• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于UPLC-Q-Exactive-MS/MS的藜麦皂苷提取物及入血成分分析

王伟宏, 胡菊丽, 吴定涛, 王诗洁, 蒋红, 邹亮, 胡一晨

王伟宏,胡菊丽,吴定涛,等. 基于UPLC-Q-Exactive-MS/MS的藜麦皂苷提取物及入血成分分析[J]. 食品工业科技,2023,44(9):296−308. doi: 10.13386/j.issn1002-0306.2022050100.
引用本文: 王伟宏,胡菊丽,吴定涛,等. 基于UPLC-Q-Exactive-MS/MS的藜麦皂苷提取物及入血成分分析[J]. 食品工业科技,2023,44(9):296−308. doi: 10.13386/j.issn1002-0306.2022050100.
WANG Weihong, HU Juli, WU Dingtao, et al. Analysis of Quinoa Saponin Extract and Blood Constituents Based on UPLC-Q-Exactive-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(9): 296−308. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050100.
Citation: WANG Weihong, HU Juli, WU Dingtao, et al. Analysis of Quinoa Saponin Extract and Blood Constituents Based on UPLC-Q-Exactive-MS/MS[J]. Science and Technology of Food Industry, 2023, 44(9): 296−308. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050100.

基于UPLC-Q-Exactive-MS/MS的藜麦皂苷提取物及入血成分分析

基金项目: 内蒙古自治区科学技术厅中央引导地方科技发展资金项目(2022ZY0138);农业国家标准和行业标准制修订项目(HYB-20357)。
详细信息
    作者简介:

    王伟宏(1997−),男,硕士研究生,研究方向:食品加工与安全,E-mail:617737751@qq.com

    通讯作者:

    胡一晨(1987−),女,博士,副教授,研究方向:食品功能营养因子评价与分析,E-mail:huyichen0323@126.com

  • 中图分类号: TS219

Analysis of Quinoa Saponin Extract and Blood Constituents Based on UPLC-Q-Exactive-MS/MS

  • 摘要: 运用超高效液相色谱-四级杆-静电场轨道离子阱联用质谱(UPLC-Q-Exactive-MS/MS)对藜麦皂苷提取物的主要化学成分及大鼠口服入血成分进行分析鉴定。采用Hypersil Gold VANQUISH C18色谱柱(2.1 mm×100 mm,1.8 μm),流动相为甲酸水-甲酸乙腈梯度洗脱,柱温30 ℃,分析时间35 min,流速0.3 mL·min−1。采用电喷雾离子源(ESI),正、负离子源,Full ms/dd-ms2模式检测。结果显示方法的回收率、基质效应、精密度和稳定性等均符合生物样品的测定要求。在藜麦皂苷提取物中共鉴定到15种皂苷,按苷元构型分为齐墩果酸型皂苷3种,常春藤型皂苷5种,商陆酸型皂苷6种,Serjanic acid型皂苷1种。选用雄性Sprague-Dawley(SD)大鼠,以175.5 mg·kg−1灌胃给予藜麦皂苷提取物,于给药后0、0.5、1、2、4 h下,眼眶取血,大鼠血浆以盐酸丁螺环酮为内标,用甲醇沉淀蛋白,离心,微孔滤膜过滤后进样分析。结果显示在入血成分中共检测到6种原型皂苷以及微量水解后的常春藤皂苷元和Serjanic acid苷元。通过对提取物组成成分及入血成分分析,共鉴定出藜麦皂苷中15个皂苷类化合物及裂解规律,发现了大鼠血浆入血成分相对含量变化情况。初步阐明了藜麦三萜皂苷的化学组成以及体内代谢特征,为藜麦进一步研究和开发应用提供理论依据。
    Abstract: The main chemical components of saponins extracted from quinoa and the components in the blood of rat after oral administration were analyzed and identified by ultra-performance liquid chromatography coupled with Q-Exactive mass spectrometry (UPLC-Q-Exactive-MS/MS). Hypersil Gold VANQUISH C18 column (2.1 mm×100 mm, 1.8 μm) was used. The mobile phase was formic acid water-formic acid acetonitrile gradient elution, the column temperature was 30 ℃, the analysis time was 35 min, the flow rate was 0.3 mL·min−1. Electrospray ion source (ESI), positive and negative ion sources and Full ms/dd-ms2 mode were used for detection. The results showed that the recovery rate, matrix effect, precision and stability of the method met the requirements of biological samples. A total of 15 saponins were identified in the saponin extract of quinoa, which were divided into three oleanolic acid saponin types, five hederagenin saponin types, six phytolaccagenic acid saponin types and one serjanic acid saponin type according to the configuration of aglycones. Male Sprague Dawley (SD) rats were selected as the experimental object, after intragastric administration of quinoa saponin extract at 175.5 mg·kg−1, at 0, 0.5, 1, 2 and 4 hours after administration, blood was taken from the orbit, the plasma of rats took buspirone hydrochloride as the internal standard, precipitated protein with methanol, centrifuged, filtered by microporous membrane, and then injected for analysis. The results showed that six prototype saponins and trace hydrolyzed hederagenin and serjanic acid glycosides were detected in the blood components of rat plasma. Through the analysis of the components of the extract and the components entering the blood, 15 saponins in quinoa saponins were identified and their cleavage laws were found, and the changes in the relative contents of the components into the blood of rat plasma were found. The chemical composition and metabolic characteristics of triterpenoid saponins in quinoa were preliminaries elucidated, which provided a theoretical basis for further research and application of quinoa.
  • 藜麦(Chenopodium quinoa Willd.)又称南美藜、藜谷、奎奴亚藜等,是苋科藜属植物[1],藜麦蛋白质含量高,氨基酸组成相对完美[2]。其营养价值高于人们日常食用的谷物小麦、大麦、玉米、稻米、高粱等[3],因而享有“超级谷物”、“营养黄金”、“未来食品”之美称[4]。尽管藜麦营养物质如此丰富,但实际上人们对于食用天然藜麦仍存在一定的抵触性,其主要原因与藜麦中存在的抗营养因子皂苷有关[5-6]。藜麦皂苷是藜麦糖基化的次生代谢物,属于三萜糖苷类化合物,分布于整个植株内(如叶子、花、果实、种子和种皮),但主要存在于种皮的乳突细胞中,可以抵御鸟类和虫子的捕食[7]。藜麦三萜皂苷中含有的主要苷元类型如图1所示,包括齐墩果酸型皂苷元、常春藤型皂苷元、商陆酸型皂苷元和Serjanic acid型皂苷元[8]。近年来随着皂苷多种生物活性的发现,其研究日益广泛[9]。许多研究已经证实藜麦皂苷具有多种生物活性,包括抗虫、抑菌、抗氧化和抗肿瘤活性[10]。但藜麦皂苷作为藜麦中主要的抗营养因子,其本身所具有的细胞毒性和溶血性也不容忽视,研究指出皂苷过高剂量服用会产生毒性[11],会造成小肠细胞膜的破裂,并影响蛋白质的吸收[12],皂苷还具有溶血性,能使红细胞肿胀、破裂[13-14],限制了在临床中作为静脉注射剂的使用[15]。现代中药血清药理学认为,只有被吸收入血的化学成分才是真正的效应物质[16],目前关于藜麦皂苷毒性研究多集中在体外[17],而对体内毒性研究较少[18],对于藜麦皂苷安全性评价仍需进一步探索。

    图  1  藜麦三萜皂苷中四种主要苷元
    注:Ⅰ:齐墩果酸型皂苷元;Ⅱ:常春藤型皂苷元;Ⅲ:商陆酸型皂苷元;Ⅳ:Serjanic acid型皂苷元。
    Figure  1.  Four main aglycones in triterpene saponins of quinoa

