• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

乳源性血管紧张素转换酶抑制肽的研究进展

陈舒柔, 许华根, 潘家丽, 李静, 李霞, 姜铁民, 董新红

陈舒柔,许华根,潘家丽,等. 乳源性血管紧张素转换酶抑制肽的研究进展[J]. 食品工业科技,2023,44(20):422−430. doi: 10.13386/j.issn1002-0306.2022090285.
引用本文: 陈舒柔,许华根,潘家丽,等. 乳源性血管紧张素转换酶抑制肽的研究进展[J]. 食品工业科技,2023,44(20):422−430. doi: 10.13386/j.issn1002-0306.2022090285.
CHEN Shurou, XU Huagen, PAN Jiali, et al. Research Progress of Milk-derived Blood Pressure-lowering Peptides[J]. Science and Technology of Food Industry, 2023, 44(20): 422−430. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090285.
Citation: CHEN Shurou, XU Huagen, PAN Jiali, et al. Research Progress of Milk-derived Blood Pressure-lowering Peptides[J]. Science and Technology of Food Industry, 2023, 44(20): 422−430. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090285.

乳源性血管紧张素转换酶抑制肽的研究进展

基金项目: 国家自然科学基金地区科学基金项目(31760472);广西电磁化学功能物质重点实验室研究基金项目(EMFM20211108)。
详细信息
    作者简介:

    陈舒柔(2000−),女,硕士研究生,研究方向:天然活性物质制备与评价,E-mail:chenshurou0604@163.com

    通讯作者:

    董新红(1977−),女,博士,副教授,研究方向:天然活性物质制备与评价,E-mail:dongxhok@126.com

  • 中图分类号: TS252.1

Research Progress of Milk-derived Blood Pressure-lowering Peptides

  • 摘要: 高血压是威胁人类健康的“无声杀手”,乳源性ACE抑制肽是以乳类蛋白为原料经过酶解或发酵制备的具有降血压作用的肽。近年来,乳源性ACE抑制肽被认为是一种天然且相对安全的生物活性肽,因为具有生物活性高、毒性低、易代谢和良好的降压效果等特点而受到人们日益关注,并逐渐被应用到保健品、功能性食品等领域。本文综述了乳源性ACE抑制肽的来源(包括化学方法合成与天然食品来源)、制备方法(包括体外酶解与微生物发酵)。归纳总结了乳源ACE抑制肽的分离纯化及构效关系等方面的研究进展并简介在食品与临床方面的应用及未来发展前景,以期为推动我国开发ACE抑制肽有关产品提供参考。
    Abstract: Hypertension is a "silent killer" that threatens human health. Milk-derived antihypertensive peptides with antihypertensive activity are prepared from milk protein by enzymatic hydrolysis or fermentation. Recent years, milk-derived antihypertensive peptides have been regarded as a natural and relatively safe bioactive peptide, which have attracted increasing attention due to their high biological activity, low toxicity, easy metabolism and good antihypertensive effect. And milk-derived antihypertensive peptides have been gradually applied to health care products, functional foods and other fields. In this paper, the research progress in the sources (chemically synthesized and natural food sources) and preparation methods (digestibility in vitro and microbial fermentation). This paper summarizes the separation and purification, and structure-activity relationship of milk-derived antihypertensive peptides is reviewed, and the future development prospects for food and clinical applications are outlined, which will provide reference for promoting the development of antihypertensive peptide products in China.
  • 高血压(Hypertension)是当前我国乃至全世界最为常见的一种慢性疾病,也是各种心脑血管疾病最主要的诱发因素[1-2]。高血压患者通常需要长期服用降压药物,但传统降压药物在控制血压的同时,会有一定的毒副作用,例如不利于血管健康,会使得尿酸升高和加重肝肾负担等等。血管紧张素转换酶抑制肽,即ACE抑制肽(Antihypertensive peptides,ACE),又称为降血压肽,是一类具有显著降压作用的多肽片段[3]。科学家Ferreira在1965年首次从蝮蛇体内提取了具有血管紧张素抑制的多肽分子[4-5],这一发现激发了研究者对ACE抑制肽的研究兴趣。

    据报道,国外已有运用化学方法合成ACE抑制肽并投入到临床使用[6],而化学合成的ACE抑制肽会引起喉咙肿胀、肾脏损伤、丧失味觉等副作用,不宜长期服用[7-8]。随着人们日常保健意识和对食品药品安全意识的日渐增强,通过非药物方法预防、治疗疾病越来越普遍。因此开发天然食品来源的ACE抑制肽来控制、缓解和辅助治疗高血压,成为功能食品和心血管领域研发的重点方向[9]。近年来,在对乳源活性肽的研究方面,具有生物活性的发酵乳制品的开发和乳制品中生物活性肽的筛选正逐渐成为国内外的研究热点。本文通过对乳源性ACE抑制肽的制备方法、分离纯化、构效关系和应用研究进行综述,旨在提高对乳源性ACE抑制肽的认识,推动对乳源性ACE抑制肽的研究。

    乳制品在生产生物活性肽方面有着巨大的潜力,在营养和药物应用方面具有良好的健康效益。乳源中的肽通常以无活性形式存在于蛋白质中,然而当蛋白质经过酶解或微生物发酵等作用后,无活性的蛋白质可以释放出具有降血压作用的ACE抑制肽[10]。制备ACE抑制肽的方法大致有4种:体外酶解法[11]、微生物发酵法[12]、化学合成法[13]和重组DNA法[14]。鉴于化学合成肽和重组DNA活性肽在生产成本、安全性及应用性方面的一些不足,目前研究较多的是采用体外酶解法和微生物发酵法制备ACE抑制肽。

    酶法水解制备ACE抑制肽具有条件相对温和,对蛋白质的营养价值破坏小,蛋白质的水解过程容易控制等优点,可以通过对蛋白质进行定位水解进而产生人们所需要的特定肽类[15]。因此,对乳源蛋白进行酶法水解已经成为一种重要的ACE抑制肽的制备方式。

    酶的选择是ACE抑制肽生产的关键,因为不同蛋白酶水解能产生具有不同活性的多肽,ACE抑制肽具有一定的氨基酸组成和结构序列。因此,需要根据酶的特异性对多种蛋白酶进行筛选[16]。目前用于生产ACE抑制肽的蛋白质水解酶有碱性蛋白酶[17]、中性蛋白酶[18]、胃蛋白酶[19]、胰蛋白酶[19]、胶原蛋白酶[20]、嗜热菌蛋白酶[21]、胰凝乳蛋白酶[22]、胰糜蛋白酶[22]等。根据不同的蛋白质来源可以选择不同的水解酶类,而不同的酶类需要选择不同的水解条件[23]

    乳源酪蛋白是酶解制备ACE抑制肽的常用原料来源。如Jiang等[24]使用中性蛋白酶AS1.398水解牛奶酪蛋白,产生了新型的ACE抑制肽RYPSYG和DERF。Chen等[25]通过使用一种复合酶水解羊奶酪蛋白,获得了高活性的ACE抑制肽组分。但更多的是以乳源中乳清蛋白为底物来酶解制备ACE抑制肽。乳清作为干酪的生产过程中的副产物,含有大量的蛋白质,营养价值很高。但乳清的排放不但造成营养资源浪费而且污染环境,因此研究酶解乳清来制备ACE抑制肽具有重要意义。Pan等[26]采用胰蛋白酶水解乳清蛋白纯化出具有降血压活性的二肽LL(Leu-Leu)。经分子对接发现,降压肽通过疏水作用与Ala 354、Ala 356、Phe 391、Phe 512、Val 518残基接触,通过亲水作用与His 353、383、387、410、513、Glu 384、411、Arg 522残基接触。Guo等[27]用藻酸钠固定化的瑞士乳杆菌LB 10生产的蛋白酶水解乳清蛋白,得到具有降血压活性的二肽(KA、LF、EN)和三肽(DIS、EVD、AIV和VFK)。马莹[28]利用胰蛋白酶和胃蛋白酶双酶水解乳清蛋白来制备ACE抑制肽,经纯化后得到具有良好的ACE抑制活性的多肽(LIVTQTMK),其IC50值为248.1 μg/mL。综上所述,乳清蛋白酶解后的产物制备出的ACE抑制肽活性显著,因此,体外酶解法制备ACE抑制肽以其专一高效性被广泛应用。但缺点是由于原料蛋白质一级结构的未知和差异性,并且ACE抑制肽也没有固定结构等特点,酶解产生的ACE抑制肽的制备过程存在一定盲目性。

