• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于GC-MS分析不同郫县豆瓣对复合调味料挥发性风味的影响

徐阳, 沈思怡, 戢得蓉, 段丽丽

徐阳,沈思怡,戢得蓉,等. 基于GC-MS分析不同郫县豆瓣对复合调味料挥发性风味的影响[J]. 食品工业科技,2023,44(15):264−274. doi: 10.13386/j.issn1002-0306.2022070340.
引用本文: 徐阳,沈思怡,戢得蓉,等. 基于GC-MS分析不同郫县豆瓣对复合调味料挥发性风味的影响[J]. 食品工业科技,2023,44(15):264−274. doi: 10.13386/j.issn1002-0306.2022070340.
XU Yang, SHEN Siyi, JI Derong, et al. Analysis of the Effect of Different Pixian Bean Paste on the Volatile Flavor of Compound Seasoning Based on GC-MS[J]. Science and Technology of Food Industry, 2023, 44(15): 264−274. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070340.
Citation: XU Yang, SHEN Siyi, JI Derong, et al. Analysis of the Effect of Different Pixian Bean Paste on the Volatile Flavor of Compound Seasoning Based on GC-MS[J]. Science and Technology of Food Industry, 2023, 44(15): 264−274. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070340.

基于GC-MS分析不同郫县豆瓣对复合调味料挥发性风味的影响

基金项目: 大学生创新创业训练项目(202104023);四川旅游学院高水平科研项目培育专项(2022PY02);四川旅游学院科研创新团队项目(19SCTUTY04)。
详细信息
    作者简介:

    徐阳(1998−),男,本科,研究方向:食品分析与检测,E-mail:2638252381@qq.com

    通讯作者:

    段丽丽(1980−),女,博士,教授,研究方向:食品分析与检测,E-mail:12289484@qq.com

  • 中图分类号: TS264.9

Analysis of the Effect of Different Pixian Bean Paste on the Volatile Flavor of Compound Seasoning Based on GC-MS

  • 摘要: 本研究利用气相色谱-质谱联用(GC-MS),检测以不同品牌郫县豆瓣为原料制成的鱼香味型和麻辣味型复合调味料中的挥发性物质,并结合化学计量学和感官性状分析不同品牌郫县豆瓣对复合调味料挥发性风味物质的影响。实验结果表明:鱼香味型复合调味料中共鉴定出63种挥发性成分,其中醇类6种,醚类5种,醛类6种,酸类6种,烃类28种,酮类3种,酯类5种,其他化合物4种。麻辣味型复合调味料样品中共检测到了64种挥发性成分,包括醇类6种,醚类1种,醛类9种,酸类8种,烃类27种,酮类1种,酯类5种,其他7种。研究表明,不同品牌郫县豆瓣对鱼香味型和麻辣味型复合调味料风味的影响存在显著差异,鱼香味型复合调味料风味的差异主要体现在醛类、酯类和醚类物质的种类和含量上,川郫、恒星和丹丹豆瓣所制成品在醛类、酯类和醚类物质的含量上有较高含量,对鱼香味型风味的形成有较大作用。麻辣味型复合调味料风味的差异主要表现在醛类物质的种类和含量上,川老汇豆瓣增强麻辣味型风味的优势体现在含有丰富的醛类物质。
    Abstract: In this study, gas chromatography-mass spectrometry (GC-MS) was used to detect the volatile substances in the fish flavored and spicy flavored compound condiments made from different brands of Pixian douban, and the effects of different brands of Pixian douban on the volatile flavor substances of the compound condiments were analyzed in combination with chemometrics and sensory properties. The results showed that 63 volatile components were identified in fish-flavored compound seasoning, including 6 alcohols, 5 ethers, 6 aldehydes, 6 acids, 28 terpenoids, 3 ketones, 5 esters and 4 other compounds. A total of 64 volatile components were detected in the samples of spicy compound flavorings, including 6 alcohols, 1 ether, 9 aldehydes, 8 acids, 27 terpenoid hydrocarbons, 1 ketone, 5 esters and 7 others. The study showed that there were significant differences in the effects of different brands of Pixian douban on the flavor of fish flavor and spicy flavor compound seasoning, and the differences in the flavor of fish flavor compound seasoning were mainly reflected in the types and contents of aldehydes, esters and ethers.the products made by Chuanpi, Hengxing and Dandan Douban had a high content of aldehydes, esters and ethers, which played an important role in the formation of fish-flavor flavor. The difference of flavor of spicy compound condiments was mainly reflected in the type and content of aldehydes, the advantage of Chuanlaohui douban to enhance the characteristic flavor of spicy type was reflected in the rich aldehydes.
  • 调味料是烹饪中的辅料,具有增香、赋色以及提鲜的作用。复合调味料是指由两种或两种以上调味料以及原辅料的科学搭配,通过物理、化学以及生物技术,工业化生产而成的具有多种调味料特点的复合型产品,具有营养性、风味多样性和方便性等优点[1]。在复合调味料中,鱼香味型清香爽口、香而细腻,有鱼风味而不见鱼肉,吃后让人回味无穷[2];麻辣味型醇浓并重、麻辣鲜香、咸鲜热烫,助食而解腻[3]。郫县豆瓣是制作鱼香味型和麻辣味型复合调味料的主要原料,对复合调味料的风味形成有重要的影响[4]

    在已有的研究中,郫县豆瓣被检测出90余种挥发性成分,包括醛类、酸类、酯类、醇类等,其特殊风味是由多种芳香物质共同作用而产生的,这些风味物质对于鱼香味型和麻辣味型风味的形成具有重要的作用[5]。叶玉矫[6]通过郫县豆瓣不同发酵时期的风味指标,对发酵各时期的风味物质含量变化具体分析,发现郫县豆瓣早熟到后熟阶段,乙醇、苯乙醇、异戊醇等挥发性风味物质逐渐减少,苯乙醛、乙醛、糠醛等风味物质逐渐积累。还有研究比较了恒温封闭发酵和传统发酵生产的郫县豆瓣风味以及微生物群落不同的影响,虽然恒温封闭发酵的有机酸和游离氨基酸含量低于传统发酵,但恒温封闭发酵在形成香气方面有独特的优势[7]。郫县豆瓣的生产工艺复杂,不同生产厂商的发酵工艺和采用的原料不同,加工而成的郫县豆瓣在营养成分和风味物质上有着明显的区别[8],对制作的复合调味料风味作用也会改变[9-10],因而不同品牌郫县豆瓣制成的复合调味料具有极大的差异性。

    近年,针对郫县豆瓣的研究主要集中在菌群特征[11]、成分变化[12-13]和发酵工艺[14]等方面,复合调味料的研究方向主要在配方优化[15]、加工工艺[16]和产品开发[17]等方面。郫县豆瓣和复合调味料综合研究相对较少,随着居民消费理念逐渐转变,复合调味料行业规模快速增长,发展速度快于整体市场。本研究采用气相色谱-质谱联用技术并结合感官评价分析6种不同品牌郫县豆瓣经工艺流程制作成复合调味料后,通过分析复合调味料挥发性物质成分类型,阐释不同品牌郫县豆瓣对复合调味料的挥发性风味物质的影响,从挥发性成分的角度为生产复合调味料提供科学依据,有利于指导工业化生产鱼香和麻辣味型复合调味料,对工业化生产常见复合调味料也有促进作用。

    郫县豆瓣酱 不同品牌(见表1);其他材料:芝麻油、盐、食用油、白砂糖、淀粉、葱、姜、蒜、味精、花椒粉、辣椒粉、酱油、醋、浓汤宝等 均为市售。

    表  1  6种品牌郫县豆瓣产品信息
    Table  1.  6 kinds of Brands Pixian douban product information
    名称产地编号生产日期保质期
    川老汇红油郫县豆瓣酱四川成都CLH2022.3.612个月
    川郫红油郫县豆瓣酱四川成都CP2022.3.212个月
    娟城牌红油郫县豆瓣酱四川成都JC2022.3.1912个月
    绍丰和红油郫县豆瓣酱四川成都SFH2022.2.2712个月
    恒星红油郫县豆瓣酱四川成都HX2022.3.2412个月
    丹丹红油郫县豆瓣酱四川成都DD2022.3.2012个月
    下载: 导出CSV 
    | 显示表格

    JM-A型电子天平 德国赛多利斯公司;SQ680型气相色谱-质谱联用仪 美国PerkinElmer公司;CAR/PDMS型75 μm萃取头 美国Supelco公司;美的C22-E303电磁炉 美的集团;奥克斯AUX搅拌机 奥克斯集团;其他实验室常用设备。

    鱼香味型复合调味料的材料、配方和加工方法参考《川菜烹饪工艺》[4]制作,配方见表2

    表  2  鱼香味型复合调味料的制作配料表
    Table  2.  Preparation ingredients of fish-flavored compound seasonings
    原料用量(g)原料用量(g)
    味精2蒜末15
    白糖25葱花25
    酱油4鲜汤100
    10水淀粉15
    郫县豆瓣40食用油55
    姜末5芝麻油3
    下载: 导出CSV 
    | 显示表格

    水淀粉为淀粉与水按照1:4的比例配制,鲜汤为浓汤宝与水按照1:20的比例制作,将白糖、味精、酱油、醋、芝麻油、水淀粉、鲜汤兑成芡汁;热锅加油,待油温至120 ℃,放入郫县豆瓣炒制1 min(电磁炉功率1800 W),炒香且油呈红色,放入姜末、蒜末和葱花炒香(电磁炉功率1600 W),倒入芡汁搅匀,收汁浓稠(电磁炉功率2000 W),烹制完成后进行风味检测。

    麻辣味型复合调味料的材料、配方和加工方法参考《川菜烹饪工艺》[4]制作,配方见表3

    表  3  麻辣味型复合调味料的制作配料表
    Table  3.  Preparation ingredients of spicy flavor compound seasonings
    原料用量(g)原料用量(g)
    花椒粉1味精2
    辣椒粉7食用油70
    酱油10鲜汤200
    豆豉6水淀粉30
    郫县豆瓣40
    下载: 导出CSV 
    | 显示表格