    超高效液相色谱-四级杆-静电场轨道离子阱联用质谱(UPLC-Q-Exactive-MS/MS),具有分辨率高、检测质量范围广等优点,能够对复杂基质中的组分进行精确定性,无需对目标物逐个优化子离子及相关参数,对于多目标物分析可以极大地降低检测方法的时间,同时又能很好地避免低分辨质谱易受基质干扰而产生假阳性的现象[19]。因此本研究在藜麦皂苷大鼠灌胃后运用UPLC-Q-Exactive-MS/MS分析其入血成分,旨在阐明藜麦三萜皂苷的体内代谢特征,以期为藜麦的进一步研究和开发应用提供理论依据。

    LL-1号藜麦样品 于2021年6月采自成都大学金堂试验基地(30°61′N,104°51′E),经成都大学杂粮加工重点实验室的赵钢教授鉴定为苋科藜属植物藜麦(Chenopodium quinoa Willd.)的干燥种子;SPF级Sprague-Dawley(SD)大鼠 雄性,体重(220±20)g,由成都达硕实验动物有限公司提供,动物许可证号:SCXK(川)2020-030。大鼠饲养在控制条件(温度:25±2 ℃;相对湿度:50%±10%)下,12 h/12 h明暗循环,适应性饲养一周后开始实验,给药前禁食12 h,自由饮水。本研究方案经成都大学伦理委员会审查,符合动物实验伦理学相关要求。无水乙醇、氯化钠、乙酸乙酯、正丁醇(均为分析纯)、甲醇、乙腈、甲酸(均为色谱纯) 成都市科隆化学品有限公司;盐酸丁螺环酮(CAS:33386-08-2,纯度≥98%)、齐墩果酸(CAS:508-02-1,纯度≥98%) 四川省维克奇生物科技有限公司;常春藤皂苷元(CAS:465-99-6,纯度≥98%) 成都曼斯特生物科技有限公司;其余试剂均为分析纯,实验所用水为超纯水。

    Q-Exactive Focus四级杆-静电场轨道阱高分辨质谱仪(配有电喷雾离子源及Xcalibur数据处理系统)、Thermo Scientific Vanquish UPLC系统 美国赛默飞世尔科技公司;SB-800DTD超声波清洗机(840 W) 宁波新芝生物科技股份有限公司;FD-2冷冻干燥机 北京博医康实验仪器有限公司;CPA225D型电子分析天平 德国赛多利斯;RE-52AA旋转蒸发器 上海亚荣生化仪器厂;H2050R高速冷冻离心机 湘潭湘仪仪器有限公司;UPHW-IV-90T超纯水机 四川优普超纯科技有限公司。

    称取100 g藜麦种子,粉碎过60目筛,按1:10(g·mL−1)的料液比加入70%的乙醇,在50 ℃、400 W下超声波辅助提取30 min。将超声后的提取液进行离心并旋转蒸发浓缩,将浓缩后的提取液按1:3(V:V)体积加入石油醚混合后,静置10 min,待分层后,弃掉石油醚层保留水层,重复三次。再按照1:3(V:V)体积加入乙酸乙酯,待分层后保留水层,重复三次。最后加入1:3(V:V)体积的水饱和正丁醇溶液,萃取三次后,保留正丁醇层,收集正丁醇层,旋转蒸发浓缩后,真空冷冻成粉末,密封4 ℃保存备用。

    分别精密称取齐墩果酸标准品和常春藤皂苷元标准品适量,加入甲醇溶解,分别制得浓度为1.2 mg·mL−1的单标储备溶液,再用甲醇稀释成不同浓度的混合标准品溶液。

    精密称取适量藜麦皂苷冻干粉,加入甲醇,超声溶解10 min,制得浓度为4 mg·mL−1的溶液,12000 r·min−1离心10 min,0.22 μm微孔滤膜过滤,续滤液转入进样瓶,UPLC-Q-Exactive-MS/MS分析。

    取于实验环境下适应饲养一周并禁食12 h SD大鼠6只,175.5 mg·kg−1的剂量口服灌胃给药,分别在给药后0、0.5、1、2、4 h眼眶取血,收集大鼠血液样本于肝素钠处理后的EP管中。在4 ℃ 4000 r·min−1下离心10 min,取上层血浆,−80 ℃保存待测。

    取100 μL血浆加入5 μL 10 μg·mL−1内标物盐酸丁螺环酮,再加入300 μL的甲醇。将混合液涡旋30 s后,12000 r·min−1下离心10 min,0.22 μm微孔滤膜过滤,续滤液转入进样瓶,UPLC-Q-Exactive-MS/MS分析。

    色谱柱:Hypersil Gold VANQUISH C18色谱柱(2.1 mm×100 mm,1.8 μm);进样量2 μL;流动相0.1%甲酸水(A)-0.1%甲酸乙腈(B);流速0.3 mL·min−1;柱温30 ℃;分析时间35 min;梯度洗脱:0~5 min,10%~20% B;5~25 min,20%~90% B;25~30 min,90% B;30~35 min,90%~10% B。

    质谱条件:离子源为HESI源,正、负离子检测模式,鞘层气体流速40 Arb;辅助气体流速10 Arb;喷雾电压3.5 kV;毛细管温度320 ℃;辅助气温度350 ℃;扫描模式:Full ms/dd-ms2,Full ms分辨率为70000,dd-ms2分辨率17500,扫描范围m/z 100~1500,碰撞能量为10、20、40 eV。

    参照2020年版《中国药典》[20]四部9102生物样品定量分析方法验证指导原则对本实验进行方法学考察。

    运用UPLC-Q-Exactive-MS/MS技术,采用Full ms/dd-ms2扫描模式,仪器首先采集样品的全扫描图谱,并对化合物的母离子和二级特征离子碎片等信息进行采集,使用Trace Finder 5.0软件对藜麦皂苷中五环三萜类化合物母离子和二级碎片精确分子量进行建库,通过Xcalibur Qual Browser软件查看化合物谱图信息并预测母离子化学结构式,同时运用Compound Discoverer 3.1软件对原始数据进行峰对齐和峰提取,将得到的结果与前人研究结果进行比对,将结果与对照品信息、文献和MzCloud、ChemSpider数据库进行匹配。分析未知化合物成分,分析相关裂解途径和规律。

    所有试验均重复三次取mean±SD。使用TraceFinder 5.0软件完成化合物库的建立及原始数据分析。使用Xcalibur Qual Browser完成化合物的定性分析。利用Compound Discoverer 3.1软件对原始数据进行峰对齐和峰提取。采用Origin 9.0软件处理数据及作图。采用ChemDraw 19.0绘制结构式。

    分析生物样品中的药物成分时,因待测药物浓度低,且化合物成分复杂,需对样品进行一系列的处理以便进行检测。而血清中所含蛋白和酶较多,如直接检测会对仪器造成损坏,干扰待测物的检出;同时血清中药物含量低,需要对其进行进一步的富集浓缩;因此在血浆样本前处理时,首先考察了甲醇和乙腈作为蛋白沉淀剂的作用,结果显示,使用乙腈作为蛋白沉淀剂时回收率较低、样本中存在蛋白类物质干扰等问题,因此选用甲醇作为蛋白沉淀剂。在对甲醇添加量考察时,考察了100、200、300和400 μL甲醇添加量对样品的影响。结果显示,甲醇添加量为300 μL时,样品中齐墩果酸回收率为88.68%,最高回收率为94.59%。常春藤皂苷元回收率为108.35%,最高回收率为103.65%,其余条件下回收率均较低且图谱中杂质峰较多。故本实验中选用甲醇作为蛋白沉淀剂,添加量为300 μL,用于后续验证。

