Processing math: 100%
  • 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于HS-SPME-GC-MS和OAV鉴定4种武夷岩茶关键呈香物质

陈倩莲, 刘仕章, 占仕权, 潘冠均, 刘宝顺, 高峰, 郝志龙

陈倩莲,刘仕章,占仕权,等. 基于HS-SPME-GC-MS和OAV鉴定4种武夷岩茶关键呈香物质[J]. 食品工业科技,2023,44(14):296−303. doi: 10.13386/j.issn1002-0306.2022090092.
引用本文: 陈倩莲,刘仕章,占仕权,等. 基于HS-SPME-GC-MS和OAV鉴定4种武夷岩茶关键呈香物质[J]. 食品工业科技,2023,44(14):296−303. doi: 10.13386/j.issn1002-0306.2022090092.
CHEN Qianlian, LIU Shizhang, ZHAN Shiquan, et al. Identification of Four Kind Key Aroma Components of Wuyi Rock Tea Based on HS-SPME-GC-MS and OAV[J]. Science and Technology of Food Industry, 2023, 44(14): 296−303. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090092.
Citation: CHEN Qianlian, LIU Shizhang, ZHAN Shiquan, et al. Identification of Four Kind Key Aroma Components of Wuyi Rock Tea Based on HS-SPME-GC-MS and OAV[J]. Science and Technology of Food Industry, 2023, 44(14): 296−303. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090092.

基于HS-SPME-GC-MS和OAV鉴定4种武夷岩茶关键呈香物质

基金项目: 国家现代农业(茶叶)产业技术体系建设专项资金项目(CARS-19);福建省现代农业(茶叶)产业技术体系专项(闽财指[2021]637号);高香型武夷岩茶加工关键工艺及配套技术研究与应用(2022R1009001);福建农林大学茶产业链科技创新与服务体系建设项目(K1520005A06);福建张天福茶叶发展基金会科技创新基金(FJZTF03)。
详细信息
    作者简介:

    陈倩莲(1998−),女,硕士研究生,研究方向:茶叶加工工程与品质调控研究,E-mail:1048240119@qq.com

    通讯作者:

    郝志龙(1979−),男,副教授,研究方向:茶叶加工工程与装备,E-mail:haozhilong@126.com

  • 中图分类号: S571.1

Identification of Four Kind Key Aroma Components of Wuyi Rock Tea Based on HS-SPME-GC-MS and OAV

  • 摘要: 本研究采用顶空固相微萃取-气质联用(Headspace-Solid Phase Microextraction-Gas Chromatography-Mass Spectrometry,HS-SPME-GC-MS)技术鉴定4个武夷岩茶品种的挥发性物质,通过主成分分析(Principal Component Analysis,PCA)与香气活度值(Odor Activity Value,OAV)相结合筛选其关键呈香物质。结果表明,4个品种共检测出已知挥发性物质303种,包括酯类、吡咯类、醇类、碳氢化合物类、酮类、烷类、醛类等,其中酯类、醇类挥发性物含量相对较高;PCA分析筛选出55种VIP>1的挥发性物质,OAV分析筛选出29种挥发性物质,结合VIP>1且OAV>1共筛选出17种特征挥发性物质;将17种特征挥发性物质聚类分析,发现2-正戊基呋喃、吲哚、反式-紫罗兰酮、乙酸苯乙酯、顺式-3-己烯醇苯甲酸酯、6-甲基-5-庚烯-2-酮、香叶基丙酮、苯乙醛、己酸己酯、苯乙腈、异丁香酚是形成大红袍香气特征的重要成分;α-法呢烯、香叶醇是形成肉桂香气特征的重要成分;α-法呢烯、(反,反)3,5-辛二烯-2-酮是形成黄化肉桂香气特征的重要成分;芳樟醇、正戊酸是形成水仙茶香气特征的重要成分。本研究为解析不同品种武夷岩茶的特征香气及品质调控提供参考。
    Abstract: In this study, headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS) was used to identify the volatile substances of four Wuyi rock teas varieties, and the key aroma components were screened by principal component analysis (PCA) and aroma activity value (OAV). The results showed that 303 kinds of known volatile substances were detected in four Wuyi rock teas varieties by GC-MS, including esters, pyrrole, alcohols, hydrocarbons, ketones, alkanes, aldehydes, etc. The relative contents of esters and alcohols were higher than others. 55 volatile substances with VIP>1 were screened by PCA analysis, 29 volatile substances were screened by OAV analysis. Based on VIP>1 values and OAV>1 analysis, a total of 17 characteristic volatiles were identifified. Meantime, the clusting analysis results showed that 2-n-pentylfuran, indole, trans violet ketone, phenylethyl acetate, cis-3-hexenol benzoate, 6-methyl-5-hepten-2-one, geranyl acetone, phenylacetaldehyde, hexyl caproate, phenylacetonitrile and isoeugenol might be the characteristic volatiles that form the different aroma profifile of dahongpao. α-Farnesene and geraniol might be the characteristic components that form the different aroma of Rougui. α-Farnesene, (trans, trans) 3,5-octadiene-2-one might be the characteristics of Huanghua Rougui. Linalool and n-valeric acid might be the characteristics of Shuixian. These results would provide a reference for analyzing the characteristic aroma and quality control of Wuyi rock teas.
  • 武夷岩茶是中国传统名茶,属于乌龙茶类,产于福建省武夷山市。因其香气馥郁、滋味醇厚,具有独特的“岩韵”备受消费者青睐[1-2]。香气是评定武夷岩茶品质的重要指标之一,也是影响消费者购买的关键因素[3]。岳翠男等[4]采用HS-SPME-GC-MS(顶空固相微萃取-气质联用)鉴定浮梁红茶的挥发性成分,通过OAV(香气活度值)与PCA(主成分分析)相结合筛选其关键呈香物质;马敬宜[5]、杨霁虹等[6]基于HS-SPME/GC-MS和OAV分析了黄山地区不同茶树品种红茶香气的差异及春季信阳红茶关键呈香化合物;Wang等[7]结合SBSE/GC-MS(搅拌棒吸附萃取-气质联用)、GC-O(气相色谱嗅觉测定)、OAV和初步香气重组实验,阐明龙井茶中的关键香气成分;张传海[8]、王鹏杰等[9]采用HS-SPME-GC-MS技术分析三个不同产地武夷岩茶“水仙”品种鲜叶的挥发性组分及大红袍、铁罗汉、白鸡冠、奇兰等4个品种的武夷岩茶香气成分的差异;Yang等[10]结合HS-SPME/GC-MS、GC-O及OAV技术分析武夷岩茶碳焙过程中与美拉德反应有关的芳香活性物质香气活性成分的变化和差异;邱晓红等[11]采用质子传递反应-飞行时间质谱仪(Proton Transfer Reaction-Time of Flight-Mass Spectrometry,PTR-TOFMS)与GC-MS技术对不同品种武夷岩茶(水仙、肉桂)香气成分进行分析,结果表明不同品种的武夷岩茶品质差异明显。大红袍、肉桂、水仙是武夷岩茶的三大代表,但关于这3种乌龙茶特征性挥发成分的系统比较、鉴别研究尚不多见。因此,本研究以大红袍、肉桂、黄化肉桂及水仙4个品种制成的武夷岩茶为材料,采用顶空固相微萃取结合气-质联用(HS-SPME-GC-MS)技术、PCA(主成分分析)及香气活度值(OAV)对其香气物质进行鉴定和分析,旨在鉴别这4种武夷岩茶中的特征香气成分,探明其呈香物质基础,为武夷岩茶品种特征香气解析及品质调控提供参考。

