• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

体重规格对杂交鲟肌肉与皮组织中营养成分的影响

谢全森, 刘艺冉, 栗建军, 王晓宁, 李岁艳, 梁合文, 孙彩娟, 郭少华

谢全森,刘艺冉,栗建军,等. 体重规格对杂交鲟肌肉与皮组织中营养成分的影响[J]. 食品工业科技,2023,44(5):380−387. doi: 10.13386/j.issn1002-0306.2022050068.
引用本文: 谢全森,刘艺冉,栗建军,等. 体重规格对杂交鲟肌肉与皮组织中营养成分的影响[J]. 食品工业科技,2023,44(5):380−387. doi: 10.13386/j.issn1002-0306.2022050068.
XIE Quansen, LIU Yiran, LI Jianjun, et al. Effect of Weight Size on Nutritional Components in Muscle and Skin Tissues of Hybrid Sturgeon (Huso dauricus×Acipenser schrenckii)[J]. Science and Technology of Food Industry, 2023, 44(5): 380−387. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050068.
Citation: XIE Quansen, LIU Yiran, LI Jianjun, et al. Effect of Weight Size on Nutritional Components in Muscle and Skin Tissues of Hybrid Sturgeon (Huso dauricus×Acipenser schrenckii)[J]. Science and Technology of Food Industry, 2023, 44(5): 380−387. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050068.

体重规格对杂交鲟肌肉与皮组织中营养成分的影响

基金项目: 邯郸市科技研发项目(22422202148ZC);河北省农业体系淡水养殖创新团队二期(2018-2022)。
详细信息
    作者简介:

    谢全森(1983−),男,博士研究生,研究方向:水产生态食品加工学,E-mail:xiequansen@163.com

    通讯作者:

    栗建军(1969−),男,本科,农业技术推广研究员,研究方向:水产养殖,E-mail:china.ljj@163.com

  • 中图分类号: S986.1

Effect of Weight Size on Nutritional Components in Muscle and Skin Tissues of Hybrid Sturgeon (Huso dauricus×Acipenser schrenckii)

  • 摘要: 为了给杂交鲟(达氏鳇♀×史氏鲟♂)深加工利用提供基本借鉴,以三种不同规格(1500.05±1.50)g、(3002.25±2.55)g和(4505.25±4.15)g的杂交鲟为研究对象,测定其肌肉及鱼皮组织的营养成分。结果显示,(3002.25±2.55)g杂交鲟鱼的肌肉和鱼皮占体重比例在三组为最高,且显著高于(1500.05±1.50)g组(P<0.05)。随着取样鱼体质量的增大,肌肉及皮组织的胶原蛋白、必需氨基酸、鲜味氨基酸和氨基酸总和均呈先升后降趋势,中等规格(体质量为(3002.25±2.55)g)的杂交鲟中最高。测得肌肉的第一限制性氨基酸为蛋氨酸(methionine,Met)+半胱氨酸(cysteine,Cys),而缬氨酸(valine,Val)为鱼皮的第一限制性氨基酸;根据WHO/FAO和CS模式对各组进行计算结果表明,体质量为(3002.25±2.55)g规格下的杂交鲟氨基酸均衡性最好且营养价值最适合食品加工利用。从杂交鲟的肌肉和皮组织中检测出的脂肪酸种类数量相同,肌肉的饱和脂肪酸含量低于皮组织,皮组织的单不饱和脂肪酸和多不饱和脂肪酸含量低于肌肉。三种鲟鱼的肌肉和皮组织中所测必需矿物质元素含量均随体重规格增大呈先升后降趋势但均不显著(P>0.05),其中钠、镁和钾的含量在两个组织中均为前三位。研究结果表明,体重规格影响杂交鲟肌肉及鱼皮的营养成分组成,(3002.25±2.55)g体质量的杂交鲟鱼营养成分品质最平衡适合深度加工利用。
    Abstract: The nutritional quality of muscles and skins of different sizes: 1500.05±1.50 g, 3002.25±2.55 g and 4505.25±4.15 g, were systematically studied, which could provide basic data for processing and comprehensive utilization of hybrid sturgeon. The results showed that the muscle and skin of (3002.25±2.55) g of hybrid sturgeon accounted for the highest proportion of body weight, which were significantly higher than that of the (1500.05±1.50) g (P<0.05). With the increased of specifications, collagen, EAA, DAA and TAA in each group showed a trend of first increased and then decreased, with the middle-sized hybrid sturgeon was the highest, and the first restricted amino acids in the muscle and skin of hybrid sturgeon were Met+Cys and Val, respectively, which indicated that the (3002.25±2.55) g of hybrid sturgeon had better amino acid balance and the best nutritional value. The amount of fatty acids detected from the muscle and skin of hybrid sturgeon was the same, the content of saturated fatty acids in muscle was relatively lower than that in skin, while the content of monounsaturated fatty acids and polyunsaturated fatty acids was higher than that in skin. Among the three specifications of hybrid sturgeon muscle, the contents of Na, Mg and K rank among the top three essential mineral elements, and the measured essential mineral elements all showed a trend of first increased and then decreased with the specification increased, but there was no significant difference (P>0.05). The results showed that the weight specifications affected the nutrient composition in muscle and skin of hybrid sturgeon, and the (3002.25±2.55) g body mass was the most balanced, suitable for deep processing and utilization.
  • 水产品加工研究随人类对水产品消费需求的提升而呈多方向细分发展[1-3]。不同体重规格的水产品身体组织的营养结构组成存在一定差异,这对养殖从业者销售水产品和后续食品开发利用存在影响,但目前该方面报道研究并不系统[4]。杂交鲟为我国冷水性鱼类养殖产业中的重点推广品种,国内市场对这种体型最大的软骨硬鳞淡水鱼的综合加工利用率较低,限制了鲟鱼养殖业的发展。已有的基础研究报道集中在杂交鲟鱼的养殖现状、加工技术研究,对于不同体质量的杂交鲟的肌肉营养成分分析报道较少,这方面的研究结果对养殖管理及水产品加工具有重要借鉴意见[5-8]