    锅中放油烧至120 ℃,加入郫县豆瓣、辣椒粉、豆豉炒制1 min(电磁炉功率1800 W),炒香掺入鲜汤,加入酱油(电磁炉功率1400 W),加入味精、花椒粉、水淀粉,收汁浓稠即成(电磁炉1800 W),烹制后进行风味检测。

    取样品2 g置于15 mL样品瓶中,加入搅拌子密封,磁力搅拌装置温度70 ℃,转速80 r/min,平衡10 min,然后将老化(250 ℃,10 min)的萃取头插入顶空瓶,吸附80 min,在250 ℃气相色谱进样口解吸10 min[18]

    色谱柱:Elite-5MS(30 m×0.25 mm×0.25 μm);进样口温度:250 ℃;升温程序:起始温度40 ℃,保持2 min,以2 ℃/min升至60 ℃,保留1 min,随后以20 ℃/min升至250 ℃,保留2 min。载气:氦气(99.9999%),流速1 mL/min,分流比:5:1[18]

    EI离子源,电子能量为70 eV,离子源温度230 ℃;全扫描;质量扫描范围:35~400 m/z;扫描延迟1.1 min[18]。定性分析:挥发性成分通过与标准谱库(NIST2011)检索匹配,并结合人工解谱,仅报道匹配度≥500的化合物。定量分析:通过峰面积归一化法进行定量,从而确定挥发性成分的相对含量。

    挑选有品评经验的10名食品专业学生(4男6女)组成感官评价小组,小组成员按照GB /T 29605-2013要求进行培训,对不同产品严格按照感官评价的流程进行综合评价,以10名同学的感官鉴评平均值作为感官评价结果,感官评价标准见表4表5

    表  4  鱼香味型复合调味料感官评分标准
    Table  4.  Sensory scoring criteria for fish-flavored compound seasonings
    评价项目评价标准得分(分)
    香气鱼香味浓郁27~30
    鱼香味浓郁,但整体气味协调性差24~26
    鱼香味不突出,整体气味不协调19~23
    有焦糊气味0~18
    滋味咸淡适宜,酸甜比平衡34~40
    咸淡适宜,酸甜有些偏颇30~33
    咸淡不适,酸甜比例失衡25~29
    焦糊有苦味0~24
    色泽色泽油润,红亮清透有光泽27~30
    色泽油润,但红亮度不够,稍暗24~26
    色泽不够油润,不红亮清透19~23
    无光泽,颜色发黑0~18
    下载: 导出CSV 
    | 显示表格
    表  5  麻辣味型复合调味料感官评分标准
    Table  5.  Sensory scoring criteria for spicy compound seasonings
    评价项目评价标准得分(分)
    香气麻辣香气浓郁27~30
    麻辣香气浓郁,但整体气味协调性差24~26
    麻辣香气清淡,整体气味不协调19~23
    有焦糊气味0~18
    滋味口味调和,麻辣味浓厚34~40
    口味基本调和,无过辣、过麻或麻辣味清淡现象30~33
    口味不调和,有过辣或过麻现象25~29
    焦糊有苦味0~24
    色泽色泽油润红亮有光泽27~30
    色泽油润,但红亮度不够,稍暗24~26
    色泽不够油润,不红亮19~23
    无光泽,颜色发黑0~18
    下载: 导出CSV 
    | 显示表格

    使用软件Excel 2016对复合调味料挥发性成分数据整理,利用SPSS.26软件对数据进行差异显著分析,并结合化学计量学分析和感官性状分析,化学计量学常用于食品风味化学的分析中,其中的聚类分析(CA)是一种依据样本特征相似度将其归类分析的方法[19],使用Origin 2019作图。

    表6表7可以看出,鱼香味型复合调味料中共鉴定出63种挥发性成分,其中醇类6种,醚类5种,醛类6种,酸类6种,烃类28种,酮类3种,酯类5种,其他化合物4种。其中,川老汇样品中共检测出54种、川郫样品中共检测出32种、娟城样品中共检测出38种、绍丰和样品中共检测出38种、恒星样品中共检测出37种、丹丹样品中共检测出29种挥发性风味物质,川老汇样品醇类、醛类、酯类和烃类化合物的种类数多于其他5种样品,酮类和其他类化合物相对含量高于其他样品。

    表  6  鱼香味型复合调味料各样品风味物质及相对含量
    Table  6.  Flavor substances and relative contents in various samples of fish-flavored compound seasonings
    序号CAS号中文名称英文名称分子式相对含量(%)
    CLHCPJCSFHHXDD
    醇类
    164-17-5乙醇EthanolC2H6O1.653.136.933.852.802.03
    213651-14-42,3-二甲基苄醇2,3-Dimethylbenzyl alcoholC9H12O0.0700.080.0500
    399-48-9L-香芹醇CarveolC10H16O0.080.170.070.920.090.07
    4470-82-6桉叶油醇CineoleC10H18O3.621.264.331.801.400.70
    5507-70-02-茨醇borneolC10H18O0.090.05000.090
    6107-18-6丙烯醇2-Propen-1-olC3H6O1.1217.2216.5116.5410.860
    醚类
    7115-10-6二甲醚Dimethyl etherC2H6O0.7500.0900.100
    82179-57-9烯丙基二硫Diallyl disulfideC6H10S20.330.410.510.420.130.10
    9928-55-2乙基丙烯醚Ethyl1-PropenylEtherC5H10O2.945.8400.060.130.19
    10592-88-1二烯丙基硫醚Allyl SulfideC6H10S01.9900.311.150.51
    11140-67-0草蒿脑EstragoleC10H12O0.0900.0600.050
    醛类
    12590-86-3异戊醛IsovaleraldehydeC5H10O1.052.340.851.273.423.11
    1396-17-32-甲基丁醛2-MethylbutanalC5H10O1.1500.901.273.894.42
    1466-25-1正己醛HexanalC6H12O0.402.400.290.311.552.05
    151998/1/1糠醛FurfuralC5H4O21.013.622.1000.960
    16124-19-6壬醛NonanalC9H18O0.120.1100.0500
    17498-60-23-糠醛3-FuraldehydeC5H4O21.231.012.021.002.691.86
    酸类
    1864-18-6甲酸Formic acidCH2O24.1600000
    19625-45-6甲氧基乙酸2-Methoxyacetic acidC3H6O34.2201.30000.72
    2013881-91-9氨基甲磺酸Aminomethanesulfonic acidCH5NO3S0.970000.090
    211115-65-7L-半胱亚磺酸L-Cysteinesulfinic acidC3H7NO4S02.640.710.7100
    2264-19-7乙酸Acetic acidC2H4O231.9739.7734.2044.1249.4549.71
    23616-62-6丙基丙二酸2-Propylmalonic acidC6H10O4000.1100.080
    烃类
    2413952-84-62-氨基丁烷sec-ButylamineC4H11N2.6500000
    25463-82-1新戊烷2,2-dimethylpropaneC5H126.5100.240.4300.22
    262216-34-44-甲基辛烷4-MethyloctaneC9H200.130000.520
    27508-32-7三环烯cycleneC10H160.2400.19000
    2813466-78-93-蒈烯3-CareneC10H160.8700.760.300.280
    2979-92-5莰烯CampheneC10H163.090.682.630.940.760.41
    30499-97-8假性柠檬烯pseudo-limoneneC10H160.2100.15000
    3199-87-64-异丙基甲苯p-isopropyltolueneC10H140.170.040.090.050.040
    32586-62-9萜品油烯TerpinoleneC10H161.470.470.3900.020
    33514-95-41,5,5-三甲基-6-亚甲基环己烷1,5,5-Trimethyl-6-methylene-cyclohexeneC10H160.6600000
    3499-85-4γ-松油烯γ-TerpineneC10H160.3101.540.810.690.16
    355989-27-5d-柠檬烯D-LimoneneC10H160.0700.070.0800
    363856-25-5(-)-Alpha-蒎烯α-CopaeneC15H240.06000.190.320
    3724251-86-35,8-二乙基十二烷Dodecane, 5,8-diethyl-C16H340.0700.04000.16
    381560-95-82-甲基四癸烷2-METHYLTETRADECANEC15H320.230.070.07000
    39644-30-4α-姜黄烯alpha-CurcumeneC15H220.420.090.230.120.040.15
    4016728-99-7立方烯NaphthaleneC15H240.28000.150.030
    41629-62-9正十五烷PentadecaneC15H320.2100000
    422213-23-22,4-二甲基庚烷2,4-DimethylheptaneC9H2001.090.320.291.340
    43100-41-4乙苯etherC8H100.120.6500.1200
    4455282-02-51,4-二甲基-2-八角环己烷1,4-dimethyl-2-octadecyl-C26H5200.05000.030
    455208-49-1(1S,3R)-顺式-4-蒈烯(1S,3R)-(Z)-4-careneC10H160.190.340000.42
    461073-05-81,3,2-二氧硫杂环己烷-2,2-二氧化物1,3,2-Dioxathiane,2,2-dioxideC3H6O4S0011.480.670.020
    47619-99-83-乙基己烷 3-ethylhexaneC8H18000.910.0500
    48503-30-0氧杂环丁烷OxetaneC3H6O0.230000.135.99
    49594-70-72-甲基-2-硝基丙烷2-Methyl-2-nitropropaneC4H9NO200.2400.2105.37
    501069-53-02,3,5-三甲基己烷2,3,5-TrimethylhexaneC9H200.200000.090.11
    51103-65-1丙基苯n-propylbenzeneC9H120.2100.140.0900.13
    酮类
    52110-43-02-庚酮2-HeptanoneC7H14O0.1100.0600.190
    531502-06-3环癸酮CyclodecanoneC10H18O0.220.1700.0800.16
    543350-30-9环壬酮cyclononanoneC9H16O000.18000.12
    酯类
    5520600-96-8四硝酸二甘油酯3,3'-Oxybis(1,2-propanediol)tetranitrateC6H10N4O130.85000.0700
    56141-78-6乙酸乙酯Ethyl AcetateC4H8O21.270.002.110.005.837.47
    57115-95-7乙酸芳樟酯Linalyl acetateC12H20O20.12000.1200
    58123-66-0正己酸乙酯Ethyl hexanoateC8H16O22.130.080.1300.030.40
    59503-30-0氧杂环丁烷OxetaneC3H6O0.076.3501.830.050
    其他
    6062488-52-23-乙烯基-3,6-二氢二噻吩3-ethenyl-3,6-dihydrodithiineC6H8S20.220.1900.4000
    61104-46-1茴香脑cis-AnetholC10H12O3.410.340.380.130.130.09
    6262488-53-33-乙烯基-4H-1,2-二噻英3-vinyl-4H-1,2-dithiinC6H8S20.200.1800.3700.14
    6318368-95-1p-薄荷三烯,p-薄荷-1,3,8-三烯1,3,8-p-MenthatrieneC10H140.330.0800.1500.15
    下载: 导出CSV 
    | 显示表格
    表  7  鱼香味型复合调味料各样品挥发性成分种类数及相对含量
    Table  7.  Types and relative content of volatile components in various samples of fish-flavored compound seasonings
    序号挥发性
    成分
    CLHCPJCSFHHXDD
    种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)
    1醇类66.63521.83527.92523.16515.2432.80
    2醚类44.1138.2430.6630.7951.5630.80
    3醛类64.9659.4856.1653.90512.51411.44
    4酸类441.32242.41436.32244.83349.62250.43
    5烃类2318.60103.721619.25154.50144.311013.12
    6酮类20.3310.1720.2410.0810.1920.28
    7酯类54.4426.4322.2432.0235.9127.87
    8其他44.1640.7910.3841.0510.1330.38
    下载: 导出CSV 
    | 显示表格

