• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
余松柏,黄张君,吴奇霄,等. 基于近红外光谱构建酒用高粱主要理化指标的快速无损分析模型[J]. 食品工业科技,2023,44(10):311−319. doi: 10.13386/j.issn1002-0306.2022080039.
引用本文: 余松柏,黄张君,吴奇霄,等. 基于近红外光谱构建酒用高粱主要理化指标的快速无损分析模型[J]. 食品工业科技,2023,44(10):311−319. doi: 10.13386/j.issn1002-0306.2022080039.
YU Songbai, HUANG Zhangjun, WU Qixiao, et al. Constructing Rapid and Undamaged Detection Models for Main Physicochemical Indexes of Brewing Sorghum Based on Near Infrared Spectrum[J]. Science and Technology of Food Industry, 2023, 44(10): 311−319. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080039.
Citation: YU Songbai, HUANG Zhangjun, WU Qixiao, et al. Constructing Rapid and Undamaged Detection Models for Main Physicochemical Indexes of Brewing Sorghum Based on Near Infrared Spectrum[J]. Science and Technology of Food Industry, 2023, 44(10): 311−319. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022080039.

基于近红外光谱构建酒用高粱主要理化指标的快速无损分析模型

Constructing Rapid and Undamaged Detection Models for Main Physicochemical Indexes of Brewing Sorghum Based on Near Infrared Spectrum

  • 摘要: 为满足对于酒用高粱直链淀粉、支链淀粉、蛋白质、脂肪、单宁含量快速检测的需求,本文采用17种光谱数据预处理方法和4种波段挑选算法建立了这些指标的近红外光谱分析模型。结果表明,各指标最佳光谱预处理方法分别为一阶导数+多元散射校正+Z-score标准化、矢量归一化+均指中心化、标准正态变量变换+Z-score标准化、多元散射校正、标准正态变量变换+Z-score标准化,预测直链淀粉、支链淀粉、蛋白质、单宁含量最佳的波段挑选方法为蒙特卡洛-无信息变量消除,脂肪为竞争自适应重加权采样法。整粒高粱这5项指标最优模型的决定系数(R2)分别为0.9560、0.8765、0.9069、0.8658、0.8841,交叉验证均方根误差(RMSECV)值分别为1.3222、2.3477、0.3549、0.2164、0.1077,外部独立样品验证结果显示模型预测准确率高。本文所建立的近红外分析模型可为酿酒行业实现对高粱的快检提供技术参考。

     

    Abstract: To satisfy the demands of rapid determination of amylose, amylopectin, protein, fat, and tannin contents in brewing sorghums, in this paper, 17 spectral data preprocessing methods and 4 wavelength band selection algorithms were used to establish the near infrared spectral analysis models for these indexes. The results showed that the best spectral preprocessing methods for each index were 1st der (1st)+multiplicative scatter correction (MSC)+Z-score standardization (ZS), vector normalization (VN)+mean centering (MC), standard normal variate transformation (SNV)+ZS, MSC, SNV+ZS, respectively. The best wavelength band selection algorithm for predicting amylose, amylopectin, protein, and tannin contents was monte-carlo uninformative variable elimination, and that of fat was competitive adaptive reweighted sampling. The R2 in the optimal models for these 5 indexes of whole grain sorghums were 0.9560, 0.8765, 0.9069, 0.8658, 0.8841, and the RMSECV values were 1.3222, 2.3477, 0.3549, 0.2164, 0.1077, respectively. The validation results of external independent samples showed that the models had a high prediction accuracy. The NIR analysis model established in this study could provide a technical reference for the rapid detection of sorghums in the brewing industry.

     

/

返回文章
返回