    本文选取同一养殖条件下同来源同批次杂交鲟,在养殖期的不同阶段进行取样,对其形体指标、肌肉和鱼皮组织的营养指标进行测定和分析比较,以期为杂交鲟养殖销售和水产品的深加工利用提供理论依据。

    杂交鲟 河北省邯郸市涉县鲟鱼繁育基地,全程投喂国产鲟鱼全价配合颗粒饲料,水温17~22 ℃,每7 d检测水质指标,维持如下:透明度25~40 cm,酸碱度7.4~8.2,溶氧值>4 mg/L,亚硝态氮<0.15 mg/L。在养殖的第12个月、24个月及36个月时,分别随机取体质健壮的杂交鲟各20尾,即为本研究的A组、B组和C组,其体质量依次为(1500.05±1.50)g、(3002.25±2.55)g和(4505.25±4.15)g;MS222、氢氧化钠、硝酸、浓硫酸、盐酸 为分析纯,国药集团化学试剂有限公司邯郸分公司。

    梅特勒ME104电子分析天平 上海叶拓科技有限公司;WHL-308电热恒温鼓风干燥箱 天津泰斯特试验设备有限公司;T6新世纪紫外分光光度计、AA1800H石墨炉原子吸收光谱仪 上海美析仪器有限公司;Agilent 1100 氨基酸自动分析仪 英国柏楉科技发展有限公司;津工GC-MS气相色谱仪质谱联用仪 津工仪器(苏州)有限公司;TA.XT Plus 质构仪 英国Stable Micro Systems公司。

    样品处理:MS222麻醉,冰浴托盘剔除鳃、鱗、鳍、内脏和骨骼,将杂交鲟肌肉和背皮分割,剔刺、捣碎、混匀,即为测试样品。测试样品制备后置于−23 ℃保存,每种样品取样3次进行测定。

    测定指标为肌肉占体重比、鱼皮占体重比以及含肉率[9-10]