    挥发性物质中,酸类物质相对含量最高,占总挥发性成分的36.32%~50.43%,丹丹样品酸类含量最高。乙酸为共有物质且含量较高,可赋予样品酸香的香味特征[20]。多数酸类物质具有刺激性气味,一般只起调和作用,对风味的影响不大[5]

    醇类共检测到6种,占总挥发性成分的2.80%~27.92%。醇类物质可以为样品提供脂香,一般情况,直链饱和醇阈值较高,非饱和醇阈值较低,风味影响更高[21]。共有物质为乙醇、L-香芹醇和桉叶油醇,醇类物质包括饱和醇1种,非饱和醇5种。非饱和醇中,桉叶油醇呈现草药味[22],丙烯醇含量最多,提供水果、坚果香气[23],非饱和醇含量最高的是娟城样品。

    烃类物质占总挥发性成分的3.72%~19.25%,娟城样品中烃类含量最多主要包括1,3,2-二氧硫杂环己烷-2,2-二氧化物、莰烯、γ-松油烯、3-乙基己烷和3-蒈烯等。6种样品共有物质为莰烯和α-姜黄烯。烃类化合物多来源于郫县豆瓣和香辛料,可赋予肉香、柑橘香和薄荷香[20]。在烃类化合物中,莰烯含量最高,具有樟脑的气味特征,常用于合成香料。萜品油烯为无色或淡琥珀色液体,有柠檬气味,d-柠檬烯具有甜香、柠檬香和柑橘香味。虽然烃类物质含量高且种类多,但其阈值较高,对复合调味料风味影响可能较小[24]

    醛类和酮类化合物分别占挥发性成分的3.90%~12.51%和0.08%~0.33%,均为羰基化合物,阈值较小,在较低浓度下可赋予花果香气,恒星样品醛类物质含量最高,川老汇酮类物质含量最高。6个样品中共检出6种醛和3种酮,共有的醛类物质为异戊醛、正己醛和3-糠醛,分别具有苹果香、青草气和烤香味[20],总体异戊醛含量最多,3-糠醛次之。与其他类别化合物相比,醛类和酮类化合物含量较少。

    酯类化合物占总挥发性成分的2.02%~7.87%,一般在很低浓度下会赋予食品水果香,是很重要的呈香物质,可能来源于食醋[25]。样品中共检测到5种酯类,丹丹样品酯类含量最高,乙酸乙酯呈现果香,乙酸芳樟酯可呈现薰衣草香[20],相较于乙酸芳樟酯,乙酸乙酯的相对含量更高。

    醚类化合物共检出5种,占总挥发性成分的0.66%~8.24%,川郫样品含量最高。烯丙基二硫为共有物质,具有大蒜香,是大蒜的典型风味物质,含硫化合物阈值较低,在微量条件下也会产生特殊风味[26],可用于调配大蒜、辣椒、洋葱等香精。二烯丙基硫醚可用于配制洋葱、辣椒和芥菜等香精,为大蒜主要挥发成分[27]。因此推测这几种醚类物质对样品的风味形成具有重要意义。

    其他化合物共检出4种,占总挥发性成分的0.13%~4.16%,川老汇样品含量最高。其中茴香脑为共有物质,具有茴香和香辛料的气味,是辣椒的重要香气成分[28]

    在鱼香味型复合调味料的成分中,酸类、饱和醇和烃类风味作用较小,非饱和醇中丙烯醇含量最多,极有可能是大蒜加热后所生成[29]。醛类、酮类、酯类和醚类阈值较低,对风味形成的作用可能更大。

    表8表9可以看出,麻辣味型复合调味料样品中共检测到了64种挥发性成分,包括醇类6种,醚类1种,醛类9种,酸类8种,烃类27种,酮类1种,酯类5种,其他7种。其中,川老汇样品中共检测出27种、川郫样品中共检测出27种、娟城样品中共检测出25种、绍丰和样品中共检测出25种、恒星样品中共检测出22种、丹丹样品中共检测出30种挥发性风味物质。

    表  8  麻辣味型复合调味料各样品风味物质及相对含量
    Table  8.  Flavor substances and relative contents in various samples of spicy compound seasonings
    序号CAS号中文名称英文名称分子式相对含量(%)
    CLHCPJCSFHHXDD
    醇类
    164-17-5乙醇EthanolC2H6O6.796.968.006.776.065.59
    235301-43-02-乙基环丁醇CyclobutanolC6H12O02.692.72000
    389794-28-52,4-二甲基-环戊醇2,4-DimethylcyclopentanolC7H14O00.840.89000
    499-48-9L-香芹醇CarveolC10H16O00000.040
    57731-29-5trans-4-甲基环己醇Cyclohexanol, 4-methyl-, trans-C7H14O00001.280
    6470-82-6桉叶油醇CineoleC10H18O4.875.005.585.415.905.11
    醚类
    7109-92-2乙烯基乙醚EtheneC4H8O0002.933.220
    醛类
    8590-86-3异戊醛IsovaleraldehydeC5H10O2.643.414.783.593.72.93
    996-17-32-甲基丁醛2-MethylbutanalC5H10O3.736.266.215.976.504.94
    1066-25-1正己醛HexanalC6H12O5.480.791.100.620.590.64
    11498-60-23-糠醛3-FuraldehydeC5H4O26.2400000
    12100-52-7苯甲醛BenzaldehydeC7H6O0.050.100000.19
    13111-30-8戊二醛GlutaraldehydeC5H8O20001.9900
    14124-19-6壬醛NonanalC9H18O000000.49
    15497-03-0顺-2-甲基-2-丁醛2-Butenal, 2-methyl-, (E)-C5H8O000.31000.52
    16122-78-1苯乙醛BenzeneacetaldehydeC8H8O000000.30
    酸类
    171115-65-7L-半胱亚磺酸L-Cysteine sulfinic acidC3H7NO4S4.0400000
    1864-19-7乙酸Acetic acidC2H4O24.431.590.5300.951.18
    19502-50-14-酮庚二酸4-KetopimelicC7H10O50.1400.16000
    2013881-91-9氨基甲磺酸Aminomethanesulfonic acidCH5NO3S00.580.31000
    21328-50-7α-酮戊二酸2-Oxopentanedioic acidC5H6O50000.1300
    22498-40-8L-磺基丙氨酸L-AlanineC3H7NO5S0000.4600.37
    236647-98-94-碘-1-甲基-1H-吡唑-3-羧酸Pyrazole-3-carboxylic acid,
    4-iodo-1-methyl-
    C5H5IN2O2000000.17
    2492437-43-92-甲基-1-苯基-1H-苯并咪唑-5-羧酸Benzimidazole-5-carboxylic acid,
    2-methyl-1-
    C15H12N2O2000000.11
    烃类
    25503-30-0三甲氧基酯Trimethylene oxideC3H6O21.4319.2118.1818.32013.77
    26558-30-5甲基环氧丙烷Isobutylene epoxideC4H8O3.2400002.57
    27142-82-5庚烷HeptaneC7H160.8100000
    28544-25-2环庚三烯1,3,5-CycloheptatrieneC7H84.810.230000
    2918368-95-1p-薄荷三烯1,3,8-p-MenthatrieneC10H1411.634.245.925.957.436.93
    3099-85-4γ-松油烯γ-TerpineneC10H161.490.331.7301.992.64
    3179-92-5莰烯CampheneC10H160.1500000
    32100-41-4乙基苯EthylbenzeneC8H100.1200.21000
    335208-49-1(1S,3R)-顺式-4-蒈烯4-CareneC10H160.651.7200.5200
    34127-91-3β-蒎烯β-PineneC10H162.281.870002.97
    35527-84-4邻-异丙基苯o-CymeneC10H141.180.441.462.711.826.27
    365989-27-5d-柠檬烯D-LimoneneC10H165.1600005.80
    3713466-78-93-蒈烯3-CareneC10H160.6900.500.770.700
    38586-62-9萜品油烯CyclohexeneC10H162.2410.3910.2116.6014.602.82
    3999-87-64-异丙基甲苯p-isopropyltolueneC10H1400.83002.340
    40535-77-3间异丙基甲苯m-cymeneC10H1401.110000
    4180-56-8α-蒎烯alpha-PineneC10H1600.530000
    42768-49-02-甲基-1-苯基丙烯Benzene,(2-methyl-1-propen-1-yl)-C10H1200.130000.14
    43765-46-8螺[2.4]庚-4,6-二烯Spiro[2,4]hepta-4,6-dieneC7H80000.210.150.30
    44921-47-12,3,4-三甲基正己烷Hexane, 2,3,4-trimethyl-C9H200000.3200
    452213-23-22,4-二甲基庚烷Heptane, 2,4-dimethyl-C9H20001.2100.140
    46513-35-92-甲基-2-丁烯2-Butene, 2-methyl-C5H10000000
    472039-90-92,6-二甲基苯乙烯Benzene, 2-ethenyl-1,3-dimethyl-C10H1200000.110
    48110-54-3正己烷n-HexaneC6H14000003.50
    492080-89-93-乙基-1,4-己二烯1,4-Hexadiene, 3-ethyl-C8H14000000.07
    50502-99-83,7-二甲基-1,3,7-辛三烯1,3,7-Octatriene, 3,7-dimethyl-C10H16000001.74
    5122635-78-5螺环[3.3]庚-2,6-二烯Spiro[3.3]hepta-2,6-dieneC7H8000.29000
    酮类
    5278-93-32-丁酮2-ButanoneC4H8O03.290002.56
    酯类
    53141-78-6乙酸乙酯Ethyl AcetateC4H8O23.132.151.972.613.702.33
    541224-46-0苯基氨基甲酸酯Carbamic acidC17H23NO20.2100.410.250.210
    55107-31-3甲酸甲酯Methyl formateC2H4O20001.3000
    5693-89-0苯甲酸乙酯Benzoic acidC9H10O20000.1700
    5725415-67-2异己酸乙酯Pentanoic acidC8H16O2000000.09
    其他
    58104-46-1茴香脑AnetholeC10H12O0.410.110.080.1000.15
    59135004-95-44,6,6-三甲基-2-甲酰甲基双环[3.1.1]3-庚烯2-Formymethyl-4,6,6-trimethylbicyclo[3.1.1]hept-3-eneC12H18O00.662.102.8000
    60460-01-5(3E,5E)-2,6-二甲基-1,3,5,7-辛四烯2,6-Dimethyl-1,3,5,7-octatetraene, E,E-C10H1400.1200.4000
    61767-58-81-甲基茚满Indan, 1-methyl-C10H120000.0700
    627713-69-1N-甲基异丁胺N,1-dimethylpropylamineC5H13N000018.120
    633299-32-92,4,5-三甲基-1,3-二氧戊环1,3-Dioxolane, 2,4,5-trimethyl-C6H12O200000.080
    6462338-57-23-乙烯基-1,2-二甲基-1,4-环己二烯1,4-Cyclohexadiene, 3-ethenyl-1,2-dimethyl-C10H13000.36000
    下载: 导出CSV 
    | 显示表格
    表  9  麻辣味型复合调味料各样品挥发性成分种类数及相对含量
    Table  9.  Types and relative content of volatile components in various samples of spicy compound seasonings
    序号挥发性
    成分
    CLHCPJCSFHHXDD
    种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)
    1醇类211.66415.49417.19212.18413.28210.70
    2醚类00000012.9313.2200
    3醛类518.14410.56412.40412.17310.79710.01
    4酸类38.6122.1731.0020.5910.9541.83
    5烃类1455.881241.03939.71845.40929.281349.52
    6酮类0013.2900000012.56
    7酯类23.3412.1522.3844.3323.9122.42
    8其他10.4130.8932.5443.37218.2010.15
    下载: 导出CSV 
    | 显示表格

