinica,2015,32(4):997−1006.

    LIU Y, ZHANG C J, ZHAO J C, et al. Preparation and properties of gelatin/sodium alginate (cross-linked with genipin) interpenetrating polymeric network films[J]. Acta Materiae Compositae Sinica, 2015, 32(4): 997-1006.

    [13]

    SAARAI A, KASPARKOVA V, SAHA T, et al. On the development and characterisation of crosslinked sodium alginate/gelatine hydrogels[J]. Journal of the Mechanical Behavior of Biomedical Materials,2013,18:152−166. doi: 10.1016/j.jmbbm.2012.11.010

    [14] 徐梦洁, 张秀梅, 胡银春, 等. 双交联聚乙烯醇/海藻酸钠水凝胶的制备与表征[J]. 高分子材料科学与工程,2020,36(4):55−60, 66. [XU M J, ZHANG X M, HU Y C, et al. Preparation and characterization of double crosslinked polyvinyl alcohol/sodium alginate hydrogels[J]. Polymer Materials Science & Engineering,2020,36(4):55−60, 66.

    XU M J, ZHANG X M, HU Y C, et al. Preparation and characterization of double crosslinked polyvinyl alcohol/sodium alginate hydrogels[J]. Polymer Materials Science & Engineering, 2020, 36(4): 55-60, 66.

    [15]

    MAI T H A, TRAN V N, LE V V M. Biochemical studies on the immobilized lactase in the combined alginate-carboxymethyl cellulose gel[J]. Biochemical Engineering Journal,2013,74:81−87. doi: 10.1016/j.bej.2013.03.003

    [16]

    TANG M X, ZHU Y D, LI D, et al. Rheological, thermal and microstructural properties of casein/κ-carrageenan mixed systems[J]. LWT-Food Science and Technology,2019,113:108296. doi: 10.1016/j.lwt.2019.108296

    [17] 张炜杰. 鱼明胶抗菌膜的制备与性能研究[D]. 北京: 北京化工大学, 2016.

    ZHANG W J. Preparation and characterization of fish gelatin antibacterial film[D]. Beijing: Beijing University of Chemical Technology, 2016.

    [18]

    NARDUCCI R, SGRECCIA E, ERCOLANI G, et al. Influence of the position of ionic groups in amphoteric polyelectrolytes on hydration and ionic conduction: Side chain vs main chain[J]. European Polymer Journal,2019:119.

    [19] 闫慧敏, 杨光, 杨波, 等. 明胶/海藻酸钠/沙蒿胶复合水凝胶的制备及表征[J]. 工业微生物,2022,52(1):24−33. [YAN H M, YANG G, YANG B, et al. Preparation and characterization of gelatin/sodium alginate/Artemisia gum composite hydrogel[J]. Industrial Microbiology,2022,52(1):24−33.

    YAN H M, YANG G, YANG B, et al. Preparation and characterization of gelatin/sodium alginate/Artemisia gum composite hydrogel[J]. Industrial Microbiology, 2022, 52(1): 24-33.

    [20] 王雨生, 张楠, 陈海华. 高G型海藻酸钠-明胶pH敏感型复合水凝胶的制备与性质[J]. 中国食品学报,2017,17(8):132−139. [WANG Y S, ZHANG N, CHEN H H. Preparation and properties of pH-sensitive complex hydrogels of high-G sodium alginate gelatin[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(8):132−139.

    WANG Y S, ZHANG N, CHEN H H. Preparation and properties of pH-sensitive complex hydrogels of high-G sodium alginate gelatin[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(8): 132-139.

    [21]

    SOLTANZADEH M, PEIGHAMBARDOUST S H, GHANBARZADEH B, et al. Active gelatin/cress seed gum-based films reinforced with chitosan nanoparticles encapsulating pomegranate peel extract: Preparation and characterization[J]. Food Hydrocolloids,2022,129:107620. doi: 10.1016/j.foodhyd.2022.107620

    [22]

    MAYACHIEW P, DEVAHASTIN S. Effects of drying methods and conditions on release characteristics of edible chitosan films enriched with Indian gooseberry extract[J]. Food Chemistry,2010,118:594−601. doi: 10.1016/j.foodchem.2009.05.027

    [23]

    WANG H, LIU J M, FAN X, et al. Fabrication, characterisation, and application of green crosslinked sodium alginate hydrogel films by natural crab-shell powders to achieve drug sustained release[J]. LWT,2022,171:114147. doi: 10.1016/j.lwt.2022.114147

    [24]

    DING T, LI T, LI J, et al. Preparation of coaxial polylactic acid–propyl gallate electrospun fibers and the effect of their coating on salmon slices during chilled storage[J]. ACS Applied Materials & Interfaces,2019,11(6):6463−6474.

