Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/BasicLatin.js
  • 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

QuEChERS EMR Lipid净化结合同位素稀释-超高效液相色谱-串联质谱法同时测定畜肉中17种β-受体激动剂

毛锐, 林浩, 刘川, 姚静, 肖全伟, 戴琴

毛锐,林浩,刘川,等. QuEChERS EMR Lipid净化结合同位素稀释-超高效液相色谱-串联质谱法同时测定畜肉中17种β-受体激动剂[J]. 食品工业科技,2023,44(15):320−328. doi: 10.13386/j.issn1002-0306.2022090195.
引用本文: 毛锐,林浩,刘川,等. QuEChERS EMR Lipid净化结合同位素稀释-超高效液相色谱-串联质谱法同时测定畜肉中17种β-受体激动剂[J]. 食品工业科技,2023,44(15):320−328. doi: 10.13386/j.issn1002-0306.2022090195.
MAO Rui, LIN Hao, LIU Chuan, et al. Simultaneous Determination of 17 β-Receptor Agonists in Meat by QuEChERS EMR-Lipid with Isotope Dilution-Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(15): 320−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090195.
Citation: MAO Rui, LIN Hao, LIU Chuan, et al. Simultaneous Determination of 17 β-Receptor Agonists in Meat by QuEChERS EMR-Lipid with Isotope Dilution-Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(15): 320−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090195.

QuEChERS EMR Lipid净化结合同位素稀释-超高效液相色谱-串联质谱法同时测定畜肉中17种β-受体激动剂

详细信息
    作者简介:

    毛锐(1989−),女,硕士,工程师,研究方向:食品安全与质量检测,E-mail:maorui0428@126.com

    通讯作者:

    戴琴(1984−),女,硕士,高级工程师,研究方向:食品安全与质量检测,E-mail:740747208@qq.com

  • 中图分类号: O657.63

Simultaneous Determination of 17 β-Receptor Agonists in Meat by QuEChERS EMR-Lipid with Isotope Dilution-Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry

  • 摘要: 目的:建立了一种采用QuEChERS EMR Lipid净化结合同位素稀释-超高效液相色谱-串联质谱技术同时测定畜肉中17种β-受体激动剂药物残留的检测方法。方法:样品加入pH为5.2的乙酸铵缓冲溶液,以β-葡萄糖醛苷酶/芳基硫酸酯酶酶解,经5%甲酸乙腈提取,QuEChERS EMR Lipid净化,采用CORTECS™ UPLC® C18柱(3.0 mm×100 mm,1.6 μm),0.1%甲酸水和甲醇梯度洗脱,在分时段多反应监测(scheduled MRM,sMRM)模式下测定,内标法定量。结果:17种β-受体激动剂在0~20 ng/mL浓度范围内线性相关系数均大于0.99,方法检出限为0.01~0.09 μg/kg,定量限为0.05~0.31 μg/kg。在0.5、2.0、5.0 μg/kg 3个加标浓度水平下的平均回收率为81.7%~111.8%,RSD为0.8%~10.3%(n=6)。100批市售生鲜畜肉中未检出β-受体激动剂。结论:该法前处理步骤简便,净化效果良好,缩短酶解时间,提高了样品检测效率,内标法定量精准可靠,适用于大批量畜肉样品中多种β-受体激动剂药物残留的同时检测。
    Abstract: Objective: A method for simultaneous determination of 17 β-receptor agonists in meat was established by QuEChERS EMR-Lipid with isotope dilution-ultra performance liquid chromatography-tandem mass spectrometry. Methods: The samples were added to ammonium acetate buffer solution (pH5.2) and enzymatic hydrolyzed by β-glucuronidase and arysulfatase. The hydrolysates were extracted by acetonitrile containing 5% formic acid, and purified by QuEChERS EMR-Lipid. The analyses were separated by CORTECS™ UPLC® C18 chromatographic column with gradient elution using 0.1% formic acid and methanol as the mobile phase. The target compounds were monitored in scheduled MRM mode. Then the internal standard method was used for quantitative analysis. Results: The linear regression correlation coefficients for the 17 β-receptor agonists were all higher than 0.99 in the range from 0 ng/mL to 20 ng/mL. The limits of detection were 0.01~0.09 μg/kg and the limits of quantification were 0.05~0.31 μg/kg. The average recoveries at three spiked levels of 0.5, 2.0 and 5.0 μg/kg ranged from 81.7% to 111.8% with the relative standard deviations of 0.8%~10.3% (n=6). No β-receptor agonists were detected in 100 batches of fresh meat. Conclusion: The method has the advantages of simple pretreatment steps and good purification effect. It shortened enzymolysis time, improved sample detection efficiency. The internal standard method was accurate and reliable. It was suitable for simultaneous determination of β-receptor agonists in a large number of meat samples.
  • β-受体激动剂(俗称“瘦肉精”),是一类具有促肾上腺素功能的人工合成化合物,在医学上主要用于治疗支气管哮喘、阻塞性肺炎等病症[1-2]。该类化合物具有苯乙醇胺母核,根据苯环上取代基不同,可分为苯酚型(非诺特罗、特布他林、莱克多巴胺、沙丁胺醇、福莫特罗等)和苯胺型(克伦特罗、马布特罗、溴布特罗、马喷特罗、克仑潘特等)[3]β-受体激动剂具有营养物质“再分配效应”,可促进脂肪分解和蛋白质合成,显著提高家畜瘦肉率[4],常被不良商家非法用于家畜饲养。人食入β-受体激动剂残留的畜肉制品后可出现心慌、心悸、恶心、呕吐等症状,造成急、慢性中毒,全国食品安全整顿工作办公室发布的整顿办函〔2010〕50号已明确将β-受体激动剂类药物列入食品中可能违法添加的非食用物质名单。

    目前β-受体激动剂的常见检测方法有高效液相色谱法(HPLC)[5]、液相色谱-串联质谱法(HPLC-MS/MS)[6-10]、气相色谱-串联质谱法(GC-MS/MS)[11]、酶联免疫分析法(ELISA)[12-13]β-受体激动剂代谢后残留于动物体内的含量非常低,HPLC检出限难以满足检测要求;GC-MS/MS测定时需要衍生化,操作繁琐,影响检测效率;ELISA专属性差,检测中易出现假阳性;相比之下HPLC-MS/MS无需衍生,灵敏度高、选择性强,已成为国内外β-受体激动剂定量分析的主要检测手段。

    苯酚型β-受体激动剂在代谢过程中轭合作用较强,进入动物体内后极易与硫酸或葡萄糖醛酸形成轭合物[14-15],因此在建立苯酚型β-受体激动剂多残留分析方法时,需先对样品进行酶解,将待测物从轭合状态转化为游离态后再进行提取净化。畜肉含有丰富的蛋白质,脂肪含量高,样品基质复杂,常见的净化方式主要有固相萃取法[16-17]与QuEChERS净化法[18-19],QuEChERS法无淋洗、洗脱步骤,与固相萃取法相比更简便、快速,净化时仅选择性吸附杂质,不会造成目标分析物损失,在畜肉中β-受体激动剂的检测上应用越来越广泛。

    增强型脂质去除填料EMR-Lipid是一种改良的QuEChERS技术,能高选择性地去除基质中的脂类杂质,与传统QuEChERS法相比更适用于脂肪、蛋白质含量较高的样品,方法稳定,重现性好。目前已有文献采用QuEChERS EMR-Lipid净化法[20]进行畜肉中β-受体激动剂的检测,但在定量时多数文献采用基质匹配标准曲线法[21]进行结果校正,实际检测工作中发现,基质曲线样品与待测样品中蛋白质、脂肪等组成不完全相同,β-受体激动剂在不同样品中的基质效应存在差异,校正效果有限,影响测定结果的准确性。同位素内标与待测物性质相近,二者在前处理及离子化过程中受到的影响基本一致,响应比值稳定[22],采用同位素内标法定量比基质匹配标准曲线法更加准确,但现有文献[23]在内标品种的选择上有较大局限性,非同位素内标与待测物在前处理及离子化过程中受到的影响存在差异,对测定结果的校正效果不佳。