    取空白血浆100 μL,分别加入“1.2.2”项下不同浓度的混合标准品溶液适量,平行6份,按照“1.2.5”项方法处理后进样分析,用峰面积(y)对分析物质量浓度(x)进行线性回归,绘制标准曲线,得到回归方程。并根据样品峰面积和内标峰面积的比值计算各成分RSD值。以峰面积为噪音3倍(S/N=3)时的进样浓度为检测限(LOD),以峰面积为噪音10倍(S/N=10)时的进样浓度为定量限(LOQ)。结果显示齐墩果酸回归方程为:y=2.517×103x+38.95,R2=0.9996,常春藤皂苷元回归方程为:y=4.519×103x−43.86,R2=0.9997。齐墩果酸与常春藤皂苷元检出限分别为0.05、0.04 μg·mL−1,定量限分别为0.17、0.12 μg·mL−1

    在空白血浆100 μL中分别加入适量混合标准品溶液,平行6份,按照“1.2.5”项方法处理后进样分析,计算加标回收率和RSD值。齐墩果酸与常春藤皂苷元回收率分别为91.37%、106.38%,RSD值分别为8.63%和7.32%。

    取空白血浆100 μL,分别加入“1.2.2”项下混合标准品溶液适量,按照“1.2.5”项方法处理后于连续6次进样分析,根据样品峰面积和内标峰面积的比值计算各成分RSD值。齐墩果酸与常春藤皂苷元RSD分别为9.26%、8.17%,表明仪器精密度良好。

    取空白血浆100 μL,分别加入“1.2.2”项下混合标准品溶液适量,按照“1.2.5”项方法处理后分别于0、3、6、9、12、24 h时间点进样分析,根据样品峰面积和内标峰面积的比值计算各成分相对标准偏差(RSD)。齐墩果酸与常春藤皂苷元稳定性分别为7.22%、5.13%,表明样本在24 h内稳定性良好。

    取空白血浆100 μL,分别加入“1.2.2”项下混合标准品溶液适量,平行6份,按照“1.2.5”项方法处理后进样分析,根据样品峰面积和内标峰面积的比值计算各成分RSD值(表1)。齐墩果酸和常春藤皂苷元重复性RSD值分别为8.56%、4.87%,表明各被测成分重复性良好。

    表  1  稳定性、精密度、重复性和回收率结果
    Table  1.  Results of stability, precision, repeatability and recovery
    对照品稳定性(n=6)精密度(n=6)重复性(n=6)回收率(n=6)
    AsAs/AiRSD(%)AsAs/AiRSD(%)AsAs/AiRSD(%)回收率平均值(%)RSD(%)
    常春藤皂苷元652767930.65090515.13%587766180.58608888.17555898760.55431244.87108.35106.387.32
    684492640.7079094542384150.5609393572095250.5916668105.68
    716224120.6908903691371730.6669170621441970.5994607108.35
    369143450.7173293282403960.5487748294286140.5718646106.92
    666430960.6265274566057920.5321644565950460.5320633103.65
    687847850.6893669580261450.5815429538447780.5396369105.33
    齐墩果酸811244760.80892977.22%1170860241.16751909.26989082150.98625968.5688.6891.368.63
    711720990.73606921028426731.0636096918126770.949536292.25
    886172220.85482721252102021.2078136941674360.908366189.51
    398997150.7753418534682721.0390096452166550.878662089.37
    960987480.90344701038932030.9767245845441980.794819994.59
    806778210.8085600963400140.9655278807170470.808953193.81
    注:As:待测物峰面积;Ai:内标物峰面积。
    下载: 导出CSV 
    | 显示表格

    藜麦三萜皂苷中4种苷元类型的主要不同点在于R1、R2位点的取代基不同。而各苷元类型所构成的皂苷区别在于附着在C-3和C-28位上有两种不同寡糖相连,从而形成双糖苷分子[21],尽管C-3位上附加的寡糖链具有一定的多样性,如吡喃葡萄糖基(glucopyransyl,Glc)、吡喃阿拉伯糖基(arabinopyranosyl,Ara)、木糖吡喃基(xylopyranosyl,Xyl)、吡喃半乳糖基(galactopyranosyl,Gal)以及吡喃葡萄糖醛酸基(glucuronopyranosyl,GluA),但C-28位上总是存在单个吡喃葡萄糖基(Glc)。而在高能量碰撞诱导解离下,化合物更倾向于先丢失C-28位处的糖基,这可能是由于C-28处的酯键较C-3处的醚键更易断裂[22]

    运用UPLC-Q-Exactive-MS/MS技术,采用Full ms/dd-ms2扫描模式,以空白甲醇溶液为对照进行对比分析,对化合物的母离子和二级特征离子碎片等信息进行采集并将得到的结果与前人研究结果进行比对,结合文献相关信息[23-27],共鉴定出15种皂苷成分,基峰色谱图(Base Peak Chromatogram,BPC)见图2,代谢物结果见表2。根据得到藜麦皂苷及其碎片离子信息,推测藜麦皂苷的组成及其结构。

    图  2  空白溶液(A)和藜麦皂苷(B)的基峰色谱图
    Figure  2.  Base peak chromatogram of blank solution (A) and quinoa saponin (B)
    表  2  UPLC-Q-Exactive-MS/MS鉴定藜麦三萜皂苷类成分的质谱数据
    Table  2.  Identification of triterpenoid saponins from quinoa by UPLC-Q-Exactive-MS/MS
    编号化合物鉴定化学式正离子模式[M+H]+保留时间(min)dd-MS2扫描模式下碎片离子(m/z)
    1Hederagenin 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C47H76O18929.510938.52767.45898635.41531473.36304
    2Phytolaccagenic acid 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
    商陆酸3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O15811.446928.79649.39771517.35339
    3Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C55H88O261165.561289.121003.51030841.45740679.40479517.35272
    4Phytolaccagenic acid 3-O-[β-D-galactopyranosyl-(1,3)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃半乳糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C49H78O211003.510449.47841.45624679.40515517.35291
    5Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-β-D-galactopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-β-D-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷
    C49H78O211003.510139.86841.45844679.40558517.35321
    6Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C54H86O251135.5534710.29973.50056811.44745649.39423517.35278
    7Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C48H76O20973.5005511.05811.44836649.39435517.35333
    8Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-galactopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷
    C48H78O19959.5198411.27797.46783635.41577473.36346
    9Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C47H76O18929.5109911.73767.45789605.40521473.36298
    10Hederagenin 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C53H86O231091.5612812.05929.5116767.45801605.40508473.36319
    11Hederagenin 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷
    C41H66O13767.4576412.35605.40472473.36237
    12Oleanolic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    齐墩果酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C47H76O17913.5175212.48751.46002589.40045457.36682
    13Serjanic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    Serjanic acid 3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C48H76O19957.5056813.41795.45209633.39984501.35756
    14Oleanolic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside
    齐墩果酸3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O14795.4529713.44633.39948457.36593
    15Oleanolic acid 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside
    齐墩果酸3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C47H74O18927.4930414.02765.44299633.39995457.36887
    下载: 导出CSV 
    | 显示表格

    藜麦皂苷主要分为四种类型,在对结果鉴定时按化合物构型对四种类型皂苷进行分类并分析其结构。化合物解析如下:

    1号峰,m/z 929.51093[M+H]+,推断其分子式为C47H76O18,碎片离子m/z 767.45898,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 635.41531为母离子失去1个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Ara]+,m/z 473.36304为母离子失去2个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Ara-Glc]+,根据其裂解规律及特征性离子,结合文献报道[23-27]鉴定为:常春藤皂苷元3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷(Hederagenin 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside)。

    2号峰,m/z 811.44692[M+H]+,推断其分子式为C42H66O15,碎片离子m/z 649.39771,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 517.35339为母离子失去1个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Ara]+,结合文献报道[23-27]鉴定为:商陆酸3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷(Phytolaccagenic acid 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside)。