    挥发性成分中,酸类物质占总挥发性成分的0.59%~8.61%,川老汇样品含量最高。酸类主要为乙酸、氨基甲磺酸、4-酮庚二酸等,对于风味形成的作用都较小。

    醇类占总挥发性成分的10.70%~17.19%,主要为乙醇、2-乙基环丁醇、桉叶油醇,共有物质有乙醇和桉叶油醇,乙醇为饱和醇,其余5种为非饱和醇。娟城样品中非饱和醇含量最高。L-香芹醇是橡皮糖调和香料的主要原料,桉叶油醇有草药味。

    烃类占总挥发性成分的29.28%~55.88%,共有物质有p-薄荷三烯、邻-异丙基苯和萜品油烯,川老汇样品含量最高。萜烃、β-蒎烯具有调节松节油、树脂香气,α-蒎烯具有柠檬、柑橘香味,d-柠檬烯和β-蒎烯还是孜然粉的主要风味成分,萜品油烯具有柠檬味,乙基苯和4-异丙基甲苯是制作香料的中间体,具有芳香味。烃类化合物主要来源脂肪氧化或氨基酸氧化,对样品的风味的影响较小[30]

    醛类和酮类分别占总挥发性成分的10.01%~18.14%和0~3.29%。醛类共有物质为异戊醛、正己醛和2-甲基丁醛,共同赋予调味料青草气和苹果香气,糠醛和甲醛可赋予杏仁、樱桃及坚果香,壬醛、苯乙醛分别具有板油气息和甜芳香味[20],醛类含量最高的是川老汇样品。酮类检出量最少,酮类化合物可能是醇类的氧化物或酯类的分解产物[31],样品中只检测出2-丁酮1种酮类化合物。

    酯类占总挥发性成分的2.15%~4.33%,主要有乙酸乙酯、苯基氨基甲酸酯等5种物质,赋予花果芳香气味,乙酸乙酯为共有物质,绍丰和样品含酯类最高。酯类物质会赋予食品甜香气味和轻微油脂气味,即使在很低的浓度条件下也对食品的香味起着非常重要的作用[32]

    醚类占总挥发性成分的0.00%~3.22%,恒星样品含量最高。仅检出乙烯基乙醚1种物质,可以调制食品香料。

    其他化合物检出7种,占总挥发性成分的0.15%~18.20%,恒星样品含量最高。

    在麻辣味型复合调味料的几种成分种,酸类、饱和醇和烃类风味影响较小,非饱和醇、醛类、酮类、酯类和醚类阈值较低,对风味形成的影响可能更大。

    图1聚类热图分析结果显示,6种不同品牌郫县豆瓣制成的鱼香味型复合调味料样品可聚为4类,其中川老汇样品聚为一类,娟城样品聚为一类,恒星和丹丹样品聚为一类,川郫和绍丰和样品聚为一类。说明6种样品中,恒星和丹丹样品挥发性物质相似,川郫和绍丰和样品挥发性物质相似,各类别间存在显著性差异。图2中,6种不同品牌郫县豆瓣制成的麻辣味型复合调味料样品可聚为3类,其中川郫和娟城样品聚为一类,挥发性物质较为相似,绍丰和和恒星样品聚为一类,川老汇和丹丹样品聚为一类,与其他类别有着较大差异。

    图  1  鱼香味型复合调味料聚类分析热图
    Figure  1.  Heat map of fish flavor type compound seasoning cluster analysis
    图  2  麻辣味型复合调味料聚类分析热图
    Figure  2.  Heat map of spicy flavor type compound seasoning cluster analysis

    鱼香味型6个样品检测出共有物质有乙醇、L-香芹醇、桉叶油醇、烯丙基二硫、异戊醛、正己醛、3-糠醛、乙酸、莰烯、α-姜黄烯和茴香脑共11种,对比6个样品醛类、酮类、酯类和醚类挥发性物质种类及含量,恒星和丹丹中异戊醛、2-甲基丁醛和3-糠醛含量均高于其他4种样品,糠醛含量相比于川郫却较低。川郫在醚类中乙基丙烯醚和二烯丙基硫醚含量最高,烯丙基二硫含量较高,低于娟城和绍丰和。相较于其他样品,川郫醚类总含量最高,醛类和酯类总含量处于中间值。6种样品的酮类含量都极少,酸类物质和烃类物质相对含量较高,主体物质决定了主要的风味[33],但酸类物质一般起调和作用,烃类阈值高,对风味影响作用较低。因此可以推断在鱼香味型风味的形成过程中,醛类的含量和种类、酯类和醚类的含量对于鱼香味型复合调味料风味的形成具有重要意义。

    乙醇、桉叶油醇、异戊醇、2-甲基丁醛、正己醛、p-薄荷三烯、邻-异丙基苯、萜品油烯、乙酸乙酯,共9种物质为麻辣味型6个样品的共有物质,挥发性成分中仅川老汇含有3-糠醛,且苯甲醛含量较高,其醛类物质总含量远高于其他样品,未检出酮类和醚类,非饱和醇虽然含量较低,但主体成分桉叶油醇和其他样品含量相近,酯类中乙酸乙酯为主要物质,含量与其他样品相差不大。说明川老汇所制成品区别于其他样品的主要因素为醛类的种类和含量,这可能是川老汇感官性状突出的原因。

    有研究表明,在制作复合调味料的工艺中,有些组分间可能相互混合反应,随着工艺温度的升高,氧化还原反应速率将增大,相应产物也增加。对比鱼香味型和麻辣味型复合调味料,工艺流程相似,但是部分原料不同,所检测到的挥发性物质也具有很大差异性,因而影响最终产生的挥发性风味物质的不仅有加热方式和加热温度[34-35],还有不同原料组分之间的相互作用,这为优化复合调味料配方提供了研究方向。

    通过对两种复合调味料的样品进行感官评分,结果见图3图4

    图  3  鱼香味型复合调味料感官评分
    注:A.川老汇;B.川郫;C.娟城;D.绍丰和;E.恒星;F.丹丹。
    Figure  3.  Sensory scoring of fish-flavored compound seasonings
    图  4  麻辣味型复合调味料感官评分
    注:G.川老汇;H.川郫;I.娟城;J.绍丰和;K.恒星;L.丹丹。
    Figure  4.  Sensory score of spicy flavor compound seasoning

    鱼香味型复合调味料6个样品均具有色泽红亮、鱼香味浓郁的特征,川郫、恒星和丹丹样品的感官评分较好。麻辣味型复合调味料中,川老汇评分最高,呈现出红润色泽,香气浓郁和谐,具有较突出的麻辣味。

    以不同品牌郫县豆瓣为原料,在标准化工艺下制作的鱼香味型和麻辣味型复合调味料,口感细腻、香味突出、质量安全,结合化学计量学和感官性状分析不同品牌郫县豆瓣对复合调味料挥发性风味的影响。鱼香味型复合调味料样品中共鉴定出 63 种挥发性成分,其中醇类 6 种,醚类 5 种,醛类 6 种,酸类 6 种,烃类 28 种,酮类 3 种,酯类 5 种,其他化合物 4 种,乙醇、L-香芹醇、桉叶油醇、烯丙基二硫、异戊醛、正己醛、3-糠醛、乙酸、莰烯、α-姜黄烯和茴香脑共 11 种物质为共有物质。麻辣味型复合调味料样品中共检测到了 64 种挥发性成分,包括醇类 6 种,醚类 1 种,醛类 9 种,酸类 8 种,烃类 27 种,酮类 1 种,酯类 5 种,其他 7 种。共有物质有乙醇、桉叶油醇、异戊醇、2-甲基丁醛、正己醛、p-薄荷三烯、邻-异丙基苯、萜品油烯、乙酸乙酯共 9 种物质。GC-MS数据聚类分析结果显示鱼香味型复合调味料中恒星和丹丹豆瓣制备的成品风味相似度较高,麻辣味型中川老汇和丹丹豆瓣制备的成品风味相似度较高。