    供试茶样为大红袍(DHP)、幔亭肉桂(MRG)、黄化肉桂(HRG)、幔亭水仙(MRG) 由福建武夷山市幔亭岩茶研究所提供;癸酸乙酯色谱纯(纯度≥99.8%) 上海阿拉丁生化科技股份有限公司。

    7890B气相色谱仪 美国安捷伦科技公司;Pegasus HT飞行时间质谱仪 美国LECO公司;PDMS/DVB萃取针 美国Supelco公司。

    参照GB/T 23776-2018《茶叶感官审评方法》中乌龙茶的感官审评法重点对香气进行感官审评,由3位专业评茶师对香气进行描述与评分(百分制)。

    将茶叶样品研磨成过60目筛的均匀粉末,称取2.00 g置于20 mL顶空瓶中,加入108.12 μg/kg癸酸乙酯(C12H24O2)溶液1 μL作为内标物,参考李炫烨[12]、林冬纯等[13]的方法采用HS-SPME测定挥发性成分,同时各样品等量混合制成质量控制样品(QC),数据采集时每隔5个样品加入1个QC样品,以检测仪器的稳定性。所有实验均重复3次。

    GC条件:萃取针PDMS/DVB,孵化温度80 ℃,孵化时间31 min,萃取时间60 min,解吸附时间5 min。色谱柱Restek Rxi-5Sil MS capillary column(30 m×0.25 mm×0.25 µm),进样口温度250 ℃,传输线温度275 ℃;载气氦气,流速1.5 mL/min;程序升温50 ℃保持5 min,3 ℃/min升至210 ℃保持3 min,15 ℃升至230 ℃保持5min;不分流进样。

    MS条件:离子源温度250 ℃,电子能70 eV;质谱检测器电压:1530 V;采集速率:10 spectra/s;质量范围:30~500 u;质谱数据采集时间200 s。

    GC-MS数据检测结果通过NIST11谱库进行检索比对实验得到的质谱图,解析图谱后找出匹配度大于90%的物质作为鉴定标准。每种挥发性物质浓度根据内标物峰面积按式(1)计算;挥发性物质OAV值按式(2)计算[14-15]

    (µg/kg)=×
    (1)
    OAV=
    (2)

    采用Microsoft Excel 2010对数据进行归类、作图;采用SPSS 25.0统计软件对数据进行方差分析;采用SIMCA-P 14.1软件进行主成分分析;采用TBtools软件作图。

    4种武夷岩茶的香气感官品质结果如表1所示,DHP样品花香馥郁,得分最高;MRG样品呈现花果香,香气浓郁持久,得分仅次于DHP样品;HRG花香强度低于MRG;MSX样品的品种香显,香气浓郁清长。

    表  1  4种武夷岩茶香气感官品质
    Table  1.  Sensory quality of aroma on four kinds of Wuyi rock teas
    样品评语评分(分)
    DHP花香馥郁、香气幽远96
    MRG花果香显、浓郁持久94
    HRG花香较显、清高悠长91
    MSX品种香显、浓郁清长92
    下载: 导出CSV 
    | 显示表格

    4种武夷岩茶通过GC-MS共检出635种挥发性化合物,其中已知挥发性物质303种,包括酯类51种,吡咯类15种,醇类25种,碳氢化合物类44种,酮类47种,烷类63种,醛类20种,酸类8种,杂氧化合物5种,其他化合物25种。DHP、MRG、HRG、MSX挥发性物质总量分别为6783.65、3278.88、2908.92、2674.8964 μg/kg。结合图1图2可知,酯类和醇类在4种武夷岩茶中含量较高,酯类在DHP、MRG、HRG样品中均占主导地位,比例最高,MSX样品中比例含量最高的是醇类。除酯类和醇类外, MRG、HRG、MSX中碳氢化合物类含量较高,而DHP样品吡咯类含量较高,碳氢化合物类含量较低。DHP样品中酯类、吡咯类、酮类、烷类、醛类、杂氧化合物类和其他化合物类的含量均显著(P<0.05)高于MRG、HRG、MSX。MRG和HRG挥发性物质含量占比较高的均是醇类、酯类和碳氢化合物类,且已知挥发性物质比例接近,与黄毅彪等[16]研究的肉桂品种相对含量较高的挥发性物质类别一致,已知挥发性物质比例接近可能是由于MRG与HRG都是肉桂品种。可见,酯类和吡咯类物质是DHP的主要挥发性物质,酯类和醇类物质是MRG和HRG的主要挥发性物质,醇类物质是MSX的主要挥发性物质。

    图  1  4种武夷岩茶挥发性物质分类
    注:同行不同字母表示差异显著(P<0.05)。
    Figure  1.  Effect of classification of volatile substances of four kinds of Wuyi rock teas
    图  2  4种武夷岩茶挥发性物质的比例
    Figure  2.  Proportion of volatile substances of four kinds of Wuyi rock teas

    正交偏最小二乘法判别分析(Orthogonal partial least squares-discriminant analysis,OPLS-DA)作为一种有监督的多元判别分析统计方法,可有效筛选关键标志性差异物质[17-18]。4种武夷岩茶挥发性物质OPLS-DA得分图如图3所示。对4种武夷岩茶样品逐一进行OPLS-DA内部两两判别分析,除了两个肉桂茶样,其他茶样在95%置信区间内均分布不同区域,表明它们之间存在显著差异。按VIP值从大到小排列,筛选出55种VIP>1的已知挥发性物质如表2所示,其中,52种挥发性物质在4个样品间存在显著性差异(P<0.05)。

