• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

快速滤过型净化结合液相色谱-质谱联用法测定海产品中19种磺胺类药物残留

潘永波, 万娜, 王承业, 邹冬梅

潘永波,万娜,王承业,等. 快速滤过型净化结合液相色谱-质谱联用法测定海产品中19种磺胺类药物残留[J]. 食品工业科技,2023,44(7):320−328. doi: 10.13386/j.issn1002-0306.2022060288.
引用本文: 潘永波,万娜,王承业,等. 快速滤过型净化结合液相色谱-质谱联用法测定海产品中19种磺胺类药物残留[J]. 食品工业科技,2023,44(7):320−328. doi: 10.13386/j.issn1002-0306.2022060288.
PAN Yongbo, WAN Na, WANG Chengye, et al. Determination of 19 Sulfonamides Residues in Seafood by Multi-plug Filtration Cleanup Method Combined with Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(7): 320−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060288.
Citation: PAN Yongbo, WAN Na, WANG Chengye, et al. Determination of 19 Sulfonamides Residues in Seafood by Multi-plug Filtration Cleanup Method Combined with Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(7): 320−328. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060288.

快速滤过型净化结合液相色谱-质谱联用法测定海产品中19种磺胺类药物残留

基金项目: 国家市场监管重点实验室(热带果蔬质量与安全)自主研究课题(No.ZZ-2022006);农业农村部农业国际交流与合作项目(No.SYZ2017-06)。
详细信息
    作者简介:

    潘永波(1983−),男,硕士,工程师,研究方向:食品质量与安全,E-mail:hnyongbopan@163.com

    通讯作者:

    邹冬梅(1971−),女,硕士,研究员,研究方向:农产品安全与保鲜,E-mail:zdm246@aliyun.com

  • 中图分类号: TS207.3

Determination of 19 Sulfonamides Residues in Seafood by Multi-plug Filtration Cleanup Method Combined with Liquid Chromatography-Tandem Mass Spectrometry

  • 摘要: 建立了快速滤过型净化(m-PFC,multi-plug filtration cleanup)结合液相色谱-质谱联用技术同时检测海产品中19种磺胺类药物的分析方法。样品加水浸润后经过甲酸乙腈提取,QuEChERS盐包分层,取上层提取液经m-PFC柱净化,液相色谱-质谱联用测定,采用多反应监测模式(MRM)进行分析,基质外标法定量。结果表明,19种磺胺类药物在1~100 μg/L的范围内线性关系良好,决定系数大于0.997,检出限为0.005~0.15 μg/kg,定量限为0.01~0.41 μg/kg。在10、20、100 μg/kg三水平的平均添加回收率为70.0%~114.1%,相对标准偏差为0.5%~9.4%。该方法操作简便、快速,灵敏度高,重现性好,适用于海产品中多种磺胺类药物残留的检测。
    Abstract: A method was established for simultaneous detection of 19 sulfonamides in seafood by multi-plug filtration cleanup (m-PFC) method with liquid chromatography-tandem mass spectrometry (LC-MS/MS). The samples were extracted with formic acid acetonitrile after being fully wetted with water. QuEChERS salt pack were added to the system to separate into organic and aqueous phases. The upper fraction was purified on an m-PFC column before analysis by LC-MS/MS, the samples were analyzed in multi-reaction monitoring (MRM) mode and quantify by the matrix-matched external standard method. The results showed that 19 sulfonamides had good linearity in the range of 1~100 μg/L with determination coefficients higher than 0.997. The detection limits were in the range of 0.005~0.15 μg/kg, and the quantitation limits were 0.01~0.41 μg/kg. At three spiked levels of 10, 20 and 100 μg/kg, the average recoveries of 19 sulfonamides ranged from 70.0% to 114.1%, with relative standard deviations (RSDs) of 0.5%~9.4%. This method is simple, highly sensitive and reproducible, and is suitable for the detection of sulfonamides in seafood.
  • 水产品营养丰富,味道鲜美,是一种高蛋白、低脂肪和低热量的食物,富含蛋白质、不饱和脂肪酸、多种维生素、无机质及少量碳水化合物等,能够调节和改善人类的食物结构,提供人体健康必需的营养素[1]。海产品作为水产品的重要部分,市场规模也逐渐上升。2020年海产品产量3314.38万吨,占我国全年水产品产量的50.6%,其中人工养殖海产品产量达到2135.31万吨,自2006年以来,我国海水养殖业快速发展,人工养殖海产品产量在海产品产量占比不断提升[2]。相关报道和研究分析,海水养殖区水体及沉积物中抗生素污染问题日益突出,相比欧洲、美国等地区,我国水体中的抗生素检出率相对较高,但抗生素浓度只有ng/L和ng/g(干重)级别,海产品中抗生素残留大多低于最大残留限值[3-4]。水产品中的抗生素残留可能通过食物链进入人体,对人体健康产生威胁[5-7]。因此,为满足人们对海产品质量的要求,需要深入开展海水养殖中抗生素的相关研究工作。

    磺胺类抗生素广泛应用于临床及养殖业[8-9],过量使用会造成药物残留,具有潜在致癌、致畸风险,危害人体健康[10]。我国规定动物源性食品中磺胺类药物的最大残留量为100 μg/kg[11],但磺胺类药物的滥用现象仍然存在。因此,有必要建立简便、快速、准确的磺胺类药物检测方法。

    目前,液液萃取法[12-13]、固相萃取法[14-19]、基质分散萃取法[20-24]等是磺胺类药物残留检测常用的前处理方法,这些方法存在处理时间长,操作繁琐等问题。快速滤过净化柱(m-PFC,multi-plug filtration cleanup)中用多壁碳纳米管(MWCNT,smultiwall carbon nanotubes)代替传统QuEChERs方法中的石墨化碳黑(GCB),并与其他净化填料一起填充制备成固相净化小柱,无需淋洗、活化,直接按压式过滤,节省了振荡、离心等操作步骤,缩短了前处理时间,具有传统QuEChERs方法简便的优点,也增强了净化能力,提高了灵敏度。目前已应用于果蔬[25-29]、枸杞[30]、茶叶[31]、人参[32]等食用农产品样品中的农药残留及鱼肉[33]、血液[34]、干制水产品[35]等动物源性样品中药残分析,但对于海产品中抗生素研究较少。因此本文基于QuEChERS方法,优化色谱条件,比较m-PFC方法的净化效果,建立一种以m-PFC方法净化样品,结合液相色谱-质谱联用检测技术,用于检测海产品中19种磺胺类药物的残留。

    实验所用19种磺胺类药物的标准物质 均购自美国A Chemtek, Inc;本实验用角虾、墨鱼、金线鱼等20批海产品 分别购于当地市场;甲醇、乙腈 色谱纯,德国Merck公司;甲酸 LC-MS级,美国ACS恩科化学;QuEChERS盐包(含氯化钠1 g、硫酸镁4 g、柠檬酸氢二钠0.5 g、柠檬酸钠1 g) 天津博纳艾杰尔科技有限公司;m-PFC净化柱 北京科德诺思技术有限公司;滤膜(尼龙,0.22 μm) 上海安谱实验科技股份有限公司。