    [25]

    QIN Z Y, JIA X W, LIU Q, et al. Fast dissolving oral films for drug delivery prepared from chitosan/pullulan electrospinning nanofibers[J]. International Journal of Biological Macromolecules,2019,137:224−31. doi: 10.1016/j.ijbiomac.2019.06.224

    [26]

    YANG Y, YU X, ZHU Y, et al. Preparation and application of a colorimetric film based on sodium alginate/sodium carboxymethyl cellulose incorporated with rose anthocyanins[J]. Food Chemistry,2022,393:133342. doi: 10.1016/j.foodchem.2022.133342

    [27]

    AFJOUL H, SHAMLOO A, KAMALI A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: Anin vitro, in vivo study[J]. Materials Science and Engineering:C,2020,113:110957. doi: 10.1016/j.msec.2020.110957

    [28] 吕凤娇, 郭悦, 徐露, 等. 球霰石碳酸钙制备工艺优化及几丁质酶对碳酸钙的影响[J]. 食品工业科技,2021,42(17):153−160. [LÜ F J, GUO Y, XU L, et al. Optimization of preparation process of aragonite calcium carbonate and effect of chitinase on calcium carbonate[J]. Science and Technology of Food Industry,2021,42(17):153−160.

    LÜ F J, GUO Y, XU L, et al. Optimization of preparation process of aragonite calcium carbonate and effect of chitinase on calcium carbonate[J]. Science and Technology of Food Industry, 2021, 42(17): 153-160.

    [29]

    ZHANG X, MIAO F, NIU L, et al. Berberine carried gelatin/sodium alginate hydrogels with antibacterial and EDTA-induced detachment performances[J]. International Journal of Biological Macromolecules,2021,181:1039−1046. doi: 10.1016/j.ijbiomac.2021.04.114

    [30]

    LI Y, JIA H, CHENG Q, et al. Sodium alginate-gelatin polyelectrolyte complex membranes with both high water vapor permeance and high permselectivity[J]. Journal of Membrane Science,2011,375(1-2):304−312. doi: 10.1016/j.memsci.2011.03.058

    [31] 樊李红, 杜予民, 郑化, 等. 海藻酸/明胶共混膜结构表征及性能[J]. 武汉大学学报(理学版),2001,47(6):712−716. [FAN L H, DU Y M, ZHENG H, et al. Structure and properties of alginic acid/gelatin blend films[J]. Journal of Wuhan University (Natural Science Edition),2001,47(6):712−716.

    FAN L H, DU Y M, ZHENG H, et al. Structure and properties of alginic acid/gelatin blend films[J]. Journal of Wuhan University (Natural Science Edition), 2001, 47(6): 712-716.

    [32]

    WU S J, WANG L, ZHAO Y Y, et al. Fabrication of high strength cold-set sodium alginate/whey protein nanofiber double network hydrogels and their interaction with curcumin[J]. Food Research International,2023,165:112490. doi: 10.1016/j.foodres.2023.112490

    [33]

    CORTEZ-TREJO M C, FIGUEROA-CÁRDENAS J D, QUINTANAR-GUERRERO D, et al. Effect of pH and protein-polysaccharide ratio on the intermolecular interactions between amaranth proteins and xanthan gum to produce electrostatic hydrogels[J]. Food Hydrocolloids,2022,129:107648. doi: 10.1016/j.foodhyd.2022.107648

    [34]

    GAN S, BAI S, CHEN C, et al. Hydroxypropyl cellulose enhanced ionic conductive double-network hydrogels[J]. International Journal of Biological Macromolecules,2021,181:418−425. doi: 10.1016/j.ijbiomac.2021.03.068

    [35]

    NIU Y, XIA Q, LI N, et al. Gelling and bile acid binding properties of gelatin-alginate gels with interpenetrating polymer networks by double cross-linking[J]. Food Chemistry,2019,270:223−228. doi: 10.1016/j.foodchem.2018.07.105

    [36]

    ARAFA E G, SABAA M W, MOHAMED R R, et al. Eco-friendly and biodegradable sodium alginate/quaternized chitosan hydrogel for controlled release of urea and its antimicrobial activity[J]. Carbohydrate Polymers,2022,291:119555. doi: 10.1016/j.carbpol.2022.119555

    [37]

    GENG Z, JI Y, YU S, et al. Preparation and characterization of a dual cross-linking injectable hydrogel based on sodium alginate and chitosan quaternary ammonium salt[J]. Carbohydrate Research,2021,507:108389. doi: 10.1016/j.carres.2021.108389

    [38]

    KIM Y J, MIN J. Property modulation of the alginate-based hydrogel via semi-interpenetrating polymer network (semi-IPN) with poly (vinyl alcohol)[J]. International Journal of Biological Macromolecules,2021,193(PB):1068−1077.