    为提高β-受体激动剂定量分析的准确性,本研究将QuEChERS EMR-Lipid净化法与同位素内标稀释技术相结合,尽可能多地采用与待测物相对应的同位素内标进行校正,建立了畜肉中17种β-受体激动剂药物残留的液相色谱-串联质谱(UPLC-MS/MS)检测方法,在简化前处理步骤、提高检测结果准确性方面具有显著优势,可满足食品安全风险监测精准定量的技术要求。

    牛肉、猪肉、羊肉样品 购自当地市场,用料理机搅碎备用;克仑潘特盐酸盐、羟甲基克伦特罗、喷布特罗、盐酸克仑特罗、硫酸特布他林、莱克多巴胺盐酸盐、富马酸福莫特罗、沙丁胺醇、盐酸班布特罗、非诺特罗盐酸盐标准品 纯度均≥96%,德国Dr.Ehrenstorfer公司;马喷特罗盐酸盐、盐酸溴布特罗、苯乙醇胺A、氯丙那林、妥布特罗盐酸盐、盐酸马布特罗、西布特罗标准品  纯度均≥99%,德国WITEGA Laboratorien Berlin-Adlershof公司;马布特罗-D9盐酸盐、班布特罗-D9盐酸盐、妥布特罗-D9盐酸盐、氯丙那林-D7、喷布特罗-D9盐酸盐、特布他林-D9醋酸盐半水化合物、溴布特罗-D9、苯乙醇胺A-D3、西布特罗-D9标准品 纯度均≥99%,德国WITEGA Laboratorien Berlin-Adlershof公司;莱克多巴胺-D3盐酸盐标准品 纯度97.0%,加拿大C/D/N Isotopes Inc公司;克仑特罗-D9、沙丁胺醇-D3标准品 浓度:100 μg/mL,德国Dr. Ehrenstorfer公司;甲醇、乙腈、甲酸 色谱纯,赛默飞世尔科技(中国)有限公司;乙酸铵 色谱纯,天津市科密欧化学试剂有限公司;实验用水 超纯水,由Milli-Q型超纯水仪制备;β-葡萄糖醛苷酶/芳基硫酸酯酶>100.000 Units/mL 上海安谱实验科技股份有限公司;QuEChERS dSPE EMR-Lipid、QuEChERS Final Polish EMR-Lipid 安捷伦科技有限公司。

    AB SCIEX QTRAP 5500三重四极杆串联质谱仪 配有电喷雾离子源(ESI),美国应用生物系统公司;ACQUITYTM UPLC I-Class超高效液相色谱仪 美国沃特世科技公司;CORTECSTM UPLC® C18柱(3.0 mm×100 mm,1.6 μm)、ACQUITY UPLC BEH C18柱(3.0 mm×100 mm,1.7 μm) 美国沃特世科技公司;Eppendorf Centrifuge 5810 R型高速冷冻离心机 德国艾本德股份公司;IKA VORTEX 3 旋涡混匀器 德国艾卡公司;Heidolph涡旋振荡器 德国海道尔夫公司;Mettler-Toledo ME204型电子分析天平 瑞士梅特勒-托利多集团;BP211D型电子分析天平 德国赛多利斯集团;Milli-Q超纯水仪 美国默克集团。

    混合标准溶液的配制:分别称取适量β-受体激动剂标准品,用甲醇溶解,配制成1 mg/mL的单一标准储备液,于−20 ℃冰箱中储存。取适量各标准储备液用甲醇稀释得17种β-受体激动剂的混合标准溶液。

    混合内标溶液的配制:分别称取适量马布特罗-D9盐酸盐、班布特罗-D9盐酸盐、妥布特罗-D9盐酸盐、氯丙那林-D7、喷布特罗-D9盐酸盐、特布他林-D9醋酸盐半水化合物、溴布特罗-D9、苯乙醇胺A-D3、西布特罗-D9、莱克多巴胺-D3盐酸盐标准品,用甲醇溶解,配制成0.5 mg/mL的单一内标储备液,于-20 ℃冰箱中储存。取适量上述内标储备液及克仑特罗-D9、沙丁胺醇-D3标准品(浓度100 μg/mL),用甲醇稀释得混合内标溶液。

    标准曲线工作液的配制:分别准确量取适量β-受体激动剂混合标准溶液及混合内标溶液,用10%甲醇水溶液逐级稀释,配制得浓度为0、0.5、1、2、5、10、20 ng/mL的标准曲线工作液,内标浓度2 ng/mL,临用现配。

    称取均匀样品2 g(精确到0.01 g)置50 mL离心管中,加入0.2 mol/L乙酸铵缓冲溶液(pH5.2)5 mL、β-葡萄糖醛苷酶/芳基硫酸酯酶100 μL,2000 r/min涡旋振荡1 min,于37 ℃避光水浴2 h。取出后放置至室温,加入100 ng/mL混合内标溶液40 μL、5%甲酸乙腈15 mL,2000 r/min涡旋振荡提取20 min,于4 ℃下以9500 r/min离心5 min,待净化。

    在装有QuEChERS dSPE EMR-Lipid粉末的离心管中加入5 mmol/L乙酸铵溶液5 mL,涡旋30 s使EMR-Lipid充分混合。将1.2.2.1中离心后的上清液全部倒入此管,涡旋1 min,于4 ℃下以9500 r/min离心5 min。精密吸取上清液8 mL置另一50 mL离心管中,倒入Final Drying Pouches-MgSO4 粉末(约3.5 g),迅速振摇,涡旋1 min,于4 ℃下以9500 r/min离心5 min。精密吸取3 mL上清液置离心管中,在50 ℃水浴下氮气吹干,加入0.4 mL 10%甲醇水,涡旋30 s复溶,过0.22 μm滤膜,供液相色谱-串联质谱仪测定[24]

    CORTECS™ UPLC® C18柱(3.0 mm×100 mm,1.6 μm);柱温:35 ℃;流速:0.2 mL/min;进样量5.0 μL;流动相A为5%甲醇水溶液(含0.1%甲酸),B为甲醇;梯度洗脱程序:0~8.00 min,10%~30% B;8.00~15.00 min,30%~95% B;15.00~18.00 min,95% B;18.00~19.00 min,95%~10% B;19.00~20.00 min,10% B。

    电喷雾离子源(ESI):正离子模式;扫描方式:分时段多反应监测(Scheduled MRM,sMRM),监测窗口(MRM detection window):60 s,扫描时间(Target scan time):0.3 s。电喷雾电压:5500 V;雾化气(GS1)压力:60 psi;辅助气(GS2)压力:60 psi;气帘气(CUR)压力:20 psi;离子源温度:450 ℃;碰撞池入口电压:10 V;碰撞池出口电压:13 V。

    采用Analyst 1.6.3软件采集数据,MultiQuant 3.0.2软件建立标准曲线、计算结果,Microsoft Excel 2013处理数据及绘制图表。本文基质效应和绝对萃取回收率均采用三个平行样品计算,以平均值±标准差表示。

    β-受体激动剂是在苯乙醇胺母核上修饰得到的系列化合物,结构相近,分离难度大。本文比较了CORTECS™ UPLC® C18柱(3.0 mm×100 mm,1.6 μm)和ACQUITY UPLC BEH C18柱(3.0 mm×100 mm,1.7 μm)对17种β-受体激动剂的分离效果,妥布特罗、溴布特罗、马布特罗、克仑潘特因极性相近,在BEH C18柱上难以分离,换用粒径更小的实心核颗粒CORTECS™ UPLC® C18柱分离效果更好,且各化合物峰形尖锐(见图1),因此选用CORTECS™ UPLC® C18柱分离17种β-受体激动剂。