    3号峰,m/z 1165.56128[M+H]+,推断其分子式为C55H88O26,碎片离子m/z 1003.51030,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 841.45740为母离子失去2个吡喃葡萄糖基形成[M+H-Glc-Glc]+,m/z 679.40479为母离子失去3个吡喃葡萄糖基形成[M+H-Glc-Glc-Glc]+,m/z 517.35272为母离子失去4个吡喃葡萄糖基形成[M+H-Glc-Glc-Glc-Glc]+,结合文献报道[23-27]鉴定为:商陆酸3-O-[β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷(Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside)。

    4号峰,m/z 1003.51044[M+H]+,推断其分子式为C49H78O21,碎片离子m/z 841.45624,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 679.40515为母离子失去1个吡喃葡萄糖基和1个吡喃半乳糖基形成[M+H-Glc-Gal]+,m/z 517.35291为母离子失去2个吡喃葡萄糖基和1个吡喃半乳糖基形成[M+H-Glc-Gla-Glc]+,结合文献报道[23-27]鉴定为:商陆酸3-O-[β-D-吡喃半乳糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷(Phytolaccagenic acid 3-O-[β-D-galactopyranosyl-(1,3)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside)。

    5号峰,m/z 1003.51013[M+H]+,推断其分子式为C49H78O21,碎片离子m/z 841.45844,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 679.40558为母离子失去2个吡喃葡萄糖基形成[M+H-Glc-Glc]+,m/z 517.35321为母离子失去2个吡喃葡萄糖基和1个吡喃半乳糖基形成[M+H-Glc-Glc-Gal]+,结合文献报道[23-27]鉴定为:商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-β-D-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷(Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-β-D-galactopyranosyl]-28-O-β-D-glucopyranoside)。

    6号峰,m/z 1135.55347[M+H]+,推断其分子式为C54H86O25,碎片离子m/z 973.50056,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 811.44745为母离子失去2个吡喃葡萄糖基形成[M+H-Glc-Glc]+,m/z 649.39423为母离子失去3个吡喃葡萄糖基形成[M+H-Glc-Glc-Glc]+,m/z 517.35278为母离子失去3个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Glc-Glc-Ara]+,结合文献报道[23-27]鉴定为:商陆酸3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷(Phytolaccagenic acid3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside)。

    7号峰,化合物结构式如图3A所示,m/z 973.50055[M+H]+,推断其分子式为C48H76O20,在正离子模式下7号峰化合物裂解过程质谱图如图3B所示,碎片离子m/z 811.44836,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 649.39435为母离子失去2个吡喃葡萄糖基形成[M+H-Glc-Glc]+,m/z 517.35333为商陆酸型皂苷元,在正离子模式下商陆酸型皂苷元裂解质谱图如图3C所示,m/z 517.35333为母离子失去2个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Glc-Ara]+,m/z 499.34250为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基和1个H2O形成[M+H-Glc-Glc-Ara-H2O]+,m/z 453.33667为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基、1个H2O和1个HCOOH形成[M+H-Glc-Glc-Ara-H2O-HCOOH]+,m/z 435.32576为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基、2个H2O和1个HCOOH形成[M+H-Glc-Glc-Ara-H2O-HCOOH-H2O]+,m/z 293.17436为母离子在高能量模式下由于不饱和双键所发生的RDA裂解后的主要碎片。7号化合物裂解途径如图3D所示,结合文献报道[23-27]鉴定为:商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷(Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside)。质谱与结构结果见图3

    图  3  在Full ms/dd-ms2扫描模式和正离子模式下的7号商陆酸型皂苷的质谱图与结构图
    注:A:7号化合物的结构式;B:正离子模式下商陆酸型皂苷元裂解质谱图;C:正离子模式下7号化合物裂解质谱图;D:7号化合物裂解途径。
    Figure  3.  Mass spectrum and structure diagram of Phytolaccagenic acid saponins No.7 in Full ms/dd-ms2 scanning mode and positive ion mode

    8号峰,m/z 959.51984[M+H]+,推断其分子式为C48H78O19,碎片离子m/z 797.46783,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 635.41577为母离子失去2个吡喃葡萄糖基形成[M+H-Glc-Glc]+,m/z 473.36346为母离子失去3个吡喃葡萄糖基形成[M+H-Glc-Glc-Glc]+,结合文献报道[23-27]鉴定为:常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷(Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-galactopyranosyl]-28-O-β-D-glucopyranoside)。

    9号峰,化合物结构式如图4A所示,m/z 929.51099[M+H]+,推断其分子式为C47H76O18,在正离子模式下9号峰化合物裂解过程质谱图如图4B所示,碎片离子m/z 767.45789,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 605.40521为母离子失去2个吡喃葡萄糖基形成[M+H-Glc-Glc]+,m/z 473.36298为常春藤型皂苷元,在正离子模式下常春藤型皂苷元裂解质谱图如图4C所示,m/z 473.36298为母离子失去2个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Glc-Ara]+,m/z 455.35211为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基和1个H2O形成[M+H-Glc-Glc-Ara-H2O]+,m/z 409.34656为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基、1个H2O和1个HCOOH形成[M+H-Glc-Glc-Ara-H2O-HCOOH]+,m/z 391.33593为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基、2个H2O和1个HCOOH形成[M+H-Glc-Glc-Ara-H2O-HCOOH-H2O]+,m/z 249.16497为母离子在高能量模式下由于不饱和双键所发生的RDA裂解后的主要碎片。9号化合物裂解途径如图4D所示,结合文献报道[23-27]鉴定为:常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷(Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside)。质谱与结构结果见图4

    图  4  在Full ms/dd-ms2扫描模式和正离子模式下的9号常春藤型皂苷的质谱图与结构图
    注:A:9号化合物的结构式;B:正离子模式下常春藤型皂苷元裂解质谱图;C:正离子模式下9号化合物裂解质谱图;D:9号化合物裂解途径。
    Figure  4.  Mass spectrum and structure diagram of Hederagenin saponins No.9 in Full ms/dd-ms2 scanning mode and positive ion mode

    10号峰,m/z 1091.56128[M+H]+,推断其分子式为C53H86O23,碎片离子m/z 929.51160,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 767.45801为母离子失去2个吡喃葡萄糖基形成[M+H-Glc-Glc]+,m/z 605.40508为母离子失去3个吡喃葡萄糖基形成[M+H-Glc-Glc-Glc]+,m/z 473.36319为母离子失去3个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Glc-Glc-Ara]+结合文献报道[23-27]鉴定为:常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖(Hederagenin 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside)。

    11号峰,m/z 765.45764[M+H]+,推断其分子式为C41H66O13,碎片离子m/z 605.40472,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 473.36237为母离子失去1个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Ara]+,结合文献报道[23-27]鉴定为:常春藤皂苷元 3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷(Hederagenin 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside)。

    12号峰,化合物结构式如图5A所示,m/z 913.51752[M+H]+,推断其分子式为C47H76O17,在正离子模式下12号峰化合物裂解过程质谱图如图5B所示,碎片离子m/z 751.46002,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 589.40045为母离子失去2个吡喃葡萄糖基形成[M+H-Glc-Glc]+,m/z 457.36682为齐墩果酸型皂苷元,在正离子模式下齐墩果酸型皂苷元裂解质谱图如图5C所示,m/z 457.36682为母离子失去2个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Glc-Ara]+,m/z 439.35715为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基和1个H2O形成[M+H-Glc-Glc-Ara-H2O]+,m/z 393.20935为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基、1个H2O和1个HCOOH形成[M+H-Glc-Glc-Ara-H2O-HCOOH]+,m/z 249.18503为母离子在高能量模式下由于不饱和双键所发生的RDA裂解后的主要碎片。12号化合物裂解途径如图5D所示,结合文献报道[23-27]鉴定为:齐墩果酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷(Oleanolic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside)。质谱与结构结果见图5