    水分含量采用直接干燥法测定[10];总灰分含量采用高温灼烧法测定[11];粗蛋白质含量采用凯氏定氮法测定[12];粗脂肪含量采用索氏抽提法测定[13],胶原蛋白含量参照李艳华等和陈细华等[10, 14]并根据GB/T 9695. 23-2008《肉与肉制品羟脯氨酸含量测定》测定,上述各指标均分别测定3次,取平均值。

    样品准备:选取3种规格杂交鲟各10尾,将肌肉和皮切碎混匀;准确称取100 mg样品于20 mL水解管内,加入10 mL 6 mol/L盐酸溶液,封口;置于120 ℃恒温箱中水解22 h;在水解瓶中加入4.8 mL 10 mol/L氢氧化钠溶液,定容至25 mL,过滤;取1 mL上清液, 10000 r/min离心10 min;取200 μL上清液,用于色谱分析。

    色谱条件:Agilent 1100 氨基酸自动分析仪,C18 柱(4.0 mm×125 mm),柱温40 ℃,缓冲液流速1.0 mL/min,流动相:A为20 mmol/L醋酸钠;B为20 mmol/L醋酸钠:甲醇:乙腈=1:2:2(体积比),紫外检测波长338 nm[3]

    氨基酸评分(amino acid score,AAS)、化学评分(chemical sore,CS)和必需氨基酸指数 (essential amino acid index,EAAI)按照以下公式计算[3, 12-14]

    AAS= 样品中某种氨基酸含量 WHO/FAO 模式谱中对应氨基酸含量 
    CS= 样品中某种氨基酸含量  鸡蛋蛋白质中某种氨基酸含量 
    EAAI=nt1×t2××tns1×s2××sn×100

    式中:n为比较的氨基酸数;t1、t2...tn分别为受试杂交鲟蛋白质的各种氨基酸含量,mg/g N;s1、s2...sn分别为鸡蛋蛋白质的各种氨基酸含量,mg/g N。

    分别从3种规格杂交鲟的样品中取出部分,用30~60 ℃混石油醚提取2 h,旋蒸去除石油醚。然后,根据以往文献报道方法并参照GB/T 17376-2008《动植物油脂脂肪酸甲酯制备》,将所得脂肪进行甲酯化[3, 15-18],采用内标法测定。

    样品的制备同1.2.3。As和Pb,采用石墨炉原子吸收光谱仪测定[11];其他元素,采用火焰原子吸收法测定[3]

    采用Statistica 6.0软件进行方差分析,差异显著后采用Duncan’s多重比较组间差异,显著性水平P<0.05,数据全部采用平均值±标准差表示[19-20]

    三种规格杂交鲟形体指标测定结果见表1

    表  1  三种规格杂交鲟的形体指标
    Table  1.  The body characteristics of three size of hybrid sturgeon
    指标体重规格
    ABC
    肌肉占体重比(%)36.51±0.13a61.92±0.10b55.12±0.14b
    鱼皮占体重比(%)10.89±0.04a14.92±0.06b13.12±0.05b
    含肉率(%)47.40±0.02a76.84±0.04b68.24±0.04b
    注:同行不同右上标小写字母表示差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    鲟鱼的营养及药用价值极高,素有“鲟龙、皇帝鱼、活化石”之称,长期食用,对胃病、腰痛和脱发有明显作用[21]表1结果表明,随着杂交鲟体质量的增大,其肌肉和皮组织占体重比例、含肉率均呈先增后减趋势,且小规格组的上述三个指标均显著低于其他组(P<0.05)。中等规格的杂交鲟鱼含肉率最高,接近77%。

    然而,到一定规格后,出肉率随着杂交鲟鱼形体的增大而减小,其中原因未见相关探讨。鲟鱼作为一种软骨鱼类,其规格越大其软骨占比越高[22],而出肉率的降低是否与软骨占比增高有关,截至目前尚未见在软骨鱼类方面有报道,还有待进一步探究。以上的试验结果表现的差异对鲟鱼产业中控制其上市规格、后期深加工的产品品质以及日常食用鲟鱼选择合适规格有借鉴意义。