    图  1  17种β-受体激动剂的提取离子流色谱图
    注:1.特布他林;2.沙丁胺醇;3.西布特罗;4.非诺特罗;5.羟甲基克伦特罗;6.莱克多巴胺;7.氯丙那林;8.克伦特罗;9.福莫特罗;10.妥布特罗;11.溴布特罗;12.马布特罗;13.克仑潘特;14.班布特罗;15.马喷特罗;16.苯乙醇胺A;17.喷布特罗。
    Figure  1.  Extracted ion chromatogram of 17 β-receptor agonists

    在相同梯度条件下比较了甲醇水、乙腈水两种流动相体系的分离效果,结果发现乙腈较甲醇有更强的洗脱能力,在乙腈水系统下β-受体激动剂出峰快,分离度更差,因而选用甲醇水系统。电喷雾离子源正离子模式下,流动相中加入适量甲酸可增强待测组分离子化效率,提高检测灵敏度,本文以甲醇-0.1%甲酸水作为流动相,调整梯度洗脱程序,尽可能使各组分基线分离,减少组分间离子化竞争。在优化后的色谱条件下(见1.2.3)17种β-受体激动剂分离度良好,均可获得满意的检测灵敏度,优化后的谱图见图1

    电喷雾离子源正离子模式下,用流动注射泵将浓度为200 ng/mL的17种β-受体激动剂混合标准溶液以5 μL/min的流速注入质谱仪,通过Q1全扫描,找出准确的母离子峰,再对母离子施加一定的碰撞能量进行MS2扫描,获得各自的二级碎片离子,选取2个信号较强且干扰小的碎片离子与其母离子组成监测离子对。在MRM模式下,分别对去簇电压(DP)、碰撞能量(CE)等质谱参数进行优化。为了提高方法灵敏度,本研究根据17种β-受体激动剂的保留时间,采用智能时间分段的方法进行多反应监测扫描(Scheduled MRM,sMRM),最终确定的离子对信息及质谱参数见表1。sMRM数据采集模式可根据每个化合物的保留时间自动调整监测窗口,每对离子均有最恰当的循环时间和驻留时间,能够显著提高检测方法灵敏度[25-26]

    表  1  17种β-受体激动剂的质谱参数
    Table  1.  Mass spectrometric parameters of 17 β-receptor agonists
    分析物内标保留时间(min)监测离子(m/z)去簇电压(V)碰撞能量 (eV)
    羟甲基克伦特罗克伦特罗-D97.25293.1>203.1*,293.1>275.16527,17
    马喷特罗马布特罗-D912.26324.8>237.1*,324.8>217.16525,37
    喷布特罗喷布特罗-D914.49292.3>236.2*,292.3>201.16522,28
    克伦特罗克伦特罗-D99.48277.1>203.1*,277.1>259.16522,16
    特布他林特布他林-D93.43226.1>152.1*,226.1>125.16523,32
    溴布特罗溴布特罗-D911.05367.0>293.0*,367.0>348.96526,17
    苯乙醇胺A苯乙醇胺A-D312.74345.2>150.2*,345.2>327.26533,19
    非诺特罗莱克多巴胺-D34.91304.2>107.1*,304.2>135.16547,25
    莱克多巴胺莱克多巴胺-D38.24302.1>163.9*,302.1>107.06523,56
    克仑潘特马布特罗-D911.51291.1>202.8*,291.1>273.16524,15
    氯丙那林氯丙那林-D78.90214.1>154.1*,214.1>195.96527,18
    福莫特罗莱克多巴胺-D310.13345.1>148.9*,345.1>326.86527,19
    妥布特罗妥布特罗-D910.94228.1>153.8*,228.1>172.26522,16
    沙丁胺醇沙丁胺醇-D33.57240.1>148.2*,240.1>222.16527,15
    班布特罗班布特罗-D911.69368.2>294.1*,368.2>312.16527,21
    马布特罗马布特罗-D911.28311.0>237.1*,311.0>217.16524,37
    西布特罗西布特罗-D94.38234.2>159.8*,234.2>143.26521,35
    马布特罗-D911.22320.2>238.16526
    班布特罗-D911.66377.2>295.26531
    妥布特罗-D910.87237.2>155.16521
    氯丙那林-D78.84221.1>155.16526
    喷布特罗-D914.47301.2>237.16526
    特布他林-D93.38235.3>153.26525
    溴布特罗-D910.99376.1>294.06529
    莱克多巴胺-D38.08305.2>167.26522
    苯乙醇胺A-D312.71348.2>153.36533
    克伦特罗-D99.38286.2>204.26524
    沙丁胺醇-D33.53243.2>151.26528
    西布特罗-D9 4.31243.2>161.16515
    注:*为定量离子对。
    下载: 导出CSV 
    | 显示表格

    GB/T 22286-2008[27]、GB/T 21313-2007[28]测定畜肉中β-受体激动剂时需先将样品酶解过夜,俞晓兰等[29]研究表明β-受体激动剂在37 ℃酶解2 h后水解作用已基本完成,继续延长酶解时间对提取效率的影响不显著,且随水解时间延长,以特布他林为代表的部分β-受体激动剂水解产物不稳定导致测定结果降低。本文参考该文献将样品于37 ℃酶解2 h后再用QuEChERS EMR-Lipid净化,与β-受体激动剂日常监管常用的检测方法[27-28]相比,在保证测定结果准确性的基础上缩短了前处理时间,提高了样品检测效率。

    本文考察了牛肉、猪肉、羊肉加标样品前处理后17种β-受体激动剂的绝对萃取回收率,结果见图2,班布特罗、克伦特罗、羟甲基克伦特罗、氯丙那林、马布特罗、妥布特罗、溴布特罗、苯乙醇胺A、马喷特罗、克仑潘特绝对萃取回收率大于60%,其余7种绝对萃取回收率在46.3%~58.9%之间。同位素内标与待测物化学结构、理化性质相似,在前处理过程中受到的影响基本一致,二者响应比值稳定,在绝对萃取回收率不高的情况下仍能保证测定结果的准确性。为实现精准定量分析,本研究在经费许可的情况下,尽可能多地购置与待测物相对应的同位素内标,定量分析时均以自身同位素内标进行计算。非诺特罗、福莫特罗、克仑潘特、马喷特罗、羟甲基克伦特罗未购得对应的同位素内标,非诺特罗、福莫特罗与莱克多巴胺同属苯酚型β-受体激动剂,三者具有相近的绝对萃取回收率与基质效应(见图2图3),故以莱克多巴胺-D3作为非诺特罗、福莫特罗的内标。克仑潘特、马喷特罗、羟甲基克伦特罗均为苯胺型化合物,绝对萃取回收率与同为苯胺型的马布特罗、克伦特罗相近(见图2),但克伦特罗和羟甲基克伦特罗基质抑制效应较强(见图3),以克伦特罗-D9作羟甲基克伦特罗的内标可补偿基质抑制效应对羟甲基克伦特罗的影响,故选择克伦特罗-D9为羟甲基克伦特罗的内标,马布特罗-D9为克仑潘特、马喷特罗的内标。

    图  2  牛肉、猪肉、羊肉样品中17种β-受体激动剂的绝对萃取回收率
    Figure  2.  Absolute extraction recovery of 17 β-receptor agonists in beef, pork and mutton
    图  3  牛肉、猪肉、羊肉样品中17种β-受体激动剂的基质效应
    Figure  3.  Matrix effect of 17 β-receptor agonists in beef, pork and mutton

