• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

植物生长调节剂在果蔬中的应用与安全性分析研究进展

赖灯妮, 张群, 尚雪波, 谭欢, 潘兆平, 周雨佳, 彭清辉

赖灯妮,张群,尚雪波,等. 植物生长调节剂在果蔬中的应用与安全性分析研究进展[J]. 食品工业科技,2023,44(11):451−459. doi: 10.13386/j.issn1002-0306.2022070377.
引用本文: 赖灯妮,张群,尚雪波,等. 植物生长调节剂在果蔬中的应用与安全性分析研究进展[J]. 食品工业科技,2023,44(11):451−459. doi: 10.13386/j.issn1002-0306.2022070377.
LAI Dengni, ZHANG Qun, SHANG Xuebo, et al. Research Progress on the Application and Safety Analysis of Plant Growth Regulator in Fruits and Vegetables[J]. Science and Technology of Food Industry, 2023, 44(11): 451−459. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070377.
Citation: LAI Dengni, ZHANG Qun, SHANG Xuebo, et al. Research Progress on the Application and Safety Analysis of Plant Growth Regulator in Fruits and Vegetables[J]. Science and Technology of Food Industry, 2023, 44(11): 451−459. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070377.

植物生长调节剂在果蔬中的应用与安全性分析研究进展

基金项目: 猕猴桃中典型植物生长调节剂对货架期的主要影响(GJFP202002);猕猴桃中保鲜剂对果实采后品质影响(14225046)。
详细信息
    作者简介:

    赖灯妮(1984−),女,博士,副研究员,研究方向:农产品质量安全,E-mail:1193908903@qq.com

    通讯作者:

    彭清辉(1980−),男,博士,研究方向:农业资源利用与环境保护技术,E-mail:20045724@qq.com

  • 中图分类号: S482.8

Research Progress on the Application and Safety Analysis of Plant Growth Regulator in Fruits and Vegetables

  • 摘要: 植物生长调节剂可有效提高果蔬产量、品质,其在果蔬生产中的应用越来越多;对植物生长调节剂残留危害风险的评估也成为了研究热点。本文综述了植物生长调节剂的主要类别、作用和在果蔬中的应用现状;并归纳分析了果蔬中多效唑、氯吡脲、赤霉酸、乙烯利、2,4-二氯苯氧乙酸(2,4-D)等几种主要生长调节剂的危害和残留现状;发现果蔬中乙烯利的平均残留量最高,葡萄、豆芽、草莓等果蔬中植物生长调节剂残留情况最为严重,其潜在的安全隐患应引起重视;而国家现行植物生长调节剂标准中并未覆盖一些果蔬,亟需完善植物生长调节剂残留相关标准及风险评估。
    Abstract: Plant growth regulators can effectively improve the yield and quality of fruits and vegetables, and their application in fruit and vegetable production is increasing. The risk assessment of plant growth regulator residues has also become a research hotspot. The paper reviews the main categories, functions and application status of plant growth regulators in fruits and vegetables. The harm and residue status of several main growth regulators such as paclobutrazol, forchlorfenuron, gibberellic acid, ethephon and 2,4-dichlorophenoxyacetic acid (2,4-D) in fruits and vegetables are summarized and analyzed. It is found that the average residue of ethephon in fruits and vegetables is the highest, and the residue of plant growth regulator in fruits and vegetables such as grapes, bean sprouts and strawberries is the most serious, and its potential safety hazards should be paid attention to. However, the current national plant growth regulator standards do not cover some fruits and vegetables. It is urgent to improve the relevant standards and risk assessment of plant growth regulator residues.
  • 植物生长调节剂(PGR),又称植物外源激素,是一类具有调节植物生长发育功能的农药,广泛应用于果蔬植物中[1]。近年来,我国植物生长调节剂的需求量和使用量连年激增,2020年我国植物生长调节剂行业市场规模达到85.05亿元,成为农药领域发展速度最快的领域。植物生长调节剂适时适量的使用具有促进作物增产、改善品质、提高抗逆性、延长保藏期和保鲜保质等效果[2-4],但滥用和误用带来的残留危害不容忽视[5-8]。如肖国军等[9]发现豆芽中的4-氯苯氧乙酸检出率高、暴露水平过高;李文博等[10]采用固相萃取-高效液相色谱-串联质谱法测定豆芽中6-苄基腺嘌呤、对氯苯氧乙酸和赤霉素含量,发现在15批次样本中有7批阳性检出,最高残留量分别为4.52、5.42和3.16 μg/kg;而国家食品安全法规要求不得使用4-氯苯氧乙酸钠和6-苄基腺嘌呤。

    截至2020年12月,我国植物生长调节剂登记产品共计1153个,有效成分约50种。但国家食品安全标准GB 2763-2019共规定了483种农药7107项最大残留限量值,只涵盖20种植物生长调节剂,共154项植物生长调节剂最大残留限量标准,而果蔬种类繁多,可以合理推测有大量果蔬种类存在植物生长调节剂残留风险,但尚未制订残留限量标准,现有残留限量标准需要补充完善。

    本文主要介绍了植物生长调节剂的种类、主要作用、危害,并归纳、比较分析了几种主要植物生长调节剂在果蔬中的残留现状,为完善果蔬中植物生长调节剂残留风险评估、监管策略提供科学依据。

    截至2020年12月,我国植物生长调节剂登记产品共计1153个,有效成分约50种。允许应用在果蔬生产中的植物调节剂有21种,主要有萘乙酸、赤霉酸、甲哌鎓、乙烯利、矮壮素、噻苯隆、芸苔素内酯、多效唑、吲哚乙酸、吲哚丁酸、氯吡脲、胺鲜酯、2,4-氯苯氧乙酸(2,4-D)等。果蔬生长调节剂根据其生理作用可分为生长促进剂、生长抑制剂和生长延缓剂三类[11],见表1

    表  1  植物生长调节剂的分类、生理作用及应用
    Table  1.  Classification, physiological effects and application of plant growth regulators
    PGR分类主要种类生理作用果蔬应用
    生长促进剂吲哚乙酸、吲哚丁酸、复硝酚钠、赤霉酸、乙烯利、萘乙酸、氯吡脲、2,4-D等促进果蔬细胞分裂、分化及伸长生长、促进营养器官生长发育、防脱落、促进果蔬生根发芽、诱导结实、催熟等荔枝、猕猴桃、樱桃、黄瓜、香蕉、茄子、番茄、火龙果、黑莓、葡萄、核桃、豆芽、芹菜等
    生长抑制剂水杨酸、抑芽丹、整形素、青鲜素、脱落酸等抑制果蔬顶端分生组织生长、发芽,消除顶端优势,增加侧枝数量,除灭杂草等葡萄、菊花、西瓜、高粱、水稻、大豆、李、花椒等
    生长延缓剂多效唑、助壮素、矮壮素、烯效唑等抑制果蔬节间伸长而不抑制顶芽生长,使得植物茎秆变短变粗,减缓果蔬生长速率,增加叶片的厚度和叶绿素含量等草莓、西瓜、黄瓜、小麦、藜麦、水稻、甘薯等
    下载: 导出CSV 
    | 显示表格