    Ultimate 3000/Thermo TSQ Quantiva超高效液相色谱-三重四极杆串联质谱仪 美国Thermo Fisher公司;Centrifuge 5804R高速冷冻离心机 德国Eppendorf公司;IKA KS 4000 ic control低温摇床 德国IKA公司;Milli-Q超纯水器 美国Millipore公司;WBL2521H组织捣碎机 美的集团有限公司。

    分别准确称取19种磺胺类药物10 mg(精确至0.01 mg),用甲醇溶解并定容至10 mL,配制成1 mg/mL的标准储备液;分别准确移取上述单一标准溶液0.10 mL于同一10 mL容量瓶中,甲醇稀释至刻度,摇匀,得到10 μg/mL的混合标准储备液;准确吸取混合标准储备液1 mL于10 mL容量瓶中,用乙腈定容到刻度线后摇匀,得到1 μg/mL的混合标准溶液,于−18 ℃以下保存。采用角虾、墨鱼、金线鱼空白样品按照1.2.2方法前处理,得到空白基质溶液,精确吸取一定量的混合标准溶液,用空白基质溶液稀释成质量浓度为1、2、5、10、20、50、80、100 μg/L的基质匹配标准工作溶液。

    将海产品的肌肉组织放入组织捣碎机搅拌至糜泥状且均匀化,称取5.0 g海产品试样于50 mL的聚乙烯离心管当中,放入陶瓷均质子,加入10 mL超纯水,振荡混合5 min,加入10 mL乙腈溶液(含1%甲酸),剧烈振荡提取1 min,加入QuEChERS盐包后快速摇匀,放置离心机中9000 r/min离心5 min,吸取2 mL上层提取液于装有0.22 μm滤膜的m-PFC柱中,滤液装入进样瓶,上机待测。

    色谱柱:Agilent Eclipse Plus C18(100 mm×2.1 mm,1.8 μm);进样量:3 μL;柱温:35 ℃;流速:0.3 mL/min;流动相:A为0.1%(v/v)甲酸水溶液,B为甲醇溶液;洗脱程序如表1所示。

    表  1  梯度洗脱程序
    Table  1.  The ratio of gradient elution program
    时间(min)A(%)B(%)
    0955
    0.257030
    3.003565
    4.00199
    5.00199
    5.01955
    7.00955
    下载: 导出CSV 
    | 显示表格

    电喷雾离子源(ESI),正离子模式;扫描方式:多反应监测(MRM)模式;喷雾电压3500 V;汽化温度350 ℃;离子传输管温度350 ℃;鞘气(氮气)流速32 L/min;辅助气(氮气)流速5 L/min;碰撞气:高纯氩气,压力为200 kPa。19种磺胺的质谱参数见表2

    表  2  19种磺胺类药物质谱参数
    Table  2.  Mass spectral parameters of 19 sulfonamides
    化合物母离子
    (m/z)
    子离子
    (m/z)
    碰撞电压
    (eV)
    射频透镜
    电压(eV)
    磺胺醋酰(SAA)215.1108.0, 155.9*19, 1069
    磺胺吡啶(SPD)250.1108.0, 155.9*24, 1670
    磺胺嘧啶(SDZ)251.1108.0, 155.9*24, 1666
    磺胺甲噁唑(SMZ)254.1108.0, 155.9*24, 1666
    磺胺噻唑(STZ)256.0108.0, 155.9*23, 1563
    磺胺甲基
    嘧啶(SMR)
    265.0155.9*, 171.917, 1772
    磺胺异噁唑(SFZ)268.092.1, 155.9*26, 1462
    磺胺甲二唑(SMT)271.0108.0, 155.9*23, 1563
    磺胺苯酰(SBA)277.0108.0, 155.9*23, 1358
    磺胺对二甲氧
    嘧啶(SDM)
    279.2156.0*, 186.121, 1886
    磺胺间甲氧
    嘧啶(SMM)
    281.0108.0, 155.9*26, 1874
    磺胺对甲氧
    嘧啶(SMD)
    281.1108.0, 155.9*25, 1774
    磺胺甲氧嗪(SMP)281.1108.0, 155.9*21, 1773
    磺胺氯哒嗪(SCP)285.0108.0, 155.9*24, 1564
    甲氧苄啶(TMP)291.2230.0*, 261.024, 2593
    磺胺喹噁啉(SQX)301.1108.0, 155.9*25, 1775
    磺胺邻二甲氧
    嘧啶(SDX)
    311.1108.0, 155.9*26, 1881
    磺胺地索辛(SDT)311.1108.0, 156.0*28, 2184
    磺胺苯吡唑(SPA)315.1158.0*, 160.029, 2286
    注:*为定量离子。
    下载: 导出CSV 
    | 显示表格

    采用Thermo TSQ Quantiva液相色谱-质谱联用仪配备Xcalibur工作站建立方法、数据采集,Trace Finder软件对数据定量处理,Excle 2016进行数据整理、分析。

    有文献报道[36-39],甲醇可以实现磺胺类化合物较好的分离,各个目标化合物峰形尖锐,改善拖尾现象。在水相中添加甲酸有利于磺胺类药物的离子化、改善峰形、提高灵敏度[40-41]。因此,本研究考察了甲醇−0.05%甲酸水溶液、甲醇−0.1%甲酸水溶液、甲醇−0.2%甲酸水溶液和甲醇-水对19种磺胺类化合物的分离度、灵敏度及峰形的影响。结果表明,以甲醇-水为流动相时,化合物灵敏度低,峰形差,不同浓度甲酸水溶液提高了各化合物的灵敏度,峰形尖锐,各化合物分离良好,含有0.1%和0.2%的甲酸水溶液对各化合物影响变化不大,但较0.05%甲酸水溶液,SDT和SPA灵敏度明显提升。考虑到试剂的消耗,本研究最终选择甲醇−0.1%甲酸水溶液作为流动相。

    乙腈具有沉淀蛋白、减少共提物的特点[23,42],是动物性食品中常用的提取溶剂。磺胺类药物分子中含有芳伯氨基和磺酰胺基,具有酸碱两性,在酸性溶液中呈电离状态[43],在提取剂中加入甲酸提高提取效率。实验考察了含有1%、2%和5%甲酸的乙腈溶液对海产品中19种磺胺类化合物的提取效率。从图1结果可知,随着甲酸浓度的增加,TMP提取回收率从62.0%增加至83.7%,但大多数化合物的回收率降低,SBA、SCP、SAA、SMZ 4种化合物下降20%左右,可能是由于随着甲酸浓度升高,抑制了电离状态,不易被提取。不同浓度的甲酸对各化合物提取效应影响的实验现象与赵寅等[19]、赵巧灵等[ 44]的观察结果是一致的。因此,本文选择1%的甲酸乙腈溶液作为提取溶剂。