    发酵法也被称为间接酶解法,是利用微生物代谢产生的酶来水解发酵原料中的蛋白质,然后从发酵液中提取具有ACE抑制活性的多肽[29]。近年来,微生物发酵制备ACE抑制肽成为一种很有前景的技术。发酵法的优点是不需要分离纯化酶、蛋白质水解活性高、成本低等等,其缺点是反应过程不易控制。研究表明,许多发酵食品如发酵酸奶、奶酪及豆浆等都含有ACE抑制肽。

    Sathya等[30]采用嗜酸乳杆菌(MTCC 10307)、植物乳杆菌(NCDC 379)、干酪乳杆菌(NCDC 017)、保加利亚乳杆菌(NCDC 253)、副干酪乳杆菌亚种(NCDC 022)、鼠李糖乳杆菌(MTCC 8712)和瑞士乳杆菌(NCDC 192)七种不同的乳酸菌来发酵山羊奶,发现用NCDC 379发酵的牛奶的ACE抑制活性最高,其分子量为1.4 kg/mol。李响等[31]选择了5株乳酸菌菌株、3株霉菌菌株和1株枯草芽孢杆菌菌株发酵大豆分离蛋白,结果显示产生强ACE抑制活性肽的乳酸菌菌株是保加利亚乳杆菌,其ACE抑制水平和肽含量分别为57.93%和3.27 mg/mL。吕卉卉等[32]对瑞士乳杆菌发酵乳清蛋白ACE抑制肽的工艺条件进行了优化,在最佳工艺参数下,活性肽的ACE抑制率为89.337%。Nejati等[33]采用乳酸乳球菌DIBCA 2发酵新鲜牛乳,再用高效液相色谱分离发酵乳中的多肽,测得IC50为5 μg/mL。上述研究结果均显示发酵乳中含有具有ACE抑制活性的多肽。微生物发酵法由于反应进程不易控制,因而多用于乳源ACE抑制肽的研究中。

    ACE抑制肽在母体蛋白中无活性,酶水解可以将其分子片段和活性从母体蛋白中释放出来。但由于水解产物中活性肽的含量很低,酶液组分复杂,传统分离技术难以进行有效分离,因此关于活性肽分离纯化的工艺和技术研究也是一个重点方向[34]。随着色谱、微孔膜、光谱技术等分离纯化技术的发展,在活性肽的分离纯化过程中可以根据活性肽的不同来源、酶解产物的不同特征选择不同的分离技术。

    目前,离子交换层析(IEC)、凝胶过滤色谱(GPC)、超滤(UF)、毛细管电泳法(CE)、凝胶电泳法(PAGE)和高效液相色谱(HPLC)广泛用于生物活性肽的分离和纯化,这些技术可以根据ACE抑制肽的分子量、电荷、亲和力、极性、疏水性和亲水性特征分离ACE抑制肽[9,35-36]

    为达到更好的纯化目的,通常分离过程中还会采用几种方法相结合使用[37]。如可以先利用活性炭吸附除去高分子量和未水解的蛋白质,用超滤技术去除高分子量蛋白质和不溶性底物,最后将混合物通过凝胶过滤层析柱根据分子大小进行分离[37],由于ACE抑制肽的结构相似,分子量差异很小,因此还需要与离子交换层析柱串联使用[38]。Uluko等[39]采用中性酶水解浓缩牛奶蛋白(MPC)产生活性较高的ACE抑制肽,分别采用截留分子质量为8和3.5 kDa膜进行超滤,再用0.2 kDa膜进行纳米过滤,得到4个组分,结果表明3.5 kDa膜分离产物中具有较高活性的ACE抑制肽。代永刚等[40]用碱性蛋白酶酶解酪蛋白后得到的ACE抑制肽产物进行超滤预分离,得到分子量低于4000 U的组分,再利用凝胶柱Sephadex G-25进一步纯化,得到的分子量在1500 U以下组分的ACE抑制活性可达62.78%,比原酶解物的ACE抑制活性高了24.77%。宋礼等[41]研究了牦牛乳酪蛋白ACE抑制肽的分离纯化工艺,通过液相色谱及质谱检测相结合,得到序列片段为HQGLPQEVLNENLLR/AVPYPQR和TKVIPYVR的ACE抑制肽。包春菊[42]采用酶解脱脂牛、羊乳制备具有调节高血压功效的ACE抑制肽,脱脂牛、羊乳酶解液经超滤、大孔树脂DA201-C分离纯化后,其ACE抑制率分别达到91.90%±0.36%和92.07%±0.06%,通过反向高效液相色谱进一步分离各组分,并采用质谱鉴定出其ACE抑制肽序列,脱脂牛乳酶解液的G2-1、G2-2组分中分离鉴定出了10和8种肽;脱脂羊乳酶解液的F2-2组分中分离鉴定出了11种肽。脱脂牛、羊乳分离纯化后的酶解液均发现新的ACE抑制肽序列,其氨基酸的分子量主要分布在650~1050 Da之间,所得ACE抑制肽新的氨基酸序列主要是含5~9个氨基酸残基的短肽。这些已报道的纯化方法大多用于实验室研究,对纯肽的大规模生产研究有限。为了使ACE抑制肽作为功能性食品或补充剂的广泛应用成为可能,未来的研究可能会探索适合工业应用的肽的成本效益和高效纯化方法。

    蛋白质和肽的一级结构即氨基酸的组成及排列顺序,直接决定了ACE抑制肽的高级结构和功能特性。因此,对蛋白质或肽的一级结构的分析是进行其构效关系研究不可缺少的部分。通过对ACE抑制肽的进一步研究,已经确定了许多源自乳制品的ACE抑制肽的氨基酸序列[43],乳源降压肽的降压活性与其相对分子质量、氨基酸组成、C端氨基酸和N端氨基酸密切相关。虽然ACE抑制肽的特异性结构和活性之间的关系尚未得到很好地确立,但已发现一些共同的特点。

    ACE抑制肽通常含有2到12个氨基酸,但也有超过27个氨基酸的肽段[44]。Jiang等[24]用超滤膜对AS1.398中性蛋白酶水解的牛乳酪蛋白水解物进行超滤膜分离,发现相对截留分子量小于10 kU、3 k~10 kU和小于3 kU酶解产物的IC50值分别为0.610±0.007、0.568±0.016和0.461±0.009 mg/mL,说明酶解产物的相对分子质量越小,降压作用越好,ACE抑制肽片段的相对分子量主要集中于3 kU以下;Ruiz-Giménez等[45]、Tavares等[46]均发现相对分子量小于3 kU的乳蛋白酶解产物具有很强的ACE抑制活性,说明酶解产物中相对分子量小于3 kU的组分具有更高的ACE抑制活性;Pan等[47]采用超滤法分离乳清蛋白胰蛋白酶水解物,分别测定了相对分子量在6 kU以下、6 k~10 kU和10 kU以上的酶解产物的ACE抑制率,发现相对分子量在6 kU以下的组分对ACE的抑制率最高,为64.26%。

    综上所述,乳源降压肽的降压活性与其相对分子质量有关,低分子量的小肽通常具有更高的降血压活性。然而,相对分子质量并不是影响乳源降压肽活性的唯一因素,多肽的氨基酸序列、末端氨基酸种类和氨基酸的疏水性也会影响其降血压活性。

    ACE抑制肽的主要结构和氨基酸组成与它的抑制活性密切相关。多肽与ACE的相互作用受多肽C端区域三个氨基酸序列的影响显著[26,43,48]。研究表明,肽的C-末端的氨基酸(e-氨基正电荷)和精氨酸(胍正电荷)可以促进ACE抑制活性[49]。此外,C-末端具有较强亲和力的Pro能促进与ACE抑制肽的结合[50]。研究发现若C端氨基酸是芳香族或碱性氨基酸,则ACE抑制肽的抑制活性更高[51]。ACE抑制肽N端的芳香或碱性氨基酸也可以提高其ACE抑制活性。也有报道说,含有N-末端亮氨酸、异亮氨酸和缬氨酸的多肽表现出良好的抗高血压活性,但在ACE抑制肽的N端含有脯氨酸时,ACE抑制活性降低[52]