    图  5  在Full ms/dd-ms2扫描模式和正离子模式下的12号齐墩果酸型皂苷的质谱图与结构图
    注:A:12号化合物的结构式;B:正离子模式下齐墩果酸型皂苷元裂解质谱图;C:正离子模式下12号化合物裂解质谱图;D:12号化合物裂解途径。
    Figure  5.  Mass spectrum and structure diagram of Oleanolic acid saponin No.12 in Full ms/dd-ms2 scanning mode and positive ion mode

    13号峰,化合物结构式如图6A所示,m/z 957.50568[M+H]+,推断其分子式为C48H76O19,在正离子模式下13号峰化合物裂解过程质谱图如图6B所示,碎片离子m/z 795.45209,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 633.39984为母离子失去2个吡喃葡萄糖基形成[M+H-Glc-Glc]+,m/z 501.35756为Serjania acid型皂苷元,在正离子模式下Serjania acid型皂苷元裂解质谱图如图6C所示,m/z 501.35756为母离子失去2个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Glc-Ara]+,m/z 483.34775为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基和1个H2O形成[M+H-Glc-Glc-Ara-H2O]+,m/z 437.34161为母离子失去2个吡喃葡萄糖基、1个吡喃阿拉伯糖基、1个H2O和1个HCOOH形成[M+H-Glc-Glc-Ara-H2O-HCOOH]+,m/z 293.17459为母离子在高能量模式下由于不饱和双键所发生的RDA裂解后的主要碎片。13号化合物裂解途径如图6D所示,结合文献报道[23-27]鉴定为:Serjanic acid 3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷(Serjanic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside)。质谱与结构结果见图6

    图  6  在Full ms/dd-ms2扫描模式和正离子模式下的13号Serjania acid型皂苷质谱图与结构图
    注:A:13号化合物的结构式;B:正离子模式下齐Serjania acid型皂苷元裂解质谱图;C:正离子模式下13号化合物裂解质谱图;D:13号化合物裂解途径。
    Figure  6.  Mass spectrum and structure diagram of Serjania acid saponin No.13 in Full ms/dd-ms2 scanning mode and positive ion mode

    14号峰,m/z 795.45297[M+H]+,推断其分子式为C42H66O14,碎片离子m/z 633.39948,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 457.36593为母离子失去1个吡喃葡萄糖基和1个吡喃葡萄糖醛酸基形成[M+H-Glc-GlcA]+,结合文献报道[23-27]鉴定为:齐墩果酸3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖苷(Oleanolic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside)。

    15号峰,m/z 927.49304[M+H]+,推断其分子式为C47H74O18,碎片离子m/z 765.44299,为母离子失去1个吡喃葡萄糖基产生[M+H-Glc]+,m/z 633.39995为母离子失去1个吡喃葡萄糖基和1个吡喃阿拉伯糖基形成[M+H-Glc-Ara]+,m/z 457.36887为母离子失去1个吡喃葡萄糖基、1个吡喃阿拉伯糖基和1个吡喃葡萄糖醛酸基形成[M+H-Glc-Ara-GlcA]+,结合文献报道[23-27]鉴定为:齐墩果酸3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷(Oleanolic acid 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside)。

    运用UPLC-Q-Exactive-MS/MS技术分别对不同时间点大鼠血浆中入血成分进行分析,通过对比空白与含药样品色谱峰的保留时间及质谱数据,并通过样品峰面积与内标物盐酸丁螺环酮(C21H32ClN5O2,m/z 422.2239)峰面积的比值,反映出皂苷在大鼠体内随时间变化的代谢情况[28],在结果中共检测到原型皂苷6个。入血成分信息见表3,大鼠血浆入血成分相对峰面积结果见图7

    表  3  大鼠血浆入血成分相对峰面积
    Table  3.  Relative peak area of rat plasma entry components
    编号化合物鉴定化学式模式[M-H]保留时间tR(min)相对峰面积(As/Ai
    0.5 h1 h2 h4 h
    2Phytolaccagenic acid 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
    商陆酸3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O15809.4328911.270.17098±
    0.02866
    0.14143±
    0.05608
    0.14780±
    0.04169
    0.04774
    5Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-β-D-galactopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-β-D-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷
    C49H78O211001.496289.880.12522±
    0.02067
    0.07786±
    0.00196
    0.03245±
    0.00825
    6Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C54H86O251133.5385410.280.12859±
    0.03949
    0.05083±
    0.00175
    0.00794±
    0.00563
    7Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C48H76O20971.4857210.340.10510±
    0.01793
    0.08419±
    0.03161
    0.04042±
    0.01253
    0.03210
    10Hederagenin 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C53H86O231089.5487111.420.09150±
    0.00513
    0.04665±
    0.00243
    0.05090±
    0.02008
    14Oleanolic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside
    齐墩果酸3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O14793.4379812.690.17367±
    0.02133
    0.17086±
    0.04170
    0.09452±
    0.01630
    下载: 导出CSV 
    | 显示表格
    图  7  大鼠血浆入血成分相对峰面积
    注:As:待测物峰面积;Ai:内标物峰面积。
    Figure  7.  Relative peak area of rat plasma entry components

    本实验在给药后大鼠血浆中检测到部分藜麦皂苷的原型化合物,发现其在体内富集程度随时间变化而降低,在4 h后大鼠血浆中基本检测不到原型药物。同时在保留时间为17.46 min和25.79 min时分别检测到含量极低的Serjanic acid和常春藤皂苷元,推测在大鼠胃肠道内原型皂苷经多种肠道菌群及不同的药物代谢酶作用下水解为其原型苷元[29]。同时表明三萜皂苷的体内代谢产物与原型化学成分通常表现出相同的质谱裂解规律但部分化合物在体内生物转化后代谢产物较少,这可能与提取物中化合物的含量少、响应度低以及体内代谢产物含量较低未能被检测到有关。

    本实验提取了藜麦中天然产物皂苷,并对藜麦皂苷粗提物化学成分及入血成分进行鉴定。基于UPLC-Q-Exactive-MS/MS技术并结合Xcalibur Qual Browser软件进行分析,结果显示在藜麦粗提物中共鉴定到15种三萜类皂苷成分,其中齐墩果酸型皂苷3种,常春藤型皂苷5种,商陆酸型皂苷6种,Serjanic acid型皂苷1种。目前有研究指出皂苷具有溶血性,因此本研究对藜麦皂苷提取物在大鼠体内代谢情况进行分析。由于生物样本中具有复杂机制,容易造成关键信息缺失,本实验开展了大鼠血浆样本前处理考察及方法学验证,样本前处理考察发现以甲醇作为蛋白沉淀剂具有良好的结果,最终确立了甲醇作为蛋白沉淀剂,以及300 μL最佳添加量。方法学考察结果中 RSD 值均小于 10%,生物样本制备符合 2020年版《中国药典》[20]三部中生物制品国家标准物质制备和标定的要求。对入血成分分析时发现,在 0 小时 6 个原型物入血,分别为 2、5、6、7、10 和 14号皂苷化合物。6种入血成分含量在大鼠体内富集程度随时间增长呈下降趋势,在体内4 h后,基本检测不到皂苷原型药物,仅检测到极低的Serjanic acid和常春藤皂苷元的质谱信号,分析其原因可能与提取物中化合物含量较少、响应度低以及大鼠体内代谢产物含量较低未能检出到有关[30]