    [39] 董宇豪, 陈浩, 吴志宇, 等. 海藻酸钠-鱼明胶复合可食膜的制备及特性研究[J]. 中国食品学报,2020,20(1):134−140. [DONG Y H, CHEN H, WU Z Y, et al. Preparation and characterization of sodium alginate - fish gelatin composite edible film[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(1):134−140.

    DONG Y H, CHEN H, WU Z Y, et al. Preparation and characterization of sodium alginate - fish gelatin composite edible film[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(1): 134-140.

    [40]

    HADI A, NAWAB A, ALAM F, et al. Alginate/aloe vera films reinforced with tragacanth gum[J]. Food Chemistry:Molecular Sciences,2022,4:100105. doi: 10.1016/j.fochms.2022.100105

    [41]

    BISHNOI S, TRIFOL J, MORIANA R, et al. Adjustable polysaccharides-proteins films made of aqueous wheat proteins and alginate solutions[J]. Food Chemistry,2022,391:133196. doi: 10.1016/j.foodchem.2022.133196

    [42]

    LANTIGUA D, NGUYEN M A, WU X C, et al. Synthesis and characterization of photo crosslinkable albumin-based hydrogels for biomedical applications[J]. Soft Matter,2020,16(40):9242−9252. doi: 10.1039/D0SM00977F

    [43]

    ZHANG J, CHEN L D, CHEN L Q, et al. Highly antifouling, biocompatible and tough double network hydrogel based on carboxybetaine-type zwitterionic polymer and alginate[J]. Carbohydrate Polymers,2021,257:117627. doi: 10.1016/j.carbpol.2021.117627

    [44] 李彦山, 汪树军, 梁文章, 等. 聚乙二醇/乙基纤维素复合相变蓄热材料的制备及性能[J]. 功能材料,2014,45(S1):32−35. [LI Y S, WANG S J, LIANG W Z, et al. Preparation and properties of polyethylene glycol/ethyl cellulose composite phase change heat storage materials[J]. Functional Materials,2014,45(S1):32−35.

    LI Y S, WANG S J, LIANG W Z, et al. Preparation and properties of polyethylene glycol/ethyl cellulose composite phase change heat storage materials[J]. Functional Materials, 2014, 45(S1): 32-35.

    [45]

    DE SOUZA A G, DOS SANTOS N M A, DA SILVA TORIN R F, et al. Synergic antimicrobial properties of carvacrol essential oil and montmorillonite in biodegradable starch films[J]. International Journal of Biological Macromolecules,2020,164:1737−1747. doi: 10.1016/j.ijbiomac.2020.07.226

    [46]

    LIU S, LI Y, LI L. Enhanced stability and mechanical strength of sodium alginate composite films[J]. Carbohydrate Polymers,2017,160:62−70. doi: 10.1016/j.carbpol.2016.12.048

    [47]

    ALOUI H, DESHMUKH A R, KHOMLAEM C, et al. Novel composite films based on sodium alginate and gallnut extract with enhanced antioxidant, antimicrobial, barrier and mechanical properties[J]. Food Hydrocolloids,2021,113:106508. doi: 10.1016/j.foodhyd.2020.106508

    [48] 谢永旺, 李峥, 夏雨, 等. 可陶瓷化酚醛树脂基复合材料烧蚀隔热性能研究[J]. 首都师范大学学报(自然科学版),2019,40(5):52−56. [XIE Y W, LI Z, XIA Y, et al. Study on ablation and thermal insulation performance of ceramizable phenolic matrix composites[J]. Journal of Capital Normal University (Natural Science Edition),2019,40(5):52−56.

    XIE Y W, LI Z, XIA Y, et al. Study on ablation and thermal insulation performance of ceramizable phenolic matrix composites[J]. Journal of Capital Normal University (Natural Science Edition), 2019, 40(5): 52-56.

    [49]

    XIAO J, MA Y, WANG W, et al. Incorporation of gelatin improves toughness of collagen films with a homo-hierarchical structure[J]. Food Chemistry,2021,345(1-2):128802.

    [50]

    XIAO C, LIU H, LU Y, et al. Blend films from sodium alginate and gelatin solutions[J]. Journal of Macromolecular Science, Part A,2001,38(3):317−328. doi: 10.1081/MA-100103352

图(7)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-10-07
  • 网络出版日期:  2023-06-05
  • 刊出日期:  2023-07-31

目录

/

返回文章
返回