    图  1  不同浓度甲酸乙腈对19种磺胺类药物的回收率
    Figure  1.  Recovery rate of 19 sulfonamides by formic acid acetonitrile at different concentrations

    实验发现,富含蛋白质的海产品在酸性乙腈中不易分散,加入盐包盐析分层时易包裹陶瓷均质子成团。本研究在样品中分别加入0、5和10 mL体积的水,让样品与水充分浸润后,再加入盐包,考察不同体积的水对19种磺胺类化合物提取的影响。实验中发现,5、10 mL体积的水可以使样品均匀分散,加入甲酸乙腈振荡提取后,5 mL水产生的泡沫明显比10 mL的丰富。从图2结果可知,加入0和10 mL水,大多数化合物的回收率比较一致,但加入10 mL水可以明显提高TMP的回收率,而加入5 mL水时,可能因为产生的大量泡沫中包裹了目标物,未被提取,降低了回收率。为了便于各化合物的提取,实验最终选择加入10 mL水。

    图  2  不同体积水对19种磺胺类药物的回收率
    Figure  2.  Recovery rate of 19 sulfonamides by different volumes of water

    对富含蛋白质、脂肪及磷脂的海产品,传统的净化方式是使用正己烷除脂肪[45]。本实验比较了国家标准方法(GB/T 21316-2007)和m-PFC净化方法。国家标准方法中,正己烷与乙腈微溶,需将乙腈浓缩吹干后,再正己烷净化处理,实验过程中发现,定容时溶液浑浊、不易过滤。m-PFC将MgSO4、C18、MWCNTs等净化材料设计成注射器式,净化过程不需淋洗、活化,省略旋涡振荡和离心过程,比QuEChERS净化管操作更加简便。MgSO4用于去除水分,C18作去除脂肪等脂溶性物质,MWCNTs是一种新型纳米材料,具有高比表面积、耐酸碱和耐热特性,其管状结构具有更强的吸附和净化能力,对样品中色素、有机酸、糖类、脂肪酸等有较好的去除能力[29, 30, 32, 46]。选择墨鱼空白基质,添加20 μg/kg的混合标准溶液,采用国家标准方法和m-PFC净化方法,分别对19种磺胺类化合物回收率进行检测。结果表明,采用国家标准方法净化,所有目标物中的回收率在80.0%~97.0%;采用m-PFC净化方法所有目标物中的回收率在80.6%~104.7%,二者净化方法均满足实验要求,但m-PFC净化方法所得的净化液透明清澈,同时减少了前处理步骤,缩短了前处理时间。由此可见,m-PFC净化方法操作简便,可大幅提高前处理效率。

    海产品种类繁多,营养物质丰富,基质效应对分析准确性具有重要影响,因此有必要研究分析海产品的基质效应。选取角虾、墨鱼和金线鱼三种不同的空白样品,分别绘制1、2、5、10、20、50、80、100 μg/L的空白标准溶液曲线和溶剂标准溶液曲线。基质效应ME(%)=基质标准曲线斜率/溶剂标准曲线斜率×100。基质效应小于80%表现为基质抑制效应;80%~120%基质效应不明显;大于120%表现为强基质效应[47]。各目标物的基质效应结果如表3所示,SAA易受基质影响,表现为基质抑制,在角虾中最强,不同目标物在不同基质中基质效应表现也不完全一致,可能是由于海产品生活环境的差异而带来的生物机体差异。因此在结果分析中有必要通过空白基质标准曲线进行定量抵消基质效应的影响。

    表  3  19种磺胺类药物的基质效应
    Table  3.  Matrix effects of 19 sulfonamides
    物质基质效应ME(%)
    角虾墨鱼金线鱼
    SAA17.454.051.9
    SPD105.5112.8118.0
    SDZ100.7113.3120.0
    SMZ104.7117.0121.9
    STZ99.4113.3117.0
    SMR112.4121.2122.4
    SFZ103.5116.2119.3
    SMT92.4112.4117.3
    SBA104.1109.5114.8
    SDM110.7110.2121.2
    SMM104.7106.4119.7
    SMD106.4115.3121.6
    SMP106.6109.3119.9
    SCP97.3116.0120.1
    TMP94.072.192.8
    SQX71.763.399.1
    SDX113.5115.7122.3
    SDT103.5108.9119.7
    SPA99.485.5102.8
    下载: 导出CSV 
    | 显示表格

    按照1.2.2方法制备空白基质溶液,配制质量浓度为1、2、5、10、20、50、80、100 μg/L的基质混合标准工作液,以各药物的峰面积为纵坐标,对应的质量浓度为横坐标,绘制标准曲线。各药物线性关系良好,决定系数(R2)均大于0.997。由化学工作站计算出每种药物的信噪比,方法的定量限为10倍的信噪比,可计算得出对应每种药物的定量限,而方法定量限是为了获得满意的回收率和标准偏差时检测到目标化合物的最低浓度[48]。结果表明该方法各化合物的定量限均低于1 μg/kg,低于国家标准方法(GB/T 21316-2007)中水产品中定量限10 μg/kg。在角虾、墨鱼和金线鱼的空白样品中,分别添加10、20和100 μg/kg的标准溶液,每个水平重复8次,得到每种药物的平均回收率和RSD。结果显示,平均回收率为:70.0%~114.1%,RSD为:0.5%~9.4%,结果见表4