    三种规格杂交鲟的肌肉及皮的基本营养成分见表2

    表  2  三种规格杂交鲟基本营养成分含量
    Table  2.  The contents of basic nutritional components of three size of hybrid sturgeon
    测定指标肌肉
    ABCABC
    水分(%)80.20±1.77a77.95±1.11a75.25±1.12a73.41±14.00a70.12±10.22a68.31±14.77a
    蛋白质(%)16.71±6.20a17.44±6.41a16.97±5.11a17.17±7.25a18.02±8.11a17.82±6.52a
    脂肪(%)4.36±3.12a5.15±3.22b4.89±2.61ab4.66±4.34a5.55±4.13b5.11±3.75ab
    灰分(%)1.72±1.57a1.98±1.66a1.85±1.34a1.79±2.12a1.96±1.94a1.89±1.88a
    胶原蛋白(mg/g)5.56±0.02a6.45±0.02a5.85±0.01a67.21±0.02a73.12±0.01b70.12±0.01ab
    注:不同取样组织中的同行不同右上标小写字母表示差异显著(P<0.05),表3表5表6同。
    下载: 导出CSV 
    | 显示表格

    表2可知,在杂交鲟肌肉中,随体重规格的增大,水分含量下降,但差异不显著(P>0.05);而其蛋白质、脂肪、灰分含量均先升后降,并在中等规格的杂交鲟中均为最高值,在脂肪所测值中表现出显著差异(P<0.05)。鱼类的营养成分与遗传因素有关,在一定的生长发育阶段相对恒定,这与之前的其他水产品种相关研究结果一致[3, 23]

    鱼皮中的水分含量低于肌肉,其他指标则高于肌肉。蛋白质含量是评价鱼类食用营养价值的指标之一。由表2可知,中规格杂交鲟肌肉和皮中蛋白质含量最高,分别为17.44%和18.02%,高于1200 g西伯利亚鲟15.75%和1400 g施式鲟含量16.75%[24],但低于500 g小体鲟(19.89%)[25]。造成上述差异的原因推测与营养条件、生长环境和鱼类自身品种有关。

    脂肪含量在一定程度上与肉质、味道有关。杂交鲟鱼的脂肪含量在5%左右,高于鲤鱼、鲫鱼和罗非鱼等淡水鱼类[26],但低于鲶鱼和虹鳟[27]。杂交鲟鱼比一般淡水鱼味道更加鲜美。

    表2可知,三个体重规格的杂交鲟肌肉与鱼皮组织的胶原蛋白含量差距均较大,中等规格的杂交鲟肌肉中胶原蛋白含量为6.45 mg/g,而鱼皮中高达73.12 mg/g,为三种规格的最高值。上述不同组织中胶原蛋白含量差距较大的原因尚未见相关文献报道,推测可能与鱼类胶原蛋白在不同组织承担的功能不同有关,且随着规格的增加其功能逐渐调整有关。

    以上数据表现出的差异趋势结果为水产品加工和养殖企业提供一个重要信息,杂交鲟选择合适的规格出售则其加工品质和食用价值越大,其综合价值就越高,这一研究与以往在其他水产品结果一致[3, 10]