    图  3  4种武夷岩茶挥发性物质OPLS-DA得分图
    Figure  3.  OPLS-DA scores of four kinds of Wuyi rock teas volatile substances
    表  2  4种武夷岩茶VIP>1的挥发性物质(μg/kg)
    Table  2.  Volatile substances with VIP>1 in four kinds of Wuyi rock teas (μg/kg)
    编号挥发性物质名称CASVIP值DHPMRGHRGMSX
    1α-法呢烯502-61-44.89155.21±23.16c380.73±11.58a311.70±6.22b121.18±1.72d
    2己酸叶醇酯31501-11-84.84722.45±30.52a419.12±9.58b316.06±8.68c111.78±1.34d
    3吲哚120-72-94.761092.88±36.30a107.15±0.59b
    4苯乙醇60-12-83.89804.53±26.98a65.74±0.25b88.47±1.88b31.49±0.72c
    5二氢芳樟醇29957-43-53.6515.82±0.96d133.12±1.17a64.54±2.25c72.82±0.23b
    6茉莉内酯25524-95-23.2115.15±13.28c78.11±56.35ab24.98±0.38bc89.36±2.77a
    7正戊酸109-52-42.9587.71±3.33a
    8苯乙腈140-29-42.57260.79±11.90a50.29±0.28c88.55±2.41b25.13±0.46d
    92,3-二氢-3,5二羟基-6-甲基-4(H)-吡喃-4-酮28564-83-22.5431.12±0.26a25.19±3.83b17.51±1.16c
    102,2-二甲基丙酸-2-苯基乙酯67662-96-82.5326.44±0.26b50.65±1.40a8.13±0.05c
    112,2,6-三甲基-6-乙烯基四氢吡喃-3-醇14049-11-72.4011.86±0.62d85.33±0.43a64.58±1.58b20.67±0.24c
    12反式-橙花叔醇40716-66-32.3332.05±0.84b229.28±207.20ab256.84±231.89ab338.29±5.15a
    132,5-二甲基-壬烷17302-27-12.2815.70±0.88c16.95±0.47b20.90±0.62a
    14Β-硝基苯乙烷6125-24-22.25244.66±10.02a13.42±13.42b
    15顺-α,α-5-三甲基-5-乙烯基四氢化呋喃-2-甲醇5989-33-32.1812.74±0.53d73.56±0.85a62.05±2.13b17.91±0.12c
    16香叶醇106-24-12.1730.50±1.30c51.86±1.36a32.78±0.55b25.80±0.09d
    17己酸己酯6378-65-02.16250.12±10.30a87.01±1.24b68.27±1.77c40.15±0.26d
    185-甲基-1,2,5,6-四氢吡啶-2-酮uk1.9611.76±4.40a15.47±0.06a
    19金合欢烯18794-84-81.9429.58±1.58c43.41±0.82b47.52±0.94a11.98±0.06d
    20二氢猕猴桃内酯17092-92-11.8789.01±1.32a60.43±1.15c45.59±0.46d73.98±7.24b
    21N-乙基琥珀酰亚胺2314-78-51.8348.09±1.72a34.21±0.36c20.38±0.11d40.41±0.79b
    226-氮杂双环[3.2.1]辛烷279-85-61.792.98±2.98b11.50±0.22a12.51±0.17a
    232-甲基十七烷1560-89-01.77160.39±4.64a3.39±0.09b5.64±0.11b4.60±0.05b
    24芳樟醇78-70-61.7728.14±1.60d43.29±0.71b34.29±1.03c64.82±0.58a
    25吲嗪274-40-81.7531.82±0.99a32.11±0.96a
    26己酸反-2-己烯酯53398-86-01.74149.59±6.02a62.43±0.95b54.58±1.18c24.05±0.14d
    27顺式-3-己烯醇苯甲酸酯25152-85-61.68151.81±1.12a18.41±0.52b13.67±0.13c9.60±0.38d
    28(3E)-4,8-二甲基-1,3,7-壬三烯19945-61-01.676.50±6.50c32.04±0.60a21.62±0.52b3.42±0.07c
    291-十六烯629-73-21.5821.94±1.36b23.00±18.60b34.19±1.14b52.95±0.18a
    30顺-3-己烯酸顺-3-己烯酯61444-38-01.5228.06±1.19a28.37±0.78a23.33±0.44b2.82±0.12c
    31丁酸苯乙酯103-52-61.47112.45±3.88a8.34±0.14c13.81±0.34b4.05±0.11d
    322-乙酰基吡咯1072-83-91.4419.46±0.17b30.45±0.69a16.65±0.36c
    33(顺,反)-α-法呢烯28973-98-01.4118.15±1.01a10.88±0.24b
    34新植二烯504-96-11.417.61±0.18c15.22±0.56a7.68±0.02c11.16±0.36b
    352,6,8-三甲基癸烷62108-26-31.3910.39±0.56b6.53±0.16d12.88±0.41a7.96±0.30c
    36(反,反)3,5-辛二烯-2-酮30086-02-31.398.33±0.47b7.88±6.17b15.65±0.39a6.97±0.11b
    372-正戊基呋喃3777-69-31.3248.23±4.07a18.25±0.98c19.80±0.45c39.45±0.36b
    38顺-3-己烯基丁酯16491-36-41.3012.52±0.77b14.62±0.25a7.60±0.01c4.94±0.09d
    39顺式-3-己烯醇2-甲基丁酸酯53398-85-91.2840.21±2.32a25.57±0.41b15.07±0.51d18.34±0.03c
    40苯甲酸己酯6789-88-41.2788.32±2.25a9.83±0.41b7.79±0.10b9.22±0.36b
    41香叶基丙酮3796-70-11.1991.59±2.17a31.33±0.68d39.78±0.72b33.88±0.81c
    42顺式茉莉酮488-10-81.1612.65±0.69a8.30±0.16b13.33±0.30a7.01±0.25c
    43三丁酸甘油酯60-01-051.1422.35±1.02c27.67±3.75b25.24±3.12bc39.68±0.36a
    44丙位己内酯695-06-71.1468.47±2.58a17.70±0.32d26.55±0.65b21.49±0.06c
    456-甲基-5-庚烯-2-酮110-93-01.13105.99±6.71a41.76±1.18b44.38±1.49b43.78±0.85b
    462-氯-3-甲基丁烷631-65-21.095.83±0.32a5.31±0.11b
    47乙酸苯乙酯103-45-71.0953.35±2.55a6.29±0.20b1.04±1.04c
    484-己烯酸35194-36-61.062.25±2.25b6.57±0.45a
    49异丁香酚97-54-11.0424.47±0.30a2.19±0.05c9.13±0.06b
    50棕榈酸甲酯112-39-01.0465.29±0.31a11.86±0.13c12.52±0.09c15.75±2.16b
    512-庚酮110-43-01.0329.58±2.63a12.24±0.36c12.07±0.29c24.41±0.70b
    521-甲基-2-哌啶甲醇20845-34-51.034.07±0.05a4.26±0.13a
    53异戊酸己酯10032-15-21.0323.54±1.32a12.91±0.11c7.96±0.25d16.43±0.00b
    54反式-紫罗兰酮79-77-61.0154.27±1.50a19.55±0.48c15.54±0.33d25.17±0.59b
    55苯乙醛122-78-11.0140.67±2.74a4.75±0.24c11.82±0.36b5.33±5.00c
    注:同行不同字母表示差异显著(P<0.05),-表示未检出。
    下载: 导出CSV 
    | 显示表格

    表2可知, 4种武夷岩茶的挥发性成分含量和比例差异较大,样品DHP、MRG、HRG、MSX中VIP>1的挥发性物质含量在100 μg/kg以上的分别有12、4、3、4种。其中,MRG和HRG样品均以己酸叶醇酯(果香、清香)的含量最高(316.06~419.12 μg/kg);DHP样品含量最高的是吲哚(烘烤香、樟脑香,1092.88 μg/kg),但在MRG和HRG样品未检出;MSX样品含量最高的是反式-橙花叔醇(清香、果香,338.29 μg/kg)。己酸叶醇酯(果香、清香)、α-法呢烯(花香)在4个样品中均有较高含量;具有果香的反式-橙花叔醇在MRG、HRG、MSX中含量较高。这与王梦琪等[19]研究认为α-法呢烯、吲哚等是普遍存在于乌龙茶中的关键呈香物质略有差异,说明不同品种间的挥发性物质差异较大。

    OAV是挥发性化合物质量浓度与其气味阈值的比值,用于评估挥发性化合物对茶叶样品香气的贡献。一般认为,OAV1的挥发性化合物对整体香气的贡献较大,OAV>10的挥发性化合物则被确定为重要香气成分[20-21]。对已知挥发性物质OAV值进行计算,筛选出29种OAV>1的挥发性物质(表3),其中DHP、MRG、HRG、MSX样品分别筛选27、16、22、21种。进一步筛选OAV>10的挥发性化合物,反式-紫罗兰酮、反,顺-2,6-壬二烯醛、α-紫罗兰酮、(反,反)3,5-辛二烯-2-酮在四个样品中OAV值均大于10;反式-橙花叔醇在样品MRG、HRG、MSX中的OVA值均大于10;己酸戊酯在样品DHP和MSX中的OVA值均大于10;乙酸苯乙酯在样品DHP和HRG中的OVA值均大于10,除此之外,DHP样品中OAV>10的挥发性物质有正辛醛、雪松醇、吲哚、1-辛烯-3-醇;MSX样品中正戊酸、芳樟醇的OAV值在10以上,可见这些挥发性物质为各样品特征香气的重要成分。这与前人[11,22-24]的研究认为反-橙花叔醇、紫罗酮类物质、芳樟醇等是武夷水仙的主要香气成分,反-橙花叔醇等是武夷肉桂的主要香气成分的结果相似。