    植物生长促进剂主要通过促进细胞分裂、促进营养器官生长发育、防落花落果、诱导结实、催熟等方式来提高果蔬营养品质和产量[10]。果蔬中主要应用的生长促进剂有赤霉酸和乙烯利两种[12]。如张万毅[13]用50 mg/L和80 mg/L赤霉酸溶液喷施无核白葡萄果穗,相比较喷施清水的无核白葡萄可以显著增加果穗长度,且增大无核白葡萄果粒,且随着浓度增加,果粒增大效果越明显;李东升[14]用不同浓度赤霉酸处理核桃种子,发现赤霉酸浓度为100 mg/L时,核桃种子的发芽率、幼苗株高、地径和根长最高,缩短了核桃种子出苗周期,提高了发芽率和幼苗株高、较对照清水处理组分别提高了22.04%、63.39%、61.53%和40.62%;钟群等[15]用30 mg/L乙烯利处理绿豆芽,发现乙烯利可以促进绿豆芽萌发并提高绿豆芽质量。

    植物生长抑制剂主要通过抑制营养器官生长发育、抑制细胞分裂伸长、抑制果蔬开花结果、抑制种子萌发、促进休眠等方式来提高果蔬抗逆性。应用植物生长抑制剂控制植物发芽时间是一项十分重要且可行的技术措施。常用的植物生长抑制剂有水杨酸、抑芽丹、整形素、青鲜素、脱落酸等,其中以青鲜素的应用最为广泛[16]。如赵双等[17]用0.25%~0.30%浓度的青鲜素溶液喷施马铃薯叶片,发现青鲜素抑制采后马铃薯的发芽,并延长马铃薯休眠期2个月;刘贵福等[18]用浓度1000 mg/L青鲜素喷施花椒树,青鲜素对花椒新梢生长量影响不大,而对花椒萌芽期有明显延迟作用。

    植物生长延缓剂主要通过抑制茎杆伸长、控制株高、抑制新梢生长、使作物健壮高产、延长花期等方式来改善果实品质、增强作物抗旱、抗寒等能力及提高产量。常用的植物生长延缓剂主要有多效唑、助壮素、矮壮素、烯效唑[19]。和生长抑制剂不同的是,延缓剂可进一步通过调控植物株高,达到调控生长的作用,应用更为广泛。如王学芳等[20]用150 mg/L多效唑或80 mg/L烯效唑处理油菜幼苗,发现多效唑和烯效唑可以降低油菜幼苗茎高、提高根粗和茎粗、提高根长、增加侧根数等,形成壮苗,提高油菜幼苗抗寒性;耿杨阳等[21]用200 mg/L多效唑喷施黄瓜幼苗,发现多效唑能防控黄瓜幼苗徒长,降低株高、下胚轴长度,增大茎粗,提高壮苗指数。康靓等[22]用4500 mL/hm2矮壮素滴灌冬小麦,得到的冬小麦茎秆高度适宜,重心高度较低,提高其抗倒伏能力,籽粒产量最高。

    不同植物生长调节剂的毒性危害不同,主要毒性危害包括生殖毒性、肾毒性、肝毒性、发育毒性、免疫毒性、神经毒性、致畸、致癌、致突变和骨骼损伤等[5-8]。一般采用每日允许摄入量(acceptable daily intake,ADI)表征化学物质的危害程度。ADI指人或动物终生每日摄入某种化学物质(食品添加剂、农药等),对健康无任何已知不良效应的剂量。表2中列举了常见植物生长调节剂ADI值[23]

    表  2  果蔬中常见植物生长调节剂的ADI
    Table  2.  ADI of common plant growth regulators in fruits and vegetables
    植物生长调节剂ADI(mg/kg·bw)
    多效唑0.1
    矮壮素0.05
    萘乙酸0.15
    氯吡脲0.07
    赤霉素3
    乙烯利0.05
    2,4-D0.01
    噻苯隆0.04
    4-氯苯氧乙酸钠0.08
    6-苄基腺嘌呤0.05
    烯效唑0.02
    脱落酸13.6
    注:表中数据来源于文献[23]。
    下载: 导出CSV 
    | 显示表格

    通过比较可以发现,ADI值的大小顺序为:脱落酸>赤霉素>萘乙酸>多效唑>4-氯苯氧乙酸钠>氯吡脲>乙烯利=6-苄基腺嘌呤=矮壮素>噻苯隆>烯效唑>2,4-D。2,4-D的ADI值最小,毒性最大。根据植物生长调节剂在果蔬中残留现状和毒性大小,本文进一步对多效唑、氯吡脲、赤霉素、乙烯利、4-氯苯氧乙酸钠、2,4-二氯苯氧乙酸(2,4-D)等主要植物生长调节剂的危害进行分析。

    多效唑在果蔬栽培上应用较为广泛,在控制植物生长,提高作物产量上有重要作用。多效唑属于低毒植物生长调节剂,大白鼠急性口服LD50为1500 mg/kg,具有损伤生殖器官、肝脏器官、致癌、刺激皮肤和眼睛、影响生长发育等危害[24-26]。李进寿等[24]用10、100、1000 ng/L浓度的多效唑对褐菖鮋进行50 d的水体暴露实验,检测到褐菖鮋脾脏酸性磷酸酶(ACP)、超氧化物歧化酶(SOD)、溶菌酶(LSZ)、过氧化物酶(POD)等免疫指标出现不同程度的下降,说明多效唑对褐菖鮋免疫系统的功能造成了损伤。Yue等[25]采用代谢组学分析,多效唑不同剂量(0.2、0.5、1.0 g/kg)对大鼠肝、肾毒性进行了系统研究,发现多效唑对大鼠肝脏和肾脏有明显的毒性作用。因多效唑可提高产量,盲目滥用的可能性较高。

    氯吡脲作为具有细胞分裂素活性的苯脲类植物生长调节剂,在防治果树落花落果以及提高座果率等方面均有着良好的效果[26]。氯吡脲属于低毒植物生长调节剂,急性经口LD50:雄大鼠2787 mg/kg,雌大鼠1568 mg/kg,具有损伤免疫功能、影响生长发育、细胞毒性等危害[27-28]。叶嗣量[27]分别用0.06、6、600 mg/kg氯吡脲染毒雌性小鼠,实验结果表明600 mg/kg氯吡脲处理的雌性小鼠开口时间明显延迟、体重变化增长缓慢,延迟了雌性小鼠青春期的发育。

    赤霉素在生物体内起着内源性激素的作用,能调节多种植物的生长发育,广泛应用于蔬菜、水果,创造了巨大的经济效益[29]。赤霉素属于微毒植物生长调节剂,小鼠静脉注射LD50大于6300 mg/kg,口服LD50大于25000 mg/kg,具有紊乱机体内分泌系统、影响动物的生长发育、致癌等危害[30-31]。郭毅炜等[30]发现赤霉素(100 mg/kg)可以降低雌二醇含量,干扰卵巢功能,从而导致激素分泌功能的紊乱,影响卵巢类固醇激素的合成。Xu等[31]研究了将人类精液样品暴露于不同浓度的赤霉素中,赤霉素提高活性氧水平和降低ATP酶活性,使精子体外活力降低。

    乙烯利属于低毒植物生长调节剂,大白鼠急性口服LD50为4000 mg/kg,小白鼠急性口服LD50为4229 mg/kg,具有遗传、免疫损伤、致癌、致畸、致突变、刺激皮肤、损害大脑和肾脏等危害[32-34]。刘一峰等[32]用乙烯利染毒小鼠细胞,发现乙烯利在134、268 mg/kg剂量条件下可抑制脾中T淋巴细胞增殖,损伤细胞免疫功能;闫金松等[33]分别用浓度为2000、1000、500 mg/kg乙烯利和生理盐水连续灌胃25日龄SD大鼠14和21 d,发现乙烯利处理组大鼠精小管萎缩,生精细胞排列紊乱且乙烯利浓度越高损伤越明显。Bhadoria等[34]经口灌剂量为200 mg/kg乙烯利连续14 d,发现大鼠的肝细胞和肝细胞核的平均直径减小,肝细胞功能受损。