    三种规格杂交鲟肌肉和皮的氨基酸含量组成见表3

    表  3  三种规格杂交鲟氨基酸含量
    Table  3.  The amino acid contents of three size of hybrid sturgeon
    蛋白质中氨基酸(mg/g)肌肉
    ABCABC
    *苏氨酸Thr0.76±0.02a0.98±0.02b0.88±0.03ab 0.69±0.01a0.88±0.02b0.74±0.06ab
    *缬氨酸Val1.01±0.03a1.26±0.05a1.09±0.06a0.95±0.04a1.10±0.02a0.99±0.04a
    *蛋氨酸Met0.62±0.05a0.76±0.02a0.72±0.03a0.62±0.01a0.66±0.02a0.63±0.02a
    *异亮氨酸Ile0.86±0.06a1.01±0.03b0.95±0.09ab0.76±0.01a0.91±0.01a0.85±0.02a
    *亮氨酸Leu1.55±0.02a1.69±0.04a1.63±0.05a1.52±0.01a1.61±0.01a1.53±0.04a
    *色氨酸Thy0.67±0.02a0.84±0.03b0.72±0.02ab0.63±0.01a0.72±0.02a0.68±0.02a
    *苯丙氨酸Phe1.05±0.02a1.19±0.02a1.06±0.04a0.95±0.01a1.04±0.02a1.00±0.02a
    *赖氨酸Lys1.77±0.03a1.94±0.02a1.83±0.03a1.67±0.02a1.75±0.02a1.72±0.03a
    必需氨基酸(EAA)8.299.678.887.798.678.14
    A天冬氨酸Asp1.81±0.02a2.22±0.03b1.88±0.02a1.75±0.06a1.87±0.08a1.81±0.06a
    A谷氨酸Glu2.74±0.02a2.88±0.02a2.75±0.04a2.64±0.02a2.72±0.03a2.69±0.03a
    A甘氨酸Gly0.94±0.06a1.01±0.04a0.89±0.03a0.82±0.04a0.99±0.03a0.84±0.03a
    A丙氨酸Ala1.11±0.04a1.28±0.03b1.13±0.05a1.09±0.06a1.15±0.04a1.11±0.02a
    A苯丙氨酸Phe2.24±0.02a2.57±0.03a2.41±0.03a2.01±0.02a2.44±0.02a2.32±0.03a
    A酪氨酸Tyr1.88±0.02a2.02±0.02a1.97±0.04a1.71±0.02a1.99±0.03a1.89±0.03a
    鲜味氨基酸(DAA)10.7211.9811.0910.0311.1610.66
    丝氨酸Ser0.85±0.03a0.89±0.02a0.86±0.03a0.81±0.01a0.84±0.02a0.82±0.01a
    组氨酸His0.62±0.04a0.65±0.02a0.62±0.02a0.59±0.02a0.63±0.02a0.60±0.01a
    精氨酸Arg1.15±0.03a1.22±0.03a1.19±0.02a1.05±0.02a1.12±0.02a1.09±0.02a
    脯氨酸Pro0.57±0.02a0.63±0.03a0.58±0.02a0.55±0.01a0.60±0.01a0.57±0.03a
    氨基酸总量(TAA)18.1020.4918.8417.1118.6217.58
    DAA/TAA0.360.360.360.370.360.37
    EAA/TAA0.460.470.470.460.470.46
    注:*为必需氨基酸,A为鲜味氨基酸。
    下载: 导出CSV 
    | 显示表格

    表3中可知,在杂交鲟肌肉中,必需氨基酸中赖氨酸含量最高,蛋氨酸含量最低。赖氨酸在必需氨基酸营养成分中占重要地位,参与人体新陈代谢[28]。高赖氨酸含量可调节必需氨基酸摄入比例,提高蛋白利用率。苏氨酸在中小形体杂交鲟鱼的肌肉和皮组织中差异显著(P<0.05)。异亮氨酸和色氨酸在中小形体鱼的肌肉组织含量差异显著(P<0.05)。

    鲜味氨基酸中谷氨酸含量最高,甘氨酸含量最低;中规格杂交鲟鱼肌肉中天冬氨酸和丙氨酸含量与其他两种规格存在显著差异(P<0.05)。随着规格的增大,各组必需氨基酸、鲜味氨基酸和氨基酸总量均呈先升后降趋势,在中等规格的杂交鲟中最高,与其它鱼类报道基本一致,而这一趋势的形成机理尚需进一步研究[3, 20, 29-31]

    总体来说,肌肉中和皮组织中鲜味氨基酸占比(DAA/TAA)均低于西伯利亚鲟(52.69%)、俄罗斯鲟(52.33%)、达式鳇(53.04%)、欧洲鳇(52.76%)、大型杂交鲟(52.89%)、小型杂交鲟(52.19%)[32]。肌肉组织中的鲜味氨基酸和鲜味氨基酸占比(DAA/TAA)与皮组织中接近,与鱼肉鲜味氨基酸占总氨基酸含量35.88%~38.71%的暗纹东方鲀、菊黄东方鲀、红鳍东方鲀、双斑东方鲀接近,但低于这四种鱼鱼皮的52.58%~55.16%[33];但明显高于养殖大黄鱼(24.42%)、秘鲁鱿鱼(21.59%)和西式鲍鱼(23.00%)[34]。说明杂交鲟鱼的鱼皮和肌肉均有浓郁的鲜味。