    表  4  19种磺胺类药物线性关系、决定系数、检出限、定量限、回收率和精密度
    Table  4.  Linear equations, determination coefficient (R2), limit of detection, limit of quantitation, recovery and RSD of 19 sulfonamides
    化合物线性关系决定系数R2检出限
    (μg/kg)
    定量限
    (μg/kg)
    加标浓度
    (μg/kg)
    角虾墨鱼金线鱼
    平均回收率
    (%, n=8)
    RSD
    (%)
    平均回收率
    (%, n=8)
    RSD
    (%)
    平均回收率
    (%, n=8)
    RSD
    (%)
    SAA y=1.416e4x−1.725e4 0.9983 0.15 0.41 10 70.0 9.4 103.5 6.1 80.1 8.6
    20 75.7 3.6 104.7 4.1 87.9 5.3
    100 87.2 6.5 86.6 3.2 89.4 4.3
    SPD y=5.513e4x−5.1e4 0.9989 0.03 0.08 10 84.5 3.8 88.1 4.2 89.7 4.7
    20 88.4 2.9 84.0 3.7 85.7 4.0
    100 87.6 1.2 82.1 3.1 86.7 3.2
    SDZ y=4.326e4x−3.697e4 0.9991 0.01 0.02 10 85.6 5.4 91.2 5.2 90.8 4.2
    20 89.6 3.4 85.8 1.9 85.4 2.1
    100 90.3 1.4 82.1 2.5 87.6 2.8
    SMZ y=3.787e4x−8.932e4 0.9986 0.02 0.06 10 87.6 5.5 92.4 5.3 95.4 5.2
    20 104.0 3.8 88.0 3.5 90.8 4.1
    100 91.6 1.6 84.7 3.3 91.2 2.7
    STZ y=5.182e4x−7.957e4 0.9992 0.06 0.17 10 80.1 5.2 83.6 2.7 86.6 5.3
    20 77.4 2.7 80.6 4.2 83.4 2.9
    100 86.9 2.5 76.3 3.2 81.3 2.7
    SMR y=3.854e4x−5.574e4 0.9976 0.01 0.04 10 89.3 6.2 89.3 6.2 92.0 4.9
    20 80.0 1.7 87.3 2.5 90.0 3.3
    100 89.8 2.2 81.3 3.9 87.8 2.6
    SFZ y=4.904e4x−1.258e5 0.9985 0.02 0.05 10 83.0 6.1 89.7 3.7 94.3 3.4
    20 83.8 1.7 86.3 3.4 90.7 4.0
    100 91.9 2.6 83.9 3.7 90.4 2.4
    SMT y=4.937e4x−6.674e4 0.9993 0.01 0.04 10 86.5 2.8 90.1 5.2 91.9 2.8
    20 80.2 3.4 84.8 3.7 86.6 4.5
    100 90.0 0.8 81.6 2.5 87.3 3.3
    SBA y=3.733e4x−8.732e4 0.9987 0.01 0.04 10 81.5 5.7 89.5 5.0 93.0 4.5
    20 79.2 3.6 87.3 4.2 90.7 5.3
    100 89.8 0.8 85.7 3.2 90.8 2.0
    SDM y=2.298e4x−2.673e4 0.9990 0.01 0.02 10 82.4 4.6 88.7 6.8 93.4 3.3
    20 78.6 3.7 82.3 3.5 86.7 5.1
    100 89.9 1.7 82.6 4.3 87.3 3.5
    SMM y=3.315e4x−7.478e4 0.9992 0.005 0.01 10 84.3 2.1 91.8 2.9 96.6 2.0
    20 80.8 0.5 83.3 2.6 87.7 1.6
    100 91.6 0.7 85.3 2.2 91.9 1.6
    SMD y=3.157e4x−4.424e4 0.9993 0.02 0.05 10 84.4 5.4 86.1 6.7 91.6 5.0
    20 89.5 3.7 82.3 3.7 87.7 2.3
    100 90.0 1.7 79.4 3.4 85.4 1.7
    SMP y=6.023e4x−6.471e4 0.9991 0.05 0.01 10 84.2 2.1 91.6 2.6 96.6 2.5
    20 80.0 1.1 83.1 2.7 87.7 1.4
    100 91.3 0.9 85.5 2.5 91.8 2.0
    SCP y=3.953e4x−7.694e4 0.9983 0.01 0.04 10 83.1 3.3 90.0 4.9 92.5 3.3
    20 79.7 5.0 85.8 2.2 88.1 3.3
    100 89.9 1.6 81.7 2.8 86.2 3.2
    TMP y=1.553e5x−1.338e5 0.9996 0.02 0.07 10 94.3 6.7 81.3 6.4 83.8 7.7
    20 82.8 4.4 87.8 7.5 85.2 3.0
    100 86.2 4.6 85.5 4.0 89.1 3.9
    SQX y=5.25e4x−8.537e4 0.9991 0.03 0.08 10 85.0 6.9 85.1 5.8 104.6 4.6
    20 84.8 3.2 86.3 5.0 81.4 4.9
    100 93.0 2.4 85.0 2.3 88.7 3.8
    SDX y=9.15e4x−1.918e5 0.9988 0.005 0.01 10 82.3 2.6 95.5 3.9 97.7 2.7
    20 82.9 3.2 89.6 2.5 91.7 3.1
    100 92.7 1.7 86.3 3.3 92.1 2.9
    SDT y=9.756e4x−1.611e5 0.9992 0.01 0.04 10 84.1 4.1 92.2 3.5 96.3 3.8
    20 87.9 2.1 83.4 3.5 87.1 3.6
    100 89.3 3.9 84.8 4.2 88.1 1.5
    SPA y=5.585e4x−1.031e5 0.9991 0.03 0.1 10 95.2 3.9 107.8 2.8 99.2 2.7
    20 82.1 2.3 93.9 3.5 86.5 1.6
    100 82.9 1.6 114.1 3.2 97.9 2.5
    下载: 导出CSV 
    | 显示表格

    采用优化后的方法对市售的20批海产品进行样品测定。结果显示,1批名为贴石鱼的海鱼检出项目为SMD,测定含量为735.4 μg/kg,超过国家标准规定的最大限值(总量≤100 μg/kg)。

    本实验将快速滤过型净化与液相色谱-串联质谱技术结合,建立了海产品中19种磺胺类药物残留的检测方法。相较于传统正己烷除脂净化方法,本方法减少了氮吹、浓缩,净化液清亮透彻,缩短了前处理时间,大大提高了检测工作效率。通过对海产品中的虾肉、墨鱼、鱼肉进行了方法学评价,各组分在1~100 μg/L范围内线性关系良好,检出限为0.005~0.15 μg/kg,定量限为0.01~0.41 μg/kg,平均回收率为70.0%~114.1%,RSD为0.5%~9.4%,符合兽药残留检测要求。与国标标准方法相比,本方法操作简便、高效、准确、灵敏度高,适用于海产品中磺胺类药物的检测。

  • 图  1   不同浓度甲酸乙腈对19种磺胺类药物的回收率

    Figure  1.   Recovery rate of 19 sulfonamides by formic acid acetonitrile at different concentrations

    图  2   不同体积水对19种磺胺类药物的回收率

    Figure  2.   Recovery rate of 19 sulfonamides by different volumes of water

    表  1   梯度洗脱程序

    Table  1   The ratio of gradient elution program

    时间(min)A(%)B(%)
    0955
    0.257030
    3.003565
    4.00199
    5.00199
    5.01955
    7.00955
    下载: 导出CSV

    表  2   19种磺胺类药物质谱参数

    Table  2   Mass spectral parameters of 19 sulfonamides

    化合物母离子
    (m/z)
    子离子
    (m/z)
    碰撞电压
    (eV)
    射频透镜
    电压(eV)
    磺胺醋酰(SAA)215.1108.0, 155.9*19, 1069
    磺胺吡啶(SPD)250.1108.0, 155.9*24, 1670
    磺胺嘧啶(SDZ)251.1108.0, 155.9*24, 1666
    磺胺甲噁唑(SMZ)254.1108.0, 155.9*24, 1666
    磺胺噻唑(STZ)256.0108.0, 155.9*23, 1563
    磺胺甲基
    嘧啶(SMR)
    265.0155.9*, 171.917, 1772
    磺胺异噁唑(SFZ)268.092.1, 155.9*26, 1462
    磺胺甲二唑(SMT)271.0108.0, 155.9*23, 1563
    磺胺苯酰(SBA)277.0108.0, 155.9*23, 1358
    磺胺对二甲氧
    嘧啶(SDM)
    279.2156.0*, 186.121, 1886
    磺胺间甲氧
    嘧啶(SMM)
    281.0108.0, 155.9*26, 1874
    磺胺对甲氧
    嘧啶(SMD)
    281.1108.0, 155.9*25, 1774
    磺胺甲氧嗪(SMP)281.1108.0, 155.9*21, 1773
    磺胺氯哒嗪(SCP)285.0108.0, 155.9*24, 1564
    甲氧苄啶(TMP)291.2230.0*, 261.024, 2593
    磺胺喹噁啉(SQX)301.1108.0, 155.9*25, 1775
    磺胺邻二甲氧
    嘧啶(SDX)
    311.1108.0, 155.9*26, 1881
    磺胺地索辛(SDT)311.1108.0, 156.0*28, 2184
    磺胺苯吡唑(SPA)315.1158.0*, 160.029, 2286
    注:*为定量离子。
    下载: 导出CSV