    2,4-二氯苯氧乙酸(2,4-D)既可以作为植物生长调节剂又对果蔬具有保鲜作用[35]。2,4-二氯苯氧乙酸(2,4-D)属于低毒植物生长调节剂,大白鼠口服LD50为500 mg/kg,具有神经毒性、肝毒性、肾毒性、对皮肤和眼睛有刺激作用及抑制某些酶的活力等危害[36-38]。Troudi等[36]发现2,4-D可导致母鼠及其子代肝中SOD、过氧化氢酶(CAT)和谷胱甘肽过氧化物酶(GSH-Px)活性降低,MDA含量升高,肝脏受到不同程度的破坏;Troudi等[37]用600 mg/L的2,4-D喂养雌性刚妊娠的成年大鼠,发现哺乳幼仔及其母成年大鼠肾脏中MDA和蛋白羰基水平升高,SOD、CAT和GSH-Px等抗氧化酶活性降低;还观察到哺乳幼仔及其母成年大鼠肾脏谷胱甘肽、非蛋白巯基和维生素C水平明显下降,肾脏均受到不同程度的破坏。

    4-氯苯氧乙酸钠(4-CPANa)属于低毒植物生长调节剂,小鼠经口LD50为1074.1 mg/kg,具有损害生长发育,损害肝脏、肾脏等危害[39]。此外,4-CPANa能够诱导大鼠性细胞凋亡[40]

    表3总结了近年来,常见果蔬中植物生长调节剂残留量检测结果[41-64]

    表  3  果蔬中植物生长调节剂残留现状及最大残留限量
    Table  3.  Residual status and maximum residue limits of plant growth regulators in fruits and vegetables
    调节剂果蔬种类样品残留量(均值μg/kg)最大残留限量(μg/kg)参考文献
    多效唑浆果类草莓0.000~96.8[45]
    草莓0.130~145[46]
    葡萄0.000~2.90[45]
    葡萄0.026~6.28[42]
    葡萄0.130~145[46]
    柑橘类蜜桔、脐橙和砂糖橘<2.00[50]
    柑橘0.026~6.28[42]
    核果类樱桃0.500~5.00[45]
    樱桃0.011~2.00[49]
    樱桃0.130~145[46]
    青枣0.026~6.28[42]
    杨梅0.130~145[46]
    仁果类猕猴桃0.260~0.810[9]
    雪梨0.160~1.92
    火龙果0.026~6.28[42]
    猕猴桃0.130~145[46]
    其他水果芒果0.510~2.3650[9]
    香蕉0.026~6.28[42]
    叶菜类白菜、通菜、西洋菜0.026~6.28[42]
    根茎类豆芽0.130~145[46]
    果菜类番茄、青瓜、玉米、柿子、豆角0.026~6.28[42]
    黄瓜0.130~145[46]
    矮壮素浆果类葡萄、樱桃2.02~260[46]
    根茎类土豆2.02~260[46]
    果菜类番茄0.026~20751000[42]
    番茄2.02~2601000[46]
    萘乙酸根茎类豆芽40.0~1271[51]
    豆芽<0.010[52]
    浆果类葡萄0.000~2.4050[45]
    葡萄0.025~2.9450[42]
    葡萄9.00~11.050[44]
    葡萄50.050[53]
    葡萄85.0~16450[43]
    氯吡脲草莓0.380~37.1[46]
    核果类樱桃0.000~2.40[45]
    樱桃0.380~37.1[46]
    杨梅9.00~22.450[54]
    瓜类西瓜0.380~37.1100[46]
    仁果类猕猴桃0.000~7.6050[45]
    猕猴桃0.380~37.150[46]
    猕猴桃12.0~25.050[44]
    猕猴桃9.00~22.450[54]
    猕猴桃9050[63]
    猕猴桃11050[63]
    猕猴桃12050[63]
    苹果0.025~2.94[42]
    火龙果0.025~2.94[42]
    枇杷19.0~26.050[44]
    其他水果香蕉0.025~2.94[42]
    果菜类番茄、青瓜、青椒0.025~2.94青瓜:100[42]
    赤霉素浆果类葡萄0.000~1.20[45]
    葡萄0.966~54.6[42]
    葡萄、草莓、蓝莓0.30~506[46]
    葡萄、草莓、蓝莓0.000~132.7[55]
    葡萄0.280~4.60[56]
    核果类樱桃0.000~3.50[45]
    大连甜樱桃21.3~71.1[57]
    青枣0.966~54.6[40]
    仁果类火龙果、苹果0.966~54.6[40]
    瓜类西瓜0.30~506[43]
    其他水果香蕉0.966~54.6[40]
    果菜类番茄0.966~54.6[40]
    番茄、黄瓜0.000~132.7[52]
    根茎类豆芽0.30~506[46]
    豆芽0.000~132[55]
    黄豆芽、绿豆芽2.36~5.17[58]
    乙烯利浆果类葡萄870~16501000[44]
    仁果类枇杷1020~1740[44]
    其他水果芒果15102000[59]
    果菜类番茄1100~1710[44]
    黄瓜840~1020[44]
    2,4-二氯苯氧乙酸(2,4-D)浆果类草莓0.000~3.50[45]
    葡萄0.000~2.90[45]
    桑葚0.240~4.20[56]
    柑橘类柑橘13.0100[44]
    核果类樱桃、杨梅1.36~80.3[46]
    荔枝0.000~1090[60]
    瓜类西瓜0.240~4.20[56]
    其他水果香蕉0.052~162[42]
    果菜类番茄、青瓜、玉米、茄子、青椒0.052~162[42]
    番茄16.0~19.0500[44]
    根茎类豆芽<0.010[52]
    黄豆芽、绿豆芽2.23~2.98[45]
    噻苯隆浆果类草莓178[43]
    核果类樱桃0.000~0.700[45]
    果菜类青瓜0.61150[42]
    根茎类黄豆芽、绿豆芽2.53~14.0[58]
    4-氯苯氧乙酸钠浆果类草莓、蓝莓0.400~220[46]
    核果类杨梅0.400~220[46]
    根茎类黄豆芽、绿豆芽4.43~510不得检出[58]
    绿豆芽0.000~136不得检出[61]
    黄豆芽0.000~177不得检出[61]
    绿豆芽3.10不得检出[62]
    黄豆芽42.6不得检出[63]
    绿豆芽294不得检出[63]
    豆芽106不得检出[63]
    长黄豆芽93不得检出[63]
    绿豆芽146不得检出[63]
    瓜类甜瓜1.01[63]
    吲哚乙酸根茎类豆芽<1.92[52]
    黄豆芽、绿豆芽2.05~8.43[58]
    黄豆芽7.23~28.6[61]
    绿豆芽30.7~498[47]
    果菜类番茄3.20~6.70[58]
    吲哚丁酸根茎类豆芽<0.010[52]
    6-苄基腺嘌呤果菜类番茄、玉米0.087~10.1[42]
    根茎类绿豆芽0.000~6.90不得检出[61]
    黄豆芽0.000~176不得检出[61]
    绿豆芽16.6~1400不得检出[63]
    黄豆芽24.1~196不得检出[63]
    烯效唑浆果类葡萄0.095~1.85[42]
    柑橘类橙、柑橘0.095~1.85300[42]
    其他水果香蕉0.095~1.85[42]
    根茎类土豆0.095~1.85[42]
    脱落酸浆果类葡萄88.0[48]
    下载: 导出CSV 
    | 显示表格