    本研究参照《中国健康生活方式预防心血管代谢疾病指南》[31]建议,成年人每日应摄入50~150 g粗粮。以60 kg成人每日摄入量150 g计,并根据大鼠与人给药剂量换算得到灌胃量,以175.5 mg·kg−1灌胃给予藜麦皂苷提取物。通过样品峰面积与内标峰峰面积的比值对皂苷在大鼠体内代谢情况进行分析,发现在大鼠体内4 h后,基本检测不到皂苷原型药物。这一结果与刘颖等[32]结果一致,他们发现将麦冬皂苷口服灌胃后,大鼠血浆中共鉴定到8个入血成分,且均为原型药物,并未找到相关代谢产物。同时在给药后大鼠血浆中检测到极低的Serjanic acid和常春藤皂苷元的质谱信号,推测具有糖苷键的原型皂苷可能会在动物体内水解成其苷元[33],而苷元相比于原型具有较小的相对分子质量,脂溶性增加,或许更易通过肠道转运进入体循环中[34]。陈原国等[35]研究也证明,将蒺藜皂苷粗提物灌胃后,蒺藜皂苷在大鼠胃内酸性条件下会有水解现象发生,并有相当部分转化为海柯皂苷元形式并被肝脏所吸收。HE等[36]也指出在肠道菌群的作用下,皂苷在体内中的生物转化可能发生一系列结构变化,主要是由逐步脱糖过程引起的,生成的转化产物比原始皂苷具有更好的生物利用度或更强的生物活性[37]。本研究中在大鼠灌胃后血浆各采血点中并未检测到齐墩果酸苷元与商陆酸苷元,其原因可能与齐墩果酸型皂苷与商陆酸型皂苷在体内转化率低有关,在体内吸收少,血浆中含量低于定量下限而未能检测到[38]。综上所述,本实验鉴定出藜麦粗提物中15种皂苷,并确定了藜麦皂苷中6种入血成分,进一步明确了藜麦皂苷的化学结构信息与体内代谢过程,为藜麦皂苷抗营养因子研究提供了理论基础与实验依据,对阐明藜麦皂苷药效物质基础具有重要意义,但本实验未能明确藜麦皂苷生物利用度及体内吸收机制,有待进一步研究。

  • 图  1   藜麦三萜皂苷中四种主要苷元

    注:Ⅰ:齐墩果酸型皂苷元;Ⅱ:常春藤型皂苷元;Ⅲ:商陆酸型皂苷元;Ⅳ:Serjanic acid型皂苷元。

    Figure  1.   Four main aglycones in triterpene saponins of quinoa

    图  2   空白溶液(A)和藜麦皂苷(B)的基峰色谱图

    Figure  2.   Base peak chromatogram of blank solution (A) and quinoa saponin (B)

    图  3   在Full ms/dd-ms2扫描模式和正离子模式下的7号商陆酸型皂苷的质谱图与结构图

    注:A:7号化合物的结构式;B:正离子模式下商陆酸型皂苷元裂解质谱图;C:正离子模式下7号化合物裂解质谱图;D:7号化合物裂解途径。

    Figure  3.   Mass spectrum and structure diagram of Phytolaccagenic acid saponins No.7 in Full ms/dd-ms2 scanning mode and positive ion mode

    图  4   在Full ms/dd-ms2扫描模式和正离子模式下的9号常春藤型皂苷的质谱图与结构图

    注:A:9号化合物的结构式;B:正离子模式下常春藤型皂苷元裂解质谱图;C:正离子模式下9号化合物裂解质谱图;D:9号化合物裂解途径。

    Figure  4.   Mass spectrum and structure diagram of Hederagenin saponins No.9 in Full ms/dd-ms2 scanning mode and positive ion mode

    图  5   在Full ms/dd-ms2扫描模式和正离子模式下的12号齐墩果酸型皂苷的质谱图与结构图

    注:A:12号化合物的结构式;B:正离子模式下齐墩果酸型皂苷元裂解质谱图;C:正离子模式下12号化合物裂解质谱图;D:12号化合物裂解途径。

    Figure  5.   Mass spectrum and structure diagram of Oleanolic acid saponin No.12 in Full ms/dd-ms2 scanning mode and positive ion mode

    图  6   在Full ms/dd-ms2扫描模式和正离子模式下的13号Serjania acid型皂苷质谱图与结构图

    注:A:13号化合物的结构式;B:正离子模式下齐Serjania acid型皂苷元裂解质谱图;C:正离子模式下13号化合物裂解质谱图;D:13号化合物裂解途径。

    Figure  6.   Mass spectrum and structure diagram of Serjania acid saponin No.13 in Full ms/dd-ms2 scanning mode and positive ion mode

    图  7   大鼠血浆入血成分相对峰面积

    注:As:待测物峰面积;Ai:内标物峰面积。

    Figure  7.   Relative peak area of rat plasma entry components

    表  1   稳定性、精密度、重复性和回收率结果

    Table  1   Results of stability, precision, repeatability and recovery

    对照品稳定性(n=6)精密度(n=6)重复性(n=6)回收率(n=6)
    AsAs/AiRSD(%)AsAs/AiRSD(%)AsAs/AiRSD(%)回收率平均值(%)RSD(%)
    常春藤皂苷元652767930.65090515.13%587766180.58608888.17555898760.55431244.87108.35106.387.32
    684492640.7079094542384150.5609393572095250.5916668105.68
    716224120.6908903691371730.6669170621441970.5994607108.35
    369143450.7173293282403960.5487748294286140.5718646106.92
    666430960.6265274566057920.5321644565950460.5320633103.65
    687847850.6893669580261450.5815429538447780.5396369105.33
    齐墩果酸811244760.80892977.22%1170860241.16751909.26989082150.98625968.5688.6891.368.63
    711720990.73606921028426731.0636096918126770.949536292.25
    886172220.85482721252102021.2078136941674360.908366189.51
    398997150.7753418534682721.0390096452166550.878662089.37
    960987480.90344701038932030.9767245845441980.794819994.59
    806778210.8085600963400140.9655278807170470.808953193.81
    注:As:待测物峰面积;Ai:内标物峰面积。
    下载: 导出CSV

    表  2   UPLC-Q-Exactive-MS/MS鉴定藜麦三萜皂苷类成分的质谱数据

    Table  2   Identification of triterpenoid saponins from quinoa by UPLC-Q-Exactive-MS/MS

    编号化合物鉴定化学式正离子模式[M+H]+保留时间(min)dd-MS2扫描模式下碎片离子(m/z)
    1Hederagenin 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C47H76O18929.510938.52767.45898635.41531473.36304
    2Phytolaccagenic acid 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
    商陆酸3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O15811.446928.79649.39771517.35339
    3Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl-(1,4)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖-(1,4)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C55H88O261165.561289.121003.51030841.45740679.40479517.35272
    4Phytolaccagenic acid 3-O-[β-D-galactopyranosyl-(1,3)-β-D-glucopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃半乳糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C49H78O211003.510449.47841.45624679.40515517.35291
    5Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-β-D-galactopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-β-D-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷
    C49H78O211003.510139.86841.45844679.40558517.35321
    6Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C54H86O251135.5534710.29973.50056811.44745649.39423517.35278
    7Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C48H76O20973.5005511.05811.44836649.39435517.35333
    8Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-galactopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷
    C48H78O19959.5198411.27797.46783635.41577473.36346
    9Hederagenin 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C47H76O18929.5109911.73767.45789605.40521473.36298
    10Hederagenin 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C53H86O231091.5612812.05929.5116767.45801605.40508473.36319
    11Hederagenin 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷
    C41H66O13767.4576412.35605.40472473.36237
    12Oleanolic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    齐墩果酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C47H76O17913.5175212.48751.46002589.40045457.36682
    13Serjanic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    Serjanic acid 3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C48H76O19957.5056813.41795.45209633.39984501.35756
    14Oleanolic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside
    齐墩果酸3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O14795.4529713.44633.39948457.36593
    15Oleanolic acid 3-O-[α-L-arabinopyranosyl-(1,3)-β-D-glucuronopyranosyl]-28-O-β-D-glucopyranoside
    齐墩果酸3-O-[α-L-吡喃阿拉伯糖-(1,3)-β-D-吡喃葡萄糖]-28-O-β-D-吡喃葡萄糖苷
    C47H74O18927.4930414.02765.44299633.39995457.36887
    下载: 导出CSV