    表  3   19种磺胺类药物的基质效应

    Table  3   Matrix effects of 19 sulfonamides

    物质基质效应ME(%)
    角虾墨鱼金线鱼
    SAA17.454.051.9
    SPD105.5112.8118.0
    SDZ100.7113.3120.0
    SMZ104.7117.0121.9
    STZ99.4113.3117.0
    SMR112.4121.2122.4
    SFZ103.5116.2119.3
    SMT92.4112.4117.3
    SBA104.1109.5114.8
    SDM110.7110.2121.2
    SMM104.7106.4119.7
    SMD106.4115.3121.6
    SMP106.6109.3119.9
    SCP97.3116.0120.1
    TMP94.072.192.8
    SQX71.763.399.1
    SDX113.5115.7122.3
    SDT103.5108.9119.7
    SPA99.485.5102.8
    下载: 导出CSV

    表  4   19种磺胺类药物线性关系、决定系数、检出限、定量限、回收率和精密度

    Table  4   Linear equations, determination coefficient (R2), limit of detection, limit of quantitation, recovery and RSD of 19 sulfonamides

    化合物线性关系决定系数R2检出限
    (μg/kg)
    定量限
    (μg/kg)
    加标浓度
    (μg/kg)
    角虾墨鱼金线鱼
    平均回收率
    (%, n=8)
    RSD
    (%)
    平均回收率
    (%, n=8)
    RSD
    (%)
    平均回收率
    (%, n=8)
    RSD
    (%)
    SAA y=1.416e4x−1.725e4 0.9983 0.15 0.41 10 70.0 9.4 103.5 6.1 80.1 8.6
    20 75.7 3.6 104.7 4.1 87.9 5.3
    100 87.2 6.5 86.6 3.2 89.4 4.3
    SPD y=5.513e4x−5.1e4 0.9989 0.03 0.08 10 84.5 3.8 88.1 4.2 89.7 4.7
    20 88.4 2.9 84.0 3.7 85.7 4.0
    100 87.6 1.2 82.1 3.1 86.7 3.2
    SDZ y=4.326e4x−3.697e4 0.9991 0.01 0.02 10 85.6 5.4 91.2 5.2 90.8 4.2
    20 89.6 3.4 85.8 1.9 85.4 2.1
    100 90.3 1.4 82.1 2.5 87.6 2.8
    SMZ y=3.787e4x−8.932e4 0.9986 0.02 0.06 10 87.6 5.5 92.4 5.3 95.4 5.2
    20 104.0 3.8 88.0 3.5 90.8 4.1
    100 91.6 1.6 84.7 3.3 91.2 2.7
    STZ y=5.182e4x−7.957e4 0.9992 0.06 0.17 10 80.1 5.2 83.6 2.7 86.6 5.3
    20 77.4 2.7 80.6 4.2 83.4 2.9
    100 86.9 2.5 76.3 3.2 81.3 2.7
    SMR y=3.854e4x−5.574e4 0.9976 0.01 0.04 10 89.3 6.2 89.3 6.2 92.0 4.9
    20 80.0 1.7 87.3 2.5 90.0 3.3
    100 89.8 2.2 81.3 3.9 87.8 2.6
    SFZ y=4.904e4x−1.258e5 0.9985 0.02 0.05 10 83.0 6.1 89.7 3.7 94.3 3.4
    20 83.8 1.7 86.3 3.4 90.7 4.0
    100 91.9 2.6 83.9 3.7 90.4 2.4
    SMT y=4.937e4x−6.674e4 0.9993 0.01 0.04 10 86.5 2.8 90.1 5.2 91.9 2.8
    20 80.2 3.4 84.8 3.7 86.6 4.5
    100 90.0 0.8 81.6 2.5 87.3 3.3
    SBA y=3.733e4x−8.732e4 0.9987 0.01 0.04 10 81.5 5.7 89.5 5.0 93.0 4.5
    20 79.2 3.6 87.3 4.2 90.7 5.3
    100 89.8 0.8 85.7 3.2 90.8 2.0
    SDM y=2.298e4x−2.673e4 0.9990 0.01 0.02 10 82.4 4.6 88.7 6.8 93.4 3.3
    20 78.6 3.7 82.3 3.5 86.7 5.1
    100 89.9 1.7 82.6 4.3 87.3 3.5
    SMM y=3.315e4x−7.478e4 0.9992 0.005 0.01 10 84.3 2.1 91.8 2.9 96.6 2.0
    20 80.8 0.5 83.3 2.6 87.7 1.6
    100 91.6 0.7 85.3 2.2 91.9 1.6
    SMD y=3.157e4x−4.424e4 0.9993 0.02 0.05 10 84.4 5.4 86.1 6.7 91.6 5.0
    20 89.5 3.7 82.3 3.7 87.7 2.3
    100 90.0 1.7 79.4 3.4 85.4 1.7
    SMP y=6.023e4x−6.471e4 0.9991 0.05 0.01 10 84.2 2.1 91.6 2.6 96.6 2.5
    20 80.0 1.1 83.1 2.7 87.7 1.4
    100 91.3 0.9 85.5 2.5 91.8 2.0
    SCP y=3.953e4x−7.694e4 0.9983 0.01 0.04 10 83.1 3.3 90.0 4.9 92.5 3.3
    20 79.7 5.0 85.8 2.2 88.1 3.3
    100 89.9 1.6 81.7 2.8 86.2 3.2
    TMP y=1.553e5x−1.338e5 0.9996 0.02 0.07 10 94.3 6.7 81.3 6.4 83.8 7.7
    20 82.8 4.4 87.8 7.5 85.2 3.0
    100 86.2 4.6 85.5 4.0 89.1 3.9
    SQX y=5.25e4x−8.537e4 0.9991 0.03 0.08 10 85.0 6.9 85.1 5.8 104.6 4.6
    20 84.8 3.2 86.3 5.0 81.4 4.9
    100 93.0 2.4 85.0 2.3 88.7 3.8
    SDX y=9.15e4x−1.918e5 0.9988 0.005 0.01 10 82.3 2.6 95.5 3.9 97.7 2.7
    20 82.9 3.2 89.6 2.5 91.7 3.1
    100 92.7 1.7 86.3 3.3 92.1 2.9
    SDT y=9.756e4x−1.611e5 0.9992 0.01 0.04 10 84.1 4.1 92.2 3.5 96.3 3.8
    20 87.9 2.1 83.4 3.5 87.1 3.6
    100 89.3 3.9 84.8 4.2 88.1 1.5
    SPA y=5.585e4x−1.031e5 0.9991 0.03 0.1 10 95.2 3.9 107.8 2.8 99.2 2.7
    20 82.1 2.3 93.9 3.5 86.5 1.6
    100 82.9 1.6 114.1 3.2 97.9 2.5
    下载: 导出CSV
  • [1] 章超桦, 薛长湖. 水产食品学[M]. 第3版. 北京: 中国农业出版社, 2018

    ZHANG C H, XUE C H. The aquatic foodstuff teaching[M]. Edition 3. Beijing: China Agriculture Press, 2018.