    在所有调查的果蔬中,豆芽中的植物生长调节剂残留现状最严重且研究报道最多,包括萘乙酸、赤霉素、2,4-二氯苯氧乙酸(2,4-D)、噻苯隆、4-氯苯氧乙酸钠、吲哚乙酸、6-苄基腺嘌呤等植物生长调节剂残留。根据《国家食品药品监督管理总局、农业部、国家卫生和计划生育委员会关于豆芽生产过程中禁止使用6-苄基腺嘌呤等物质的公告》(2015年第11号)中明确规定,生产者不得在豆芽生产过程中使用4-氯苯氧乙酸钠、6-苄基腺嘌呤;豆芽经营者不得经营含4-氯苯氧乙酸钠、6-苄基腺嘌呤的豆芽[41]。从表3中还可以看出,在调查的果蔬中除了豆芽外,葡萄、草莓、樱桃、荔枝、黄瓜等果蔬植物生长调节剂残留现状也是比较严重的,如葡萄中有多效唑、矮壮素、氯吡脲、赤霉素、乙烯利、2,4-D、脱落酸等植物生长调节剂残留。

    表3可知,在所有调查的植物生长调节剂中,多效唑、氯吡脲、赤霉素、乙烯利、4-氯苯氧乙酸钠、烯效唑、6-苄基腺嘌呤、2,4-二氯苯氧乙酸(2,4-D)等植物生长调节剂目前在果蔬中残留较为严重,特别是乙烯利残留量较高。部分调查的果蔬中存在植物生长调节剂残留超标的现象,如部分番茄中残留矮壮素含量大于其最大残留限量1000 μg/kg[42];部分葡萄中氯吡脲残留含量大于其最大残留限量50 μg/kg[43]和乙烯利残留含量大于其最大残留限量1000 μg/kg[44]等。

    表3还可以看出,只有部分植物生长调节剂在部分果蔬中的残留限量;部分果蔬中存在部分植物生长调节剂大量残留的现象。这些虽未有确切的最大残留限量值,但也可能存在安全隐患。如只有芒果中规定了多效唑最大残留限量50 μg/kg,如果参照这一限量,则部分草莓、樱桃、葡萄、杨梅、猕猴桃、豆芽、黄瓜中多效唑残留超过这一限量,残留量最高达到145 μg/kg[46];这些果蔬的食用量、食用部位与芒果没有明显差异,故其残留限量应与芒果类似。葡萄、芒果中乙烯利最大残留限量规定为1000、2000 μg/kg,而枇杷、黄瓜中乙烯利残留量分别有1020~1740[44]和840~1020 μg/kg[44],参照葡萄的标准,部分枇杷、番茄中乙烯利超标的风险很高;荔枝中2,4-D残留量最高有1090 μg/kg[60],而柑橘中残留限量只有100 μg/kg;青瓜中噻苯隆残留限量是50 μg/kg,但草莓中最大残留量为178 μg/kg;4-氯苯氧乙酸钠在豆芽中规定不得检出,但草莓、蓝莓、杨梅中最大残留量高达220 μg/kg;6-苄基腺嘌呤在豆芽中规定不得检出,但番茄、玉米中最大残留量达10.1 μg/kg。此外,所调查的果蔬中赤霉素没有残留限量值,但美国、日本等国家规定水果和蔬菜中赤霉素的最高残留限量为200 μg/kg[62-66],则表3中部分葡萄、草莓、蓝莓、西瓜、豆芽中赤霉素残留量超限,最高达506 μg/kg。所以,果蔬中植物生长调节剂现有残留限量标准亟需补充完善。

    植物生长调节剂具有成本低、收效快、效益高、节省劳动力等优点,在现代农业生产中发挥出巨大的经济效益和社会效益,在农业应用方面日趋广泛。然而植物生长调节剂也属于农药,具有农药毒性和残留特性,盲目、超量使用植物生长调节剂,会导致残留超标及污染环境等问题。如何安全、适量、高效地使用植物生长调节剂,保障农产品和自然环境安全,是目前急需解决的问题。

    加大限量标准的研究力度,对没有限量标准的植物生长调节剂应该尽快制定发布;加强毒性研究,开发高效、低毒的植物生长调节剂;农业部门应组织专家定期开展植物生长调节剂的科普宣传,加强技术指导,确保其科学、安全、合理使用;各级监督部门加强监测、监督和检查力度,并采取积极控制措施,预防、控制和减少植物生长调节剂产生的危害。

  • 表  1   植物生长调节剂的分类、生理作用及应用

    Table  1   Classification, physiological effects and application of plant growth regulators

    PGR分类主要种类生理作用果蔬应用
    生长促进剂吲哚乙酸、吲哚丁酸、复硝酚钠、赤霉酸、乙烯利、萘乙酸、氯吡脲、2,4-D等促进果蔬细胞分裂、分化及伸长生长、促进营养器官生长发育、防脱落、促进果蔬生根发芽、诱导结实、催熟等荔枝、猕猴桃、樱桃、黄瓜、香蕉、茄子、番茄、火龙果、黑莓、葡萄、核桃、豆芽、芹菜等
    生长抑制剂水杨酸、抑芽丹、整形素、青鲜素、脱落酸等抑制果蔬顶端分生组织生长、发芽,消除顶端优势,增加侧枝数量,除灭杂草等葡萄、菊花、西瓜、高粱、水稻、大豆、李、花椒等
    生长延缓剂多效唑、助壮素、矮壮素、烯效唑等抑制果蔬节间伸长而不抑制顶芽生长,使得植物茎秆变短变粗,减缓果蔬生长速率,增加叶片的厚度和叶绿素含量等草莓、西瓜、黄瓜、小麦、藜麦、水稻、甘薯等
    下载: 导出CSV

    表  2   果蔬中常见植物生长调节剂的ADI

    Table  2   ADI of common plant growth regulators in fruits and vegetables

    植物生长调节剂ADI(mg/kg·bw)
    多效唑0.1
    矮壮素0.05
    萘乙酸0.15
    氯吡脲0.07
    赤霉素3
    乙烯利0.05
    2,4-D0.01
    噻苯隆0.04
    4-氯苯氧乙酸钠0.08
    6-苄基腺嘌呤0.05
    烯效唑0.02
    脱落酸13.6
    注:表中数据来源于文献[23]。
    下载: 导出CSV

    表  3   果蔬中植物生长调节剂残留现状及最大残留限量

    Table  3   Residual status and maximum residue limits of plant growth regulators in fruits and vegetables