    表  3   大鼠血浆入血成分相对峰面积

    Table  3   Relative peak area of rat plasma entry components

    编号化合物鉴定化学式模式[M-H]保留时间tR(min)相对峰面积(As/Ai
    0.5 h1 h2 h4 h
    2Phytolaccagenic acid 3-O-α-L-arabinopyranosyl-28-O-β-D-glucopyranoside
    商陆酸3-O-α-L-吡喃阿拉伯糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O15809.4328911.270.17098±
    0.02866
    0.14143±
    0.05608
    0.14780±
    0.04169
    0.04774
    5Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-β-D-galactopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-β-D-吡喃半乳糖]-28-O-β-D-吡喃葡萄糖苷
    C49H78O211001.496289.880.12522±
    0.02067
    0.07786±
    0.00196
    0.03245±
    0.00825
    6Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C54H86O251133.5385410.280.12859±
    0.03949
    0.05083±
    0.00175
    0.00794±
    0.00563
    7Phytolaccagenic acid 3-O-[β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    商陆酸3-O-[β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C48H76O20971.4857210.340.10510±
    0.01793
    0.08419±
    0.03161
    0.04042±
    0.01253
    0.03210
    10Hederagenin 3-O-[β-D-glucopyranosyl-(1,2)-β-D-glucopyranosyl-(1,3)-α-L-arabinopyranosyl]-28-O-β-D-glucopyranoside
    常春藤皂苷元3-O-[β-D-吡喃葡萄糖-(1,2)-β-D-吡喃葡萄糖-(1,3)-α-L-吡喃阿拉伯糖]-28-O-β-D-吡喃葡萄糖苷
    C53H86O231089.5487111.420.09150±
    0.00513
    0.04665±
    0.00243
    0.05090±
    0.02008
    14Oleanolic acid 3-O-β-D-glucuronopyranosyl-28-O-β-D-glucopyranoside
    齐墩果酸3-O-β-D-吡喃葡萄糖-28-O-β-D-吡喃葡萄糖苷
    C42H66O14793.4379812.690.17367±
    0.02133
    0.17086±
    0.04170
    0.09452±
    0.01630
    下载: 导出CSV
  • [1] 胡一晨, 赵钢, 秦培友, 等. 藜麦活性成分研究进展[J]. 作物学报,2018,44(11):1579−1591. [HU Y C, ZHAO G, QIN P Y, et al. Research progress on bioactive components of quinoa (Chenopodium quinoa Willd.)[J]. Acta Agronomica Sinica,2018,44(11):1579−1591. doi: 10.3724/SP.J.1006.2018.01579
    [2] 王龙飞, 王新伟, 赵仁勇. 藜麦蛋白的特点、性质及提取的研究进展[J]. 食品工业,2017,38(7):255−258. [WANG L F, WANG X W, ZHAO R Y. A review of characteristic, properties and extraction of quinoa protein[J]. The Food Industry,2017,38(7):255−258.
    [3] 黄金. 基于藜麦营养及功能成分的健康食品研发[D]. 贵阳: 贵州大学, 2017

    HUANG J. The research of health food on the based of the quinoa nutritional and functional ingredient[D]. Guiyang: Guizhou University, 2017.

    [4] 李萍, 罗强, 金鑫, 等. 藜麦皂苷的提取及其酪氨酸酶抑制活性[J]. 现代食品科技,2021,37(5):196−202,129. [LI P, LUO Q, JIN X, et al. Separation of saponins from Chenopodium quinoa and its tyrosinase inhibitory activities[J]. Modern Food Science and Technology,2021,37(5):196−202,129. doi: 10.13982/j.mfst.1673-9078.2021.5.0931
    [5] 魏爱春, 杨修仕, 么杨, 等. 藜麦营养功能成分及生物活性研究进展[J]. 食品科学,2015,36(15):272−276. [WEI A C, YANG X S, YAO Y, et al. Progress in research on nutritional and functional components and bioactivity of quinoa (Chenopodium quinoa Willd.)[J]. Food Science,2015,36(15):272−276. doi: 10.7506/spkx1002-6630-201515050
    [6]

    PALOMBINI S V, CLAUS T, MARUYAMA S A, et al. Evaluation of nutritional compounds in new amaranth and quinoa cultivars[J]. Food Science and Technology,2013,33(2):339−344. doi: 10.1590/S0101-20612013005000051

    [7]

    MERILLON J M, RAMAWAT K G. Co-Evolution of secondary metabolites[M]. Berlin: Springer, 2019.

    [8]

    MADL T, STERK H, MITTELBACH M, et al. Tandem mass spectrometric analysis of a complex triterpene saponin mixture of Chenopodium quinoa[J]. Journal of the American Society for Mass Spectrometry,2006,17(6):795−806. doi: 10.1016/j.jasms.2006.02.013

    [9] 张剑峰, 张丹参. 三七总皂苷药理作用研究进展[J]. 医学综述,2007,13(6):472−474. [ZHANG J F, ZHANG D S. Study advancement in pharmalcological actions of total saponins of panax notoginseseng[J]. Medical Recapitulate,2007,13(6):472−474. doi: 10.3969/j.issn.1006-2084.2007.06.032
    [10]

    HAZZAM K E, HAFSA J, SOBEH M, et al. An insight into saponins from quinoa (Chenopodium quinoa Willd.): A review[J]. Molecules,2020,25(5):1059. doi: 10.3390/molecules25051059

    [11] 侯召华, 傅茂润, 张威毅, 等. 藜麦皂苷研究进展[J]. 食品安全质量检测学报,2018,9(19):5146−5152. [HOU Z H, FU M R, ZHANG W Y, et al. Research progress on saponins of quinoa (Chenopodium quinoa Willd.)[J]. Journal of Food Safety and Quality,2018,9(19):5146−5152. doi: 10.3969/j.issn.2095-0381.2018.19.023
    [12]

    GIANNA V, MONTES J M, CALANDRI E L, et al. Impact of several variables on the microwave extraction of Chenopodium quinoa Willd saponins[J]. International Journal of Food Science and Technology,2012,47(8):1593−1597. doi: 10.1111/j.1365-2621.2012.03008.x

    [13] 杜静婷. 藜麦种皮皂苷的提取, 纯化, 抗氧化, 抑菌及皂苷元的成分鉴定[D]. 太原: 山西大学, 2017

    DU J T. Extraction, purification, antioxidant and antimicrobial of saponin in Chenopodium quinoa Willd. seed coat and component identification of aglycone[D]. Taiyuan: Shanxi University, 2017.

    [14]

    ODA K, MATSUDA H, MURAKAMI T, et al. Adjuvant and haemolytic activities of 47 saponins derived from medicinal and food plants[J]. Biological Chemistry,2000,381(1):67−74.

    [15] 张若洁. 芦笋皂苷的提取、纯化及其溶血活性研究[D]. 武汉: 华中农业大学, 2011

    ZHANG R J. Studies on the extraction, purification and hemocytolysis of asparagus saponins[D]. Wuhan: Huazhong Agricultural University, 2011.