    基质效应(ME)计算方法见公式(1),式中A1为待测物溶于有机溶剂中的峰面积,A2为待测物溶于空白基质溶液中的峰面积,ME在±20%以内为可接受范围[30-31]

    ME(%)=(A2A1)A1×100
    (1)

    基质效应结果见图3,牛肉、猪肉、羊肉对17种β-受体激动剂均呈现出基质抑制效应,其中克伦特罗、特布他林ME绝对值大于20%,具有明显的基质抑制效应,其余15种β-受体激动剂ME绝对值在5.16%~17.9%之间,基质效应较弱,表明QuEChERS EMR-Lipid法净化效果良好。克伦特罗、特布他林定量分析时均以自身同位素标志物作内标,补偿了基质抑制效应对测定结果的影响,提高了定量准确性。

    以牛肉为例,比较QuEChERS法与MCX法对17种β-受体激动剂的净化效果。基质效应对比结果见图4,两种前处理方法均呈现基质抑制效应,大多数β-受体激动剂基质效应不明显,仅有QuEChERS法克伦特罗和特布他林的ME绝对值略大于20%,表明两种前处理方法均有较强的基质干扰去除效果。

    图  4  牛肉样品QuEChERS法与MCX法基质效应对比图
    Figure  4.  Matrix effect comparison between QuEChERS method and MCX method in beef samples

    牛肉样品QuEChERS法与MCX法的绝对萃取回收率对比结果见图5,17种β-受体激动剂在QuEChERS法中的萃取回收率普遍高于MCX法。MCX柱是混合型阳离子交换柱,具有反相和阳离子交换双重保留性能,对非极性的碱性化合物具有更高的选择性。MCX柱净化需经历上样、淋洗、洗脱过程,17种β-受体激动剂母体结构中苯环上取代基不同,极性与碱性各有差异,在MCX柱上呈现出不同的保留特性,同一净化条件下理化性质差异大的化合物易在淋洗中损失或在洗脱中流出不完全,难以兼顾所有化合物的绝对萃取回收率,MCX净化下喷布特罗、苯乙醇胺A、福莫特罗的绝对萃取回收率仅有12.3%、16.4%、27.2%。QuEChERS法使用的EMR-Lipid是一种新型吸附材料,该吸附剂结合体积排阻和疏水作用两种机制,能高选择性地去除基质中的脂类杂质,净化时仅有杂质吸附与脱水过程,不会造成目标分析物损失,对17种β-受体激动剂能提供更为均衡的绝对萃取回收率,最低绝对萃取回收率也能达到46.3%,与MCX法相比更适用于多残留的同时检测,因而本研究选用QuEChERS EMR-Lipid法进行样品前处理。

    图  5  牛肉样品QuEChERS法与MCX法绝对萃取回收率对比图
    Figure  5.  Absolute extraction recovery comparison between QuEChERS method and MCX method in beef samples

    取标准曲线系列工作液进样测定,以标准品与相应内标的峰面积比为纵坐标,以标准品浓度为横坐标,绘制标准曲线,得到线性回归方程。采用逐步稀释法,以3倍信噪比(S/N)为检出限,10倍信噪比(S/N)为定量限,结果见表2。17种β-受体激动剂在0~20 ng/mL范围内线性关系良好,相关系数均大于0.99,检出限为0.01~0.09 μg/kg,定量限为0.05~0.31 μg/kg,可满足检测要求。

    表  2  17种β-受体激动剂线性范围、回归方程、相关系数、检出限及定量限
    Table  2.  Linear equation, correlation coefficient, LOD, LOQ of 17 β-receptor agonists
    组分名称线性范围(μg/L)回归方程相关系数检出限(μg/kg)定量限(μg/kg)
    克仑潘特0~20y=0.0919x+−2.12e−013r=0.99570.070.22
    羟甲基克伦特罗0~20y=0.0435x+−1.16e−013r=0.99840.090.31
    马喷特罗0~20y=0.15x+1.45e−014r=0.99910.040.12
    喷布特罗0~20y=0.172x+−3.34e−014r=0.99960.020.08
    克伦特罗0~20y=0.0753x+3.28e−014r=0.99990.080.25
    特布他林0~20y=0.182x+1.5e−013r=0.99900.050.16
    溴布特罗0~20y=0.123x+−2.23e−013r=0.99860.060.20
    苯乙醇胺A0~20y=0.101x+−1.74e−014r=0.99930.040.12
    非诺特罗0~20y=0.273x+1.16e−012r=0.99870.040.12
    莱克多巴胺0~20y=0.199x+3.65e−013r=0.99970.050.16
    氯丙那林0~20y=0.105x+−3.54e−014r=0.99980.040.14
    福莫特罗0~20y=0.32x+7.85e−013r=0.99950.030.09
    妥布特罗0~20y=0.2x+7.87e−013r=0.99810.050.15
    沙丁胺醇0~20y=0.117x+−2.95e−013r=0.99890.050.15
    班布特罗0~20y=0.236x+−2.49e−013r=0.99750.010.05
    马布特罗0~20y=0.162x+4.56e−013r=0.99800.030.11
    西布特罗0~20y=0.164x+−6.21e−013r=0.99820.080.28
    下载: 导出CSV 
    | 显示表格

    选择猪肉、牛肉、羊肉阴性样品,以低(0.5 μg/kg)、中(2.0 μg/kg)、高(5.0 μg/kg)三个浓度进行加标回收试验,每个浓度水平各6份,按照1.2.2项下方法处理样品后进样测定,计算方法回收率与精密度,结果如表3所示,3个浓度水平下,猪肉样品中17种β-受体激动剂的平均回收率为83.1%~109.3%,相对标准偏差为0.8%~9.8%,牛肉样品中17种β-受体激动剂的平均回收率为81.7%~111.8%,相对标准偏差为1.0%~10.2%,羊肉样品中17种β受体激动剂的平均回收率为86.5%~111.6%,相对标准偏差为1.0%~10.3%。本方法具有较好的准确度和精密度,可满足畜肉中17种β-受体激动剂的检测要求。12种以自身同位素标志物作内标的β-受体激动剂平均回收率在91.4%~111.8%之间,与部分已有方法[10,23]相比准确度更高,定量更为精准可靠。

    表  3  17种β-受体激动剂回收率及精密度(n=6)
    Table  3.  Recoveries and RSD of 17 β-receptor agonists (n=6)
    组分名称加标水平
    (μg/kg)
    猪肉 牛肉 羊肉
    回收率(%)RSD(%)回收率(%)RSD(%)回收率(%)RSD(%)
    克仑潘特0.588.25.9 88.64.9 88.55.8
    288.64.988.93.387.83.1
    590.25.289.45.888.94.7
    羟甲基克伦特罗0.596.26.794.26.093.35.4
    294.35.493.77.793.54.5
    596.89.896.18.899.51.5
    马喷特罗0.592.91.295.77.891.21.7
    292.34.690.85.198.54.2
    589.13.291.03.294.72.4
    喷布特罗0.5100.04.5102.56.7102.93.3
    2102.94.8103.74.4108.01.4
    5104.72.5105.31.7108.24.6
    克伦特罗0.599.83.195.42.8103.36.4
    2102.03.4101.98.0100.84.9
    5100.61.799.84.098.34.2
    特布他林0.5100.32.596.88.399.05.4
    2101.12.591.44.897.89.3
    597.93.099.24.699.62.4
    溴布特罗0.5100.81.0106.53.3106.93.6
    2109.32.9111.83.6108.64.1
    5107.02.9110.85.7103.44.6
    苯乙醇胺A0.5101.97.2101.48.3105.56.7
    2101.14.1101.54.699.35.5
    5100.33.9103.08.0101.81.5
    非诺特罗0.584.13.681.71.586.53.1
    283.92.484.84.292.26.7
    583.13.686.72.290.310.3
    莱克多巴胺0.591.01.693.14.695.57.6
    298.14.4100.33.593.96.3
    5100.43.5100.14.597.36.6
    氯丙那林0.5105.34.394.77.398.96.6
    2101.92.8103.73.999.51.4
    5101.93.7104.64.4103.13.3
    福莫特罗0.596.32.799.36.6 99.65.5
    292.54.699.95.092.47.8
    593.86.0105.01.098.52.7
    妥布特罗0.593.94.296.310.292.73.3
    292.24.391.84.492.54.7
    595.33.699.37.597.16.1
    沙丁胺醇0.5102.34.290.92.794.33.7
    2100.91.993.42.394.42.9
    599.30.8105.04.4102.95.2
    班布特罗0.5100.41.1100.84.1100.71.5
    298.71.8101.15.099.95.7
    5102.36.0100.76.798.57.0
    马布特罗0.598.30.899.84.8106.62.9
    298.22.299.91.1111.61.0
    5105.81.8101.55.6104.91.6
    西布特罗0.5100.65.899.26.6106.42.6
    2100.64.198.47.799.92.7
    597.06.5103.38.2111.21.4
    下载: 导出CSV 
    | 显示表格

