• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
张冰心,隋静,裴令栋,等. 百里香精油成分对壳聚糖膜结构特性的影响及其迁移机制[J]. 食品工业科技,2023,44(10):249−255. doi: 10.13386/j.issn1002-0306.2022080217.
引用本文: 张冰心,隋静,裴令栋,等. 百里香精油成分对壳聚糖膜结构特性的影响及其迁移机制[J]. 食品工业科技,2023,44(10):249−255. doi: 10.13386/j.issn1002-0306.2022080217.
ZHANG Bingxin, SUI Jing, PEI Lingdong, et al. Effect of Thyme Essential Oil Components on the Structure Properties of Chitosan Films and Its Migration Mechanism[J]. Science and Technology of Food Industry, 2023, 44(10): 249−255. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080217.
Citation: ZHANG Bingxin, SUI Jing, PEI Lingdong, et al. Effect of Thyme Essential Oil Components on the Structure Properties of Chitosan Films and Its Migration Mechanism[J]. Science and Technology of Food Industry, 2023, 44(10): 249−255. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080217.

百里香精油成分对壳聚糖膜结构特性的影响及其迁移机制

Effect of Thyme Essential Oil Components on the Structure Properties of Chitosan Films and Its Migration Mechanism

  • 摘要: 为探究百里香精油成分百里香酚、芳樟醇和石竹烯从壳聚糖膜中的迁移机制,对其构建的壳聚糖复合膜物理性能、抗菌性能、迁移特性和化学结构进行研究。结果表明,百里香精油、百里香酚和石竹烯均提高了壳聚糖膜的阻水性,其中石竹烯的水蒸气透过率比对照下降了15.04%,并且,百里香酚和石竹烯也降低了复合膜的膨胀度(下降24.31%和11.64%)和断裂伸长率(下降13.46%和27.88%),但显著(P<0.05)提高了壳聚糖膜的抗菌性,以百里香精油复合膜抗菌效果最好。所有精油成分均增加了壳聚糖膜的吸热峰温度,提高了复合膜的热稳定性。此外,复合膜中精油成分在蒸馏水中的迁移速率快于95%乙醇,百里香酚的迁移速率最快,其次是精油和石竹烯,而芳樟醇迁移最少。傅立叶变换红外光谱显示,壳聚糖与百里香精油、百里香酚、石竹烯之间存在强烈的氢键相互作用。研究为深入探究壳聚糖精油复合膜的性能和结构差异提供了参考。

     

    Abstract: In order to investigate the migration mechanism of thyme essential oil components thymol, linalool and caryophyllene from chitosan films, the physical, antimicrobial, migration characteristics and chemical structure of chitosan composite films were evaluated. The results showed that thyme essential oil, thymol and caryophyllene improved the water resistance ability of chitosan film, among which the water vapor permeability of caryophyllene decreased by 15.04% compared with the control. Moreover, thymol and caryophyllene also decreased the swelling degree (decreased by 24.31% and 11.64%) and elongation at break (decreased by 13.46% and 27.88%) of composite films. However, the antibacterial properties of chitosan films were significantly (P<0.05) improved with the addition of active components, particularly with thyme essential oil. All essential oil components increased the endothermic peak temperature and improved the thermal stability of chitosan films. In comparison, the migration rate of essential oil components from composite film was faster in distilled water than that in 95% ethanol. The migration rate of thymol was the fastest, followed by essential oil and caryophyllene, and linalool had the least migration. FTIR showed strong hydrogen bond interaction between chitosan and thyme essential oil, thymol and caryophyllene. The study could provide a reference for further exploring the performance and structural differences of chitosan essential oil composite film.

     

/

返回文章
返回