    表  3  4种武夷岩茶OAV>1的挥发性物质
    Table  3.  Volatile substances with OAV>1 in four kinds of Wuyi rock teas
    编号挥发性物质名称阈值(μg/kg) [25-33]OAV值香型
    DHPMRGHRGMSX
    12-甲基吡嗪1.87.501.912.791.89坚果等烘烤食品味
    2α-紫罗兰酮0.444.8321.9211.5828.37木香、紫罗兰香气
    3β-环柠檬醛32.341.401.131.92青草香
    41-辛烯-3-醇110.042.593.046.32蘑菇香、柑橘味
    52,5-二甲基吡嗪202.831.061.221.31
    6正庚醇31.13<1<1<1草香
    7正己醛74.39<11.231.67木香、清香、水果香
    8月桂烯1.2<14.594.142.41花香、果香
    9正辛醛0.118.02<11.705.07油脂、柑橘味
    10雪松醇0.515.06<11.38<1杉木花香
    11顺式-3-己烯醇苯甲酸酯1061.43<1<1<1花香
    12反,顺-2,6-壬二烯醛0.02130.2260.5277.8666.89
    13己酸戊酯0.0513.127.625.3410.18
    14α-法呢烯871.784.383.581.39花香
    15吲哚10010.93<1<11.07烧焦、樟脑
    16正戊酸0.36<1<1<1243.65发酵味的酸气
    17苯乙腈604.35<11.48<1辛辣
    18反式-橙花叔醇103.2022.9325.6833.83清香、果香
    19香叶醇7.54.076.914.373.44玫瑰花香、甜果香
    20己酸己酯406.252.181.711.00青刀豆香气及果香
    21芳樟醇64.697.215.7210.80花香、果香
    22(反,反)3,5-辛二烯-2-酮0.1555.5252.51104.3146.48
    232-正戊基呋喃68.043.043.306.57果香
    24香叶基丙酮601.53<1<1<1花香香气,略带甜蜜玫瑰香韵
    256-甲基-5-庚烯-2-酮502.12<1<1<1甜香、果香
    26乙酸苯乙酯0.25213.42<125.174.17花香、蜜甜香
    27异丁香酚102.45<1<1<1甜香
    28反式-紫罗兰酮0.0077753.312792.232219.543595.14花香
    29苯乙醛6.36.46<11.88<1花香、清香
    下载: 导出CSV 
    | 显示表格

    结合表2表3,进一步筛选出VIP>1且OAV>1的挥发性物质共17种,被认为是4个样品的特征挥发性物质,包括顺式-3-己烯醇苯甲酸酯、α-法呢烯、吲哚、正戊酸、苯乙腈、反式-橙花叔醇、香叶醇、己酸己酯、芳樟醇、(反,反)3,5-辛二烯-2-酮、2-正戊基呋喃、香叶基丙酮、6-甲基-5-庚烯-2-酮、乙酸苯乙酯、异丁香酚、反式-紫罗兰酮、苯乙醛。

    基于热图可视化层次聚类分析17种特征挥发性物质(图4),结果表明,共有11种挥发性物质被确定为DHP样品中的特征挥发性成分,以花香成分占主导,甜香、果香为辅,包括2-正戊基呋喃(果香)、吲哚(烘烤香、樟脑)、反式-紫罗兰酮(花香)、乙酸苯乙酯(花香、蜜甜香)、顺式-3-己烯醇苯甲酸酯(花香)、6-甲基-5-庚烯-2-酮(甜香、果香)、香叶基丙酮(花香香气,略带甜蜜玫瑰香韵味)、苯乙醛(花香、清香)、己酸己酯(青刀豆香气及果香)、苯乙腈(辛辣)、异丁香酚(甜香);α-法呢烯(花香)、香叶醇(玫瑰花香、甜果香)被确定为MRG样品的特征性物质,以花香、果香为主;α-法呢烯(花香)、(反,反)3,5-辛二烯-2-酮(甜香)被确定为HRG样品的特征性物质,以花香、甜香为主;芳樟醇(花香、果香)、正戊酸(发酵味的酸气)被确定为MSX样品的特征性物质,以花香、果香为主。以上结果与审评结果相一致,香气特征可能与各样品的特征性挥发成分密切相关,有研究表明不同茶树品种的香型特征不同[34]。这可能是由于不同品种的武夷岩茶香气物质含量和比例存在差异,是不同品种武夷岩茶特征香气的物质基础。

    图  4  4种武夷岩茶特征挥发性物质热图
    Figure  4.  Heat map of characteristic volatile substances of four kinds of Wuyi rock teas

    GC-MS结合PCA、OAV分析4种武夷岩茶的挥发性物质,共检测出已知挥发性物质303种,包括酯类、吡咯类、醇类、碳氢化合物类、酮类、烷类、醛类等,其中酯类、醇类挥发性物质含量较高。主成分分析(PCA)筛选出55种VIP>1的挥发性物质,结合OAV分析筛选出17种特征挥发性物质(OAV>1),其中2-正戊基呋喃、吲哚、反式-紫罗兰酮、乙酸苯乙酯、顺式-3-己烯醇苯甲酸酯、6-甲基-5-庚烯-2-酮、香叶基丙酮、苯乙醛、己酸己酯、苯乙腈、异丁香酚是DHP样品香气特征的重要成分;α-法呢烯、香叶醇是形成MRG样品香气特征的重要成分;α-法呢烯、(反,反)3,5-辛二烯-2-酮是形成HRG样品香气特征的重要成分;芳樟醇、正戊酸是形成MSX样品香气特征的重要成分。研究结果对不同品种武夷岩茶的特征性风味解析及品质调控具有一定的理论和实践指导意义。今后可在此基础上联合广泛靶向代谢组学技术对挥发性代谢物的合成深入研究,以揭示不同品种香气品质的形成机制。

  • 图  1   4种武夷岩茶挥发性物质分类

    注:同行不同字母表示差异显著(P<0.05)。

    Figure  1.   Effect of classification of volatile substances of four kinds of Wuyi rock teas

    图  2   4种武夷岩茶挥发性物质的比例

    Figure  2.   Proportion of volatile substances of four kinds of Wuyi rock teas

    图  3   4种武夷岩茶挥发性物质OPLS-DA得分图

    Figure  3.   OPLS-DA scores of four kinds of Wuyi rock teas volatile substances

    图  4   4种武夷岩茶特征挥发性物质热图

    Figure  4.   Heat map of characteristic volatile substances of four kinds of Wuyi rock teas

    表  1   4种武夷岩茶香气感官品质

    Table  1   Sensory quality of aroma on four kinds of Wuyi rock teas

    样品评语评分(分)
    DHP花香馥郁、香气幽远96
    MRG花果香显、浓郁持久94
    HRG花香较显、清高悠长91
    MSX品种香显、浓郁清长92
    下载: 导出CSV