    根据以往文献报道,EAA/TAA达到0.4可评定为优质蛋白质[8, 18-20, 29-30]。本研究中3种规格杂交鲟的肌肉和皮的EAA/TAA均达到优质蛋白质标准。此外,本研究中杂交鲟肌肉和皮中必需氨基酸分别是均高于和低于FAO/WHO标准,推测其原因是皮中胶原蛋白含量高,羟脯氨酸含量高,从而使得必需氨基酸含量相对较低,与其它文献报道基本一致[3, 20, 29-31]。总体来说,中等规格的杂交鲟鱼有较好的氨基酸组成,是优质蛋白的良好来源。

    三种规格杂交鲟的AAS和CS见表4

    表  4  三种规格杂交鲟AAS和CS评分
    Table  4.  The AAS and CS scores of three size of hybrid sturgeon
    必需氨基酸肌肉
    ABCABC
    AASCSAASCSAASCSAASCSAASCSAASCS
    Ile1.190.781.220.911.200.92 1.150.701.200.871.180.85
    Leu1.110.771.190.921.130.941.060.711.150.881.100.84
    Thr1.070.801.210.841.110.851.000.771.150.821.100.81
    Val1.000.611.140.651.050.670.820.570.930.650.880.62
    Met+Cys0.881.010.991.030.891.040.900.580.970.650.930.61
    Phe+Tyr1.250.881.350.931.280.891.200.861.330.911.250.86
    Lys1.751.121.861.221.791.201.671.101.861.191.741.18
    总计1.100.821.160.861.140.841.080.801.140.831.120.81
    EAAI0.970.970.970.970.970.970.970.970.970.970.970.97
    下载: 导出CSV 
    | 显示表格

    表4可知,各组杂交鲟肌肉和皮中AAS评分在0.82以上,CS评分在0.57以上,皮中的AAS和CS评分值均低于肌肉。肌肉和皮中第一限制性氨基酸分别为Met+Cys和Val。与已报道的淡水鱼中华鲟、大黄鱼等[35],以及四川裂腹鱼[36]淡水鱼的营养研究结果一致。EAAI值是评价蛋白质营养价值的重要指标,氨基酸模式越接近鸡蛋,其营养价值越高,EAAI>0.95为优质蛋白源,0.86<EAAI≤0.95为良好蛋白源,0.75≤EAAI≤0.86为可用蛋白源,EAAI<0.75为不适蛋白源。参考WHO/FAO和CS模式,计算得知,三个组的杂交鲟鱼肌肉和皮中EAAI数值均高于0.95,说明三个组的杂交鲟氨基酸均衡性和营养价值均为优质蛋白源。