    研究表明,不同品牌郫县豆瓣对鱼香味型和麻辣味型复合调味料的风味的影响存在显著差异,鱼香味型复合调味料中,川郫、恒星和丹丹豆瓣所制成品在醛类、酯类和醚类挥发性物质的种类和含量上有较高含量,主要体现在异戊醛、正己醛、烯丙基二硫和二烯丙基硫醚等物质,对鱼香味型复合调味料风味的形成有较大作用,川老汇豆瓣增强麻辣味型复合调味料风味的优势体现在醛类物质的种类和含量上,主要表现为正己醛和3-糠醛等物质含量丰富。

    研究结果表明气质联用结合化学计量学方法和感官评价,可以更全面的分析不同品牌郫县豆瓣对复合调味料中的挥发性风味物质的影响程度,为鱼香味型和复合味型以及其他味型复合调味料工业化生产品控提供参考。同时研究对比鱼香味型和麻辣味型复合调味料挥发性物质差异,综合感官评价,发现影响最终产物的风味物质的因素还有不同原料组分之间的相互作用,为复合调味料配方的优化提供了可能的研究方向。

  • 图  1   鱼香味型复合调味料聚类分析热图

    Figure  1.   Heat map of fish flavor type compound seasoning cluster analysis

    图  2   麻辣味型复合调味料聚类分析热图

    Figure  2.   Heat map of spicy flavor type compound seasoning cluster analysis

    图  3   鱼香味型复合调味料感官评分

    注:A.川老汇;B.川郫;C.娟城;D.绍丰和;E.恒星;F.丹丹。

    Figure  3.   Sensory scoring of fish-flavored compound seasonings

    图  4   麻辣味型复合调味料感官评分

    注:G.川老汇;H.川郫;I.娟城;J.绍丰和;K.恒星;L.丹丹。

    Figure  4.   Sensory score of spicy flavor compound seasoning

    表  1   6种品牌郫县豆瓣产品信息

    Table  1   6 kinds of Brands Pixian douban product information

    名称产地编号生产日期保质期
    川老汇红油郫县豆瓣酱四川成都CLH2022.3.612个月
    川郫红油郫县豆瓣酱四川成都CP2022.3.212个月
    娟城牌红油郫县豆瓣酱四川成都JC2022.3.1912个月
    绍丰和红油郫县豆瓣酱四川成都SFH2022.2.2712个月
    恒星红油郫县豆瓣酱四川成都HX2022.3.2412个月
    丹丹红油郫县豆瓣酱四川成都DD2022.3.2012个月
    下载: 导出CSV

    表  2   鱼香味型复合调味料的制作配料表

    Table  2   Preparation ingredients of fish-flavored compound seasonings

    原料用量(g)原料用量(g)
    味精2蒜末15
    白糖25葱花25
    酱油4鲜汤100
    10水淀粉15
    郫县豆瓣40食用油55
    姜末5芝麻油3
    下载: 导出CSV

    表  3   麻辣味型复合调味料的制作配料表

    Table  3   Preparation ingredients of spicy flavor compound seasonings

    原料用量(g)原料用量(g)
    花椒粉1味精2
    辣椒粉7食用油70
    酱油10鲜汤200
    豆豉6水淀粉30
    郫县豆瓣40
    下载: 导出CSV

    表  4   鱼香味型复合调味料感官评分标准

    Table  4   Sensory scoring criteria for fish-flavored compound seasonings

    评价项目评价标准得分(分)
    香气鱼香味浓郁27~30
    鱼香味浓郁,但整体气味协调性差24~26
    鱼香味不突出,整体气味不协调19~23
    有焦糊气味0~18
    滋味咸淡适宜,酸甜比平衡34~40
    咸淡适宜,酸甜有些偏颇30~33
    咸淡不适,酸甜比例失衡25~29
    焦糊有苦味0~24
    色泽色泽油润,红亮清透有光泽27~30
    色泽油润,但红亮度不够,稍暗24~26
    色泽不够油润,不红亮清透19~23
    无光泽,颜色发黑0~18
    下载: 导出CSV

    表  5   麻辣味型复合调味料感官评分标准

    Table  5   Sensory scoring criteria for spicy compound seasonings

    评价项目评价标准得分(分)
    香气麻辣香气浓郁27~30
    麻辣香气浓郁,但整体气味协调性差24~26
    麻辣香气清淡,整体气味不协调19~23
    有焦糊气味0~18
    滋味口味调和,麻辣味浓厚34~40
    口味基本调和,无过辣、过麻或麻辣味清淡现象30~33
    口味不调和,有过辣或过麻现象25~29
    焦糊有苦味0~24
    色泽色泽油润红亮有光泽27~30
    色泽油润,但红亮度不够,稍暗24~26
    色泽不够油润,不红亮19~23
    无光泽,颜色发黑0~18
    下载: 导出CSV

    表  6   鱼香味型复合调味料各样品风味物质及相对含量

    Table  6   Flavor substances and relative contents in various samples of fish-flavored compound seasonings

    序号CAS号中文名称英文名称分子式相对含量(%)
    CLHCPJCSFHHXDD
    醇类
    164-17-5乙醇EthanolC2H6O1.653.136.933.852.802.03
    213651-14-42,3-二甲基苄醇2,3-Dimethylbenzyl alcoholC9H12O0.0700.080.0500
    399-48-9L-香芹醇CarveolC10H16O0.080.170.070.920.090.07
    4470-82-6桉叶油醇CineoleC10H18O3.621.264.331.801.400.70
    5507-70-02-茨醇borneolC10H18O0.090.05000.090
    6107-18-6丙烯醇2-Propen-1-olC3H6O1.1217.2216.5116.5410.860
    醚类
    7115-10-6二甲醚Dimethyl etherC2H6O0.7500.0900.100
    82179-57-9烯丙基二硫Diallyl disulfideC6H10S20.330.410.510.420.130.10
    9928-55-2乙基丙烯醚Ethyl1-PropenylEtherC5H10O2.945.8400.060.130.19
    10592-88-1二烯丙基硫醚Allyl SulfideC6H10S01.9900.311.150.51
    11140-67-0草蒿脑EstragoleC10H12O0.0900.0600.050
    醛类
    12590-86-3异戊醛IsovaleraldehydeC5H10O1.052.340.851.273.423.11
    1396-17-32-甲基丁醛2-MethylbutanalC5H10O1.1500.901.273.894.42
    1466-25-1正己醛HexanalC6H12O0.402.400.290.311.552.05
    151998/1/1糠醛FurfuralC5H4O21.013.622.1000.960
    16124-19-6壬醛NonanalC9H18O0.120.1100.0500
    17498-60-23-糠醛3-FuraldehydeC5H4O21.231.012.021.002.691.86
    酸类
    1864-18-6甲酸Formic acidCH2O24.1600000
    19625-45-6甲氧基乙酸2-Methoxyacetic acidC3H6O34.2201.30000.72
    2013881-91-9氨基甲磺酸Aminomethanesulfonic acidCH5NO3S0.970000.090
    211115-65-7L-半胱亚磺酸L-Cysteinesulfinic acidC3H7NO4S02.640.710.7100
    2264-19-7乙酸Acetic acidC2H4O231.9739.7734.2044.1249.4549.71
    23616-62-6丙基丙二酸2-Propylmalonic acidC6H10O4000.1100.080
    烃类
    2413952-84-62-氨基丁烷sec-ButylamineC4H11N2.6500000
    25463-82-1新戊烷2,2-dimethylpropaneC5H126.5100.240.4300.22
    262216-34-44-甲基辛烷4-MethyloctaneC9H200.130000.520
    27508-32-7三环烯cycleneC10H160.2400.19000
    2813466-78-93-蒈烯3-CareneC10H160.8700.760.300.280
    2979-92-5莰烯CampheneC10H163.090.682.630.940.760.41
    30499-97-8假性柠檬烯pseudo-limoneneC10H160.2100.15000
    3199-87-64-异丙基甲苯p-isopropyltolueneC10H140.170.040.090.050.040
    32586-62-9萜品油烯TerpinoleneC10H161.470.470.3900.020
    33514-95-41,5,5-三甲基-6-亚甲基环己烷1,5,5-Trimethyl-6-methylene-cyclohexeneC10H160.6600000
    3499-85-4γ-松油烯γ-TerpineneC10H160.3101.540.810.690.16
    355989-27-5d-柠檬烯D-LimoneneC10H160.0700.070.0800
    363856-25-5(-)-Alpha-蒎烯α-CopaeneC15H240.06000.190.320
    3724251-86-35,8-二乙基十二烷Dodecane, 5,8-diethyl-C16H340.0700.04000.16
    381560-95-82-甲基四癸烷2-METHYLTETRADECANEC15H320.230.070.07000
    39644-30-4α-姜黄烯alpha-CurcumeneC15H220.420.090.230.120.040.15
    4016728-99-7立方烯NaphthaleneC15H240.28000.150.030
    41629-62-9正十五烷PentadecaneC15H320.2100000
    422213-23-22,4-二甲基庚烷2,4-DimethylheptaneC9H2001.090.320.291.340
    43100-41-4乙苯etherC8H100.120.6500.1200
    4455282-02-51,4-二甲基-2-八角环己烷1,4-dimethyl-2-octadecyl-C26H5200.05000.030
    455208-49-1(1S,3R)-顺式-4-蒈烯(1S,3R)-(Z)-4-careneC10H160.190.340000.42
    461073-05-81,3,2-二氧硫杂环己烷-2,2-二氧化物1,3,2-Dioxathiane,2,2-dioxideC3H6O4S0011.480.670.020
    47619-99-83-乙基己烷 3-ethylhexaneC8H18000.910.0500
    48503-30-0氧杂环丁烷OxetaneC3H6O0.230000.135.99
    49594-70-72-甲基-2-硝基丙烷2-Methyl-2-nitropropaneC4H9NO200.2400.2105.37
    501069-53-02,3,5-三甲基己烷2,3,5-TrimethylhexaneC9H200.200000.090.11
    51103-65-1丙基苯n-propylbenzeneC9H120.2100.140.0900.13
    酮类
    52110-43-02-庚酮2-HeptanoneC7H14O0.1100.0600.190
    531502-06-3环癸酮CyclodecanoneC10H18O0.220.1700.0800.16
    543350-30-9环壬酮cyclononanoneC9H16O000.18000.12
    酯类
    5520600-96-8四硝酸二甘油酯3,3'-Oxybis(1,2-propanediol)tetranitrateC6H10N4O130.85000.0700
    56141-78-6乙酸乙酯Ethyl AcetateC4H8O21.270.002.110.005.837.47
    57115-95-7乙酸芳樟酯Linalyl acetateC12H20O20.12000.1200
    58123-66-0正己酸乙酯Ethyl hexanoateC8H16O22.130.080.1300.030.40
    59503-30-0氧杂环丁烷OxetaneC3H6O0.076.3501.830.050
    其他
    6062488-52-23-乙烯基-3,6-二氢二噻吩3-ethenyl-3,6-dihydrodithiineC6H8S20.220.1900.4000
    61104-46-1茴香脑cis-AnetholC10H12O3.410.340.380.130.130.09
    6262488-53-33-乙烯基-4H-1,2-二噻英3-vinyl-4H-1,2-dithiinC6H8S20.200.1800.3700.14
    6318368-95-1p-薄荷三烯,p-薄荷-1,3,8-三烯1,3,8-p-MenthatrieneC10H140.330.0800.1500.15
    下载: 导出CSV