    调节剂果蔬种类样品残留量(均值μg/kg)最大残留限量(μg/kg)参考文献
    多效唑浆果类草莓0.000~96.8[45]
    草莓0.130~145[46]
    葡萄0.000~2.90[45]
    葡萄0.026~6.28[42]
    葡萄0.130~145[46]
    柑橘类蜜桔、脐橙和砂糖橘<2.00[50]
    柑橘0.026~6.28[42]
    核果类樱桃0.500~5.00[45]
    樱桃0.011~2.00[49]
    樱桃0.130~145[46]
    青枣0.026~6.28[42]
    杨梅0.130~145[46]
    仁果类猕猴桃0.260~0.810[9]
    雪梨0.160~1.92
    火龙果0.026~6.28[42]
    猕猴桃0.130~145[46]
    其他水果芒果0.510~2.3650[9]
    香蕉0.026~6.28[42]
    叶菜类白菜、通菜、西洋菜0.026~6.28[42]
    根茎类豆芽0.130~145[46]
    果菜类番茄、青瓜、玉米、柿子、豆角0.026~6.28[42]
    黄瓜0.130~145[46]
    矮壮素浆果类葡萄、樱桃2.02~260[46]
    根茎类土豆2.02~260[46]
    果菜类番茄0.026~20751000[42]
    番茄2.02~2601000[46]
    萘乙酸根茎类豆芽40.0~1271[51]
    豆芽<0.010[52]
    浆果类葡萄0.000~2.4050[45]
    葡萄0.025~2.9450[42]
    葡萄9.00~11.050[44]
    葡萄50.050[53]
    葡萄85.0~16450[43]
    氯吡脲草莓0.380~37.1[46]
    核果类樱桃0.000~2.40[45]
    樱桃0.380~37.1[46]
    杨梅9.00~22.450[54]
    瓜类西瓜0.380~37.1100[46]
    仁果类猕猴桃0.000~7.6050[45]
    猕猴桃0.380~37.150[46]
    猕猴桃12.0~25.050[44]
    猕猴桃9.00~22.450[54]
    猕猴桃9050[63]
    猕猴桃11050[63]
    猕猴桃12050[63]
    苹果0.025~2.94[42]
    火龙果0.025~2.94[42]
    枇杷19.0~26.050[44]
    其他水果香蕉0.025~2.94[42]
    果菜类番茄、青瓜、青椒0.025~2.94青瓜:100[42]
    赤霉素浆果类葡萄0.000~1.20[45]
    葡萄0.966~54.6[42]
    葡萄、草莓、蓝莓0.30~506[46]
    葡萄、草莓、蓝莓0.000~132.7[55]
    葡萄0.280~4.60[56]
    核果类樱桃0.000~3.50[45]
    大连甜樱桃21.3~71.1[57]
    青枣0.966~54.6[40]
    仁果类火龙果、苹果0.966~54.6[40]
    瓜类西瓜0.30~506[43]
    其他水果香蕉0.966~54.6[40]
    果菜类番茄0.966~54.6[40]
    番茄、黄瓜0.000~132.7[52]
    根茎类豆芽0.30~506[46]
    豆芽0.000~132[55]
    黄豆芽、绿豆芽2.36~5.17[58]
    乙烯利浆果类葡萄870~16501000[44]
    仁果类枇杷1020~1740[44]
    其他水果芒果15102000[59]
    果菜类番茄1100~1710[44]
    黄瓜840~1020[44]
    2,4-二氯苯氧乙酸(2,4-D)浆果类草莓0.000~3.50[45]
    葡萄0.000~2.90[45]
    桑葚0.240~4.20[56]
    柑橘类柑橘13.0100[44]
    核果类樱桃、杨梅1.36~80.3[46]
    荔枝0.000~1090[60]
    瓜类西瓜0.240~4.20[56]
    其他水果香蕉0.052~162[42]
    果菜类番茄、青瓜、玉米、茄子、青椒0.052~162[42]
    番茄16.0~19.0500[44]
    根茎类豆芽<0.010[52]
    黄豆芽、绿豆芽2.23~2.98[45]
    噻苯隆浆果类草莓178[43]
    核果类樱桃0.000~0.700[45]
    果菜类青瓜0.61150[42]
    根茎类黄豆芽、绿豆芽2.53~14.0[58]
    4-氯苯氧乙酸钠浆果类草莓、蓝莓0.400~220[46]
    核果类杨梅0.400~220[46]
    根茎类黄豆芽、绿豆芽4.43~510不得检出[58]
    绿豆芽0.000~136不得检出[61]
    黄豆芽0.000~177不得检出[61]
    绿豆芽3.10不得检出[62]
    黄豆芽42.6不得检出[63]
    绿豆芽294不得检出[63]
    豆芽106不得检出[63]
    长黄豆芽93不得检出[63]
    绿豆芽146不得检出[63]
    瓜类甜瓜1.01[63]
    吲哚乙酸根茎类豆芽<1.92[52]
    黄豆芽、绿豆芽2.05~8.43[58]
    黄豆芽7.23~28.6[61]
    绿豆芽30.7~498[47]
    果菜类番茄3.20~6.70[58]
    吲哚丁酸根茎类豆芽<0.010[52]
    6-苄基腺嘌呤果菜类番茄、玉米0.087~10.1[42]
    根茎类绿豆芽0.000~6.90不得检出[61]
    黄豆芽0.000~176不得检出[61]
    绿豆芽16.6~1400不得检出[63]
    黄豆芽24.1~196不得检出[63]
    烯效唑浆果类葡萄0.095~1.85[42]
    柑橘类橙、柑橘0.095~1.85300[42]
    其他水果香蕉0.095~1.85[42]
    根茎类土豆0.095~1.85[42]
    脱落酸浆果类葡萄88.0[48]
    下载: 导出CSV
  • [1] 张新中, 彭涛, 李晓春, 等. 植物生长调节剂的残留与安全性分析[J]. 食品安全质量检测学报,2019,10(3):614−619. [ZHANG X Z, PENG T, LI X C. Residue and safety analysis of plant growth regul ator[J]. Journal of Food Safety & Quality,2019,10(3):614−619.
    [2]

    MCMILLAN T. Effects of plant growth regulator application on the malting quality of barley[J]. Journal of the Science of Food and Agriculture,2020,100(5):2082−2089. doi: 10.1002/jsfa.10231

    [3]

    THAKAR C. Influence of plant growth regulators on growth and lowering parameters of watermelon (Citrullus lanatus (Thunb) Mansf.) CV. sugar baby[J]. Agricultural Research Journal,2021,58(5):917−920. doi: 10.5958/2395-146X.2021.00131.9

    [4]

    NARAYANSWAMY P, ANAWAL V, EKABOTE S. Effects of plant growth regulators on flowering, fruit set and yield of ‘Bhagwa’ of pomegranate (Punica granatum L.)[J]. Acta Horticulturae,2019,16(2):129−134.

    [5] 徐爱东. 我国蔬菜中常用植物生长调节剂的毒性及残留问题研究进展[J]. 中国蔬菜,2009(8):1−6. [XU A D. Research progress on toxicity and residue of plant growth regulator s in vegetables in China[J]. Chinese Vegetables,2009(8):1−6. doi: 10.19928/j.cnki.1000-6346.2009.08.001
    [6] 高仁君, 陈隆智, 郑明奇, 等. 农药对人体健康影响的风险评估[J]. 农药学学报,2004(3):8−14. [GAO R J, CHEN L Z, ZHENG M Q, et al. Risk assessment of pesticide effects on human health[J]. Journal of Pesticide Science,2004(3):8−14. doi: 10.3321/j.issn:1008-7303.2004.03.002
    [7]

    HASAN F, ANSARI M S. Ecotoxicological hazards of herbicides on biological attributes of Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae)[J]. Chemosphere,2016,154(6):398−407.

    [8]

    AFEF T. Oxidative stress induced by gibberellic acid in bone of suckling rats[J]. Ecotoxicology and Environmental Safety,2010,74(4):643−649.

    [9] 肖国军, 许桂锋, 李波, 等. 超高效液相色谱-串联质谱法测定果蔬中6种植物生长调节剂残留及其污染水平分析[J]. 实用预防医学,2019,26(9):1034−1039. [XIAO G J, XU G F, LI B, et al. Determination of 6 plant growth regulator residues in fruits and vegetables by ultra performance liquid chromatography-tandem mass spectrometry and analysis of their pollution levels[J]. Practical Preventive Medicine,2019,26(9):1034−1039. doi: 10.3969/j.issn.1006-3110.2019.09.004
    [10] 李文博, 童颖. DSPE-HPLC-MS/MS法同时测定豆芽中11种植物生长调节剂和抗生素药物残留[J]. 食品与发酵科技,2022,58(4):123−131. [LI W B, TONG Y. Simultaneous determination of 11 plant growth regulators and antibiotic residues in bean sprouts by DSPE-HPLC-MS/MS[J]. Food and Fermentation Technology,2022,58(4):123−131. doi: 10.3969/j.issn.1674-506X.2022.04.021
    [11] 王珊. 果蔬中植物生长调节剂残留的快速检测方法研究[D]. 郑州: 河南农业大学, 2013.