    [2] 国家统计局. 年度数据. [2021-12-01]. https://data. stats. gov. cn/easyquery. htm?cn=C01.

    National Bureau of Statistics of China. Annual data. [2021-12-01]. https://data.stats.gov.cn/easyquery.htm?cn=C01.

    [3] 于博文, 沈梦楠, 王茹, 等. 抗生素在水生物体内富集的研究进展[J]. 化工设计通讯,2021,47(3):77, 192. [YU B W, SHEN M N, WANG R. Advances in bioaccumulation of antibiotics in aquatic organisms[J]. Chemical Engineering Design Communications,2021,47(3):77, 192.
    [4] 包樱钰, 李菲菲, 温东辉. 我国海水养殖业的抗生素污染现状[J]. 海洋环境科学,2021,40(2):294−302. [BAO Y Y, LI F F, WEN D H. Antibiotic contamination in mariculture in China[J]. Marine Environmental Science,2021,40(2):294−302. doi: 10.12111/j.mes.20190312
    [5] 杜业刚, 邓武剑, 刘奕雄, 等. 酒店海产品与养殖池水中26种药物残留分析[J]. 食品工业,2013,34(7):206−208. [DU Y G, DENG W J, LIU Y X, et al. The relevance analysis of malachite green and 26 antibiotic drugs residues between fresh seafood and the corresponding pool water in restaurants[J]. The Food Industry,2013,34(7):206−208.
    [6]

    BURRIDGE L, WEIS J S, CABELLO F, et al. Chemical use in salmon aquaculture: A review of current practices and possible environmental effects[J]. Aquaculture,2010,306(1):7−23.

    [7] 李壹, 曲凌云, 朱鹏飞, 等. 山东地区海水养殖区常见抗生素耐药菌及耐药基因分布特征[J]. 海洋环境科学,2016,35(1):55−62. [LI Y, QU L Y, ZHU P F, et al. Distribution characteristics of antibiotic resistance bacteria and related resistance genes in mariculture area of Shandong[J]. Marine Environmental Science,2016,35(1):55−62.
    [8]

    CHANG C P, HOU P H, YANG W C, et al. Analytical detection of sulfonamides and organophosphorus insecticide residues in fish in Taiwan[J]. Molecules (Basel, Switzerland),2020,25(7):1501. doi: 10.3390/molecules25071501

    [9]

    QIN L T, PANG X R, ZENG H H, et al. Ecological and human health risk of sulfonamides in surface water and groundwater of Huixian karst wetland in Guilin, China[J]. The Science of the Total Environment,2020,708:134552. doi: 10.1016/j.scitotenv.2019.134552

    [10] 李唐, 黄永震, 姜艳芬, 等. 动物性食品药物残留的检测方法和防控对策[J]. 食品工业,2019,40(7):260−265. [LI T, HUANG Y Z, JIANG Y F, et al. Detection methods and control strategies of drug residues in animal food[J]. The Food Industry,2019,40(7):260−265.
    [11] 农业农村部, 国家卫生健康委员会, 国家市场监督管理总局. GB 31650-2019中国食品安全标准食品中兽药最大残留限量[S]. 北京: 中国标准出版社, 2019

    Ministry of Agriculture and Rural Affairs Announcement, National Health Commission, State Administration for Market Regulation. GB 31650-2019 Naional food safety standard Maximum residue limits for veterinary drugs in foods[S]. Beijing: National Standards Press, 2019.

    [12] 李晓晶, 于鸿, 杨蓉, 等. 超声辅助分散液液微萃取/超高效液相色谱-串联质谱法检测水中多种磺胺类抗生素残留[J]. 分析测试学报,2016,35(10):1255−1260. [LI X J, YU H, YANG R, et al. Determination of 13 sulfonamide residues in water by ultrasound-assisted dispersive liquid-liquid microextraction coupled with ultra performance liquid chromatography-tandem quadrupole mass spectrometry[J]. Journal of Instrumental Analysis,2016,35(10):1255−1260. doi: 10.3969/j.issn.1004-4957.2016.10.006
    [13] 刘培勇, 张惠, 米之金, 等. 两步液液萃取-固相萃取净化结合高效液相色谱-串联质谱法测定猪肉中11种磺胺类兽药残留[J]. 色谱,2019,37(10):1098−1104. [LIU P Y, ZHANG H, MI Z J, et al. Determination of 11 sulfonamides in pork by two-step liquid-liquid extraction-solid phase extraction purification coupled with high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2019,37(10):1098−1104. doi: 10.3724/SP.J.1123.2019.04005
    [14]

    ZHONG G F, LIU X L, WANG C M. Study on pretreatment during simultaneous determination of sulfonamides and chloramphenicolsin honey[J]. Agricultural Biotechnology,2017,6(2):51−54.

    [15]

    SUO D C, WANG P L, LI Y, et al. Simultaneous determination of antibiotics and amantadines in animal-derived feedstuffs by ultraperformance liquid chromatographic-tandem mass spectrometry[J]. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,2018,1095(2):183−190.

    [16] 张艳梅, 钱珊珊, 赵志勇, 等. 固相萃取技术在磺胺类药物残留分析中的研究进展[J]. 分析测试学报,2020,39(5):681−689. [ZHANG Y M, QIAN S S, ZHAO Z Y, et al. Advances on application of solid phase extraction in analysis of sulfonamides residues[J]. Journal of Instrumental Analysis,2020,39(5):681−689. doi: 10.3969/j.issn.1004-4957.2020.05.019
    [17]

    CHENG G D, WU X H, JIN Z, et al. Simultaneous determination of three sulfonamide residues in modified milk by ultra performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Chromatography,2015,33(10):892−896.