    与其他肽相比,C-末端带有精氨酸的肽(Ala-Leu-Pro-Met-His-Ile-Arg)的ACE活性比其他多肽更强[53]。另外,C端有赖氨酸的Ala-Ile-Tyr-Lys也有更高的活性。Ryan等[53]研究发现C端残基中带正电荷的氨基酸,如赖氨酸(ε-氨基)和精氨酸(胍基),能显著提高ACE抑制肽的抑制活性。Li等[54]在对于合浦珠母贝蛋白源ACE抑制肽的研究中发现,含有一种带正电的精氨酸四肽FRVW表现出更好的AC抑制活性。由此可以有力的反映出C-末端氨基酸为赖氨酸或精氨酸时,ACE抑制肽活性显著提高。Kobayashi等[55]研究发现当ACE抑制肽C末端含赖氨酸或精氨酸时,能显著提高ACE抑制活性能力,因此推测赖氨酸和精氨酸侧链上的ε-氨基或胍基的正电荷可以提高ACE抑制活性。

    研究表明,C端Pro对活性部位有很强的亲和力,可以促进与ACE的结合[50]。Zhao等[56]认为ACE抑制肽的C端有Pro时,活性比其他氨基酸出现在C端时更好;Miyoshi等[57]从玉米蛋白水解产物中分离出9种ACE抑制肽,其中6种ACE抑制肽具有Pro C端,并测定了ACE抑制肽Leu-Gln-Pro和Leu-Gln-Gln的IC50,发现前者的IC50远低于后者,分别为1.9和10 μmol/L;Mizuno等[58]从酪蛋白水解产物中提取的高活性ACE抑制肽序列主要是X-Pro和X-Pro-Pro,并在动物实验中被证明具有极强的降压效果。

    Otte等[59]研究表明绝大部分N端存在芳香环氨基酸或者碱性氨基酸的乳源降压肽的活性比较高,研究分离了四种肽,其中两种活性最强的肽分子量在2000 Da左右,IC50值为4~5 μmol/L。即肽的N端具有芳香环氨基酸或碱性氨基酸时,被发现对ACE有特别强的抑制作用。Kohmura等[60]在更精确的构效关系中研究发现,当C末端倒数第二个氨基酸或C末端氨基酸为脂肪族氨基酸(如Ile、Val)、芳香族和碱性氨基酸(如Phe、Tyr)时,多肽具有较高的ACE抑制活性。总之,具有较高ACE抑制活性的多肽通常在N端具有芳香族或碱性氨基酸,在C端具有更多疏水性和带正电荷的氨基酸。即ACE抑制肽的生物活性除与末端氨基酸种类有关,还与氨基酸的疏水和亲水性有关。

    多肽的疏水和亲水特性是影响其活性的另一个重要因素。C端氨基酸的疏水性与ACE抑制活性之间存在正相关关系[61-62]。高亲水性使多肽难以接近ACE活性位点,导致活性减弱。表1显示了C末端疏水氨基酸的质量百分比与ACE抑制活性之间的关系。可以看出,在ACE抑制肽的一级结构中存在大量的疏水性氨基酸,特别是在C末端中。疏水性氨基酸的含量与ACE抑制活性的关系表明,ACE抑制肽的降血压作用大多符合上述规律。

    表  1  C末端中疏水性氨基酸的百分比与ACE抑制活性的关系
    Table  1.  Relationship between percentage of the hydrophobic amino acids in C-terminal and ACE inhibitory activity
    氨基酸序列C末端中的疏水性
    氨基酸(%)
    IC50
    (μmol·L−1
    参考文献
    AHLL6740.2[63]
    RYLGY670.71[64]
    LIWKL670.47[46]
    YPHK332.31[65]
    VKAGF10020.3[66]
    DERF3337.08[24]
    RYPSYG3365.71[44]
    NGTWFEPP670.63[67]
    LVYPFPGPIPNSLPQNIPP1005[68]
    VAP1005.34[69]
    VYPFPGPIPNSLPQNIPP1004[62]
    GPL1002.6[70]
    GPM10017.13[49]
    ALPMHIR3342.6[49]
    下载: 导出CSV 
    | 显示表格

    此外,研究表明,侧链中的N端疏水性氨基酸或脂肪族氨基酸可以促进多肽与ACE的结合[71]。从表1可以看出,具有疏水性氨基酸的多肽在C端具有较高的ACE抑制活性,但活性不会随着疏水性氨基酸的百分比增加而增加。相同比例的不同疏水性氨基酸具有不同的活性。两个亮氨酸的疏水性氨基酸占67%的AHLL的IC50为40.2 μmol/L;两个脯氨酸的疏水性氨基酸占67%的NGTWFEPP的IC50为0.63 μmol/L。这说明C端三肽中疏水性氨基酸的百分比不是影响ACE抑制活性的唯一因素,C端氨基酸的种类和肽的长度也起着重要作用。

    定量构效关系(Quantitative Structure Activity Relationship,QSAR)是研究有机小分子与生物大分子的相互作用以及有机小分子在体内的摄取、分布、代谢和排泄的方法。QSAR可以进行ACE抑制肽的生物活性与分子结构之间的定量关联模型的开发,以及有效的药物模型的测试和开发,是ACE抑制肽研究的主要领域。

    刘静等[72]通过对收集的20种天然氨基酸进行主成分分析(Principal component analysis,PCA),根据其疏水性、电学特性、氢键贡献和立体特性进行分类,得到了一个新的氨基酸残基结构描述符SVHEHS。该描述符分别表征了血管紧张素转换酶抑制剂的二肽、三肽和四肽序列,并用于生物活性建立偏最小二乘(Partial least square regression,PLS)。实验表明,此描述符可用于ACE抑制肽的活性预测和分子设计,并能深入研究ACE抑制肽的活性机制。

    张艳萍等[73]以自组建的食源性ACE抑制二肽为模型,采用氨基酸描述子VHSE(Principal component score vector of hydrophilicity, steric, and electronic properties)对ACE抑制二肽进行表征后,采用PLS、支持向量机、主成分分析-支持向量机进行建模,结果发现,3个模型均能预测食源性ACE抑制二肽的活性。支持向量机和主成分分析-支持向量机的预测能力相对更强。

    李玲霄[74]使用主成分分析确定20种氨基酸的初始构象,使用三个描述符类别的前6、3、6个分量对氨基酸进行结构表征,替换原始矩阵SVGMW。研究了ACE抑制剂、苦味二肽和后叶催产素,并且发现SVGMW可以系统地区分多肽的结构和生物活性信息,47个几何描述符、44个特征值信息、41个分子几何反比度信息用相同的方法筛选出来,并将结构表示重命名为SVGER。研究发现,SVGER还可以系统地表征多肽的结构和生物活性信息,应用范围广泛,不受外界影响。

    乳源ACE抑制肽的安全性渐渐受到了大家的关注,理论上,从牛奶中提取的ACE抑制肽有利于人体心血管健康,它可以直接被人体吸收,而没有毒性和副作用,即乳源ACE抑制肽有一定安全性。目前多系列体外基因毒性试验和体内毒理学研究表明乳源ACE抑制肽是安全的。Aihara等[75]研究发现,40例高血压患者受试者在连续4周服用含ACE抑制肽的发酵奶粉后,血压明显降低,脉搏率、血清生化指标等并未出现明显变化。Kajimoto等[76]也观察到高血压患者受试者在连续8周服用一定剂量含ACE抑制肽的酸奶饮料后,并未出现不良反应,尿酸水平和血清标记物等指标均无明显变化。

    Phelan等[77]对乳源生物活性肽的安全性问题研究进行了总结,并无研究证明乳源生物活性肽有毒副作用。因此,通常摄入一定剂量的乳源ACE抑制肽是安全的,但在应用研究过程中还是应该注重乳源ACE抑制肽生产过程中避免各种加工方法对质量、稳定性和安全性的潜在不利影响。

    作为功能食品的一种活性成分,ACE抑制肽大多作为食品的一部分被消费,可用于生产降血压功能性食品或药品的开发及商业化,可开发新的功能性食品及保健品供人们服用。最常见的是通过加工发酵乳制品进而从乳源食品蛋白中提取到含更高活性的ACE抑制肽。日本“可尔必思”乳酸菌饮料是一种含有三种氨基酸肽的乳酸菌发酵脱脂牛奶,序列分别为Val-Pro-Pro,Ile-Pro-Pro,具有很明显的降血压作用[78]。并且有研究发现[79],当高血压患者连续服用含有这种三肽的酸奶4至8周时,这些患者的血压会明显降低。欧洲市场上第一个降血压益生菌乳制品-Evolus采用特殊菌种-瑞士乳杆菌发酵的酸奶制品经严格科学的工艺控制,可以得到高含量的降血压短肽,从而起到降血压效果[80]