    采用本文建立的方法对100批市售生鲜畜肉中17种β-受体激动剂进行检测,其中猪肉31批,牛肉38批,羊肉31批,结果均为未检出,暂未发现生鲜畜肉中β-受体激动剂残留风险,与GB/T 22286-2008《动物源性食品中多种β-受体激动剂残留量的测定 液相色谱串联质谱法》检测结果一致。

    本研究采用QuEChERS EMR-Lipid净化法及同位素稀释-超高效液相色谱-串联质谱技术建立了畜肉中17种β-受体激动剂药物残留的检测方法。酶解2 h后的样品经QuEChERS EMR-Lipid净化,前处理步骤简便,净化效果良好,有效消除了基质效应影响,同时缩短酶解时间,提高了样品检测效率。采用同位素内标法定量,补偿了样品前处理过程对测定结果的影响,17种β-受体激动剂在0~20 ng/mL范围内线性关系良好,3个加标浓度水平下平均回收率为81.7%~111.8%,RSD为0.8%~10.3%,检出限为0.01~0.09 μg/kg,定量限为0.05~0.31 μg/kg,定量精准可靠,适用于大批量畜肉样品中多种β-受体激动剂药物残留的同时检测,为动物源性食品风险监测提供了技术支持,具有广阔的应用前景。

  • 图  1   17种β-受体激动剂的提取离子流色谱图

    注:1.特布他林;2.沙丁胺醇;3.西布特罗;4.非诺特罗;5.羟甲基克伦特罗;6.莱克多巴胺;7.氯丙那林;8.克伦特罗;9.福莫特罗;10.妥布特罗;11.溴布特罗;12.马布特罗;13.克仑潘特;14.班布特罗;15.马喷特罗;16.苯乙醇胺A;17.喷布特罗。

    Figure  1.   Extracted ion chromatogram of 17 β-receptor agonists

    图  2   牛肉、猪肉、羊肉样品中17种β-受体激动剂的绝对萃取回收率

    Figure  2.   Absolute extraction recovery of 17 β-receptor agonists in beef, pork and mutton

    图  3   牛肉、猪肉、羊肉样品中17种β-受体激动剂的基质效应

    Figure  3.   Matrix effect of 17 β-receptor agonists in beef, pork and mutton

    图  4   牛肉样品QuEChERS法与MCX法基质效应对比图

    Figure  4.   Matrix effect comparison between QuEChERS method and MCX method in beef samples

    图  5   牛肉样品QuEChERS法与MCX法绝对萃取回收率对比图

    Figure  5.   Absolute extraction recovery comparison between QuEChERS method and MCX method in beef samples

    表  1   17种β-受体激动剂的质谱参数

    Table  1   Mass spectrometric parameters of 17 β-receptor agonists

    分析物内标保留时间(min)监测离子(m/z)去簇电压(V)碰撞能量 (eV)
    羟甲基克伦特罗克伦特罗-D97.25293.1>203.1*,293.1>275.16527,17
    马喷特罗马布特罗-D912.26324.8>237.1*,324.8>217.16525,37
    喷布特罗喷布特罗-D914.49292.3>236.2*,292.3>201.16522,28
    克伦特罗克伦特罗-D99.48277.1>203.1*,277.1>259.16522,16
    特布他林特布他林-D93.43226.1>152.1*,226.1>125.16523,32
    溴布特罗溴布特罗-D911.05367.0>293.0*,367.0>348.96526,17
    苯乙醇胺A苯乙醇胺A-D312.74345.2>150.2*,345.2>327.26533,19
    非诺特罗莱克多巴胺-D34.91304.2>107.1*,304.2>135.16547,25
    莱克多巴胺莱克多巴胺-D38.24302.1>163.9*,302.1>107.06523,56
    克仑潘特马布特罗-D911.51291.1>202.8*,291.1>273.16524,15
    氯丙那林氯丙那林-D78.90214.1>154.1*,214.1>195.96527,18
    福莫特罗莱克多巴胺-D310.13345.1>148.9*,345.1>326.86527,19
    妥布特罗妥布特罗-D910.94228.1>153.8*,228.1>172.26522,16
    沙丁胺醇沙丁胺醇-D33.57240.1>148.2*,240.1>222.16527,15
    班布特罗班布特罗-D911.69368.2>294.1*,368.2>312.16527,21
    马布特罗马布特罗-D911.28311.0>237.1*,311.0>217.16524,37
    西布特罗西布特罗-D94.38234.2>159.8*,234.2>143.26521,35
    马布特罗-D911.22320.2>238.16526
    班布特罗-D911.66377.2>295.26531
    妥布特罗-D910.87237.2>155.16521
    氯丙那林-D78.84221.1>155.16526
    喷布特罗-D914.47301.2>237.16526
    特布他林-D93.38235.3>153.26525
    溴布特罗-D910.99376.1>294.06529
    莱克多巴胺-D38.08305.2>167.26522
    苯乙醇胺A-D312.71348.2>153.36533
    克伦特罗-D99.38286.2>204.26524
    沙丁胺醇-D33.53243.2>151.26528
    西布特罗-D9 4.31243.2>161.16515
    注:*为定量离子对。
    下载: 导出CSV

    表  2   17种β-受体激动剂线性范围、回归方程、相关系数、检出限及定量限

    Table  2   Linear equation, correlation coefficient, LOD, LOQ of 17 β-receptor agonists

    组分名称线性范围(μg/L)回归方程相关系数检出限(μg/kg)定量限(μg/kg)
    克仑潘特0~20y=0.0919x+−2.12e−013r=0.99570.070.22
    羟甲基克伦特罗0~20y=0.0435x+−1.16e−013r=0.99840.090.31
    马喷特罗0~20y=0.15x+1.45e−014r=0.99910.040.12
    喷布特罗0~20y=0.172x+−3.34e−014r=0.99960.020.08
    克伦特罗0~20y=0.0753x+3.28e−014r=0.99990.080.25
    特布他林0~20y=0.182x+1.5e−013r=0.99900.050.16
    溴布特罗0~20y=0.123x+−2.23e−013r=0.99860.060.20
    苯乙醇胺A0~20y=0.101x+−1.74e−014r=0.99930.040.12
    非诺特罗0~20y=0.273x+1.16e−012r=0.99870.040.12
    莱克多巴胺0~20y=0.199x+3.65e−013r=0.99970.050.16
    氯丙那林0~20y=0.105x+−3.54e−014r=0.99980.040.14
    福莫特罗0~20y=0.32x+7.85e−013r=0.99950.030.09
    妥布特罗0~20y=0.2x+7.87e−013r=0.99810.050.15
    沙丁胺醇0~20y=0.117x+−2.95e−013r=0.99890.050.15
    班布特罗0~20y=0.236x+−2.49e−013r=0.99750.010.05
    马布特罗0~20y=0.162x+4.56e−013r=0.99800.030.11
    西布特罗0~20y=0.164x+−6.21e−013r=0.99820.080.28
    下载: 导出CSV