    WANG S. Rapid determination of plant growth regulator residues in fruits and vegetables[D]. Zhengzhou: Henan Agricultural University, 2013.

    [12] 李扬丹. 栽培方式和植物生长调节剂对番茄生长发育的影响[D]. 哈尔滨: 东北农业大学, 2018.

    LI Y D. Effects of cultivation methods and plant growth regulators on tomato growth and development[D]. Harbin: Northeast Agricultural University, 2018.

    [13] 张万毅. 赤霉酸(GA3)对无核白葡萄果穗及果实生长的影响[D]. 石河子: 石河子大学, 2018.

    ZHANG W Y. Effects of Gibberellic acid (GA3) on seedless white grape ears and fruit growth[D]. Shihezi: Shihezi University, 2018.

    [14] 李东升. 赤霉酸处理对核桃种子萌发和幼苗生长的影响[J]. 河北果树,2022(1):15−16, 9. [LI D S. Effects of gibberellic acid treatment on seed germination and seedling growth of walnut[J]. Hebei Fruit Trees,2022(1):15−16, 9. doi: 10.19440/j.cnki.1006-9402.2022.01.007
    [15] 钟群, 潘祉名, 余江涛, 等. 乙烯利对绿豆芽前期生长和品质的影响[J]. 上海师范大学学报(自然科学版),2020,49(6):650−656. [ZHONG Q, PAN Z M, YU J T, et al. Effects of ethephon on growth and quality of mung bean sprouts[J]. Journal of Shanghai Normal University (Natural sciences),2020,49(6):650−656. doi: 10.3969/J.ISSN.1000-5137.2020.06.006
    [16]

    KARPPINEN K, TEGELBERG P, HÄGGMAN H, et al. Abscisic acid regulates anthocyanin biosynthesis and gene expression associated with cell wall modification in ripening bilberry (Vaccinium myrtillus L.) fruits[J]. Frontiers in Plant Science,2019,78(4):1259−1276.

    [17] 赵双, 傅茂润, 刘秀河. 马铃薯抑芽技术研究进展[J]. 食品科学,2013,34(17):338−343. [ZHAO S, FU M R, LIU X H. Research progress of potato bud suppression technology[J]. Food Science,2013,34(17):338−343. doi: 10.7506/spkx1002-6630-201317071
    [18] 刘贵福, 王树尧, 王华礼. 青鲜素喷施对花椒萌芽期和新梢生长量的影响[J]. 林业科技通讯,2019(1):57−58. [LIU G F, WANG S Y, WANG H L. Effects of cyananthocyanin spraying on germination and shoot growth of Zanthoxylum zanthoxylum[J]. Forest Science and Technology,2019(1):57−58. doi: 10.13456/j.cnki.lykt.2018.02.05.0004
    [19]

    XUE J Y, WANG S L, YOU X W, et al. Multi-residue determination of plant growth regulators in apples and tomatoes by liquid chromatography/tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry,2011,25(21):3289−3297. doi: 10.1002/rcm.5225

    [20] 王学芳, 张忠鑫, 郑磊, 等. 多效唑、烯效唑对油菜‘秦优1618’苗期特性和抗寒性的影响[J]. 中国农学通报,2021,37(36):36−40. [WANG X F, ZHANG Z X, ZHENG L, et al. Effects of paclobutrazol and unbutrazol on seedling characteristics and cold resistance of rapeseed 'Qinyou 1618'[J]. Chinese Agricultural Science Bulletin,2021,37(36):36−40. doi: 10.11924/j.issn.1000-6850.casb2021-0184
    [21] 耿杨阳, 郭彩华, 周宇, 等. 多效唑在黄瓜基质育苗中的应用效果研究[J]. 农业工程技术,2020,40(4):70−74. [GENG Y Y, GUO C H, ZHOU Y, et al. Effects of paclobutrazol on cucumber seedling growth[J]. Agricultural Engineering Technology,2020,40(4):70−74. doi: 10.16815/j.cnki.11-5436/s.2020.04.013
    [22] 康靓, 张娜, 张永强, 等. 矮壮素滴施量对滴灌冬小麦茎秆特征及其抗倒伏性的影响[J]. 新疆农业科学,2022,59(1):63−69. [KANG L, ZHANG N, ZHANG Y Q, et al. Effects of drip irrigation amount on stem characteristics and lodging resistance of winter wheat[J]. Xinjiang Agricultural Sciences,2022,59(1):63−69. doi: 10.6048/j.issn.1001-4330.2022.01.008
    [23] 食品安全国家标准食品中农药最大残留限量: GB 2763-2021[S]. 北京: 中国标准出版社, 2021.

    National Standard for Food Safety Maximum residue limit of pesticide in food: GB 2763-2021[S]. Beijing: Standards Press of China, 2021.

    [24] 李进寿, 罗芬, 王楠楠. 多效唑暴露对褐菖鮋脾脏免疫指标的影响[J]. 亚热带农业研究,2013,9(1):58−62. [LI J S, LUO F, WANG N N. Effects of paclobutrazol exposure on spleen immune indices of Bocaccio[J]. Subtropical Agriculture Research,2013,9(1):58−62. doi: 10.13321/j.cnki.subtrop.agric.res.2013.01.001
    [25]

    YUE K. Network pharmacology combined with metabolomics approach to investigate the toxicity mechanism of paclobutrazol[J]. Chemical Research in Toxicology,2022,35(4):626−635. doi: 10.1021/acs.chemrestox.1c00404

    [26]

    GUO H M, ZHAO Y, OUYANG M N, et al. The enantioselective effects and potential risks of paclobutrazol residue during cucumber pickling process[J]. Journal of Hazardous Materials,2020,386(1):121228−121890.

    [27] 叶嗣量. 果蔬植物生长调节剂(氯吡脲)对KM种小鼠生长发育影响初探[J]. 世界最新医学信息文摘,2016,16(54):166. [YE S L. Effects of fruit and vegetable plant growth regulator (chlorfen uron) on growth and development of KM mice[J]. World Latest Medicine Information,2016,16(54):166. doi: 10.3969/j.issn.1671-3141.2016.54.147
    [28]

    HENZI T. Forchlorfenuron and novel analogs cause cytotoxic effects in untreated and cisplatin-resistant malignant mesothelioma-derived cells[J]. International Journal of Molecular Sciences,2022,23(7):3963−3963. doi: 10.3390/ijms23073963

    [29]

    SONG S S, QI T C, HUANG H, et al. Regulation of stamen development by coordinated actions of jasmonate, auxin, and gibberellin in Arabidopsis[J]. Molecular Plant,2013,6(4):1065−1073. doi: 10.1093/mp/sst054

    [30] 郭毅炜, 陈益钦, 徐飞飞, 等. 断乳至性成熟期赤霉素暴露对大鼠卵巢类固醇激素合成的影响[J]. 卫生研究,2019,48(6):1004−1007. [GUO Y W, CHEN Y Q, XU F F, et al. Effects of exposure to gibberellin from weaning to sexual maturity on ovarian steroid synthesis in rats[J]. Journal of Hygiene Research,2019,48(6):1004−1007. doi: 10.19813/j.cnki.weishengyanjiu.2019.06.025
    [31]

    XU C, ZHOU Y, JIANG Z, et al. The in vitro effects of gibberellin on human sperm motility[J]. Aging,2019,11(10):3080−3093. doi: 10.18632/aging.101963