    目前,虽然从乳制品中得到的ACE抑制肽不能成为药物,但是可以作为心血管疾病、肾脏疾病[81]患者日常饮食中的保健品或功能性食品。

    近年来,大量的动物试验充分证明了ACE抑制肽治疗心血管疾病的价值。Xia等[82]从植物乳杆菌QS670发酵产生的乳清蛋白中分离纯化出IC50值为1.26 mg/mL的ACE抑制肽,经过动物实验表明该肽可以控制血压并保持血压稳定。姜晔等[83]将瑞士乳杆菌(1004、15019)和嗜热链球菌(13957)三种菌混合发酵10%脱脂乳。并观察其对原发性高血压大鼠(SHR)血压的影响。结果显示,大鼠血压随时间的变化会逐渐降低,约在4~10 h达到最低点。乳源ACE抑制肽因其天然、无毒的特性而受到了消费者的信赖,从蛋白酶水解或微生物发酵中提取的ACE抑制肽不仅能降低高血压患者的血压,而且对身体没有副作用,可以让患者长期服用。

    目前乳源ACE抑制肽的研究处在临床研究和少量应用阶段。一些动物实验在进一步的临床研究证明其对人类的降压作用之前,用于评估ACE抑制肽的生物活性和生物利用率。Yamamoto等[84]研究发现在动物试验中,用L. helveticus CP 790发酵的酸奶产品表现出良好的降压效果,并证实了这种血压抑制肽是由L. helveticus CP790的胞外蛋白酶水解产生的。Chen等[85]通过遗传鉴定以一种新的植物乳杆菌L69发酵山羊乳酪蛋白,利用响应面法优化发酵条件,超滤得到的发酵产物的ACE抑制活性为91.62%。体内胃肠道模拟试验表明,L69发酵山羊奶在胃肠道内成功存活,并保持了较高的ACE抑制活性。

    临床试验是评估乳源ACE抑制肽的功效和健康影响的最准确的方法。Crippa等[86]在一项随机、双盲安慰剂对照的试验中研究了所有服用半脂奶酪Grana Padano奶酪的患者血压均显著降低,24 h平均收缩压下降3.5 mm Hg,舒张压下降2.4 mm Hg(相对于安慰剂)。洪泽生[87]选取了88例冠心病患者作为研究对象,实验组在对照组的基础上使用适量ACE抑制剂进行治疗,结果显示采用ACE抑制剂能够明显改善患者的临床症状。ACE抑制剂不仅可以缓解高血压病人的症状,而且可以显著降低高血压病人病死率、防止病变。随着进一步的研究ACE抑制剂必能在临床应用上得以更广泛的推广。

    迄今为止,大多数研究涉及乳源ACE抑制肽,而动物和植物源ACE抑制肽在临床试验中几乎没有得到证实。在人类的血液循环中已经检测到几种乳源ACE抑制肽[88-89],并显示出明显的降压效果[57,90-91]

    食源性营养成分在高血压的防治中发挥着重要作用,这也是研究人员致力于开发具有降血压作用的食品的原因。牛奶具有特殊的营养价值,对人和动物具有独特的免疫保护和生长调节功能,各成分比例适当是哺乳动物的最佳营养物质,通过酶水解或微生物发酵获得的乳源ACE抑制肽不仅具有更高的消化吸收率、耐酸性和耐热性,并具有多种生理调节功能。基于以上优势,研究人员积极开发具有特定健康和营养价值,患有高血压的人长期服用可达到预防、控制和辅助治疗高血压的目的地功能性食品。含有乳源ACE抑制肽的功能性食品或产品在被开发的过程中,必须不断提高其感官特性和稳定性使其能够最大程度地发挥自身作用,因为它具有降压药无法比拟的独特功效,因此,未来乳源ACE抑制肽定能成为防治高血压的一种有力的辅助手段。

  • 表  1   C末端中疏水性氨基酸的百分比与ACE抑制活性的关系

    Table  1   Relationship between percentage of the hydrophobic amino acids in C-terminal and ACE inhibitory activity

    氨基酸序列C末端中的疏水性
    氨基酸(%)
    IC50
    (μmol·L−1
    参考文献
    AHLL6740.2[63]
    RYLGY670.71[64]
    LIWKL670.47[46]
    YPHK332.31[65]
    VKAGF10020.3[66]
    DERF3337.08[24]
    RYPSYG3365.71[44]
    NGTWFEPP670.63[67]
    LVYPFPGPIPNSLPQNIPP1005[68]
    VAP1005.34[69]
    VYPFPGPIPNSLPQNIPP1004[62]
    GPL1002.6[70]
    GPM10017.13[49]
    ALPMHIR3342.6[49]
    下载: 导出CSV
  • [1] 高血压肾病诊治中国专家共识组成员. 高血压肾病诊断和治疗中国专家共识(2022)[J]. 中华高血压杂志,2022,30(4):307−317. [Members of Chinese Expert Consensus Group on Diagnosis and Treatment of Hypertensive Nephropathy. Chinese expert consensus on diagnosis and treatment of hypertensive nephropathy (2022)[J]. Chinese Journal of Hypertension,2022,30(4):307−317. doi: 10.16439/j.issn.1673-7245.2022.04.003

    Members of Chinese Expert Consensus Group on Diagnosis and Treatment of Hypertensive Nephropathy. Chinese expert consensus on diagnosis and treatment of hypertensive nephropathy (2022)[J]. Chinese Journal of Hypertension, 2022, 30(4): 307-317. doi: 10.16439/j.issn.1673-7245.2022.04.003

    [2]

    YIN W, LI F, TAN X, et al. Plasma ceramides and cardiovascular events in hypertensive patients at high cardiovascular risk[J]. American Journal of Hypertension,2021,34(11):1209−1216. doi: 10.1093/ajh/hpab105

    [3]

    XUE L, YIN R, HOWELL K, et al. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme–inhibitory peptides[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(2):1150−1187. doi: 10.1111/1541-4337.12711

    [4]

    FERREIRA S H. A bradykinin-potentiating factor (BPF) present in venom of Bothrops jararaca[J]. British Journal of Pharmacology,1965,24(1):163−169.

    [5] 赵越, 张孚嘉, 吴楠, 等. ACE抑制肽的研究进展[J]. 中国酿造,2020,39(1):6−11. [ZHAO Yue, ZHANG Fujia, WU Nan, et al. Research progress of ACE inhibiting peptide[J]. China Brewing,2020,39(1):6−11. doi: 10.11882/j.issn.0254-5071.2020.01.002

    ZHAO Yue, ZHANG Fujia, WU Nan, et al. Research progress of ACE inhibiting peptide[J]. China Brewing, 2020, 39(1): 6-11. doi: 10.11882/j.issn.0254-5071.2020.01.002

    [6]

    SHEN J H, SU Y C, LIN H T, et al. Research progress on preparation, purification and structure activity relationship of ACE inhibitory peptide[J]. Journal of Fisheries Research,2022,44(1):100.

    [7] 贾聪, 孟醒, 游静, 等. 低苦味芝麻ACE抑制肽的制备及氨基酸组成和结构分析[J]. 食品与发酵工业,2021,47(17):172−178. [JIA Cong, MENG Xing, YOU Jing, et al. Preparation, amino acid composition and structure analysis of low bitterness sesame ACE inhibitory peptides[J]. Food and Fermentation Industries,2021,47(17):172−178. doi: 10.13995/j.cnki.11-1802/ts.026968

    JIA Cong, MENG Xing, YOU Jing, et al. Preparation, amino acid composition and structure analysis of low bitterness sesame ACE inhibitory peptides[J]. Food and Fermentation Industries, 2021, 47(17): 172-178. doi: 10.13995/j.cnki.11-1802/ts.026968

    [8] 徐珍珍, 于秋生, 陈天祥, 等. 大米蛋白肽的制备与ACE抑制活性分析[J]. 食品与发酵工业,2021,47(3):53−58. [XU Zhenzhen, YU Qiusheng, CHEN Tianxiang, et al. Preparation of rice protein peptide and the analysis of ACE inhibitory activity[J]. Food and Fermentation Industries,2021,47(3):53−58. doi: 10.13995/j.cnki.11-1802/ts.024745