    表  7   鱼香味型复合调味料各样品挥发性成分种类数及相对含量

    Table  7   Types and relative content of volatile components in various samples of fish-flavored compound seasonings

    序号挥发性
    成分
    CLHCPJCSFHHXDD
    种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)
    1醇类66.63521.83527.92523.16515.2432.80
    2醚类44.1138.2430.6630.7951.5630.80
    3醛类64.9659.4856.1653.90512.51411.44
    4酸类441.32242.41436.32244.83349.62250.43
    5烃类2318.60103.721619.25154.50144.311013.12
    6酮类20.3310.1720.2410.0810.1920.28
    7酯类54.4426.4322.2432.0235.9127.87
    8其他44.1640.7910.3841.0510.1330.38
    下载: 导出CSV

    表  8   麻辣味型复合调味料各样品风味物质及相对含量

    Table  8   Flavor substances and relative contents in various samples of spicy compound seasonings

    序号CAS号中文名称英文名称分子式相对含量(%)
    CLHCPJCSFHHXDD
    醇类
    164-17-5乙醇EthanolC2H6O6.796.968.006.776.065.59
    235301-43-02-乙基环丁醇CyclobutanolC6H12O02.692.72000
    389794-28-52,4-二甲基-环戊醇2,4-DimethylcyclopentanolC7H14O00.840.89000
    499-48-9L-香芹醇CarveolC10H16O00000.040
    57731-29-5trans-4-甲基环己醇Cyclohexanol, 4-methyl-, trans-C7H14O00001.280
    6470-82-6桉叶油醇CineoleC10H18O4.875.005.585.415.905.11
    醚类
    7109-92-2乙烯基乙醚EtheneC4H8O0002.933.220
    醛类
    8590-86-3异戊醛IsovaleraldehydeC5H10O2.643.414.783.593.72.93
    996-17-32-甲基丁醛2-MethylbutanalC5H10O3.736.266.215.976.504.94
    1066-25-1正己醛HexanalC6H12O5.480.791.100.620.590.64
    11498-60-23-糠醛3-FuraldehydeC5H4O26.2400000
    12100-52-7苯甲醛BenzaldehydeC7H6O0.050.100000.19
    13111-30-8戊二醛GlutaraldehydeC5H8O20001.9900
    14124-19-6壬醛NonanalC9H18O000000.49
    15497-03-0顺-2-甲基-2-丁醛2-Butenal, 2-methyl-, (E)-C5H8O000.31000.52
    16122-78-1苯乙醛BenzeneacetaldehydeC8H8O000000.30
    酸类
    171115-65-7L-半胱亚磺酸L-Cysteine sulfinic acidC3H7NO4S4.0400000
    1864-19-7乙酸Acetic acidC2H4O24.431.590.5300.951.18
    19502-50-14-酮庚二酸4-KetopimelicC7H10O50.1400.16000
    2013881-91-9氨基甲磺酸Aminomethanesulfonic acidCH5NO3S00.580.31000
    21328-50-7α-酮戊二酸2-Oxopentanedioic acidC5H6O50000.1300
    22498-40-8L-磺基丙氨酸L-AlanineC3H7NO5S0000.4600.37
    236647-98-94-碘-1-甲基-1H-吡唑-3-羧酸Pyrazole-3-carboxylic acid,
    4-iodo-1-methyl-
    C5H5IN2O2000000.17
    2492437-43-92-甲基-1-苯基-1H-苯并咪唑-5-羧酸Benzimidazole-5-carboxylic acid,
    2-methyl-1-
    C15H12N2O2000000.11
    烃类
    25503-30-0三甲氧基酯Trimethylene oxideC3H6O21.4319.2118.1818.32013.77
    26558-30-5甲基环氧丙烷Isobutylene epoxideC4H8O3.2400002.57
    27142-82-5庚烷HeptaneC7H160.8100000
    28544-25-2环庚三烯1,3,5-CycloheptatrieneC7H84.810.230000
    2918368-95-1p-薄荷三烯1,3,8-p-MenthatrieneC10H1411.634.245.925.957.436.93
    3099-85-4γ-松油烯γ-TerpineneC10H161.490.331.7301.992.64
    3179-92-5莰烯CampheneC10H160.1500000
    32100-41-4乙基苯EthylbenzeneC8H100.1200.21000
    335208-49-1(1S,3R)-顺式-4-蒈烯4-CareneC10H160.651.7200.5200
    34127-91-3β-蒎烯β-PineneC10H162.281.870002.97
    35527-84-4邻-异丙基苯o-CymeneC10H141.180.441.462.711.826.27
    365989-27-5d-柠檬烯D-LimoneneC10H165.1600005.80
    3713466-78-93-蒈烯3-CareneC10H160.6900.500.770.700
    38586-62-9萜品油烯CyclohexeneC10H162.2410.3910.2116.6014.602.82
    3999-87-64-异丙基甲苯p-isopropyltolueneC10H1400.83002.340
    40535-77-3间异丙基甲苯m-cymeneC10H1401.110000
    4180-56-8α-蒎烯alpha-PineneC10H1600.530000
    42768-49-02-甲基-1-苯基丙烯Benzene,(2-methyl-1-propen-1-yl)-C10H1200.130000.14
    43765-46-8螺[2.4]庚-4,6-二烯Spiro[2,4]hepta-4,6-dieneC7H80000.210.150.30
    44921-47-12,3,4-三甲基正己烷Hexane, 2,3,4-trimethyl-C9H200000.3200
    452213-23-22,4-二甲基庚烷Heptane, 2,4-dimethyl-C9H20001.2100.140
    46513-35-92-甲基-2-丁烯2-Butene, 2-methyl-C5H10000000
    472039-90-92,6-二甲基苯乙烯Benzene, 2-ethenyl-1,3-dimethyl-C10H1200000.110
    48110-54-3正己烷n-HexaneC6H14000003.50
    492080-89-93-乙基-1,4-己二烯1,4-Hexadiene, 3-ethyl-C8H14000000.07
    50502-99-83,7-二甲基-1,3,7-辛三烯1,3,7-Octatriene, 3,7-dimethyl-C10H16000001.74
    5122635-78-5螺环[3.3]庚-2,6-二烯Spiro[3.3]hepta-2,6-dieneC7H8000.29000
    酮类
    5278-93-32-丁酮2-ButanoneC4H8O03.290002.56
    酯类
    53141-78-6乙酸乙酯Ethyl AcetateC4H8O23.132.151.972.613.702.33
    541224-46-0苯基氨基甲酸酯Carbamic acidC17H23NO20.2100.410.250.210
    55107-31-3甲酸甲酯Methyl formateC2H4O20001.3000
    5693-89-0苯甲酸乙酯Benzoic acidC9H10O20000.1700
    5725415-67-2异己酸乙酯Pentanoic acidC8H16O2000000.09
    其他
    58104-46-1茴香脑AnetholeC10H12O0.410.110.080.1000.15
    59135004-95-44,6,6-三甲基-2-甲酰甲基双环[3.1.1]3-庚烯2-Formymethyl-4,6,6-trimethylbicyclo[3.1.1]hept-3-eneC12H18O00.662.102.8000
    60460-01-5(3E,5E)-2,6-二甲基-1,3,5,7-辛四烯2,6-Dimethyl-1,3,5,7-octatetraene, E,E-C10H1400.1200.4000
    61767-58-81-甲基茚满Indan, 1-methyl-C10H120000.0700
    627713-69-1N-甲基异丁胺N,1-dimethylpropylamineC5H13N000018.120
    633299-32-92,4,5-三甲基-1,3-二氧戊环1,3-Dioxolane, 2,4,5-trimethyl-C6H12O200000.080
    6462338-57-23-乙烯基-1,2-二甲基-1,4-环己二烯1,4-Cyclohexadiene, 3-ethenyl-1,2-dimethyl-C10H13000.36000
    下载: 导出CSV

    表  9   麻辣味型复合调味料各样品挥发性成分种类数及相对含量

    Table  9   Types and relative content of volatile components in various samples of spicy compound seasonings