    表  3   17种β-受体激动剂回收率及精密度(n=6)

    Table  3   Recoveries and RSD of 17 β-receptor agonists (n=6)

    组分名称加标水平
    (μg/kg)
    猪肉 牛肉 羊肉
    回收率(%)RSD(%)回收率(%)RSD(%)回收率(%)RSD(%)
    克仑潘特0.588.25.9 88.64.9 88.55.8
    288.64.988.93.387.83.1
    590.25.289.45.888.94.7
    羟甲基克伦特罗0.596.26.794.26.093.35.4
    294.35.493.77.793.54.5
    596.89.896.18.899.51.5
    马喷特罗0.592.91.295.77.891.21.7
    292.34.690.85.198.54.2
    589.13.291.03.294.72.4
    喷布特罗0.5100.04.5102.56.7102.93.3
    2102.94.8103.74.4108.01.4
    5104.72.5105.31.7108.24.6
    克伦特罗0.599.83.195.42.8103.36.4
    2102.03.4101.98.0100.84.9
    5100.61.799.84.098.34.2
    特布他林0.5100.32.596.88.399.05.4
    2101.12.591.44.897.89.3
    597.93.099.24.699.62.4
    溴布特罗0.5100.81.0106.53.3106.93.6
    2109.32.9111.83.6108.64.1
    5107.02.9110.85.7103.44.6
    苯乙醇胺A0.5101.97.2101.48.3105.56.7
    2101.14.1101.54.699.35.5
    5100.33.9103.08.0101.81.5
    非诺特罗0.584.13.681.71.586.53.1
    283.92.484.84.292.26.7
    583.13.686.72.290.310.3
    莱克多巴胺0.591.01.693.14.695.57.6
    298.14.4100.33.593.96.3
    5100.43.5100.14.597.36.6
    氯丙那林0.5105.34.394.77.398.96.6
    2101.92.8103.73.999.51.4
    5101.93.7104.64.4103.13.3
    福莫特罗0.596.32.799.36.6 99.65.5
    292.54.699.95.092.47.8
    593.86.0105.01.098.52.7
    妥布特罗0.593.94.296.310.292.73.3
    292.24.391.84.492.54.7
    595.33.699.37.597.16.1
    沙丁胺醇0.5102.34.290.92.794.33.7
    2100.91.993.42.394.42.9
    599.30.8105.04.4102.95.2
    班布特罗0.5100.41.1100.84.1100.71.5
    298.71.8101.15.099.95.7
    5102.36.0100.76.798.57.0
    马布特罗0.598.30.899.84.8106.62.9
    298.22.299.91.1111.61.0
    5105.81.8101.55.6104.91.6
    西布特罗0.5100.65.899.26.6106.42.6
    2100.64.198.47.799.92.7
    597.06.5103.38.2111.21.4
    下载: 导出CSV
  • [1]

    XING G, YI C, DOU P Y, et al. Recent progress in the development of β2 adrenergic receptor agonists: A patent review (2015-2020)[J]. Expert Opinion on Therapeutic Patents,2021,31(1/6):1354−3776.

    [2]

    HAQUE R, HAKIM A, MOODLEY T, et al. Inhaled long-acting β2 agonists enhance glucocorticoid receptor nuclear translocation and efficacy in sputum macrophages in COPD[J]. The Journal of Allergy and Clinical Immunology,2013,132(5):1166−1173. doi: 10.1016/j.jaci.2013.07.038

    [3] 陈清平, 韩峰, 汪洋, 等. 食源性动物组织中β-受体激动剂研究进展[J]. 食品安全质量检测学报,2019,10(2):385−393. [CHEN Qingping, HAN Feng, WANG Yang, et al. Research progress on β-agonists in food-borne animal tissues[J]. Journal of Food Safety and Quality,2019,10(2):385−393.

    CHEN Qingping, HAN Feng, WANG Yang, et al. Research progress on β-agonists in food-borne animal tissues [J]. Journal of Food Safety and Quality, 2019, 10(2): 385-393.

    [4] 孙媛, 马晶, 马惠琴, 等. 猪肉、牛肉中5种β-受体激动剂残留的LC-MS/MS分析方法的建立[J]. 宁夏农林科技,2020,61(11):49−51, 54. [SUN Yuan, MA Jing, MA Huiqin, et al. LC-MS/MS method establishment for five kinds of β-receptor agonists residues in pork and beef[J]. Ningxia Journal of Agriculture and Forestry Science and Technology,2020,61(11):49−51, 54.

    SUN Yuan, MA Jing, MA huiqin, et al. LC-MS/MS method establishment for five kinds of β-receptor agonists residues in pork and beef [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(11): 49-51, 54.

    [5] 张楠, 钱滢文, 吴丽华, 等. 基于离子液体柱前荧光衍生高效液相色谱法测定动物性食品中7 种β-受体激动剂[J]. 食品工业科技,2021,42(23):296−302. [ZHANG Nan, QIAN Yingwen, WU Lihua, et al. Detection of 7 β-agonists in animal-derived food based on ionic liquid and pre-column fluorescence derivatization-high performance liquid chromatography[J]. Science and Technology of Food Industry,2021,42(23):296−302.

    ZHANG Nan, QIAN Yingwen, WU Lihua, et al. Detection of 7 β-agonists in animal-derived food based on ionic liquid and pre-column fluorescence derivatization-high performance liquid chromatography [J]. Science and Technology of Food Industry, 2021, 42(23): 296-302.

    [6]

    PROTTI M, SBERNA PM, SARDELLA R, et al. VAMS and StAGE as innovative tools for the enantioselective determination of clenbuterol in urine by LC-MS/MS[J]. Journal of Pharmaceutical and Biomedical Analysis,2021,195:113873. doi: 10.1016/j.jpba.2020.113873

    [7]

    LIU Rong, TANG Xiaoling, XIONG Renping, et al. Simultaneous determination of fourteen β2-agonist enantiomers in food animal muscles by liquid chromatography coupled with tandem mass spectrometry[J]. Journal of Chromatography B,2022,1193:123169. doi: 10.1016/j.jchromb.2022.123169

    [8]

    MASTRIANNI K R, METAVARAYUTH K, BREWER W E, et al. Analysis of 10 β-agonists in pork meat using automated dispersive pipette extraction and LC-MS/MS[J]. Journal of Chromatography B,2018,1084:64−68. doi: 10.1016/j.jchromb.2018.03.026

    [9]

    HOFF RB, MOLOGNONI L, DEOLINDO CTP, et al. Determination of 62 veterinary drugs in feedingstuffs by novel pressurized liquid extraction methods and LC-MS/MS[J]. Journal of Chromatography B,2020,1152:122232. doi: 10.1016/j.jchromb.2020.122232

    [10] 邓艳芹, 汪坤乾, 廖金兰, 等. 动物源样品中β-受体激动剂的测定方法[J]. 咸阳师范学院学报,2022,37(4):25−29. [DENG Yanqin, WANG Kunqian, LIAO Jinlan, et al. A method for β-adrenoceptor agonists residues detection in animal-derived samples[J]. Journal of Xianyang Normal University,2022,37(4):25−29. doi: 10.3969/j.issn.1672-2914.2022.04.007

    DENG Yanqin, WANG Kunqian, LIAO Jinlan, et al. A method for β-adrenoceptor agonists residues detection in animal-derived samples [J]. Journal of Xianyang Normal University, 2022, 37(4): 25-29. doi: 10.3969/j.issn.1672-2914.2022.04.007

    [11] 岳韩笑, 雷雯, 杜晓宁, 等. 同位素稀释-气相色谱-串联质谱法测定猪肉中残留的4种β-受体激动剂[J]. 质谱学报,2018,39(1):61−68. [YUE Hanxiao, LEI Wen, DU Xiaoning, et al. Multi-residue analysis of 4 β-agonists in pork using isotope dilution gas chromatography-tandem mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2018,39(1):61−68.

