• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
刘书伟,沈梦霞,王燕,等. 海绵Hyrtios erectus抗氧化产物超声提取工艺优化及其抗氧化活性分析[J]. 食品工业科技,2023,44(9):236−243. doi: 10.13386/j.issn1002-0306.2022070373.
引用本文: 刘书伟,沈梦霞,王燕,等. 海绵Hyrtios erectus抗氧化产物超声提取工艺优化及其抗氧化活性分析[J]. 食品工业科技,2023,44(9):236−243. doi: 10.13386/j.issn1002-0306.2022070373.
LIU Shuwei, SHEN Mengxia, WANG Yan, et al. Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(9): 236−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070373.
Citation: LIU Shuwei, SHEN Mengxia, WANG Yan, et al. Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(9): 236−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070373.

海绵Hyrtios erectus抗氧化产物超声提取工艺优化及其抗氧化活性分析

Ultrasonic-Assisted Extraction Optimization of Antioxidant Products from Hyrtios erectus and Its Antioxidant Activity

  • 摘要: 为探索海绵动物抗氧化提取物的提取工艺及提取物的抗氧化活性,以H. erectus海绵乙醇提取物的DPPH自由基清除率为响应值,分别考察超声温度、超声时间和超声功率3个影响因素,通过Box-Behnken响应面设计确定最佳超声提取工艺。以该工艺提取物为实验材料,分析其对DPPH自由基、ABTS+•和•OH的清除效果,通过构建H2O2氧化损伤模型研究提取物对氧化损伤L02细胞的活力和对H2O2氧化应激胞内ROS含量的影响。结果表明:可操作的最佳工艺为超声温度57 ℃,超声时间60 min,超声功率490 W,在此条件下,提取物DPPH自由基清除率为61.98%±1.52%,与预测值62.16%吻合度较好,该提取物对DPPH自由基、ABTS+•和•OH具有良好的清除效果,提取物处理组细胞活力均显著高于模型组(P<0.05),且细胞内ROS荧光强度均极显著低于模型组(P<0.01)。总之,该工艺提取物具有较广泛的抗氧化活性,对H2O2氧化损伤的L02细胞具有保护作用,该研究可为抗氧化食品添加剂的研发提供理论支撑。

     

    Abstract: To explore the process of extraction and antioxidant activity of products from marine sponge, three influencing factors, ultrasonic temperature, ultrasonic time, and ultrasonic power were investigated respectively taking DPPH radicals scavenging rate of ethanol extracts from H. erectus as the response value, and the optimal ultrasonic-assisted extraction process was determined by Box-Behnken design. The extract obtained from H. erectus by the best ultrasonic-assisted process was detected for antioxidant activity, which included the scavenging effect on DPPH radicals, ABTS+• and •OH. The effects of the extract on viability of oxidative damage L02 cells and content of intracellular ROS were detected by constructing a cell model of H2O2 induced oxidative damage. The results showed that the optimized process conditions were as follows: Ultrasonic temperature was 57 ℃, ultrasonic time was 60 min, and ultrasonic power was 490 W. Under these conditions, the DPPH scavenging rate of the extract was 61.98%±1.52%, which agreed well with the predicted value of 62.16%. The extract showed good scavenging effects on DPPH radical, ABTS+• and •OH. The cell viability of treated groups was significantly higher than that of the model group (P<0.05), and the intensity of intracellular ROS fluorescence was significantly lower than that of the model group (P<0.01). In general, the product from H. erectus had a wide range of antioxidant activity, and it had a protective effect on H2O2 induced oxidative damage in L02 cells. This study provides theoretical support for the research and development of antioxidant food additives.

     

/

返回文章
返回