    [32] 刘一峰, 孟玉彩, 王蓓, 等. 乙烯利对小鼠细胞免疫的抑制作用及其机制[J]. 毒理学杂志,2009,23(2):133−135. [LIU Y F, MENG Y C, WANG B, et al. Inhibition of ethephon on cellular immunity in mice and its mechanism[J]. Journal of Toxicology,2009,23(2):133−135. doi: 10.16421/j.cnki.1002-3127.2009.02.024
    [33] 闫金松, 宋翠萍, 张海洋, 等. 乙烯利对青春期大鼠睾丸组织病理及生精细胞凋亡的影响[J]. 现代生物医学进展,2016,16(18):3427−3430. [YAN J S, SONG C P, ZHANG H Y, et al. Effects of ethephon on testicular histopathology and spermatogenic cell apoptosis in adolescent rats[J]. Progress in Modern Biomedicine,2016,16(18):3427−3430. doi: 10.13241/j.cnki.pmb.2016.18.007
    [34]

    BHADORIA P, NAGAR M, BAHRIOKE V, et al. Ethephon, an organophosphorous, a fruit and vegetable ripener: Has potential hepatotoxic effects?[J]. Journal of Family Medicine and Primary Care,2018,7(1):179−183. doi: 10.4103/jfmpc.jfmpc_422_16

    [35]

    MA Q L, DING Y D, CHANG J W, et al. Comprehensive insights on how 2, 4-dichlorophenoxyacetic acid retards senescence in post-harvest citrus fruits using transcriptomic and proteomic approaches[J]. Journal of Experimental Botany,2014,65(1):61−74. doi: 10.1093/jxb/ert344

    [36]

    TROUDI A, AMARA I, SAMET A, et al. Oxidative stress induced by 2, 4-phenoxyacetic acid in liver of female rats and their progeny: Biochemical and histopathological studies[J]. Environ Toxicol,2012,27(3):137−145. doi: 10.1002/tox.20624

    [37]

    TROUDI A, SOUDANI N, AMIRA A, et al. 2, 4-Dichlorophenoxyacetic acid effects on nephrotoxicity in rats during late pregnancy and early postnatal periods[J]. Ecotoxicology and Environmental Safety,2011,74(8):2316−2323. doi: 10.1016/j.ecoenv.2011.07.032

    [38] 黄立利, 张梦云, 刘科亮, 等. 2, 4-二氯苯氧乙酸对幼龄SD大鼠肝毒性的研究[J]. 癌变·畸变·突变,2021,33(1):22−27. [HUANG L L, ZHANG M Y, LIU K L, et al. Effects of 2, 4-dichlorophenoxyacetic acid on liver toxicity in young SD rats[J]. Carcinogenesis Distort Mutat,2021,33(1):22−27.
    [39] 刘红, 曾志杰, 李传勇, 等. 4-氯苯氧乙酸钠对小鼠的毒性及其残留分析[J]. 食品科学,2016,37(3):197−204. [LIU H, ZENG Z J, LI C Y, et al. Toxicity and residue analysis of sodium 4-chlorop henoxyacetate in mice[J]. Food Science,2016,37(3):197−204. doi: 10.7506/spkx1002-6630-201603036
    [40] 王一茜. 对氯苯氧乙酸钠在绿豆芽中的降解动态及其对品质影响[D]. 保定: 河北农业大学, 2013.

    WANG Y Q. Degradation dynamics of sodium p-chlorophenoxyacetate in mung bean sprouts and its effect on quality[D]. Baoding: Hebei Agricultural University, 2013.

    [41] 国家食品药品监督管理总局. 国家食品药品监督管理总局农业部国家卫生和计划生育委员会关于豆芽生产过程中禁止使用6-苄基腺嘌呤等物质的公告(2015年第11号) [Z]. 2015-04-13.

    State Food and Drug Administration. Announcement of the State Food and Drug Administration of the Ministry of Agriculture and the State Health and Family Planning Commission on Prohibition of 6-benzyl adenine and other substances in bean sprout production (No.11, 2015) [Z]. 2015-04-13.

    [42] 林海丹, 谢守新, 吴思彦, 等. 区果蔬中广东地植物生长调节剂应用现状调查[J]. 广东农业科学,2015,42(12):82−85. [LIN H D, XIE S X, WU S Y, et al. Investigation on application status of Plant growth regulators in fruits and vegetables of Guangdong Province[J]. Guangdong Agricultural Sciences,2015,42(12):82−85. doi: 10.3969/j.issn.1004-874X.2015.12.017
    [43] 邵金良, 樊建麟, 林涛, 等. 高效液相色谱法同时测定果蔬中5种植物生长调节剂残留[J]. 食品安全质量检测学报,2015,6(8):3255−3261. [SHAO J L, FANG J L, LIN T, et al. Simultaneous determination of five plant growth regulator residues in fruits and vegetables by high performance liquid chromatography[J]. Journal of Food Safety & Quality,2015,6(8):3255−3261. doi: 10.19812/j.cnki.jfsq11-5956/ts.2015.08.071
    [44] 李钊君. 四川主要果蔬植物生长调节剂应用情况及其残留分析研究[D]. 成都: 四川农业大学, 2015.

    LI Z J. Study on application and residue analysis of main fruit and vegetable plant growth regulators in Sichuan[D]. Chengdu: Sichuan Agricultural University, 2015.