    三种规格杂交鲟的脂肪酸组成见表5

    表  5  三种规格杂交鲟的脂肪酸组成
    Table  5.  The fatty acid compositions of three size of hybrid sturgeon
    脂肪酸(%)肌肉
    ABCABC
    C4:00.15±0.01a0.22±0.01a0.19±0.02a0.11±0.02a0.15±0.01a0.13±0.01a
    C6:00.18±0.02a0.20±0.02a0.19±0.01a0.12±0.01a0.15±0.01a0.13±0.02a
    C14:01.55±0.01a1.72±0.01b1.65±0.02ab1.50±0.02a1.59±0.01a1.54±0.01a
    C15:00.18±0.02a0.22±0.02a0.19±0.01a0.17±0.02a0.19±0.01a0.18±0.02a
    C16:019.18±0.02a22.14±0.01b21.01±0.02ab20.12±0.01a23.21±0.02b22.00±0.01ab
    C17:00.14±0.01a0.19±0.01a0.17±0.02a0.13±0.02a0.14±0.01a0.13±0.01a
    C20:00.15±0.02a0.18±0.02a0.16±0.01a0.13±0.01a0.16±0.01a0.14±0.02a
    C22:00.07±0.02a0.09±0.02a0.08±0.02a0.05±0.01a0.06±0.01a0.05±0.01a
    C24:01.51±0.01a1.73±0.01b1.64±0.02ab1.51±0.02a1.60±0.01a1.55±0.01a
    饱和脂肪酸23.11±0.10a26.69±0.14b25.28±0.04ab23.84±0..08a27.16±0.12b25.85±0.09ab
    C16:13.81±0.02a3.93±0.03a3.82±0.02a3.76±0.02a3.82±0.02a3.80±0.02a
    C18:131.12±0.04a34.22±0.01b32..86±0.10ab25.11±0.04a28.02±0.11b27.19±0.05ab
    C20:11.12±0.02a1.25±0.02a1.17±0.01a1.01±0.02a1.04±0.01a1.02±0.02a
    C22:10.80±0.02a0.93±0.01a0.84±0.00a0.92±0.03a0.98±0.02a0.96±0.02a
    单不饱和脂肪酸36.85±0..19a40.33±0.16b38.69±0.11ab30.80±0.12a33.86±0.10a32.97±0.12a
    C18:226.71±0.03a27.83±0.02a26.97±0.01a24.78±0.02a25.33±0.02a25.12±0.03a
    C18:3n-60.37±0.02a0.40±0.02a0.38±0.01a0.35±0.02a0.38±0.00a0.36±0.02a
    C20:20.91±0.02a0.96±0.02a0.92±0.02a0.65±0.01a0.73±0.02a0.67±0.03a
    C20:3n-30.25±0.01a0.28±0.02a0.26±0.02a0.23±0.03a0.25±0.02a0.24±0.01a
    C20:3n-60.19±0.02a0.22±0.02a0.20±0.01a0.18±0.02a0.19±0.01a0.18±0.01a
    C20:4n-60.32±0.02a0.38±0.02a0.33±0.01a0.35±0.02a0.36±0.02a0.36±0.02a
    C22:20.04±0.01a0.05±0.03a0.04±0.02a0.03±0.02a0.03±0.00a0.03±0.02a
    C20:5n-30.01±0.00a0.02±0.00a0.01±0.00a0.00±0.00a0.01±0.01a0.01±0.01a
    C22:6n-33..82±0.02a4.12±0.05a3.84±0.02a3.12±0.02a3.30±0.03a3.22±0.02a
    多不饱和脂肪酸32.62±0.10a34.26±0.12a32.95±0.10a29.69±0.08a30.58±0.09a30.19±0.05a
    下载: 导出CSV 
    | 显示表格

    表5可以看出,在3种规格的杂交鲟的肌肉和皮中均包含22种脂肪酸,其中饱和脂肪酸9种,单不饱和脂肪酸4种,多不饱和脂肪酸9种。饱和脂肪酸中的棕榈酸(C16:0)、单不饱和脂肪酸中油酸(C18:1)和多不饱和脂肪酸中亚油酸(C18:2)含量分列各自第一位,饱和脂肪酸、单不饱和脂肪酸和多不饱和脂肪酸均随体重增加均呈现先升后降趋势,与Nieminen等[37]和Pyz-Lukasik等[38]研究的西伯利亚鲟鱼中的棕榈酸、油酸和亚油酸含量趋势相似。肌肉中饱和脂肪酸含量相对低于皮中,而单不饱和脂肪酸和多不饱和脂肪酸含量则高于皮中,这与以往相关研究结果接近[39-42]

    DHA(C22:6n-3)是现代营养学关注的热点,素有“脑黄金”之称,对视力及智力发育尤为重要[43]。本研究中所测DHA含量及趋势与鳙鱼(Aristichthys nobilis[44]、大目金枪鱼(Thunnus obesus[45]、三文鱼(Salmon salar)等[46-47]的研究结果较为相似。