    表  2   4种武夷岩茶VIP>1的挥发性物质(μg/kg)

    Table  2   Volatile substances with VIP>1 in four kinds of Wuyi rock teas (μg/kg)

    编号挥发性物质名称CASVIP值DHPMRGHRGMSX
    1α-法呢烯502-61-44.89155.21±23.16c380.73±11.58a311.70±6.22b121.18±1.72d
    2己酸叶醇酯31501-11-84.84722.45±30.52a419.12±9.58b316.06±8.68c111.78±1.34d
    3吲哚120-72-94.761092.88±36.30a107.15±0.59b
    4苯乙醇60-12-83.89804.53±26.98a65.74±0.25b88.47±1.88b31.49±0.72c
    5二氢芳樟醇29957-43-53.6515.82±0.96d133.12±1.17a64.54±2.25c72.82±0.23b
    6茉莉内酯25524-95-23.2115.15±13.28c78.11±56.35ab24.98±0.38bc89.36±2.77a
    7正戊酸109-52-42.9587.71±3.33a
    8苯乙腈140-29-42.57260.79±11.90a50.29±0.28c88.55±2.41b25.13±0.46d
    92,3-二氢-3,5二羟基-6-甲基-4(H)-吡喃-4-酮28564-83-22.5431.12±0.26a25.19±3.83b17.51±1.16c
    102,2-二甲基丙酸-2-苯基乙酯67662-96-82.5326.44±0.26b50.65±1.40a8.13±0.05c
    112,2,6-三甲基-6-乙烯基四氢吡喃-3-醇14049-11-72.4011.86±0.62d85.33±0.43a64.58±1.58b20.67±0.24c
    12反式-橙花叔醇40716-66-32.3332.05±0.84b229.28±207.20ab256.84±231.89ab338.29±5.15a
    132,5-二甲基-壬烷17302-27-12.2815.70±0.88c16.95±0.47b20.90±0.62a
    14Β-硝基苯乙烷6125-24-22.25244.66±10.02a13.42±13.42b
    15顺-α,α-5-三甲基-5-乙烯基四氢化呋喃-2-甲醇5989-33-32.1812.74±0.53d73.56±0.85a62.05±2.13b17.91±0.12c
    16香叶醇106-24-12.1730.50±1.30c51.86±1.36a32.78±0.55b25.80±0.09d
    17己酸己酯6378-65-02.16250.12±10.30a87.01±1.24b68.27±1.77c40.15±0.26d
    185-甲基-1,2,5,6-四氢吡啶-2-酮uk1.9611.76±4.40a15.47±0.06a
    19金合欢烯18794-84-81.9429.58±1.58c43.41±0.82b47.52±0.94a11.98±0.06d
    20二氢猕猴桃内酯17092-92-11.8789.01±1.32a60.43±1.15c45.59±0.46d73.98±7.24b
    21N-乙基琥珀酰亚胺2314-78-51.8348.09±1.72a34.21±0.36c20.38±0.11d40.41±0.79b
    226-氮杂双环[3.2.1]辛烷279-85-61.792.98±2.98b11.50±0.22a12.51±0.17a
    232-甲基十七烷1560-89-01.77160.39±4.64a3.39±0.09b5.64±0.11b4.60±0.05b
    24芳樟醇78-70-61.7728.14±1.60d43.29±0.71b34.29±1.03c64.82±0.58a
    25吲嗪274-40-81.7531.82±0.99a32.11±0.96a
    26己酸反-2-己烯酯53398-86-01.74149.59±6.02a62.43±0.95b54.58±1.18c24.05±0.14d
    27顺式-3-己烯醇苯甲酸酯25152-85-61.68151.81±1.12a18.41±0.52b13.67±0.13c9.60±0.38d
    28(3E)-4,8-二甲基-1,3,7-壬三烯19945-61-01.676.50±6.50c32.04±0.60a21.62±0.52b3.42±0.07c
    291-十六烯629-73-21.5821.94±1.36b23.00±18.60b34.19±1.14b52.95±0.18a
    30顺-3-己烯酸顺-3-己烯酯61444-38-01.5228.06±1.19a28.37±0.78a23.33±0.44b2.82±0.12c
    31丁酸苯乙酯103-52-61.47112.45±3.88a8.34±0.14c13.81±0.34b4.05±0.11d
    322-乙酰基吡咯1072-83-91.4419.46±0.17b30.45±0.69a16.65±0.36c
    33(顺,反)-α-法呢烯28973-98-01.4118.15±1.01a10.88±0.24b
    34新植二烯504-96-11.417.61±0.18c15.22±0.56a7.68±0.02c11.16±0.36b
    352,6,8-三甲基癸烷62108-26-31.3910.39±0.56b6.53±0.16d12.88±0.41a7.96±0.30c
    36(反,反)3,5-辛二烯-2-酮30086-02-31.398.33±0.47b7.88±6.17b15.65±0.39a6.97±0.11b
    372-正戊基呋喃3777-69-31.3248.23±4.07a18.25±0.98c19.80±0.45c39.45±0.36b
    38顺-3-己烯基丁酯16491-36-41.3012.52±0.77b14.62±0.25a7.60±0.01c4.94±0.09d
    39顺式-3-己烯醇2-甲基丁酸酯53398-85-91.2840.21±2.32a25.57±0.41b15.07±0.51d18.34±0.03c
    40苯甲酸己酯6789-88-41.2788.32±2.25a9.83±0.41b7.79±0.10b9.22±0.36b
    41香叶基丙酮3796-70-11.1991.59±2.17a31.33±0.68d39.78±0.72b33.88±0.81c
    42顺式茉莉酮488-10-81.1612.65±0.69a8.30±0.16b13.33±0.30a7.01±0.25c
    43三丁酸甘油酯60-01-051.1422.35±1.02c27.67±3.75b25.24±3.12bc39.68±0.36a
    44丙位己内酯695-06-71.1468.47±2.58a17.70±0.32d26.55±0.65b21.49±0.06c
    456-甲基-5-庚烯-2-酮110-93-01.13105.99±6.71a41.76±1.18b44.38±1.49b43.78±0.85b
    462-氯-3-甲基丁烷631-65-21.095.83±0.32a5.31±0.11b
    47乙酸苯乙酯103-45-71.0953.35±2.55a6.29±0.20b1.04±1.04c
    484-己烯酸35194-36-61.062.25±2.25b6.57±0.45a
    49异丁香酚97-54-11.0424.47±0.30a2.19±0.05c9.13±0.06b
    50棕榈酸甲酯112-39-01.0465.29±0.31a11.86±0.13c12.52±0.09c15.75±2.16b
    512-庚酮110-43-01.0329.58±2.63a12.24±0.36c12.07±0.29c24.41±0.70b
    521-甲基-2-哌啶甲醇20845-34-51.034.07±0.05a4.26±0.13a
    53异戊酸己酯10032-15-21.0323.54±1.32a12.91±0.11c7.96±0.25d16.43±0.00b
    54反式-紫罗兰酮79-77-61.0154.27±1.50a19.55±0.48c15.54±0.33d25.17±0.59b
    55苯乙醛122-78-11.0140.67±2.74a4.75±0.24c11.82±0.36b5.33±5.00c
    注:同行不同字母表示差异显著(P<0.05),-表示未检出。
    下载: 导出CSV