    [16]

    LIANG Y, HAO H P, XIE L, et al. Development of a systematic approach to identify metabolites for herbal homologs based on liquid chromatography hybrid ion trap time-of-flight mass spectrometry: Gender-related difference in metabolism of Schisandra lignans in rats[J]. Drug Metabolism and Disposition: The Biological Fate of Chemicals,2010,38(10):1747−1759. doi: 10.1124/dmd.110.033373

    [17]

    VERZA S G, SILVEIRA F, CIBULSKI S, et al. Immunoadjuvant activity, toxicity assays, and determination by UPLC/Q-TOF-MS of triterpenic saponins from Chenopodium quinoa seeds[J]. Journal of Agricultural and Food Chemistry,2012,60(12):3113. doi: 10.1021/jf205010c

    [18]

    GORAL I, WOJCIECHOWSKI K. Surface activity and foaming properties of saponin-rich plants extracts[J]. Advances in Colloid and Interface Science,2020,279:102145. doi: 10.1016/j.cis.2020.102145

    [19] 王勇, 张宪臣, 华洪波, 等. 超高效液相色谱-四级杆/静电场轨道阱高分辨质谱联用快速测定水产品及干制水产品制品中的116种农药和24种生物毒素残留[J]. 现代食品科技,2022,38(1):371−389, 335. [WANG Y, ZHANG X C, HUA H B, et al. Simultaneous determination and confirmation of 116 pesticides residues and 24 biotoxins in aquatic product and dried aquatic product by ultra liquid chromatography coupled with quadrupole/exactive orbitrap mass spectrometry[J]. Modern Food Science and Technology,2022,38(1):371−389, 335. doi: 10.13982/j.mfst.1673-9078.2022.1.0441
    [20] 国家药典委员会. 中国药典[M]. 北京: 中国医药科技出版社, 2020

    Chinese Pharmacopoeia Commission. Chinese pharmacopoeia[M]. Beijing: China Medical Science Press, 2020

    [21]

    COLSON E, SAVARINO P, CLAEREBOUDT E, et al. Enhancing the membranolytic activity of Chenopodium quinoa saponins by fast microwave hydrolysis[J]. Molecules,2020,25(7):1731. doi: 10.3390/molecules25071731

    [22] 傅俊. 牛膝三萜皂苷类成分定性分析及其体内外代谢初步研究[D]. 合肥: 安徽中医药大学, 2019

    FU J. Qualitative analysis of triterpenoid saponins from achyranthes bidentata and preliminary study on metabolism in vitro and in vivo[D]. Hefei: Anhui University of Traditional Chinese Medicine, 2019.

    [23]

    ZHU N Q, SHENG S Q, SANG S M, et al. Triterpene saponins from debittered quinoa (Chenopodium quinoa) seeds[J]. Journal of Agricultural and Food Chemistry,2002,50(4):865−867. doi: 10.1021/jf011002l

    [24]

    KULJANABHAGAVAD T, THONGPHASUK P, CHAMULITRAT W, et al. Triterpene saponins from Chenopodium quinoa Willd[J]. Phytochemistry,2008,69(9):1919−1926. doi: 10.1016/j.phytochem.2008.03.001

    [25]

    WOLDEMICHAEL G M, WINK M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa[J]. Journal of Agricultural and Food Chemistry,2001,49(5):2327−2332. doi: 10.1021/jf0013499

    [26]

    MA W W, HEINSTEINP F, MCLAUGHLINC J L. Additional toxic, bitter saponins from the seeds of Chenopodium quinoa[J]. Journal of Natural Products,1989,52(5):1132−1135. doi: 10.1021/np50065a035

    [27]

    DINI I, TENORE G C, SCHETTINO O, et al. New oleanane saponins in Chenopodium quinoa[J]. Journal of Agricultural and Food Chemistry,2001,49(8):3976−3981. doi: 10.1021/jf010361d

    [28] 黄晶. 基于UPLC/Q-TOF-MS技术的蜜炙黄芪大鼠体内代谢成分分析[D]. 广州: 广东药科大学, 2017

    HUANG J. Analysis of metabolites of honey-processed astragalus in rats based on UPLC/Q-TOF-MS[D]. Guangzhou: Guangdong Pharmaceutical University, 2017.

    [29] 张勐. 基于UPLC/Q-TOF技术的独一味化学成分与血清代谢物分析及抗炎活性研究[D]. 西宁: 青海师范大学, 2021

    ZHANG M. Analysis of chemical constituents and serum metabolites of Lamiophlomis rotata (Benth.) Kudo and their anti-inflammatory activities based on UPLC/Q-TOF Technology[D]. Xining: Qinghai Normal University, 2021.

    [30] 马保连, 李军茂, 何明珍, 等. 基于UHPLC-Q-TOF/MS的预知子入血成分及其体内代谢研究[J]. 中药新药与临床药理,2020,31(11):1350−1359. [MA B L, LI J M, HE M Z, et al. In vivo studies of the metabolites of Akebiae Fructus extract based on UHPLC-Q-TOF/MS method[J]. Traditional Chinese Drug Research and Clinical Pharmacology,2020,31(11):1350−1359. doi: 10.19378/j.issn.1003-9783.2020.11.013
    [31] 顾东风, 翁建平, 鲁向锋. 中国健康生活方式预防心血管代谢疾病指南[J]. 中国循环杂志,2020,35(3):209−230. [GU D F, WENG J P, LU X F. Chinese guideline on healthy lifestyle to prevent cardiometabolic diseases[J]. Chinese Circulation Journal,2020,35(3):209−230.
    [32] 刘颖, 蔡伟, 李宁, 等. UHPLC-LTQ-Orbitrap MS结合高能碰撞诱导裂解技术快速鉴定大鼠口服麦冬甾体皂苷后的血中移行成分[J]. 药学学报,2016,51(11):1751−1758. [LIU Y, CAI W, LI N, et al. Rapid characterization of constituents absorbed into blood after oral administration of steroidal saponins from Radix ophiopogonis using UHPLC-LTQ-Orbitrap MS coupled with higher energy collision induced dissociation[J]. Acta Pharmaceutica Sinica,2016,51(11):1751−1758.
    [33]

    LIN B J, QI X, FANG L, et al. In vivo acute toxicity and mutagenic analysis of crude saponins from Chenopodium quinoa Willd husks[J]. RSC Advances,2021,11(8):4829−4841. doi: 10.1039/D0RA10170B

    [34] 宋登鹏, 王雪芹, 王永慧, 等. 柴胡皂苷类化合物体内代谢途径及其代谢产物的研究进展[J]. 药物评价研究,2019,42(7):1460−1465. [SONG D P, WANG X Q, WANG Y Q, et al. Research progress on metabolic pathways in vivo and their metabolites of saikosaponin[J]. Drug Evaluation Research,2019,42(7):1460−1465.
    [35] 陈原国, 瞿伟菁, 杨乃乙, 等. 蒺藜总皂苷灌胃大鼠体内海柯皂苷元的代谢与分布[J]. 天然产物研究与开发,2006(6):927−931. [CHEN Y G, QU W J, YANG N Y, et al. Metabolism and distribution of hecogenin in rats after intragastric infusion with saponins of Tribulus terristris L doi: 10.3969/j.issn.1001-6880.2006.06.009

    J]. Natural Product Research and Development,2006(6):927−931. doi: 10.3969/j.issn.1001-6880.2006.06.009

    [36]

    HE Y, HU Z Y, LI A R, et al. Recent advances in biotransformation of saponins[J]. Molecules,2019,24(13):2365. doi: 10.3390/molecules24132365

    [37]

    HIEERO J N, HERRERA T, FORNARI T, et al. The gastrointestinal behavior of saponins and its significance for their bioavailability and bioactivities[J]. Journal of Functional Foods,2018,40(12):484−497.

    [38] 刘晨希. 齐墩果酸衍生物HA-19在大鼠体内药代动力学及其组织分布研究[D]. 南京: 南京大学, 2018

    LIU C X. Pharmacokinetics and tissue distribution of oleanolic acid derivative HA-19 in rats[D]. Nanjing: Nanjing University, 2018.

图(7)  /  表(3)
计量
  • 文章访问数:  172
  • HTML全文浏览量:  55
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 网络出版日期:  2023-03-04
  • 刊出日期:  2023-04-30

目录

/

返回文章
返回
x 关闭 永久关闭