    YUE Hanxiao, LEI Wen, DU Xiaoning, et al. Multi-residue analysis of 4 β-agonists in pork using isotope dilution gas chromatography-tandem mass spectrometry [J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(1): 61-68.

    [12] 刘淼苗, 刘啊敏, 陈尔净, 等. 基于二聚人工抗原ELISA检测多残留β2-受体激动剂[J]. 中国计量大学学报,2022,33(1):27−33. [LIU Miaomiao, LIU Amin, CHEN Erjing, et al. Eetection of β2-agonists multi-residual by ELISA based on dimeric artificial antigen[J]. Journal of China University of Metrology,2022,33(1):27−33.

    LIU Miaomiao, LIU Amin, CHEN Erjing, et al. Eetection of β2-agonists multi-residual by ELISA based on dimeric artificial antigen [J]. Journal of China University of Metrology, 2022, 33(1): 27-33.

    [13] 李延山, 刘庆伟, 卞大伟, 等. ELISA检测猪尿中β-受体激动剂类药物影响因素研究[J]. 动物医学进展,2018,39(8):78−82. [LI Yanshan, LIU Qingwei, BIAN Dawei, et al. Study on influencing factors for detecting β-receptor agonists in porcine urine by ELISA[J]. Progress in Veterinary Medicine,2018,39(8):78−82.

    LI Yanshan, LIU Qingwei, BIAN Dawei, et al. Study on influencing factors for detecting β-receptor agonists in porcine urine by ELISA [J]. Progress in Veterinary Medicine, 2018, 39(8): 78-82.

    [14]

    WANG Weiyu, ZHANG Yulian, WANG Jinyan, et al. Determination of beta-agonists in pig feed, pig urine and pig liver using capillary electrophoresis with electrochemical detection[J]. Meat Science,2010,85(2):302−305. doi: 10.1016/j.meatsci.2010.01.018

    [15] 周迎春, 华向美, 李单单. β-受体激动剂的性质及其残留量测定时的关键点[J]. 肉类工业,2021,483(7):34−39. [ZHOU Yingchun, HUA Xiangmei, LI Dandan. The properties of β-agonists and the key points in determination of residue[J]. Meat Industry,2021,483(7):34−39.

    ZHOU Yingchun, HUA Xiangmei, LI Dandan. The properties of β-agonists and the key points in determination of residue [J]. Meat Industry, 2021, 483(7): 34-39.

    [16]

    WANG G, ZHAO J, PENG T, et al. Matrix effects in the determination of β-receptor agonists in animal-derived foodstuffs by ultra-performance liquid chromatography tandem mass spectrometry with immunoaffinity solid-phase extraction[J]. Journal of separation science,2013,36(4):796−802. doi: 10.1002/jssc.201200661

    [17] 崔利辉, 李璐琦, 李国秀, 等. 超高效液相色谱-串联质谱法测定牛肉中9种β-受体激动剂[J]. 食品安全质量检测学报,2021,12(12):4858−4866. [CUI Lihui, LI Luqi, LI Guoxiu, et al. Determination of 9 kinds of β-agonists in beef by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality,2021,12(12):4858−4866.

    CUI Lihui, LI Luqi, LI Guoxiu, et al. Determination of 9 kinds of β-agonists in beef by ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety and Quality, 2021, 12(12): 4858-4866.

    [18] 肖勇, 万伟杰, 邬磊, 等. QuEChERS-高效液相色谱-串联质谱法测定动物源性产品中9种β-受体激动剂残留[J]. 江西农业学报,2021,33(2):102−108. [XIAO Yong, WAN Weijie, WU Lei, et al. Determination of 9 β-agonist residues in animal products by QuEChERS-high performance liquid chromatography-tandem mass spectrometry[J]. Acta Agriculturae Jiangxi,2021,33(2):102−108.

    XIAO Yong, WAN Weijie, WU Lei, et al. Determination of 9 β-agonist residues in animal products by QuEChERS-high performance liquid chromatography-tandem mass spectrometry [J]. Acta Agriculturae Jiangxi, 2021, 33(2): 102-108.

    [19]

    XIONG Lin, GAO Yaqin, LI Weihong, et al. Simple and sensitive monitoring of β2-agonist residues in meat by liquid chromatography-tandem mass spectrometry using a QuEChERS with preconcentration as the sample treatment[J]. Meat Science,2015,7(105):96−107.

    [20] 胡雪郢, 薛丰. 脂质特异基质分散萃取超高效液相色谱-串联质谱法测定肉制品中4种兽药残留[J]. 化学分析计量,2021,30(7):17−22. [HU Xueying, XUE Feng. Determination of 4 agonist residues in meat by lipid-specific matrix dispersed purification combined with ultra performance liquid chromatography tandem mass spectrometry[J]. Chemical Analysis and Meterage,2021,30(7):17−22.

    HU Xueying, XUE Feng. Determination of 4 agonist residues in meat by lipid-specific matrix dispersed purification combined with ultra performance liquid chromatography tandem mass spectrometry [J]. Chemical Analysis and Meterage, 2021, 30(7): 17-22.

    [21] 刘学芝, 赵英莲, 马跃, 等. 超高效液相色谱-串联质谱法测定猪肉、鸡蛋、牛奶中9种食源性兴奋剂类药物残留[J]. 色谱,2022,40(2):148−155. [LIU Xuezhi, ZHAO Yinglian, MA Yue, et al. Determination of nine food-borne stimulant drug residues in pork, egg, and milk by ultra-performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2022,40(2):148−155. doi: 10.3724/SP.J.1123.2021.04005

    LIU Xuezhi, ZHAO Yinglian, MA Yue, et al. Determination of nine food-borne stimulant drug residues in pork, egg, and milk by ultra-performance liquid chromatography-tandem mass spectrometry [J]. Chinese Journal of Chromatography, 2022, 40(2): 148-155. doi: 10.3724/SP.J.1123.2021.04005

    [22] 李道霞, 黄丽娟, 辜慧, 等. HPLC-MS/MS法检测动物源性食品中喹诺酮类药物的基质效应及其补偿措施研究[J]. 中国食品卫生杂志,2022,34(4):693−699. [LI Daoxia, HUANG Lijuan, GU Hui, et al. Matrix effects and compensation measures of quinolones detection in animal derived food by HPLC-MS/MS[J]. Chinese Journal of Food Hygine,2022,34(4):693−699.

    LI Daoxia, HUANG Lijuan, GU Hui, et al. Matrix effects and compensation measures of quinolones detection in animal derived food by HPLC-MS/MS [J]. Chinese Journal of Food Hygine, 2022, 34(4): 693-699.

    [23] 王丹, 马淑青, 吴芳平, 等. PXC 和EMR-Lipid QuEChERs 技术在动物源性食品中多种β-受体激动剂残留检测的前处理效果对比[J]. 中国卫生工程学,2021,20(1):30−33. [WANG Dan, MA Shuqing, WU Fangping, et al. The comparison of the pretreatment effects of PXC and EMR-Lipid QuEChERs technology in the detection of multiple β-receptor agonist residues in animal-derived food[J]. Chinese Journal of Public Health Engineering,2021,20(1):30−33.

