• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
王婧茹,何鸿举,朱亚东,等. 基于近红外高光谱技术快速检测豌豆蛋白掺假牛肉[J]. 食品工业科技,2023,44(14):312−317. doi: 10.13386/j.issn1002-0306.2022090263.
引用本文: 王婧茹,何鸿举,朱亚东,等. 基于近红外高光谱技术快速检测豌豆蛋白掺假牛肉[J]. 食品工业科技,2023,44(14):312−317. doi: 10.13386/j.issn1002-0306.2022090263.
WANG Jingru, HE Hongju, ZHU Yadong, et al. Rapid Detection of Pea Protein Adulterated in Beef Based on Near-infrared Hyperspectral Technology[J]. Science and Technology of Food Industry, 2023, 44(14): 312−317. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090263.
Citation: WANG Jingru, HE Hongju, ZHU Yadong, et al. Rapid Detection of Pea Protein Adulterated in Beef Based on Near-infrared Hyperspectral Technology[J]. Science and Technology of Food Industry, 2023, 44(14): 312−317. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090263.

基于近红外高光谱技术快速检测豌豆蛋白掺假牛肉

Rapid Detection of Pea Protein Adulterated in Beef Based on Near-infrared Hyperspectral Technology

  • 摘要: 利用近红外高光谱成像技术结合偏最小二乘模型(PLSR)对牛肉掺入豌豆蛋白进行快速无损检测。将豌豆蛋白按照1%~30%(w/w)的浓度梯度掺入牛肉糜中(掺入浓度间隔1%),共获得93个样品以采集其光谱信息。经移动平均值平滑(Moving average smoothing,MAS)、高斯滤波平滑(Gaussian filter smoothing,GFS)、基线校正(Baseline correction,BC)、S-G卷积平滑(Savitzky Golay convolution smoothing,SGCS)、标准正态变量校正(Standard normal variable correction,SNV)等5种方法预处理光谱信息后,利用PLSR算法构建预测模型。然后采用回归系数法(Regression Coefficient,RC)、逐步回归法(Stepwise)和连续投影算法(Successive Projections Algorithm,SPA)筛选最优波长进行模型优化。结果显示,经过GFS预处理所构建的全波段PLSR模型预测效果更好(R2P=0.87,RMSEP=3.22%,ΔE=1.82,RPD=5.82)。采用RC法从GFS光谱中选取的24个最优波长(908.8、913.7、918.7、928.5、936.8、945.0、961.5、971.3、994.4、1017.4、1033.9、1099.7、1135.8、1167.1、1196.7、1211.5、1453.6、1549.3、1607.1、1633.7、1660.1、1678.4、1683.4和1686.7 nm)建立的优化PLSR模型效果最好(R2P=0.90,RMSEP=2.85%,ΔE=1.13,RPD=6.19)。试验表明,高光谱成像技术可实现豌豆蛋白掺入牛肉的快速无损检测。

     

    Abstract: Near-infrared hyperspectral imaging combined with partial least regression (PLSR) models for rapid and non-destructive detection of beef adulterated with pea protein was investigated. The adulteration samples were prepared by mixing pea protein into minced beef with a concentration gradient of 1%~30% (w/w) (interval of 1%), and a total of 93 samples were finally obtained to collect spectral information. After preprocessed by five methods including moving average smoothing (MAS), Gaussian filter smoothing (GFS), baseline correction (BC), Savitzky Golay convolution smoothing (SGCS), and standard normal variable correction (SNV), the spectra were used to construct prediction models by using PLSR algorithm. The regression coefficient (RC), stepwise and successive projections algorithm (SPA) were then used to select optimal wavelength for model optimization. The results showed that the full-band PLSR model constructed by GFS spectra had better prediction performance (R2P=0.87, RMSEP=3.22%, ΔE=1.82, RPD=5.82). The 24 optimal wavelengths including 908.8, 913.7, 918.7, 928.5, 936.8, 945.0, 961.5, 971.3, 994.4, 1017.4, 1033.9, 1099.7, 1135.8, 1167.1, 1196.7, 1211.5, 1453.6, 1549.3, 1607.1, 1633.7, 1660.1, 1678.4, 1683.4 and 1686.7 nm were selected by RC method from the GFS spectra and the original PLSR model optimized with these wavelengths showed better performance (R2P=0.90, RMSEP=2.85%, ΔE=1.13, RPD=6.19). In conclusion, it was possible to use hyperspectral imaging to achieve rapid and non-destructive detection of beef adulterated with pea protein.

     

/

返回文章
返回