    [18] 周瑞铮, 陈锦杭, 张树权, 等. 分散固相萃取结合液相色谱-串联质谱法测定淡水鱼中9种磺胺类和3种喹诺酮类药物残留量[J]. 食品安全质量检测学报,2021,12(17):6946−6952. [ZHOU R Z, CHEN J H, ZHANG S Q, et al. Determination of 9 kinds of sulfonamides and 3 kinds of quinolones residues in freshwater fish by dispersive solid phase extraction coupled with liquid chromatography-tandem mass spectrometry[J]. Food Safety and Quality Detection Technology,2021,12(17):6946−6952.
    [19] 赵寅, 卢玉, 刘桂亮, 等. 固相萃取-高效液相色谱法同时测定牛奶中22种磺胺类兽药残留[J]. 分析试验室,2022,41(2):187−191. [ZHAO Y, LU Y, LIU G L, et al. Determination of 22 sulfonamides residues in milk by high performance liquid chromatography with solid phase extraction[J]. Chinese Journal of Analysis Laboratory,2022,41(2):187−191.
    [20] 罗辉泰, 谢梦婷, 黄晓兰, 等. 分散固相萃取-高效液相色谱-串联质谱法同时测定畜禽肉中63 种兽药残留[J]. 色谱,2015,33(4):354−362. [LUO H T, XIE M T, HUANG X L, et al. Multiresidue analysis of 63 veterinary drugs in meat by dispersive solid-phase extraction and high performance liquid chromatographytandem mass spectrometry[J]. Chinese Journal of Chromatography,2015,33(4):354−362. doi: 10.3724/SP.J.1123.2014.12005
    [21] 容裕棠, 张宪臣, 张朋杰, 等. QuEChERS-超高效液相色谱-串联质谱法同时测定蜂蜜中21 种磺胺类药物残留[J]. 食品与发酵工业,2018,44(4):226−233. [RONG Y T, ZHANG X C, ZHANG P J, et al. Simultaneous determination of twenty-one sulfonamides residues in honey by QuEChERS ultra liquid chromatography-mass mass spectrometry[J]. Food and Fermentation Iindustries,2018,44(4):226−233.
    [22] 李朔, 张璨, 马玲, 等. QuEChERS 结合超高效液相色谱-串联质谱法同步测定鱼肉制品中24 种磺胺类抗生素[J]. 食品工业科技,2022,43(9):301−308. [LI S, ZHANG C, MA L, et al. Simultaneous determination of 24 sulfonamide antibiotics in fish products by QuEChERS with ultra performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry,2022,43(9):301−308.
    [23] 张虹艳, 邱国玉, 吴福祥, 等. 组织研磨-QuEChERS-高效液相色谱-串联质谱法测定动物源食品中磺胺类药物残留以及基质效应的研究[J]. 食品工业科技,2020,41(10):259−264,270. [ZHANG H Y, QIU G Y, WU F X, et al. Determination of sulfonamides in animal-originated foods by grinder-QuEChERS high performance liquid chromatography-tandem mass spectrometry and research on matrix effects[J]. Science and Technology of Food Industry,2020,41(10):259−264,270.
    [24] 杨坤, 刘桂琼, 管春成, 等. 通过型固相萃取净化-超高效液相色谱-串联质谱法检测鸡肉中23 种磺胺类药物残留[J]. 食品工业科技,2022,42(18):824−291. [YANG K, LIU G Q, GUAN C C, et al. Determination of 23 sulfonamide drugs residues in chicken by ultra performance liquid chromatography-tandem mass spectrometry with pass-through solid phase extraction[J]. Science and Technology of Food Industry,2022,42(18):824−291.
    [25]

    ZHAO P Y, FAN S F, YU C S, et al. Multiplug filtration clean-up with multiwalled carbon nanotubes in the analysis of pesticide residues using LC-ESI-MS/MS[J]. Journal of Separation Science,2013,36(20):3379−3386. doi: 10.1002/jssc.201300411

    [26]

    ZHAO P Y, HUANG B Y, LI Y J, et al. Rapid multiplug filtration cleanup with multiple-walled carbon nanotubes and gas chromatography-triple-quadruple mass spectrometry detection for 186 pesticide residues in tomato and tomato products[J]. Journal of Agricultural and Food Chemistry,2014,62(17):3710−3725. doi: 10.1021/jf405240j

    [27]

    QIN Y H, ZHAO P Y, FAN S F, et al. The comparison of dispersive solid phase extraction and multi-plug filtration cleanup method based on multi-walled carbon nanotubes for pesticides multi-residue analysis by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A,2015,1385:1−11. doi: 10.1016/j.chroma.2015.01.066

    [28]

    ZOU N, HAN Y T, LI Y J, et al. Multiresidue method for determination of 183 pesticide residues in leeks by rapid multiplug filtration cleanup and gas chromatography-tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2016,64(31):6061−6070. doi: 10.1021/acs.jafc.5b05132

    [29] 孟志娟, 黄云霞, 邸鹏月, 等. 快速滤过型净化法结合气相色谱-四极杆-飞行时间质谱同时筛查果蔬中234种农药残留[J]. 食品科学,2020,41(16):272−285. [MENG Z J, HUANG Y X, DI P Y, et al. Rapid screening of 234 pesticide residues in vegetables and fruits by multi-plug filtration cleanup method combined with gas chromatography-quadrupole time of flight mass spectrometry[J]. Food Science,2020,41(16):272−285.
    [30] 黄云霞, 孟志娟, 赵丽敏, 等. 快速滤过型净化-GC-MS/MS测定枸杞中75种农药残留[J]. 食品工业,2021,42(8):308−313. [HUANG Y X, MENG Z J, ZHAO L M, et al. Determination of 75 pesticide residues in wolfberry by GC-MS/MS based on multi-plug filtration cleanup[J]. The Food Industry,2021,42(8):308−313.
    [31] 黄云霞, 孟志娟, 赵丽敏, 等. 快速滤过型净化结合气相色谱-串联质谱法同时检测茶叶中10种拟除虫菊酯农药残留[J]. 色谱,2020,38(7):798−804. [HUANG Y X, MENG Z J, ZHAO L M, et al. Determination of 10 pyrethroid pesticide residues in tea by gas chromatography-tandem mass spectrometry coupled with multi-plug filtration cheanup[J]. Chinese Journal of Chromatography,2020,38(7):798−804.
    [32] 郝东宇, 席兴军, 初侨, 等. 快速滤过型净化法结合高效液相色谱-串联质谱同时检测人参中的5种农药残留[J]. 农药学学报,2019,21(1):82−88. [HAO D Y, XI X J, CHU Q, et al. Simultaneous detection of five pesticide residues in ginseng by multi-plug filtration cleanup method combined with high performance liquid chromatography-tandem mass spectrometry[J]. Chinese Journal of Pesticide Science,2019,21(1):82−88.
    [33] 涂祥婷, 杨鸿波, 郭峰, 等. 超高效液相色谱-高分辨质谱法同时测定鱼肉中16种全氟烷基化合物[J]. 分析化学,2021,49(4):528−537. [TU X T, YANG H B, GUO F, et al. Simultaneous determination of 16 kinds of perfluoroalkyl substances in fish muscle by ultra high performance liquid chromatography-high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry,2021,49(4):528−537.
    [34] 李润康, 李佳宜, 张云峰, 等. MPFC-QuEChERS结合GC-MS/MS测定血液中γ-羟基丁酸[J]. 分析测试学报,2022,41(3):386−391. [LI R K, LI J Y, ZHANG Y F, et al. Determination of γ-hydroxybutyric acid in blood by MPFC-QuEChERS with GC-MS/MS[J]. Journal of Instrumental Analysis,2022,41(3):386−391.
    [35] 申美容. 干制水产品中四环素类药物残留和N-亚硝胺的检测方法研究[D]. 烟台: 烟台大学, 2021

    SHEN M R. Study on the detection methods of tetracycline residues and N-nitrosamines in dried aquatic products[D]. Yantan: Yantan University, 2021.