    XU Zhenzhen, YU Qiusheng, CHEN Tianxiang, et al. Preparation of rice protein peptide and the analysis of ACE inhibitory activity[J]. Food and Fermentation Industries, 2021, 47(3): 53-58. doi: 10.13995/j.cnki.11-1802/ts.024745

    [9]

    SHI J, SU R, ZHANG W, et al. Purification and the secondary structure of a novel angiotensin I-converting enzyme (ACE) inhibitory peptide from the alcalase hydrolysate of seahorse protein[J]. Journal of Food Science and Technology,2020,57(11):3927−3934. doi: 10.1007/s13197-020-04427-0

    [10] 王琳琳, 陈立, 李建科. 食源血管紧张素转化酶抑制肽研究进展[J]. 中国果菜,2020,40(6):71−76. [WANG Linlin, CHEN Li, LI Jianke. Research progress of natural dietary ACE inhibitory peptide[J]. China Fruit & Vegetable,2020,40(6):71−76. doi: 10.19590/j.cnki.1008-1038.2020.06.013

    WANG Linlin, CHEN Li, LI Jianke. Research progress of natural dietary ACE inhibitory peptide[J]. China Fruit & Vegetable, 2020, 40(6): 71-76. doi: 10.19590/j.cnki.1008-1038.2020.06.013

    [11] 陈秋銮, 陈雪芹, 马倩, 等. 酶解法制备牡丹籽ACE抑制肽及其稳定性[J]. 食品工业科技,2020,41(19):149−156. [CHEN Qiuluan, CHEN Xueqin, MA Qian, et al. Preparation and stability of ACE inhibitory peptides from peony seed meal by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2020,41(19):149−156. doi: 10.13386/j.issn1002-0306.2020.19.024

    CHEN Qiuluan, CHEN Xueqin, MA Qian, et al. Preparation and stability of ACE inhibitory peptides from peony seed meal by enzymatic hydrolysis[J]. Science and Technology of Food Industry, 2020, 41(19): 149-156. doi: 10.13386/j.issn1002-0306.2020.19.024

    [12] 范吉釴, 柯义强, 刘红海, 等. 发酵法制备生物活性肽的研究进展[J]. 安徽农学通报,2020,26(23):19−23. [FAN Jiyi, KE Yiqiang, LIU Honghai, et al. Research progress in the preparation of bioactive peptides by fermentation[J]. Anhui Agricultural Science Bulletin,2020,26(23):19−23. doi: 10.3969/j.issn.1007-7731.2020.23.007

    FAN Jiyi, KE Yiqiang, LIU Honghai, et al. Research progress in the preparation of bioactive peptides by fermentation[J]. Anhui Agricultural Science Bulletin, 2020, 26(23): 19-23. doi: 10.3969/j.issn.1007-7731.2020.23.007

    [13]

    TU M, LIU H, ZHANG R, et al. Analysis and evaluation of the inhibitory mechanism of a novel angiotensin-I-converting enzyme inhibitory peptide derived from casein hydrolysate[J]. Journal of agricultural and food chemistry,2018,66(16):4139−4144. doi: 10.1021/acs.jafc.8b00732

    [14]

    MORALES J I, ESPINOSA E, ROSAS F F, et al. Insertions of antihypertensive peptides and their applications in pharmacy and functional foods[J]. Applied Microbiology and Biotechnology,2019,103(6):2493−2505. doi: 10.1007/s00253-019-09633-1

    [15] 徐倩, 戴遥, 赵永慧, 等. 酶法制备鱼降血压肽的工艺优化及其组分分析[J]. 食品工业科技,2018,39(20):151−157. [XU Qian, DAI Yao, ZHAO Yonghui, et al. Optimization of preparation of hypotensive peptide from platycephalus indicus by enzymatic method and its component analysis[J]. Science and Technology of Food Industry,2018,39(20):151−157. doi: 10.13386/j.issn1002-0306.2018.20.026

    XU Qian, DAI Yao, ZHAO Yonghui, et al. Optimization of preparation of hypotensive peptide from platycephalus indicus by enzymatic method and its component analysis[J]. Science and Technology of Food Industry, 2018, 39(20): 151-157. doi: 10.13386/j.issn1002-0306.2018.20.026

    [16]

    LEE S Y, HUR S J. Purification of novel angiotensin converting enzyme inhibitory peptides from beef myofibrillar proteins and analysis of their effect in spontaneously hypertensive rat model[J]. Biomedicine & Pharmacotherapy,2019,116:109046.

    [17]

    GONG X, AN Q, LE L, et al. Prospects of cereal protein-derived bioactive peptides: Sources, bioactivities diversity, and production[J]. Critical Reviews in Food Science and Nutrition,2022,62(11):2855−2871. doi: 10.1080/10408398.2020.1860897

    [18] 卫萍, 游向荣, 张雅媛, 等. 酶法制备火麻肽及其血管紧张素转化酶抑制活性研究[J]. 食品工业科技,2019,40(18):127−132. [WEI Ping, YOU Xiangrong, ZHANG Yayuan, et al. Preparation of Cannabis sativa L. peptides by enzyme method and their activities of inhibiting angiotensin converting enzyme[J]. Science and Technology of Food Industry,2019,40(18):127−132. doi: 10.13386/j.issn1002-0306.2019.18.021

    WEI Ping, YOU Xiangrong, ZHANG Yayuan, et al. Preparation of cannabis sativa L. peptides by enzyme method and their activities of inhibiting angiotensin converting enzyme[J]. Science and Technology of Food Industry, 2019, 40(18): 127-132. doi: 10.13386/j.issn1002-0306.2019.18.021

    [19] 王姣琳, 岳田利, 袁亚宏. 红曲霉与乳酸菌混合发酵藜麦制备降压肽[J]. 食品与发酵工业,2021,47(21):217−224. [WANG Jiaolin, YUE Tianli, YUAN Yahong, et al. Preparation of antihypertensive peptides from quinoa by fermentation with monascus and lactic acid bacteria[J]. Food and Fermentation Industries,2021,47(21):217−224. doi: 10.13995/j.cnki.11-1802/ts.027463

    WANG Jiaolin, YUE Tianli, YUAN Yahong, et al. Preparation of antihypertensive peptides from quinoa by fermentation with monascus and lactic acid bacteria[J]. Food and Fermentation Industries, 2021, 47(21): 217-224. doi: 10.13995/j.cnki.11-1802/ts.027463

    [20] 李娜, 李诚, 陈硕, 等. 猪股骨不同部位胶原蛋白水解产物降血压作用[J]. 食品科学,2013,34(13):289−292. [LI Na, LI Cheng, CHEN Shuo, et al. Antihypertensive effects of collagen peptide from hydrolysates of different parts of swine femur[J]. Food Science,2013,34(13):289−292.

    LI Na, LI Cheng, CHEN Shuo, et al. Antihypertensive effects of collagen peptide from hydrolysates of different parts of swine femur[J]. Food Science, 2013, 34(13): 289-292.

    [21] 曾齐, 蔡朝霞, 刘亚平, 等. 禽蛋源生物活性肽的研究进展[J]. 食品科学,2021,42(19):362−378. [ZENG Qi, CAI Zhaoxia, LIU Yaping, et al. A comprehensive review on bioactive peptides derived from egg proteins[J]. Food Science,2021,42(19):362−378. doi: 10.7506/spkx1002-6630-20200520-232

    ZENG Qi, CAI Zhaoxia, LIU Yaping, et al. A comprehensive review on bioactive peptides derived from egg proteins[J]. Food Science, 2021, 42(19): 362-378. doi: 10.7506/spkx1002-6630-20200520-232

    [22]

    DE FREITAS M A G, AMARAL N O, ÁLVARESl A C M, et al. Blood pressure-lowering effects of a Bowman-Birk inhibitor and its derived peptides in normotensive and hypertensive rats[J]. Scientific Reports,2020,10(1):1−15. doi: 10.1038/s41598-019-56847-4

    [23] 谢博, 傅红, 杨方. 生物活性肽的制备、分离纯化、鉴定以及构效关系研究进展[J]. 食品工业科技,2021,42(5):383−391. [XIE Bo, FU Hong, YANG Fang. Research progress on preparation, purification, identification and structure-activity relationship of bioactive peptides[J]. Science and Technology of Food Industry,2021,42(5):383−391. doi: 10.13386/j.issn1002-0306.2020050012

    XIE Bo, FU Hong, YANG Fang. Research progress on preparation, purification, identification and structure-activity relationship of bioactive peptides[J]. Science and Technology of Food Industry, 2021, 42(5): 383-391. doi: 10.13386/j.issn1002-0306.2020050012

    [24]

    JIANG Z, TIAN B, ANDRE B, et al. Production, analysis and in vivo evaluation of novel angiotensin-I-converting enzyme inhibitory peptides from bovine casein[J]. Food Chemistry,2010,123(3):779−786. doi: 10.1016/j.foodchem.2010.05.026

    [25]

    CHEN L, WANG J, SHU G W, et al. Production of angiotensin-I-converting enzyme inhibitory peptide from goat milk casein: Optimization conditions of complex protease hydrolysate by response surface methodology and purification[J]. Emirates Journal of Food and Agriculture,2018,30(9):742−749.