    序号挥发性
    成分
    CLHCPJCSFHHXDD
    种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)种类数相对含量(%)
    1醇类211.66415.49417.19212.18413.28210.70
    2醚类00000012.9313.2200
    3醛类518.14410.56412.40412.17310.79710.01
    4酸类38.6122.1731.0020.5910.9541.83
    5烃类1455.881241.03939.71845.40929.281349.52
    6酮类0013.2900000012.56
    7酯类23.3412.1522.3844.3323.9122.42
    8其他10.4130.8932.5443.37218.2010.15
    下载: 导出CSV
  • [1] 王福清, 易静薇. 复合调味料的生产及研究进展[J]. 中国调味品,2021,46(10):193−197. [WANG F Q, YI J W. Production and research progress of compound seasonings[J]. Chinese Seasonings,2021,46(10):193−197. doi: 10.3969/j.issn.1000-9973.2021.10.038

    WANG F Q, YI J W. Production and research progress of compound seasonings[J]. Chinese Seasonings, 2021, 46(10): 193-197. doi: 10.3969/j.issn.1000-9973.2021.10.038

    [2] 张玥琪, 章慧莺, 陈海涛, 等. 鱼香肉丝挥发性风味成分的分离与鉴定[J]. 精细化工,2014,31(10):1220−1228, 1234. [ZHANG Y Q, ZHANG H Y, CHEN H T, et al. Separation and identification of volatile flavor components of shredded fish aroma[J]. Fine Chemicals,2014,31(10):1220−1228, 1234. doi: 10.13550/j.jxhg.2014.10.165

    ZHANG Y Q, ZHANG H Y, CHEN H T, et al. Separation and identification of volatile flavor components of shredded fish aroma[J]. Fine Chemicals, 2014, 31(10): 1220-1228, 1234. doi: 10.13550/j.jxhg.2014.10.165

    [3] 张茜. 郫县豆瓣的历史辨析及使用价值探讨[J]. 中国调味品,2017,42(10):176−180. [ZHANG Q. Historical analysis and use value of douban in Pixian County[J]. Chinese Condiments,2017,42(10):176−180. doi: 10.3969/j.issn.1000-9973.2017.10.038

    ZHANG Q. Historical analysis and use value of douban in Pixian County[J]. Chinese Condiments, 2017, 42(10): 176-180. doi: 10.3969/j.issn.1000-9973.2017.10.038

    [4] 四川烹饪高等专科学校. SB/T 10946-2012 川菜烹饪工艺[S]. 北京: 中国标准出版社, 2012.

    Sichuan Culinary College. SB/T 10946-2012 Sichuan cuisine cooking technology[S]. Beijing: Standards Press of China, 2012.

    [5] 黄著, 彭熙敏, 刘超兰, 等. 郫县豆瓣挥发性香气成分剖析及其在陈酿过程中的变化研究[J]. 中国调味品,2009,34(3):106−111. [HUANG Z, PENG X M, LIU C L, et al. Analysis of volatile aroma components of Douban in Pixian County and its changes in the aging process[J]. China Condiment,2009,34(3):106−111. doi: 10.3969/j.issn.1000-9973.2009.03.026

    HUANG Z, PENG X M, LIU C L, et al. Analysis of volatile aroma components of Douban in Pixian County and its changes in the aging process[J]. China Condiment, 2009, 34(3): 106-111. doi: 10.3969/j.issn.1000-9973.2009.03.026

    [6] 叶玉矫. 基于多元分析的郫县豆瓣后发酵阶段风味物质变化研究[D]. 成都: 西华大学, 2021.

    YE Y J. Study on the change of flavor substances in the post-fermentation stage of Douban in Pixian County based on multivariate analysis[D]. Chengdu: Xihua University, 2021.

    [7]

    DING W, ZHAO X Y, XIE S, et al. Dynamics and correlation of microbial community and flavor in Pixian Douban fermented with closed process of constant temperature[J]. Journal of the Science of Food and Agriculture,2020,101(10):4142−4153.

    [8] 范智义, 邓维琴, 李恒, 等. 不同品牌郫县豆瓣品质指标分析[J]. 食品与发酵工业,2020,46(13):230−236. [FAN Z Y, DENG W Q, LI H, et al. Analysis of quality index of Douban in Pixian County of different brands[J]. Food and Fermentation Industry,2020,46(13):230−236. doi: 10.13995/j.cnki.11-1802/ts.023629

    FAN Z Y, DENG W Q, LI H, et al. Analysis of quality index of Douban in Pixian County of different brands[J]. Food and Fermentation Industry, 2020, 46(13): 230-236. doi: 10.13995/j.cnki.11-1802/ts.023629

    [9]

    PINO-GARCÍA R D, GONZÁLEZ-SANJOSÉ M L, RIVERO-PÉREZ M D, et al. The effects of heat treatment on the phenolic composition and antioxidant capacity of red wine pomace seasonings[J]. Food Chemistry,2017,221:1723−1732. doi: 10.1016/j.foodchem.2016.10.113

    [10] 陈丽兰, 陈祖明, 袁灿. 郫县豆瓣炒制后挥发性风味物质的分析[J]. 中国调味品,2020,45(4):177−180. [CHEN L L, CHEN Z M, YUAN C. Analysis of volatile flavor compounds after stir-frying of Pixian bean paste[J]. China Condiment,2020,45(4):177−180. doi: 10.3969/j.issn.1000-9973.2020.04.037

    CHEN L L, CHEN Z M, YUAN C. Analysis of volatile flavor compounds after stir-frying of Pixian bean paste[J]. China Condiment, 2020, 45(4): 177-180. doi: 10.3969/j.issn.1000-9973.2020.04.037

    [11] 杨林子, 卢云浩, 何强. 基于培养鉴定法和高通量测序技术分析郫县豆瓣微生物群落结构演替[J]. 中国调味品,2020,45(6):63−68. [YANG L Z, LU Y H, HE Q. Analysis of microbial community structure succession of Douban in Pixian County based on culture identification method and high-throughput sequencing technology[J]. Chinese Condiment,2020,45(6):63−68. doi: 10.3969/j.issn.1000-9973.2020.06.014

    YANG L Z, LU Y H, HE Q. Analysis of microbial community structure succession of Douban in Pixian County based on culture identification method and high-throughput sequencing technology[J]. Chinese Condiment, 2020, 45(6): 63-68. doi: 10.3969/j.issn.1000-9973.2020.06.014

    [12]

    ZENG C Y, XU C, TIAN H Y, et al. Determination of aflatoxin B1 in Pixian Douban based on aptamer magnetic solid-phase extraction.[J]. RSC Advances,2022,12(30):19528−19536. doi: 10.1039/D2RA02763A

    [13] 冉玉琴. 郫县豆瓣后发酵期脂肪酸、糖及生物胺变化研究[D]. 成都: 西华大学, 2020.

    RAN Y Q. Study on changes of fatty acids, sugars and biogenic amines during the post-fermentation period of Douban in Pixian County[D]. Chengdu: Xihua University, 2020.

    [14] 刘平, 王雪梅, 向琴, 等. 郫县豆瓣智能后发酵工艺优化及品质分析[J]. 食品科学,2020,41(22):166−176. [LIU P, WANG X M, XIANG Q, et al. Optimization and quality analysis of intelligent post-fermentation process of Douban in Pixian County[J]. Food Science,2020,41(22):166−176. doi: 10.7506/spkx1002-6630-20190906-086

    LIU P, WANG X M, XIANG Q, et al. Optimization and quality analysis of intelligent post-fermentation process of Douban in Pixian County[J]. Food Science, 2020, 41(22): 166-176. doi: 10.7506/spkx1002-6630-20190906-086

    [15] 安文杰, 卢利平, 雷佳欣, 等. 响应面法优化花椒叶复合调味料配方的研究[J]. 农产品加工,2022(12):46−51. [AN W J, LU L P, LEI J X, et al. Study on optimization of compound seasoning formula of Zanthoxylum zanthoxylum leaves by response surface method[J]. Agro-Products Processing,2022(12):46−51. doi: 10.16693/j.cnki.1671-9646(X).2022.06.042

    AN W J, LU L P, LEI J X, et al. Study on Optimization of compound seasoning formula of Zanthoxylum zanthoxylum leaves by response surface method[J]. Agro-Products Processing, 2022, (12): 46-51. doi: 10.16693/j.cnki.1671-9646(X).2022.06.042

    [16]

    KUSUMADEVI Z, SAPUTROA D, DEWI A K, et al. Physical characteristics of compound chocolate made with various flavouring agents produced using melanger as a small scale chocolate processing device[J]. IOP Conference Series: Earth and Environmental Science,2021(1):12036.

    [17] 孟刚. 复合调味品: 健康和美味一个都不能少[J]. 农产品市场,2021(21):58−59. [MENG G. Compound condiments: Healthy and delicious are not less[J]. Agricultural Products Market,2021(21):58−59.

    MENG G. Compound condiments: healthy and delicious are not less[J]. Agricultural Products Market, 2021, (21): 58-59.

    [18] 易宇文, 胡金祥, 杨进军, 等. 基于电子鼻和气质联用分析郫县豆瓣对鱼香调味汁的风味贡献[J]. 食品与发酵工业,2019,45(7):276−283. [YI Y W, HU J X, YANG J J, et al. Analysis of flavor contribution of Pixian Douban to fish flavor sauce based on electronic nose and gas chromatography[J]. Food and Fermentation Industry,2019,45(7):276−283. doi: 10.13995/j.cnki.11-1802/ts.018309

    YI Y W, HU J X, YANG J J, et al. Analysis of flavor contribution of Pixian Douban to fish flavor sauce based on electronic nose and gas chromatography[J]. Food and Fermentation Industry, 2019, 45(7): 276-283. doi: 10.13995/j.cnki.11-1802/ts.018309

    [19]

    LUCA M D, TEROUZI W, IOELE G, et al. Derivative FTIR spectroscopy for cluster analysis and classification of Morocco olive oils[J]. Food Chemistry,2011,124(3):1113−1118.

    [20] 孙宝国. 食用调香术(第三版)[M]. 北京: 化学工业出版社, 2016: 244−228.

    SUN B G. Edible perfumery (third edition)[M]. Beijing: Chemical Industry Press, 2016: 244−228.