    表  3   4种武夷岩茶OAV>1的挥发性物质

    Table  3   Volatile substances with OAV>1 in four kinds of Wuyi rock teas

    编号挥发性物质名称阈值(μg/kg) [25-33]OAV值香型
    DHPMRGHRGMSX
    12-甲基吡嗪1.87.501.912.791.89坚果等烘烤食品味
    2α-紫罗兰酮0.444.8321.9211.5828.37木香、紫罗兰香气
    3β-环柠檬醛32.341.401.131.92青草香
    41-辛烯-3-醇110.042.593.046.32蘑菇香、柑橘味
    52,5-二甲基吡嗪202.831.061.221.31
    6正庚醇31.13<1<1<1草香
    7正己醛74.39<11.231.67木香、清香、水果香
    8月桂烯1.2<14.594.142.41花香、果香
    9正辛醛0.118.02<11.705.07油脂、柑橘味
    10雪松醇0.515.06<11.38<1杉木花香
    11顺式-3-己烯醇苯甲酸酯1061.43<1<1<1花香
    12反,顺-2,6-壬二烯醛0.02130.2260.5277.8666.89
    13己酸戊酯0.0513.127.625.3410.18
    14α-法呢烯871.784.383.581.39花香
    15吲哚10010.93<1<11.07烧焦、樟脑
    16正戊酸0.36<1<1<1243.65发酵味的酸气
    17苯乙腈604.35<11.48<1辛辣
    18反式-橙花叔醇103.2022.9325.6833.83清香、果香
    19香叶醇7.54.076.914.373.44玫瑰花香、甜果香
    20己酸己酯406.252.181.711.00青刀豆香气及果香
    21芳樟醇64.697.215.7210.80花香、果香
    22(反,反)3,5-辛二烯-2-酮0.1555.5252.51104.3146.48
    232-正戊基呋喃68.043.043.306.57果香
    24香叶基丙酮601.53<1<1<1花香香气,略带甜蜜玫瑰香韵
    256-甲基-5-庚烯-2-酮502.12<1<1<1甜香、果香
    26乙酸苯乙酯0.25213.42<125.174.17花香、蜜甜香
    27异丁香酚102.45<1<1<1甜香
    28反式-紫罗兰酮0.0077753.312792.232219.543595.14花香
    29苯乙醛6.36.46<11.88<1花香、清香
    下载: 导出CSV
  • [1]

    CHEN S, LIU H, ZHAO X, et al. Non-targeted metabolomics analysis reveals dynamic changes of volatile and non-volatile metabolites during oolong tea manufacture[J]. Food Res Int,2020,128:108778. doi: 10.1016/j.foodres.2019.108778

    [2] 陈倩莲, 王芳, 陈百文, 等. 环境湿度对大红袍做青品质的影响[J]. 食品安全质量检测学报,2022,13(2):593−598. [CHEN Qianlian, WANG Fang, CHEN Baiwen, et al. Effect of environmental humidity on the quality of Dahongpao green[J]. Journal of Food Safety and Quality Inspection,2022,13(2):593−598. doi: 10.3969/j.issn.2095-0381.2022.2.spaqzljcjs202202034

    CHEN Qianlian, WANG Fang, CHEN Baiwen, et al. Effect of environmental humidity on the quality of Dahongpao green [J]. Journal of food safety and quality inspection, 2022, 13 (2): 593-598. doi: 10.3969/j.issn.2095-0381.2022.2.spaqzljcjs202202034

    [3] 毕婉君, 郑玉成, 柳镇章, 等. 乌龙茶ATD-GC-MS检测方法优化及不同等级肉桂乌龙茶香气成分分析[J]. 食品科学,2022,43(12):243−251. [BI W J, ZHENG Y C, LIU Z Z, et al. Optimization of ATD-GC-MS detection method of Oolong tea and analysis of aroma components of different grades of cinnamon oolong tea[J]. Food Science,2022,43(12):243−251. doi: 10.7506/spkx1002-6630-20210729-344

    BI W J, ZHENG Y C, LIU Z Z, et al. Optimization of ATD-GC-MS detection method of Oolong tea and analysis of aroma components of different grades of cinnamon oolong tea [J]. Food Science, 2022, 43 (12): 243-251. doi: 10.7506/spkx1002-6630-20210729-344

    [4] 岳翠男, 秦丹丹, 李文金, 等. 基于HS-SPME-GC-MS和OAV鉴定浮梁红茶关键呈香物质[J]. 食品工业科技,2022,43(9):251−258. [YUE C N, QIN D D, LI W J, et al. Identification of key aroma compounds in Fuliang black tea based on HS-SPME-GC-MS and OAV[J]. Science and Technology of Food Industry,2022,43(9):251−258.

    YUE C N, QIN D D, LI W J, et al. Identification of key aroma compounds in Fuliang black tea based on HS-SPME-GC-MS and OAV [J]. Food Industry Science and Technology, 2022, 43(9): 251-258.

    [5] 马敬宜, 姚衡斌, 赵仁亮. 基于HS-SPME/GC-MS和OAV对春季信阳红茶关键呈香化合物分析[J]. 食品研究与开发,2022,43(14):189−198. [MA J Y, YAO H B, ZHAO R L. Analysis of key aroma compounds in spring Xinyang black tea based on HS-SPME/GC-MS and OAV[J]. Food Research and Development,2022,43(14):189−198. doi: 10.12161/j.issn.1005-6521.2022.14.024

    Ma J Y, Yao H B, Zhao R L. Analysis of key aroma compounds in spring Xinyang black tea based on HS-SPME / GC-MS and OAV [J]. Food Research and Development, 2022, 43 (14): 189-198. doi: 10.12161/j.issn.1005-6521.2022.14.024

    [6] 杨霁虹, 周汉琛, 刘亚芹, 等. 基于HS-SPME-GC-MS和OAV分析黄山地区不同茶树品种红茶香气的差异[J]. 食品科学,2022,43(16):235−241. [YANG J H, ZHOU H C, LIU Y Q, et al. Analysis of aroma difference of black tea of different tea varieties in Huangshan area based on HS-SPME-GC-MS and OAV[J]. Food Science,2022,43(16):235−241. doi: 10.7506/spkx1002-6630-20210726-301

    YANG J H, ZHOU H C, LIU Y Q, et al. Analysis of aroma difference of black tea of different tea varieties in Huangshan area based on HS-SPME-GC-MS and OAV [J]. Food Science, 2022, 43 (16): 235-241. doi: 10.7506/spkx1002-6630-20210726-301

    [7]

    WANG M Q, MA W J, SHI J, et al. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination[J]. Food Research International,2020,130:108908. doi: 10.1016/j.foodres.2019.108908

    [8] 张传海, 金晓怀, 林志銮, 等. 武夷岩茶水仙茶青挥发性组分的HS-GC/MS分析[J]. 武夷学院学报,2021,40(12):1−6. [ZHANG C H, JIN X B, LIN Z L, et al. HS-GC/MS analysis of volatile components of Wuyi rock tea narcissus tea[J]. Journal of Wuyi University,2021,40(12):1−6. doi: 10.3969/j.issn.1674-2109.2021.12.npszxb202112002

    ZHANG C H, JIN X B, LIN Z L, et al. HS-GC/MS analysis of volatile components of Wuyi rock tea narcissus tea [J]. Journal of Wuyi University, 2021, 40 (12): 1-6 doi: 10.3969/j.issn.1674-2109.2021.12.npszxb202112002

    [9] 王鹏杰, 张丹丹, 邱晓红, 等. 基于GC-MS和电子鼻技术的武夷岩茶香气分析[J]. 福建茶叶,2017,39(1):16−18. [WANG P J, ZHANG D D, QIU X H, et al. Aroma analysis of Wuyi rock tea based on GC-MS and electronic nose technology[J]. Fujian Tea,2017,39(1):16−18. doi: 10.3969/j.issn.1005-2291.2017.01.011

    WANG P J, ZHANG D D, QIU X H, et al. Aroma analysis of Wuyi rock tea based on GC-MS and electronic nose technology [J]. Fujian Tea, 2017, 39 (1): 16-18 doi: 10.3969/j.issn.1005-2291.2017.01.011

    [10]

    YANG P, WANG H, CAO Q, et al. Aroma-active compounds related to Maillard reaction during roasting in Wuyi rock tea[J]. Journal of Food Composition and Analysis, 2022: 104954.