    [45] 王丽英, 任贝贝, 刘印平, 等. 河北省市售水果中植物生长调节剂残留状况调查与分析[J]. 食品安全质量检测学报,2019,10(12):3929−3935. [WANG L Y, REN B B, LIU Y P, et al. Investigation and analysis of plant growth regulator residues in fruits sold in Hebei Province[J]. J Food Saf Qual,2019,10(12):3929−3935. doi: 10.3969/j.issn.2095-0381.2019.12.049
    [46] 姜楠, 刘思洁, 张博. 2014~2017年吉林省市售果蔬中植物生长调节剂监测结果分析[J]. 食品安全质量检测学报,2018,9(14):3629−3633. [JIANG N, LIU S J, ZHANG B. Analysis of monitoring results of plant growth regulators in fruits and vegetables in Jilin Province from 2014 to 2017[J]. Journal of Food Safety & Quality,2018,9(14):3629−3633. doi: 10.3969/j.issn.2095-0381.2018.14.012
    [47] 胡晓科, 邹海民, 薛勇. 高效液相色谱-荧光检测器法同时测定蔬果中5种植物生长素残留[J]. 理化检验(化学分册),2019,55(3):309−313. [HU X K, ZOU H M, XUE Y. Simultaneous determination of auxin residues in five fruits and vegetables by high performance liquid chromatography-fluorescence detector[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis),2019,55(3):309−313.
    [48] 李晓贝, 吴海平, 赵晓燕, 等. 上海地产葡萄和草莓中植物生长调节剂残留及膳食摄入风险评估[J]. 农药学学报,2022,24(1):152−160. [LI X B, WU H P, ZHAO X Y, et al. Risk assessment of plant growth regulator residues and dietary intake in grape and strawberry in Shanghai[J]. Chinese Journal of Pesticide Science,2022,24(1):152−160. doi: 10.16801/j.issn.1008-7303.2021.0162
    [49] 魏玉霞, 任武洁, 郭虹, 等. QuEChERS-超高效液相色谱-串联质谱法同时测定樱桃中的7种植物生长调节剂[J]. 现代预防医学,2017,44(12):2245−2250. [WEI Y X, REN W J, GUO H, et al. Simultaneous determination of seven plant growth regulators in cherry by QuEChERS-Ultra performance liquid chromatography-tandem mass spectrometry[J]. Modern Preventive Medicine,2017,44(12):2245−2250.
    [50] 周勇, 刘佳, 朱航, 等. QuEChERS结合高效液相色谱串联质谱法测定柑橘中多效唑残留量[J]. 食品安全质量检测学报,2020,11(15):4995−5000. [ZHOU Y, LIU J, ZHU H, et al. Determination of paclobutrazol residues in citrus by QuEChERS combined with high performance liquid chromatography tandem mass spectrometry[J]. Journal of Food Safety & Quality,2020,11(15):4995−5000. doi: 10.19812/j.cnki.jfsq11-5956/ts.2020.15.009
    [51] 宋利军, 付倩, 刘瑞弘, 等. QuEChERS提取-气相色谱-质谱法测定豆芽中的7种植物生长调节剂残留量[J]. 中国卫生检验杂志,2017,27(13):1855−1857,1862. [SONG L J, FU Q, LIU R H, et al. Determination of seven plant growth regulators residues in bean sprouts by QuEChERS extraction and gas chromatography-mass spectrometry[J]. China Journal of Health Laboratory Technology,2017,27(13):1855−1857,1862.
    [52] 赵海玲, 邱宏萌, 何娟, 等. 赣州市豆芽中5种植物生长调节剂的残留监测结果分析[J]. 实验与检验医学,2018,36(2):271−272. [ZHAO H L, QIU H M, HE J, et al. Analysis of residue monitoring results of five plant growth regulators in bean sprouts of Ganzhou City[J]. Experimental and Laboratory Medicine,2018,36(2):271−272. doi: 10.3969/j.issn.1674-1129.2018.02.047
    [53] 王炼, 骆春迎, 张礼春, 等. 液相色谱-串联质谱法测定水果中6种植物生长调节剂残留量[J]. 中国食品卫生杂志,2016,28(4):451−456. [WANG L, LUO C Y, ZHANG L C, et al. Determination of six plant growth regulators residues in fruits by liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Food Hygiene,2016,28(4):451−456. doi: 10.13590/j.cjfh.2016.04.009
    [54] 周鸿艳, 黄方取, 刘洋, 等. QuEChERS高效液相色谱-串联质谱法测定多种水果中的6种植物生长调节剂的残留量[J]. 中国卫生检验杂志,2016,26(13):1847−1851. [ZHOU H Y, HUANG F Q, LIU Y, et al. Determination of six plant growth regulators residues in fruits by QuEChERS high performance liquid chromatography-tandem mass spectrometry[J]. China Journal of Health Laboratory Technology,2016,26(13):1847−1851.
    [55] 马淑青, 王丹, 时振强. UPLC-MS/MS法测定潍坊市售果蔬中赤霉素残留及其污染水平分析[J]. 食品安全导刊,2020(36):106−108. [MA S Q, WANG D, SHI Z Q. Determination of gibberellin residue in fruits and vegetables by UPLC-MS/MS method and its pollution level in Weifang City[J]. China Food Safety Magazine,2020(36):106−108. doi: 10.16043/j.cnki.cfs.2020.36.068
    [56] 李倩, 房宁, 王子剑, 等. 2016年北京市大兴区主产水果中植物生长调节剂残留量监测分析[J]. 中国卫生检验杂志,2017,27(14):2089−2090, 2094. [LI Q, FANG N, WANG Z J, et al. Monitoring and analysis of plant growth regulator residues in main fruits in Daxing District, Beijing in 2016[J]. China Journal of Health Laboratory Technology,2017,27(14):2089−2090, 2094.
    [57] 张倩, 贝峰, 孙欣, 等. 甜樱桃果实GA3的测定技术研究[J]. 果树学报,2017,34(10):1294−1300. [ZHANG Q, BEI F, SUN X, et al. Determination of GA3 in sweet cherry fruit[J]. Journal of Fruit Science,2017,34(10):1294−1300.
    [58] 宋晓婉, 宋旭凤, 姚凯. 豆芽中植物生长调节剂的残留及风险监测评估[J]. 现代农业科技,2020(6):229−230. [SONG X W, SONG X F, YAO K, et al. Residue and risk assessment of plant growth regulator in bean sprouts[J]. Modern Agricultural Science and Technology,2020(6):229−230. doi: 10.3969/j.issn.1007-5739.2020.06.141
    [59] 李丽华, 郑玲. 固相微萃取-气相色谱联用技术测定芒果原浆中乙烯利的残留量[J]. 分析试验室,2007(S1):287−289. [LI L H, ZHENG L. Determination of ethephon residues in mango pulp by solid phase microextraction combined with gas chromatography[J]. Chinese Journal of Analysis Laboratory,2007(S1):287−289. doi: 10.3969/j.issn.1000-0720.2007.z1.091
    [60] 马晨, 张群, 段云, 等. 荔枝上植物生长调节剂使用与残留现状分析[J]. 热带农业科学,2019,39(4):67−75. [MA C, ZHANG Q, DUAN Y, et al. Application and residue analysis of plant growth regulator in litchi[J]. Chinese Journal of Tropical Agriculture,2019,39(4):67−75.
    [61] 杜兴兰, 李淑静, 张志华, 等. 聊城市市售豆芽菜中5种植物生长调节剂残留调查分析[J]. 食品安全质量检测学报,2020,11(6):2029−2034. [DU X L, LI S J, ZHANG Z H, et al. Investigation and analysis of residues of five plant growth regulators in soybean sprouts sold in Liaocheng City[J]. Journal of Food Safety & Quality,2020,11(6):2029−2034.
    [62] 刘印平, 王丽英, 路杨, 等. 河北省市售豆芽菜中6种植物生长调节剂残留调查分析[J]. 食品安全质量检测学报,2015,6(10):3827−3833. [LIU Y P, WANG L Y, LU Y, et al. Investigation and analysis of six plant growth regulator residues in soybean sprouts in Hebei Province[J]. Journal of Food Safety & Quality,2015,6(10):3827−3833.
    [63] 李运朝, 及华, 温之雨, 等. 3种植物生长调节剂在京津冀地区主要瓜果类蔬菜中的残留动态及安全风险评价[J]. 食品安全质量检测学报,2017,8(8):3011−3017. [LI Y C, JI H, WEN Z Y, et al. Residue dynamics and safety risk assessment of three plant growth regulators in main fruits and vegetables in Beijing-Tianjin-Hebei region[J]. Journal of Food Safety & Quality,2017,8(8):3011−3017.
    [64] 食品安全查询系统. 食品抽检信息统计分析[DB/OL]. [2022-10-26]. http://www.eshian.com/sat/foodsampling/warn/articlelist/601.

    Food Safety Inquiry System. Food sampling observation information statistical analysis[DB/OL]. [2022-10-26]. http://www.eshian.com/sat/foodsampling/warn/articlelist/601.

    [65]

    United States Department of Agriculture (FAS). Pesticide MRL database[DB/OL]. [2022-10-26]. https://www.usda.gov/.

    [66]

    US Government Printing Office (GPO). FDsys[DB/OL]. [2022-10-26]. https://www.govinfo.gov/app/search.

  • 期刊类型引用(2)

    1. 文华英,王傅玉,张玉红. 青稞蕨麻酵素发酵工艺优化及其品质评价. 中国酿造. 2024(02): 199-205 . 百度学术
    2. 董平,徐向波,周奎,曹娜娜,吴华昌,邓静. 沙米面包配方优化及其品质研究. 食品工业科技. 2024(14): 155-164 . 本站查看

    其他类型引用(3)

表(3)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-08-01
  • 网络出版日期:  2023-04-01
  • 刊出日期:  2023-05-31

目录

/

返回文章
返回
x 关闭 永久关闭