    [26]

    PAN D, CAO J, GUO H, et al. Studies on purification and the molecular mechanism of a novel ACE inhibitory peptide from whey protein hydrolysate[J]. Food Chemistry,2012,130(1):121−126. doi: 10.1016/j.foodchem.2011.07.011

    [27]

    GUO Y, JIANG X, XIONG B, et al. Production and transepithelial transportation of angiotensin-I converting enzyme (ACE) -inhibitory peptides from whey protein hydrolyzed by immobilized Lactobacillus helveticus proteinase[J]. Journal of Dairy Science,2019,102(2):961−975. doi: 10.3168/jds.2018-14899

    [28] 马莹. 乳清蛋白源ACE抑制肽的分离纯化与结构鉴定[D]. 天津: 天津商业大学, 2019.

    MA Ying. Isolation, purification and structure identification of ACE inhibitory peptide from whey protein source[D]. Tianjin: Tianjin University of Commerce, 2019.

    [29]

    OKAMOTO K, KAWAMURA S, TAGAWA M, et al. Production of an antihypertensive peptide from milk by the brown rot fungus Neolentinus lepideus[J]. European Food Research and Technology,2020,246(9):1773−1782. doi: 10.1007/s00217-020-03530-y

    [30]

    SATHYA P, RADHA K, SATHIAN C T, et al. Isolation and characterisation of angiotensin converting enzyme (ACE) inhibitory peptides in fermented milk of malabari goat[J]. Indian Journal of Small Ruminants,2019,25(2):217−221. doi: 10.5958/0973-9718.2019.00040.0

    [31] 李响, 刘畅, 吴非. 微生物发酵法制备大豆ACE抑制肽菌种的筛选[J]. 食品科学,2013,34(1):185−188. [LI Xiang, LIU Chang, WU Fei. Screening of optimal strain for microbial preparation of ACE inhibitory peptides from soybean protein isolate[J]. Food Science,2013,34(1):185−188.

    LI Xiang, LIU Chang, WU Fei. Screening of optimal strain for microbial preparation of ACE inhibitory peptides from soybean protein isolate[J]. Food Science, 2013, 34(1): 185-188.

    [32] 吕卉卉, 潘道东, 吕丽爽. 瑞士乳杆菌发酵乳清蛋白制备ACE抑制肽的条件优化[J]. 食品科学,2010,31(3):165−169. [LÜ Huihui, PAN Daodong, LÜ Lishuang. Optimizing fermentation conditions of lactobacillus helveticus for preparing ACE inhibitory peptides from whey protein[J]. Food Science,2010,31(3):165−169.

    LÜ Huihui, PAN Daodong, LÜ Lishuang. Optimizing fermentation conditions of lactobacillus helveticus for preparing ACE inhibitory peptides from whey protein[J]. Food Science, 2010, 31(3): 165-169.

    [33]

    NEJATI F, RIZZELLO C G, DI C R, et al. Manufacture of a functional fermented milk enriched of angiotensin-I converting enzyme (ACE)-inhibitory peptides and γ-amino butyric acid (GABA)[J]. LWT-Food Science and Technology,2013,51(1):183−189. doi: 10.1016/j.lwt.2012.09.017

    [34]

    LIU P, LAN X, YASEEN M, et al. Purification, characterization and evaluation of inhibitory mechanism of ACE inhibitory peptides from pearl oyster (Pinctada fucata martensii) meat protein hydrolysate[J]. Marine drugs,2019,17(8):463. doi: 10.3390/md17080463

    [35]

    GUHA S, SHARMA H, DESHWAL G K, et al. A comprehensive review on bioactive peptides derived from milk and milk products of minor dairy species[J]. Food Production, Processing and Nutrition,2021,3(1):1−21. doi: 10.1186/s43014-020-00046-6

    [36]

    ABDELHEDI O, NASRI M. Basic and recent advances in marine antihypertensive peptides: Production, structure-activity relationship and bioavailability[J]. Trends in Food Science & Technology,2019,88:543−557.

    [37] 吕娟, 周刚, 李振莲, 等. 凝胶过滤色谱法测定蛋白胨中多肽的相对分子质量分布[J]. 食品安全质量检测学报,2020,11(15):5131−5136. [LÜ Juan, ZHOU Gang, LI Zhenlian, et al. Determination of relative molecular mass distribution of polypeptides in peptone by gel filtration chromatography[J]. Journal of Food Safety & Quality,2020,11(15):5131−5136. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.15.036

    LÜ Juan, ZHOU Gang, LI Zhenlian, et al. Determination of relative molecular mass distribution of polypeptides in peptone by gel filtration chromatography[J]. Journal of Food Safety & Quality. 2020, 11(15): 5131-5136. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.15.036

    [38]

    MAJID A, PRIYADARSHINI CG P. Millet derived bioactive peptides: A review on their functional properties and health benefits[J]. Critical Reviews in Food Science and Nutrition,2020,60(19):3342−3351. doi: 10.1080/10408398.2019.1686342

    [39]

    ULUKO H, ZHANG S, LIU L, et al. Pilot-scale membrane fractionation of ACE inhibitory and antioxidative peptides from ultrasound pretreated milk protein concentrate hydrolysates[J]. Journal of Functional Foods,2014,7:350−361. doi: 10.1016/j.jff.2014.01.025

    [40] 代永刚, 南喜平, 李铁柱, 等. 酪蛋白源ACE抑制肽的分离纯化[J]. 中国乳品工业,2010,38(10):21−22. [DAI Yonggang, NAN Xipin, LI Tiezhu, et al. Separation and purification of ACE inhibitory peptides from casein[J]. China Dairy Industry,2010,38(10):21−22. doi: 10.3969/j.issn.1001-2230.2010.10.006

    DAI Yonggang, NAN Xipin, LI Tiezhu, et al. Separation and purification of ACE inhibitory peptides from casein[J]. China Dairy Industry, 2010, 38(10): 21-22. doi: 10.3969/j.issn.1001-2230.2010.10.006

    [41] 宋礼, 孙文静, 纪银莉, 等. 牦牛乳酪蛋白降血压肽制备工艺及分离纯化研究[J]. 食品工业科技,2015,36(3):223−227. [SONG Li, SUN Wenjing, JI Yinli, et al. Study of preparation and purification process of antihypertensive peptides from yak milk casein[J]. Science and Technology of Food Industry,2015,36(3):223−227. doi: 10.13386/j.issn1002-0306.2015.03.038

    SONG Li, SUN Wenjing, JI Yinli, et al. Study of preparation and purification process of antihypertensive peptides from yak milk casein[J]. Science and technology of food industry, 2015, 36(3): 223-227. doi: 10.13386/j.issn1002-0306.2015.03.038

    [42] 包春菊. 复合酶水解脱脂乳制备ACE抑制肽的研究[D]. 西安: 陕西科技大学, 2017.

    BAO Chunju. Preparation of ACE inhibitory peptides from skim milk hydrolyzed by complex enzyme[D]. Xi'an: Shaanxi University of Science and Technology, 2017.

    [43]

    MA K, WANG Y, WANG M, et al. Antihypertensive activity of the ACE-renin inhibitory peptide derived from Moringa oleifera protein[J]. Food & Function,2021,12(19):8994−9006.