    [11] 邱晓红, 张丹丹, 韦航, 等. 基于PTR-TOF-MS与GC-MS技术的武夷水仙和武夷肉桂香气特征分析[J]. 天然产物研究与开发,2018,30(7):1195−1201. [QIU X H, ZHANG D D, WEI H, et al. Analysis of aroma characteristics of Wuyi Narcissus and Wuyi cinnamon based on ptr-tof-ms and GC-MS[J]. Natural Product Research and Development,2018,30(7):1195−1201. doi: 10.16333/j.1001-6880.2018.7.017

    QIU X H, ZHANG D D, WEI H, et al. Analysis of aroma characteristics of Wuyi Narcissus and Wuyi cinnamon based on ptr-tof-ms and GC-MS [J]. Natural Product Research and Development, 2018, 30 (7): 1195-1201. doi: 10.16333/j.1001-6880.2018.7.017

    [12] 李炫烨, 陈思, 刘毓婕, 等. 基于顶空固相微萃取-气相色谱-飞行时间质谱联用技术分析固样方法对茶叶挥发性成分的影响[J]. 食品与发酵工业,2022,48(16):257−263, 270−271. [LI X Y, CHEN S, LIU Y J, et al. Analysis of the effect of solid sample method on volatile components of tea based on headspace solid phase microextraction gas chromatography time of flight mass spectrometry[J]. Food and Fermentation Industry,2022,48(16):257−263, 270−271.

    LI X Y, CHEN S, LIU Y J, et al Analysis of the effect of solid sample method on volatile components of tea based on headspace solid phase microextraction gas chromatography time of flight mass spectrometry [J]. Food and Fermentation Industry, 2022, 48(16): 257-263, 270-271.

    [13] 林冬纯, 魏子淳, 谭艳娉, 等. 不同干燥温度对萎凋叶压制白茶饼品质的影响[J]. 食品科学,2022,43(15):109−116. [LIN D C, WEI Z C, TAN Y P, et al. Effect of different drying temperatures on the quality of white tea cake pressed from withered leaves[J]. Food Science,2022,43(15):109−116. doi: 10.7506/spkx1002-6630-20210726-309

    LIN D C, WEI Z C, TAN Y P, et al. Effect of different drying temperatures on the quality of white tea cake pressed from withered leaves [J]. Food science, 2022, 43 (15): 109-116. doi: 10.7506/spkx1002-6630-20210726-309

    [14] 郭建军, 周艺, 王小英, 等. 贵州不同产区代表绿茶的品质特征及香气组分分析[J]. 食品工业科技,2021,42(5):78−84,92. [GUO J J, ZHOU Y, WANG X Y, et al. Analysis of quality characteristics and aroma components of representative green tea from different production areas in Guizhou[J]. Science and Technology of Food Industry,2021,42(5):78−84,92. doi: 10.13386/j.issn1002-0306.2020050022

    GUO J J, ZHOU Y, WANG X Y, et al. Analysis of quality characteristics and aroma components of representative green tea from different production areas in Guizhou [J]. Food Industry Science and Technology, 2021, 42 (5): 78-84, 92. doi: 10.13386/j.issn1002-0306.2020050022

    [15] 王彩楠, 何理琴, 陈福城, 等. 武夷岩茶挥发性香气组成及沸水浸提下的释放规律[J]. 中国食品学报,2018,18(12):309−318. [WANG C N, HE L Q, CHEN F C, et al. Volatile aroma composition of Wuyi rock tea and its release rule under boiling water extraction[J]. Chinese Journal of Food,2018,18(12):309−318. doi: 10.16429/j.1009-7848.2018.12.038

    WANG C N, HE L Q, CHEN F C, et al. Volatile aroma composition of Wuyi rock tea and its release rule under boiling water extraction [J]. Chinese Journal of Food, 2018, 18(12): 309-318. doi: 10.16429/j.1009-7848.2018.12.038

    [16] 黄毅彪, 林燕萍, 刘宝顺, 等. 武夷岩茶“肉桂”与其副产品黄片香气品质差异分析[J]. 食品研究与开发,2021,42(6):155−161. [HUANG Y B, LIN Y P, LIU B S, et al. Analysis on the difference of aroma quality between Wuyi rock tea "Cinnamon" and its by-product, Huangpian[J]. Food Research and Development,2021,42(6):155−161. doi: 10.12161/j.issn.1005-6521.2021.06.026

    HUANG Y B, LIN Y P, LIU B S, et al. Analysis on the difference of aroma quality between Wuyi rock tea "Cinnamon" and its by-product, Huangpian [J]. Food Research and Development, 2021, 42(6): 155-161 doi: 10.12161/j.issn.1005-6521.2021.06.026

    [17]

    LIU W, CHEN Y, LIAO R, et al. Authentication of the geographical origin of Guizhou green tea using stable isotope and mineral element signatures combined with chemometric analysis[J]. Food Control,2021,125:107954. doi: 10.1016/j.foodcont.2021.107954

    [18]

    SU D, HE J J, ZHOU Y Z, et al. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics[J]. Food Chemistry,2022,373:131587. doi: 10.1016/j.foodchem.2021.131587

    [19] 王梦琪, 朱荫, 张悦, 等. 茶叶挥发性成分中关键呈香成分研究进展[J]. 食品科学,2019,40(23):341−349. [WANG M Q, ZHU Y, ZHANG Y, et al. Research progress of key aroma components in tea volatile components[J]. Food Science,2019,40(23):341−349. doi: 10.7506/spkx1002-6630-20181015-132

    WANG M Q, ZHU Y, ZHANG Y, et al. Research progress of key aroma components in tea volatile components [J]. Food science, 2019, 40 (23): 341-349. doi: 10.7506/spkx1002-6630-20181015-132

    [20]

    GUO X, SCHWAB W, HO C T, et al. Characterization of the aroma profiles of oolong tea made from three tea cultivars by both GC–MS and GC-IMS[J]. Food Chemistry,2022,376:131933.

    [21]

    HU W, WANG G, LIN S, et al. Digital evaluation of aroma intensity and odor characteristics of tea with different types—Based on OAV-splitting method[J]. Foods,2022,11(15):2204.