    WANG Dan, MA Shuqing, WU Fangping, et al. The comparison of the pretreatment effects of PXC and EMR-Lipid QuEChERs technology in the detection of multiple β-receptor agonist residues in animal-derived food [J]. Chinese Journal of Public Health Engineering, 2021, 20(1): 30-33.

    [24] 李磊, 李海畅, 高婧, 等. QuEChERS EMR-Lipid-LC/MS/MS测定8种β-受体激动剂[J]. 食品研究与开发,2016,37(9):178−182. [LI Lei, LI Haichang, GAO Jing, et al. Determination of 8 β-agonists by QuEChERS EMR-Lipid-LC/MS/MS[J]. Food Research And Development,2016,37(9):178−182.

    LI Lei, LI Haichang, GAO Jing, et al. Determination of 8 β-agonists by QuEChERS EMR-Lipid-LC/MS/MS [J]. Food Research And Development, 2016, 37(9): 178-182.

    [25]

    YU Yang, YAO Changliang, GUO Dean. Insight into chemical basis of traditional Chinese medicine based on the state-of-the-art techniques of liquid chromatography-mass spectrometry[J]. Acta Pharmaceutica Sinica B,2021,11(6):1467−1492.

    [26] 丁宁, 董亚蕾, 张秋. UHPLC-MS/MS法同时测定祛痘类化妆品中63种激素类药物[J]. 日用化学工业,2022,45(8):11−39. [DING Ning, DONG Yalei, ZHANG Qiu. Simultaneous determination of 63 hormone drugs in anti-acne cosmetics by UHPLC-MS/MS[J]. China Surfactant Detergent & Cosmetics,2022,45(8):11−39.

    DING Ning, DONG Yalei, ZHANG Qiu. Simultaneous determination of 63 hormone drugs in anti-acne cosmetics by UHPLC-MS/MS [J]. China Surfactant Detergent & Cosmetics, 2022, 45(8): 11-39.

    [27] 中华人民共和国国家质量监督检验检疫局, 中国国家标准化管理委员会. GB/T 22286-2008 动物源性食品中多种β-受体激动剂残留量的测定 液相色谱串联质谱法[S]. 北京: 中国标准出版社, 2008

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. GB/T 22286-2008 Determination of multiple β-receptor agonist residues in animal derived food high performance liquid chromatography-tandem mass spectrometry [S]. Beijing: Standards Press of China, 2008.

    [28] 中华人民共和国国家质量监督检验检疫局, 中国国家标准化管理委员会. GB/T 21313-2007 动物源性食品中β-受体激动剂残留检测方法 液相色谱-质谱/质谱法[S]. 北京: 中国标准出版社, 2007

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, China National Standardization Administration Committee. GB/T 21313-2007 Determination of β-receptor agonist residues in animal derived food high performance liquid chromatography-tandem mass spectrometry [S]. Beijing: Standards Press of China, 2007.

    [29] 俞晓兰, 夏宝林, 张维益, 等. 超高效液相色谱-串联质谱法测定鸡肉中5种β-受体激动剂残留量[J]. 食品安全质量检测学报,2018,9(16):4320−4325. [YU Xxiaolian, XIAO Baolin, ZHANG Weiyi, et al. Determination of 5 kinds of β-agonist residues in chicken by ultra performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality,2018,9(16):4320−4325.

    YU Xxiaolian, XIAO Baolin, ZHANG Weiyi, et al. Determination of 5 kinds of β-agonist residues in chicken by ultra performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety and Quality, 2018, 9(16): 4320-4325.

    [30] 王守英, 司文帅, 杨海锋, 等. 高效液相色谱-串联质谱法测定动物尿液中23种β-受体激动剂[J]. 食品安全质量检测学报,2021,12(14):5620−5628. [WANG Shouying, SI Wenshuai, YANG Haifeng, et al. Determination of 23 kinds of β-receptor agonists in animal urine by high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality,2021,12(14):5620−5628.

    WANG Shouying, SI Wenshuai, YANG Haifeng, et al. Determination of 23 kinds of β-receptor agonists in animal urine by high performance liquid chromatography-tandem mass spectrometry [J]. Journal of Food Safety and Quality, 2021, 12(14): 5620-5628.

    [31] 谢瑜杰, 李铁梅, 牛相涛, 等. 一步式QuEChERS方法结合高效液相色谱-串联质谱法测定牛肉中25 种磺胺类药物残留[J]. 食品工业科技,2021,42(20):268−278. [XIE Yujie, LI Tiemei, NIU Xiangtao, et al. Determination of sulfonamides in beef by one step QuEChERS method combined with high performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry,2021,42(20):268−278.

    XIE Yujie, LI Tiemei, NIU Xiangtao, et al. Determination of sulfonamides in beef by one step QuEChERS method combined with high performance liquid chromatography-tandem mass spectrometry [J]. Science and Technology of Food Industry, 2021, 42(20): 268-278.

  • 期刊类型引用(10)

    1. 滕琳,闫智慧,郝鹏鹏,郑祉泓. 均匀设计法在枣树皮抑菌活性物提取工艺优化的应用. 天津化工. 2025(01): 103-108 . 百度学术
    2. 刘坤,付鑫垚,郭彤,张婉月,赵庆生,孔泽娟,程华,宋恒. 桑树桑黄总三萜的提取纯化及其生物活性研究. 广西植物. 2025(02): 217-227 . 百度学术
    3. 金鑫,马小龙,李萍,熊川,黄文丽,朱宇. 川赤芍总苷提取工艺优化、组成和抗氧化活性分析. 中国食品添加剂. 2024(01): 109-118 . 百度学术
    4. 吴艳钦,张锶莹,翁馨,黄千慧,魏奇. 响应面法优化蛹虫草猴头菇银耳复合蛋糕加工工艺. 宁德师范学院学报(自然科学版). 2024(02): 174-180 . 百度学术
    5. 李茂淋,王三,王毅,蒲晗旭,唐仁勇,郭秀兰,王国泽. 葛根素-猴头菇不溶性膳食纤维复合微胶囊的制备及理化性质的研究. 食品工业科技. 2024(14): 71-80 . 本站查看
    6. 刘泽华,周媛,刘航,胡伦,喻仕瑞,郑华艳. 贵州灵芝三萜提取及其配制酒抗氧化性研究. 农产品加工. 2024(15): 1-4+11 . 百度学术
    7. 陈林. 液态发酵茯苓菌有机相提取物抗氧化活性研究. 化工设计通讯. 2023(11): 217-219 . 百度学术
    8. 张鑫,朱青永,徐慧敏,吴梦园,陈小娥,陈启和,刘政捷. 黄绿卷毛菇中原伊鲁烷型倍半萜芳基酯提取工艺优化及活性研究. 浙江大学学报(农业与生命科学版). 2023(06): 813-824 . 百度学术
    9. 聂健,杨水莲,彭真福,莫美华. 均匀设计法优化灵芝三萜提取工艺. 食品安全导刊. 2022(06): 135-139 . 百度学术
    10. 么越,荣丹,唐梦瑜,姜明,于莹莹,张越涵,于明航. 羊肚菌药用价值及产品开发现状. 中国食用菌. 2022(07): 13-17+21 . 百度学术

    其他类型引用(3)

图(5)  /  表(3)
计量
  • 文章访问数:  143
  • HTML全文浏览量:  39
  • PDF下载量:  15
  • 被引次数: 13
出版历程
  • 收稿日期:  2022-09-18
  • 网络出版日期:  2023-06-05
  • 刊出日期:  2023-07-31

目录

/

返回文章
返回
x 关闭 永久关闭