    [44] 吴霖, 葛洋, 张海坤, 等. 一株高ACE抑制活性乳杆菌的筛选鉴定、培养条件优化及其基因组分析[J]. 微生物学通报,2019,46(11):2830−2847. [WU Lin, GE Yang, ZHANG Haikun, et al. Screening, identification, optimization of culture condition and genome analysis of a bacterium with high ACE inhibitory activity[J]. Microbiology China,2019,46(11):2830−2847. doi: 10.13344/j.microbiol.china.180927

    WU Lin, GE Yang, ZHANG Haikun, et al. Screening, identification, optimization of culture condition and genome analysis of a bacterium with high ACE inhibitory activity[J]. Microbiology China, 2019, 46(11): 2830-2847. doi: 10.13344/j.microbiol.china.180927

    [45]

    RUIZ-GIMENEZ P, SALOM J B, MARCOS J F, et al. Antihypertensive effect of a bovine lactoferrin pepsin hydrolysate: Identification of novel active peptides[J]. Food Chemistry,2012,131(1):266−273. doi: 10.1016/j.foodchem.2011.08.076

    [46]

    TAVARES T G, CONTRERAS M M, AMORIM M, et al. Opti- misation, by response surface methodology, of degree of hydrolysis and antioxidant and ACE-inhibitory activities of whey protein hy-drolysates obtained with cardoon extract[J]. International Dairy Journal,2011,21(12):926−933. doi: 10.1016/j.idairyj.2011.05.013

    [47]

    PAN D, GUO Y. Optimization of sour milk fermentation for the production of ACE-inhibitory peptides and purification of a novel peptide from whey protein hydrolysate[J]. International Dairy Journal,2010,20(7):472−479. doi: 10.1016/j.idairyj.2010.01.007

    [48]

    GAO X, XUE Z, MA Q, et al. Antioxidant and antihypertensive effects of garlic protein and its hydrolysates and the related mechanism[J]. Journal of Food Biochemistry,2020,44(2):e13126.

    [49]

    ZOU Z, WANG M, WANG Z, et al. Antihypertensive and antioxidant activities of enzymatic wheat bran protein hydrolysates[J]. Journal of Food Biochemistry,2020,44(1):e13090.

    [50] 段秀, 张玉锋, 庄永亮. 食源性血管紧张素转化酶抑制肽研究进展[J]. 食品工业科技,2012,33(20):388−393. [DUAN Xiu, ZHANG Yufeng, ZHUANG Yongliang. Research progress in food-derived angiotensin converting enzyme inhibitory peptides[J]. Science and Technology of Food Industry,2012,33(20):388−393. doi: 10.13386/j.issn1002-0306.2012.20.012

    DUAN Xiu, ZHANG Yufeng, ZHUANG Yongliang. Research progress in food-derived angiotensin converting enzyme inhibitory peptides[J]. Science and Technology of Food Industry, 2012, 33(20): 388-393. doi: 10.13386/j.issn1002-0306.2012.20.012

    [51]

    AURELIE C R, FRANCOIS A, VERONIQUE B, et al. Influence of the lactotripeptides isoleucine-proline-proline and valine-proline-proline on systolic blood pressure in japanese subjects: A systematic review and meta-analysis of randomized controlled trials[J]. PLoS One,2017,10(11):e0142235.

    [52]

    WEBER M, BURGOS R, YUS E, et al. Impact of C-terminal amino acid composition on protein expression in bacteria[J]. Molecular Systems Biology,2020,16(5):e9208. doi: 10.15252/msb.20199208

    [53]

    RYAN J T, ROSS R P, BOLTON D, et al. Bioactive peptides from muscle sources: Meat and fish[J]. Nutrients,2011,3(9):765−791. doi: 10.3390/nu3090765

    [54]

    LI J, SU J, CHEN M, et al. Two novel potent ACEI peptides isolated from Pinctada fucata meat hydrolysates using in silico analysis: identification, screening and inhibitory mechanisms[J]. RSC Advances,2021,11(20):12172−12182. doi: 10.1039/D0RA10476K

    [55]

    KOBAYASHI Y, YAMAUCHI T, KATSUDA T, et al. Angiotensin-I converting enzyme (ACE) inhibitory mechanism of tripeptides containing aromatic residues[J]. Journal of Bioscience and Bioengineering,2008,106(3):310−312. doi: 10.1263/jbb.106.310

    [56]

    ZHAO Y, LI B, LIU Z. et al. Antihypertensive effect and purification of an ACE inhibitory peptide from sea cucumber gelatin hydrolysate[J]. Process Biochemistry,2007,42(12):1586−1591. doi: 10.1016/j.procbio.2007.08.011

    [57]

    MIYOSHI S, ISHIKAWA H, KANEKO T, et al. Structures and activity of angiotensin-converting enzyme inhibitors in an α-zein hydrolysate[J]. Agricultural and Biological Chemistry,1991,55(5):1313−1318.

    [58]

    MIZUNO S, NISHIMURA S, MATSUURA K, et al. Release of short and proline-rich antihypertensive peptides from casein hydrolysate with an Aspergillus oryzae protease[J]. Journal of Dairy Science,2004,87(10):3183−3188. doi: 10.3168/jds.S0022-0302(04)73453-0

    [59]

    OTTE J, SHALABY S, ZAKORA M, et al. Fractionation and identification of ACE-inhibitory peptides from α -lactalbumin and β-casein produced by thermolysin-catalysed hydrolysis[J]. International Dairy Journal,2007,17(12):1460−1472. doi: 10.1016/j.idairyj.2007.04.008

    [60]

    KOHMURA M, NIO N, KUBO K, et al. Inhibition of angiotensin converting enzyme by synthetic peptides of human β-casein[J]. Agricultural and Biological Chemistry,1989,53(8):2107−2114.

    [61]

    MIRZAEI M, MIRDAMADI S, SAFAVI M, et al. In vitro and in silico studies of novel synthetic ACE-inhibitory peptides derived from Saccharomyces cerevisiae protein hydrolysate[J]. Bioorganic Chemistry,2019,87:647−654. doi: 10.1016/j.bioorg.2019.03.057

    [62]

    XIANG L, QIU Z, ZHAO R, et al. Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides[J]. Critical Reviews in Food Science and Nutrition, 2021: 1-27.

    [63]

    LI Y, ZHOU J Z, HUANG K H, et al. Purification of a novel angiotensin–I converting enzyme (ACE) inhibitory peptide with an antihypertensive effect from loach (Misgurnus anguillicaudatus)[J]. Journal of Agricultural and Food Chemistry,2012,60:1320−1325. doi: 10.1021/jf204118n

    [64]

    CONTRERAS M, CARRON R, MONTERO M J. Novel casein derived pep-tides with antihypertensive activity[J]. International Dairy Journal,2009,19:566−573. doi: 10.1016/j.idairyj.2009.05.004

    [65]

    PRIPP AH, ISAKSSON T, STEPANIAK L. Quantitative structure-activity relationship modeling of ACE inhibitory peptides derived from milk proteins[J]. European Food Research and Technology,2004,219:579−587. doi: 10.1007/s00217-004-1004-4

    [66]

    MUGURUMA M, AHHMEDA A M, KATAYAMAA K, et al. Identification of pro-drug type ACE inhibitory peptide sourced from porcine myosin B: evaluation of its antihypertensive effects in vivo[J]. Food Chemistry,2009,114:516−522. doi: 10.1016/j.foodchem.2008.09.081

    [67]

    GHASSEM M, ARIHARA K, BABJI A S, et al. Purification and identification of ACE inhibitory peptides from Haruan (Channa striatus) myofibrillar protein hydrolysate using HPLC–ESI-TOF MS/MS[J]. Food Chemistry,2011,129:1770−1777. doi: 10.1016/j.foodchem.2011.06.051

    [68]

    QUIROS A, RAMOS M, MUGUERZA B. Identification of novel antihypertensive peptides in milk fermented with enterococus faecalis[J]. International Dairy Journal,2007,17:33−41. doi: 10.1016/j.idairyj.2005.12.011

    [69]

    CHEN J W, WANG Y M, ZHONG Q X, et al. Purification and characterization of a novel angiotensin-I-converting enzyme (ACE) inhibitory peptide derived from enzymatic hydrolysate of grass carp protein[J]. Peptides,2012,33:52−58. doi: 10.1016/j.peptides.2011.11.006

    [70]

    BYUN H G, KIM S K. Purification and characterization of angiotensin-I-converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin[J]. Process Biochemistry,2001,36:1155−1162. doi: 10.1016/S0032-9592(00)00297-1

    [71]

    ZHANG B, LIU J, WEN H, et al. Structural requirements and interaction mechanisms of ACE inhibitory peptides: Molecular simulation and thermodynamics studies on LAPYK and its modified peptides[J]. Food Science and Human Wellness,2022,11(6):1623−1630. doi: 10.1016/j.fshw.2022.06.021

    [72] 刘静, 管骁, 彭剑秋. 基于氨基酸描述符SVHEHS的ACE抑制肽QSAR研究[J]. 化学学报,2012,70(1):83−91. [LIU Jing, GUAN Xiao, PENG Jianqiu. QSAR study on ACE inhibitory peptides based on amino acids descriptor SHVHES[J]. Acta Chimica Sinica,2012,70(1):83−91. doi: 10.6023/A1107012

    LIU Jing, GUAN Xiao, PENG Jianqiu. QSAR study on ACE inhibitory peptides based on amino acids descriptor SHVHES[J]. Acta Chimica Sinica, 2012, 70(1): 83-91. doi: 10.6023/A1107012

    [73] 张艳萍, 成忠, 俞远志. 基于3种建模法的食源性ACE抑制二肽QSAR研究[J]. 浙江科技学院学报,2015,27(3):174−182. [ZHANG Yanpin, CHENG Zhong, YU Yuanzhi. QSAR study of angiotensin I-converting enzyme inhibitory dipeptides based on three kinds of modeling methods[J]. Journal of Zhejiang University of Science and Technology,2015,27(3):174−182.