    [21] 李伟丽, 袁旭, 刘玉淑, 等. 郫县豆瓣酱风味成分的全二维气相色谱-飞行时间质谱分析[J]. 食品科学,2019,40(6):261−265. [LI W L, YUAN X, LIU Y S, et al. Full 2D gas chromatography-time-of-flight mass spectrometry analysis of flavor components of Pixian bean paste[J]. Food Science,2019,40(6):261−265. doi: 10.7506/spkx1002-6630-20180330-419

    LI W L, YUAN X, LIU Y S, et al. Full 2D gas chromatography-time-of-flight mass spectrometry analysis of flavor components of Pixian bean paste[J]. Food Science, 2019, 40(6): 261-265. doi: 10.7506/spkx1002-6630-20180330-419

    [22] 樊美琪, 杨芳, 贾洪锋, 等. 基于GC-MS探究郫县豆瓣和豆豉对盐煎肉挥发性风味物质的影响[J]. 食品工业科技,2021,42(13):274−283. [FAN M Q, YANG F, JIA H F, et al. Effects of Pixian Douban and tempeh on volatile flavor substances of salt-fried meat based on GC-MS[J]. Science and Technology of Food Industry,2021,42(13):274−283. doi: 10.13386/j.issn1002-0306.2020070199

    FAN M Q, YANG F, JIA H F, et al. Effects of Pixian Douban and tempeh on volatile flavor substances of salt-fried meat based on GC-MS[J]. Science and Technology of Food Industry, 2021, 42(13): 274-283. doi: 10.13386/j.issn1002-0306.2020070199

    [23] 李玉芳. 烯丙醇的生产方法及其下游产品开发[J]. 化工中间体,2003(7):18−19. [LI Y F. Production method of allyl alcohol and its downstream product development[J]. Chemical Intermediates,2003(7):18−19.

    LI Y F. Production method of allyl alcohol and its downstream product development[J]. Chemical Intermediates, 2003 (7): 18-19.

    [24] 陈丽兰, 陈祖明, 杜莉. 烤肉酱挥发性风味物质的分析[J]. 中国调味品,2018,43(10):156−159. [CHEN L L, CHEN Z M, DU L. Analysis of volatile flavor compounds in barbecue sauce[J]. China Condiment,2018,43(10):156−159. doi: 10.3969/j.issn.1000-9973.2018.10.033

    CHEN L L, CHEN Z M, DU L. Analysis of volatile flavor compounds in barbecue sauce[J]. China Condiment, 2018, 43 (10): 156-159. doi: 10.3969/j.issn.1000-9973.2018.10.033

    [25] 秦伟军, 王建云. 食醋酿造中酯类生成及酯化酶的应用研究[J]. 中国调味品,2020,45(10):126−129. [QIN W J, WANG J Y. Application of ester formation and esterases in vinegar brewing[J]. China Condiment,2020,45(10):126−129. doi: 10.3969/j.issn.1000-9973.2020.10.028

    QIN W J, WANG J Y. Application of ester formation and esterases in vinegar brewing [J]. China Condiment, 2020, 45(10): 126-129. doi: 10.3969/j.issn.1000-9973.2020.10.028

    [26]

    YU A N, TAN Z W, WANG F S. Mechanism of formation of sulphur aroma compounds from L-ascorbic acid and L-cysteine during the Maillard reaction[J]. Food Chemistry,2012,132(3):1316−1323. doi: 10.1016/j.foodchem.2011.11.111

    [27] 袁华伟, 尹礼国, 徐洲, 等. SPME/GC-MS联用分析六种香辛料挥发性成分[J]. 中国调味品,2018,43(9):151−159. [YUAN H W, YIN L G, XU Z, et al. Analysis of volatile components of six spices by SPME/GC-MS[J]. China Condiment,2018,43(9):151−159. doi: 10.3969/j.issn.1000-9973.2018.09.033

    YUAN H W, YIN L G, XU Z, et al. Analysis of volatile components of six spices by SPME/GC-MS[J]. China Condiment, 2018, 43 (9): 151-159. doi: 10.3969/j.issn.1000-9973.2018.09.033

    [28] 孙旭媛, 刘元法, 李进伟. HS-SPME-GC-MS分析4种植物油加热氧化挥发性产物[J]. 中国油脂,2018(10):20−25. [SUN X Y, LIU Y F, LI J W. Analysis of four vegetable oil heating oxidative volatile products by HS-SPME-GC-MS[J]. China Oils and Fats,2018(10):20−25. doi: 10.3969/j.issn.1003-7969.2018.10.005

    SUN X Y, LIU Y F, LI J W. Analysis of four vegetable oil heating oxidative volatile products by HS-SPME-GC-MS[J]. China Oils and Fats, 2018(10): 20-25. doi: 10.3969/j.issn.1003-7969.2018.10.005

    [29] 范波, 蔡燚, 王鹏, 等. 加热方式对大蒜挥发性物质的影响[J]. 中国调味品,2022,47(3):72−77. [FAN B, CAI Y, WANG P, et al. Effects of heating method on volatile substances of garlic[J]. China Condiment,2022,47(3):72−77. doi: 10.3969/j.issn.1000-9973.2022.03.013

    FAN B, CAI Y, WANG P, et al. Effects of heating method on volatile substances of garlic[J]. China Condiment, 2022, 47(3): 72-77. doi: 10.3969/j.issn.1000-9973.2022.03.013

    [30]

    STAHNKE L H. Dried sausages fermented with Staphylococcus xylosus at different temperatures and with different ingredient levels[J]. Meat Science,1995,41(2):211−223. doi: 10.1016/0309-1740(94)00068-I

    [31]

    DU M, ALAN D U. Volatile substance of Chinese tranditional Jinhua hamand Cantonese sausage[J]. Food Chemistry and Toxicology,2001,66(6):827−831.

    [32]

    SUN W, ZHAO Q, ZHAO H, et al. Volatile compounds of Cantonese sausage released at different stages of processing and storage[J]. Food Chemistry,2010,121(2):319−325. doi: 10.1016/j.foodchem.2009.12.031

    [33] 贺羽, 王帅, 姚俊胜, 等. 基于电子鼻和电子舌分析不同酿造阶段柠檬果醋气、味差异[J]. 中国调味品,2018,43(12):154−159. [HE Y, WANG S, YAO J S, et al. Analysis of gas and taste differences of lemon fruit vinegar in different brewing stages based on electronic nose and electronic tongue[J]. China Condiment,2018,43(12):154−159. doi: 10.3969/j.issn.1000-9973.2018.12.030

    HE Y, WANG S, YAO J S, et al. Analysis of gas and taste differences of lemon fruit vinegar in different brewing stages based on electronic nose and electronic tongue[J]. China Condiment, 2018, 43(12): 154-159. doi: 10.3969/j.issn.1000-9973.2018.12.030

    [34] 王秋玉, 章海风, 朱文政, 等. 不同加热方式对冷冻豆沙包食用品质及挥发性物质的比较分析[J]. 现代食品科技,2021,37(6):266−275. [WANG Q Y, ZHANG H F, ZHU W Z, et al. Comparative analysis of edible quality and volatile substances of frozen bean paste buns by different heating methods[J]. Modern Food Science and Technology,2021,37(6):266−275. doi: 10.13982/j.mfst.1673-9078.2021.6.1122

    WANG Q Y, ZHANG H F, ZHU W Z, et al. Comparative analysis of edible quality and volatile substances of frozen bean paste buns by different heating methods [J]. Modern Food Science and Technology, 2021, 37(6): 266-275. doi: 10.13982/j.mfst.1673-9078.2021.6.1122

    [35] 周明珠, 熊光权, 乔宇, 等. 复热处理的鲈鱼挥发性成分分析[J]. 现代食品科技,2020,36(4):277−283. [ZHOU M Z, XIONG G Q, QIAO Y, et al. Analysis of volatile components of reheat treated sea bass[J]. Modern Food Science and Technology,2020,36(4):277−283. doi: 10.13982/j.mfst.1673-9078.2020.4.036

    ZHOU M Z, XIONG G Q, QIAO Y, et al. Analysis of volatile components of reheat treated sea bass[J]. Modern Food Science and Technology, 2020, 36(4): 277-283. doi: 10.13982/j.mfst.1673-9078.2020.4.036

  • 期刊类型引用(8)

    1. 张巧,何雨婕,李贤,雷激. 改性方法对柠檬皮渣粉结构及功能特性的影响. 食品工业科技. 2024(01): 88-96 . 本站查看
    2. 韩海珠,刘亚平,高宇虹,狄建兵,李泽珍,孙胜. 超微粉碎对水果番茄粉理化性质与结构特性的影响. 核农学报. 2024(08): 1512-1522 . 百度学术
    3. 肖佳豪,张群,潘兆平,李涛,孙恬,江盛宇,李绮丽,付复华. 低温超微粉碎对茶枝柑果肉粉理化性质和功能特性的影响. 食品科学. 2024(20): 220-231 . 百度学术
    4. 胡龙彪,翟晓娜,李媛媛,郝光飞,裴海生. 超微粉碎技术在农副产品中的应用进展. 食品科技. 2023(02): 92-99 . 百度学术
    5. 黄浩燃,张星启,温辉翠,李育瑶,黄子桐,范振梅,宋贤良. 球磨处理对菠萝蜜果皮不溶性膳食纤维结构及性能的影响. 食品工业科技. 2023(11): 211-218 . 本站查看
    6. 张明宇,宋雅婕,牟庆庆,侯晓鸥,宋子龙,段乐心,马冉,杨嫣婕,于克学,陈庆敏,程媛媛. 金银花雪梨超微粉制备低糖果冻的研究. 中国果菜. 2023(09): 35-40 . 百度学术
    7. 王缓,王乐姣,岳陈林瑞,罗程,祝媛,杨林伟,张涛,李超,陈银基. 超微粉碎预处理对碱提和水提麦麸多糖理化特性的影响. 食品工业科技. 2023(22): 19-27 . 本站查看
    8. 赵愉涵,陈庆敏,岳凤丽,迟晓君,闫琰,焦文晓,杜雅珉,傅茂润,崔波,崔照林. 超微粉碎处理对五谷杂粮粉特性的影响. 中国果菜. 2022(07): 28-35 . 百度学术

    其他类型引用(4)

图(4)  /  表(9)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  24
  • PDF下载量:  16
  • 被引次数: 12
出版历程
  • 收稿日期:  2022-08-01
  • 网络出版日期:  2023-06-05
  • 刊出日期:  2023-07-31

目录

/

返回文章
返回
x 关闭 永久关闭