    [36]

    YANG Y, QIU W Q, LI Y X, et al. Antibiotic residues in poultry food in Fujian province of China[J]. Food Additives & Contaminants, Part B: Surveillance,2020,13(3):177−184.

    [37]

    CHENG S, WEI Z, ZHIMING X, et al. Trace analysis and identification of 33 sulfonamides and sulfonamide potentiators in eggs by ultrahigh-performance liquid chromatography coupled with quadrupole-high-field orbitrap high-resolution mass spectrometry[J]. Analytical Methods: Advancing Methods and Applications,2021,13(38):4452−4460.

    [38]

    FU L, ZHOU H, MIAO E M, et al. Functionalization of amino terminated carbon nanotubes with isocyanates for magnetic solid phase extraction of sulfonamides from milk and their subsequent determination by liquid chromatography-high resolution mass spectrometry[J]. Food Chemistry,2019,289:701−707. doi: 10.1016/j.foodchem.2019.03.097

    [39] 王东鹏, 叶诚. 增强型固相萃取净化-高效液相色谱-串联质谱法测定鲈鱼中18种磺胺类药物的残留量[J]. 食品工业科技,2022,43(14):371−377. [WANG D P, YE C. Determination of 18 sulfonamide drugs residues in lateolabrax japonicus by high performance liquid chromatography-tandem mass spectrometry with enhanced solid phase extraction[J]. Science and Technology of Food Industry,2022,43(14):371−377.
    [40] 张元, 李伟青, 周伟娥, 等. 食品中磺胺类药物前处理及检测方法研究进展[J]. 食品科学,2015,36(23):340−346. [ZHANG Y, LI W Q, ZHOU W E, et al. Progress in sample pretreatment and analytical techniques for the determination of sulfonamide residues in foods[J]. Food Science,2015,36(23):340−346.
    [41] 刘新辉, 王情情, 张瑗, 等. Oasis PRiME HLB净化法测定动物源性食品中的兽药多残留[J]. 农产品质量与安全,2019(5):15−20. [LIU X H, WANG Q Q, ZHANG Y, et al. Determination of multiple veterinary drug residues in animal-original food by Oasis PRiME HLB purification method[J]. Quality and Safety of Agroproducts,2019(5):15−20.
    [42] 张林田, 陆奕娜, 黄学泓, 等. 通过式净化-高效液相色谱-串联质谱法测定动物源性食品中42种兽药残留[J]. 分析科学学报,2020,36(1):81−87. [ZHANG L T, LU Y N, HUANG X H, et al. Deternination of 42 kinds of veterinary drug residues in animil-derived products by passing purification-hing perfomance liquid chromatography-tandem mass spectrometry[J]. Journal of Analyical Science,2020,36(1):81−87. doi: 10.2116/analsci.19SAP01
    [43]

    SHELVER W L, HAKK H, LARSEN G L, et al. Development of an ultra-high-pressure liquid chromatography-tandem mass spectrometry multi-residue sulfonamide method and its application to water, manure slurry, and soils from swine rearing facilities[J]. Journal of Chromatography A,2010,1217(8):1273−1282. doi: 10.1016/j.chroma.2009.12.034

    [44] 赵巧灵, 张薇英, 汤海凤, 等. 快速溶剂萃取-超高效液相色谱-串联质谱法测定养殖鱼肌肉中19种磺胺类药物残留[J]. 食品科技,2019,44(12):335−341. [ZHAO Q L, ZHANG W Y, TANG H F, et al. Determination of 19 sulfonamides residues in cultured fish muscle with accelerated solvent extraction by high performance liquid chromatography-tandem mass spectrometry[J]. Food Science and Technology,2019,44(12):335−341.
    [45] 国家标准化管理委员会, 国家质量监督检验检疫总局. GB/T 21316-2007 动物源性食品中磺胺类药物残留量的测定 液相色谱-质谱/质谱法[S]. 北京: 国家标准出版社, 2007

    National Standardization Management Committee, General Administration of Quality Supervision, Inspection and Quarantine. GB/T 21316-2007 Determination of residues of sulfonamides in foodstuffs of animal origin-LC-MS/MS[S]. Beijing: National Standards Press, 2007.

    [46]

    HAN Y T, SONG L, LIU S W, et al. Simultaneous determination of 124 pesticide residues in Chinese liquor and liquor-making raw materials (sorghum and rice hull) by rapid Multi-plug Filtration Cleanup and gas chromatography-tandem mass spectrometry[J]. Food Chemistry,2018,241(feb.15):258−267.

    [47] 童兰艳, 肖昭竞, 李根容, 等. 超高效液相色谱-三重四极杆质谱法测定化妆品中14种美白活性成分[J]. 分析试验室,2022,41(1):96−102. [TONG L Y, XIAO Z J, LI G R, et al. Determination of 14 whitening active components in cosmetics by ultra-high performance liquid chromatography-triple quadrupole mass spectrometry[J]. Chinese Journal of Analysis Laboratory,2022,41(1):96−102.
    [48]

    CHATTERJEE N S , UTTURE S , BANERJEE K, et al. Multiresidue analysis of multiclass pesticides and polyaromatic hydrocarbons in fatty fish by gas chromatography tandem mass spectrometry and evaluation of matrix effect[J]. Food Chemistry,2016,196:1−8. doi: 10.1016/j.foodchem.2015.09.014

  • 期刊类型引用(3)

    1. 徐冯莲,许锐鹏,张沂,王子昱,李煜龙,陈贵浩,方伟蓉. 植物乳杆菌RG-034对大鼠腹泻型肠易激综合征的治疗作用. 现代药物与临床. 2024(04): 816-825 . 百度学术
    2. 施丰成,李天笑,许春平,国旭丹,冀晓龙,宋光富. 粗细支卷烟烟气对小鼠肠道菌群及代谢产物的影响. 食品工业. 2024(11): 91-97 . 百度学术
    3. 刘玉鑫,韩迎香,王雅菲,郝艳萍,萨仁娜,托娅. 植物乳植杆菌LP-315对DSS诱导的小鼠炎症性肠病模型免疫应答调控研究. 中国微生态学杂志. 2024(12): 1365-1373 . 百度学术

    其他类型引用(3)

图(2)  /  表(4)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-06-28
  • 网络出版日期:  2023-02-06
  • 刊出日期:  2023-03-31

目录

/

返回文章
返回
x 关闭 永久关闭