    [22] 嵇伟彬, 刘盼盼, 许勇泉, 等. 几种乌龙茶香气成分比较研究[J]. 茶叶科学,2016,36(5):523−530. [JI W B, LIU P P, XU Y Q, et al. Comparative study on aroma components of several oolong teas[J]. Tea Science,2016,36(5):523−530. doi: 10.3969/j.issn.1000-369X.2016.05.013

    JI W B, LIU P P, XU Y Q, et al. Comparative study on aroma components of several oolong teas [J]. Tea Science, 2016, 36 (5): 523-530. doi: 10.3969/j.issn.1000-369X.2016.05.013

    [23]

    XU K, TIAN C, ZHOU C, et al. Non-targeted metabolomics analysis revealed the characteristic non-volatile and volatile metabolites in the Rougui Wuyi rock tea (Camellia sinensis) from different culturing regions[J]. Foods,2022,11(12):1694. doi: 10.3390/foods11121694

    [24]

    YANG P, WANG H, CAO Q Q, et al. Aroma-active compounds related to Maillard reaction during roasting processing in Wuyi rock tea[J]. Journal of Food Composition and Analysis, 2022, 115(9): 104954.

    [25] 舒畅, 佘远斌, 肖作兵, 等. 新、陈龙井茶关键香气成分的SPME/GC-MS/GC-O/OAV研究[J]. 食品工业,2016,37(9):279−285. [SHU C, SHE Y B, XIAO Z B, et al. SPME/GC-MS/GC-O/OAV study on key aroma components of new and Chen Longjing tea[J]. Food Industry,2016,37(9):279−285.

    SHU C, SHE Y B, XIAO Z B, et al. SPME/GC-MS/GC-O/OAV study on key aroma components of new and Chen Longjing tea [J]. Food Industry, 2016, 37(9): 279-285.

    [26] 李大雷, 翁彦如, 杜丽平, 等. 电子鼻和气质联用法分析普洱茶香气成分[J]. 食品与发酵工业,2019,45(3):237−245. [LI D L, WENG Y R, DU L P, et al. Analysis of aroma components of Pu'er tea by electronic nose and GC-MS[J]. Food and Fermentation Industry,2019,45(3):237−245. doi: 10.13995/j.cnki.11-1802/ts.017410

    LI D L, WENG Y R, DU L P, et al. Analysis of aroma components of Pu'er tea by electronic nose and GC-MS [J]. Food and fermentation industry, 2019, 45 (3): 237-245. doi: 10.13995/j.cnki.11-1802/ts.017410

    [27] 蒋青香. 白芽奇兰茶叶关键香气成分的鉴定及其茶粉香气品质的研究[D]. 厦门: 集美大学, 2020

    JIANG Q X. Identification of key aroma components of white bud Chilan tea and study on aroma quality of tea powder[D]. Xiamen: Jimei University, 2020.

    [28]

    ZENG L, FU Y, HUANG J, et al. Comparative analysis of volatile compounds in tieguanyin with different types based on HS–SPME–GC–MS[J]. Foods,2022,11(11):1530. doi: 10.3390/foods11111530

    [29] 张珍珍, 杨远帆, 孙浩, 等. 3种清香型铁观音挥发性成分及香味特征[J]. 集美大学学报(自然科学版),2016,21(3):175−183. [ZHANG Z Z, YANG Y F, SUN H, et al. Volatile components and flavor characteristics of three fragrant Tieguanyin[J]. Journal of Jimei University (Natural Science Edition),2016,21(3):175−183.

    ZHANG Z Z, YANG Y F, SUN H, et al Volatile components and flavor characteristics of three fragrant Tieguanyin [J] Journal of Jimei University (Natural Science Edition), 2016, 21(3): 175-183.

    [30] 卢丹敏, 巢瑾, 银飞燕, 等. 单丛茶香气物质基础分析[J]. 食品科学,2022,43(8):288−296. [LU D M, CHAO J, YIN F Y, et al. Basic analysis of aroma substances in single cluster tea[J]. Food Science,2022,43(8):288−296.

    LU D M, CHAO J, YIN F Y, et al. Basic analysis of aroma substances in single cluster tea [J]. Food Science, 2022, 43(8): 288-296.

    [31] 崔继来, 周洁, 周倩倩, 等. 信阳毛尖茶品质成分分析[J]. 信阳师范学院学报(自然科学版),2022,35(2):259−268. [CUI J L, ZHOU J, ZHOU Q Q, et al. Analysis of quality components of Xinyang Maojian tea[J]. Journal of Xinyang Normal University (Natural Science Edition),2022,35(2):259−268. doi: 10.3969/j.issn.1003-0972.2022.02.015

    CUI J L, ZHOU J, ZHOU Q Q, et al. Analysis of quality components of Xinyang Maojian tea [J]. Journal of Xinyang Normal University (Natural Science Edition), 2022, 35 (2): 259-268. doi: 10.3969/j.issn.1003-0972.2022.02.015

    [32] 肖作兵, 王红玲, 牛云蔚, 等. 基于OAV和AEDA对工夫红茶的PLSR分析[J]. 食品科学,2018,39(10):242−249. [XIAO Z B, WANG H L, NIU Y W, et al. PLSR analysis of Gongfu black tea based on OAV and AEDA[J]. Food Science,2018,39(10):242−249. doi: 10.7506/spkx1002-6630-201810037

    XIAO Z B, WANG H L, NIU Y W, et al. PLSR analysis of Gongfu black tea based on OAV and AEDA [J]. Food Science, 2018, 39 (10): 242-249. doi: 10.7506/spkx1002-6630-201810037

    [33] 孙国昊, 刘玉兰, 连四超, 等. 油菜籽品种对浓香菜籽油风味及综合品质的影响[J]. 食品科学,2022,43(8):190−197. [SUN G H, LIU Y L, LIAN S C, et al. Effect of rapeseed varieties on flavor and comprehensive quality of Luzhou flavor rapeseed oil[J]. Food Science,2022,43(8):190−197.

    SUN G H, LIU Y L, LIAN S C, et al. Effect of rapeseed varieties on flavor and comprehensive quality of Luzhou flavor rapeseed oil [J]. Food Science, 2022, 43 (8): 190-197.

    [34] 陈荣冰, 张方舟, 黄福平, 等. 丹桂与名优乌龙茶品种香气特征比较[J]. 茶叶科学,1998(2):35−40. [CHEN R B, ZHANG F Z, HUANG F P, et al. Comparison of aroma characteristics between Dangui and famous oolong tea[J]. Tea Science,1998(2):35−40. doi: 10.13305/j.cnki.jts.1998.02.006

    CHEN R B, ZHANG F Z, HUANG F P, et al. Comparison of aroma characteristics between Dangui and famous oolong tea [J]. Tea science, 1998 (2): 35-40. doi: 10.13305/j.cnki.jts.1998.02.006

  • 期刊类型引用(3)

    1. 郝一帆,何文华,孙洁,杨妮,温芳,李志刚,石建春,王愈,郝晓玲,高灵芝,宋长利. 壶瓶枣低温贮藏期间红变规律及转录组学分析. 农业工程学报. 2025(02): 338-348 . 百度学术
    2. 刘青娥,汪冶,吴庆红,陈阳阳,黄皓. 基于酸化甘油的草莓花色苷提取与储存工艺优化. 农业工程学报. 2024(08): 273-280 . 百度学术
    3. 李綎瑄,解环环,叶超,王文伟,范富强. 1种植物源次生代谢物在农作物上的应用效果. 华中农业大学学报. 2023(06): 205-212 . 百度学术

    其他类型引用(7)

图(4)  /  表(3)
计量
  • 文章访问数:  264
  • HTML全文浏览量:  37
  • PDF下载量:  47
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-09-12
  • 网络出版日期:  2023-05-16
  • 刊出日期:  2023-07-14

目录

/

返回文章
返回
x 关闭 永久关闭