    ZHANG Yanpin, CHENG Zhong, YU Yuanzhi. QSAR study of angiotensin I-converting enzyme inhibitory dipeptides based on three kinds of modeling methods[J]. Journal of Zhejiang University of Science and Technology, 2015, 27(3): 174-182.

    [74] 李玲霄. 基于三种不同方法对肽类药物的QSAR研究[D]. 西安: 陕西科技大学, 2017.

    LI Lingxiao. QSAR study of peptide drugs based on three different methods[D]. Xi'an: Shaanxi University of Science and Technology, 2017.

    [75]

    AIHARA K, KAJIMOTO O, HIRATA H, et al. Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension[J]. Journal of the American College of Nutrition,2005,24(4):257−265. doi: 10.1080/07315724.2005.10719473

    [76]

    KAJIMOTO O, KUROSAKI T, MIZUTANI J, et al. Antihypertensive effects of liquid yogurts containing "lactotripeptides (VPP, IPP)" in mild hypertensive subjects[J]. Journal of Nutrition & Food Sciences,2002,5(3):55−66.

    [77]

    PHELAN M, AHERNE A, FITZGERALD R J, et al. Casein-derived bioactive peptides: biological effects, industrial uses, safety aspects and regulatory status[J]. International Dairy Journal,2009,19(11):643−654. doi: 10.1016/j.idairyj.2009.06.001

    [78]

    NAKAMURA Y, YAMAMOTO N, SAKAIK, et al. Purification and characterization of angiotensin-I-converting enzyme inhibitors from sour milk[J]. Journal of Dairy Science,1995,78(4):777−783. doi: 10.3168/jds.S0022-0302(95)76689-9

    [79]

    GLEESON J P, FRIAS J M, RYAN S M, et al. Sodium caprate enables the blood pressure-lowering effect of Ile-Pro-Pro and Leu-Lys-Pro in spontaneously hypertensive rats by indirectly overcoming PepT1 inhibition[J]. European Journal of Pharmaceutics and Biopharmaceutics,2018,128:179−187. doi: 10.1016/j.ejpb.2018.04.021

    [80] 王世宾, 刘金杰. 降血压益生菌产品Evolus的研究[J]. 现代食品科技,2005(4):73−75. [WANG Shibin, LIU Jinjie. Study of probiotics product-evolus[J]. Modern Food Science& Technology,2005(4):73−75. doi: 10.13982/j.mfst.1673-9078.2005.04.024

    WANG Shibin, LIU Jinjie. Study of Probiotics Product--Evolus[J]. Modern Food Science&Technology, 2005(4): 73-75. doi: 10.13982/j.mfst.1673-9078.2005.04.024

    [81] 詹轶秋, 金悦, 李玉珍. 血管紧张素转换酶抑制剂的临床应用概述[J]. 中国执业药师,2010,7(1):3−6. [ZHAN Yiqiu, JIN Yue, LI Yuzhen. A general introduction of clinical application of angiotension converting enzyme inhibitors[J]. Chinese Journal of Rational Drug Use,2010,7(1):3−6.

    ZHAN Yiqiu, JIN Yue, LI Yuzhen. A general introduction of clinical application of angiotension converting enzyme inhibitors[J]. Chinese Journal of Rational Drug Use, 2010, 7(1): 3-6.

    [82]

    XIA Y, YU J, XU W, et al. Purification and characterization of angiotensin-I-converting enzyme inhibitory peptides isolated from whey proteins of milk fermented with Lactobacillus plantarum QS670[J]. Journal of Dairy Science,2020,103(6):4919−4928. doi: 10.3168/jds.2019-17594

    [83] 姜晔, 吴飞. 发酵乳抗高血压特性的研究[J]. 江苏农业科学,2011,39(6):513−515. [JIANG Ye, WU Fei. Fermented milk characteristics of anti-hypertensive[J]. Jiangsu Agricultural Sciences,2011,39(6):513−515. doi: 10.3969/j.issn.1002-1302.2011.06.203

    JIANG Ye, WU Fei. Fermented milk characteristics of anti-hypertensive[J]. Jiangsu Agricultural Sciences, 2011, 39(6): 513-515. doi: 10.3969/j.issn.1002-1302.2011.06.203

    [84]

    YAMAMOTO N, AKINO A, TAKANO T. Antihypertensive effect of the peptides derived from casein by an extracellular proteinase from Lactobacillus helveticus CP790[J]. Journal of Dairy Science,1994,77(4):917−922. doi: 10.3168/jds.S0022-0302(94)77026-0

    [85]

    CHEN L, ZHANG Q, JI Z, et al. Production and fermentation characteristics of angiotensin-I-converting enzyme inhibitory peptides of goat milk fermented by a novel wild Lactobacillus plantarum 69[J]. LWT,2018,91:532−540. doi: 10.1016/j.lwt.2018.02.002

    [86]

    CRIPPA G, ZABZUNI D, BRAVIE, et al. Randomized, double blind placebo-controlled pilot study of the antihypertensive effects of Grana Padano D. O. P cheese consumption in mild-moderate hypertensive subjects[J]. European Review for Medical and Pharmacological Sciences,2018,22(21):7573−7581.

    [87] 洪泽生. 血管紧张素转化酶抑制剂治疗冠心病的临床应用效果研究[J]. 中西医结合心血管病电子杂志,2016,4(23):46−47. [HONG Zesheng. Clinical effect of angiotensin-I-converting enzyme inhibitory peptides on coronary heart disease[J]. Cardiovascular Disease Journal of integrated traditional Chinese and Western Medicine,2016,4(23):46−47.

    HONG Zesheng. Clinical effect of angiotensin-I-converting enzyme inhibitory peptides on coronary heart disease[J]. Cardiovascular Disease Journal of integrated traditional Chinese and Western Medicine, 2016, 4(23): 46-47.

    [88]

    SILTARI A, VAPAATALO H, KORPELA R. Milk and milk-derived peptides combat against hypertension and vascular dysfunction: a review[J]. International Journal of Food Science & Technology,2019,54(6):1920−1929.

    [89]

    CHAMATA Y, WATSON K A, JAUREGI P. Whey-derived peptides interactions with ACE by molecular docking as a potential predictive tool of natural ACE inhibitors[J]. International Journal of Molecular Sciences,2020,21(3):864. doi: 10.3390/ijms21030864

    [90]

    CHAUDHARY A, BHALLA S, PATIYAL S, et al. FermFooDb: A database of bioactive peptides derived from fermented foods[J]. Heliyon,2021,7(4):e06668. doi: 10.1016/j.heliyon.2021.e06668

    [91]

    AMORIM F G, COITINHO L B, DIAS A T, et al. Identification of new bioactive peptides from Kefir milk through proteopeptidomics: Bioprospection of antihypertensive molecules[J]. Food Chemistry,2019,282:109−119. doi: 10.1016/j.foodchem.2019.01.010

  • 期刊类型引用(1)

    1. 何纪元,陈慧玲,刘盛荣,魏奇. 食用菌蛋白肽生物活性及其应用的研究进展. 食品工业. 2025(02): 182-186 . 百度学术

    其他类型引用(1)

表(1)
计量
  • 文章访问数:  147
  • HTML全文浏览量:  46
  • PDF下载量:  17
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-09-26
  • 网络出版日期:  2023-07-25
  • 刊出日期:  2023-10-11

目录

/

返回文章
返回
x 关闭 永久关闭