    三种规格杂交鲟的必需矿质元素组成见表6

    表  6  三种规格杂交鲟必需矿质元素组成(基于湿重,mg/kg)
    Table  6.  The essential mineral contents of three size of hybrid sturgeon (Based on wet weight, mg/kg)
    矿质元素肌肉
    ABCABC
    Na511.32±12..02a581.32±13.41a541.32±10.22a501.32±14.00a571.53±10.22a533.15±14.77a
    Mg345.63±6.20a397.12±6.41a361.52±5.11a611.11±7.25a666.51±8.11a648.22±6.52a
    K305.22±3.12a342.11±3.22a321.32±2.61a350.22±4.34a386.52±4.13a367.34±3.75a
    Ca75.65±1.57a87.18±1.66a79.22±1.34a91.12±2.12a99.42±1.94a93.21±1.88a
    Mn0.15±0.02a0.22±0.02a0.20±0.01a0.44±0.02a0.57±0.01a0.49±0.01a
    Fe10.11±0.11a10.37±0.13a10.25±0.09a16.04±0.25a16.71±0.28a16.51±0.22a
    Zn17.36±1.27a18.02±1.33a17.71±1.23a29.11±1.36a31.60±1.40a30.32±1.44a
    下载: 导出CSV 
    | 显示表格

    表6可知,杂交鲟所测必需矿质元素含量均随规格增大呈先升后降趋势,但差异均不显著(P>0.05)。有研究发现1龄细鳞鲑肌肉中Mn、Fe、Zn含量较高,与此阶段鱼生长代谢旺盛有关[48]。周文博等[49]在研究中发现,常量元素磷含量随规格增大呈现先升后降的趋势,也与黄颡鱼(Pelteobagrus fulvidraco[50]和印度囊鳃鲶(Heteropneustes fossilis[51]的研究结果类似,说明鱼对饲料的摄食及消化吸收存在着上限。由此推测矿质元素含量变化可能存在上述两种原因,需进一步探究。

    肌肉的必需矿质元素前三位分别是Na、Mg和K,而皮中必需矿质元素前三位分别是Mg、Na和K,较高含量的钠、钾及镁元素有利于维持鱼皮组织形态和正常代谢。肌肉中的矿质元素含量低于鱼皮测得值,其机理还需进一步研究,与以往相关报道结果一致[3, 22, 29, 33]

    微量元素中Zn、Fe含量较高,研究发现驴皮的补血效果与这两种元素有关,Zn大部分参与体内生物酶的合成,Fe参与血红蛋白以及各种酶的合成,并促进人体生长[52-53],本研究中杂交鲟鱼皮中的Mg、Zn元素含量显著高于肌肉组织中(P<0.05),比特色海产品仿刺参、方格星虫体内的锌含量还高[54-55],表明杂交鲟的鱼皮组织在微量元素开发与利用方面的研究具有重要前景,其结果对深加工品质以及食用价值的提升具有重要借鉴意见,其与矿物质功能的相关性有待进一步研究。

    中等规格杂交鲟含肉率最高。随着杂交鲟鱼的体重规格的增加,其水分含量呈下降趋势,而蛋白质、脂肪、灰分和胶原蛋白含量均先升后降,并在中等规格的杂交鲟肌肉及皮中均为最高值。必需氨基酸中,均表现为赖氨酸和蛋氨酸分别为含量最高和最低值;鲜味氨基酸中,均表现为谷氨酸和甘氨酸为含量最高和最低值;肌肉的第一限制性氨基酸为Met+Cys,而Val为鱼皮的第一限制性氨基酸;肌肉中饱和脂肪酸含量相对低于皮中,而单不饱和脂肪酸和多不饱和脂肪酸含量则高于皮中;所测必需矿质元素含量均随体规格增大呈先升后降趋势,其中Na、Mg和K的含量在两个组织中都测得为前三位。

    体重规格影响杂交鲟肌肉及鱼皮的营养成分组成,(3002.25±2.55)g体质量的杂交鲟鱼营养成分品质最平衡适合深度加工利用。

  • 表  1   三种规格杂交鲟的形体指标

    Table  1   The body characteristics of three size of hybrid sturgeon

    指标体重规格
    ABC
    肌肉占体重比(%)36.51±0.13a61.92±0.10b55.12±0.14b
    鱼皮占体重比(%)10.89±0.04a14.92±0.06b13.12±0.05b
    含肉率(%)47.40±0.02a76.84±0.04b68.24±0.04b
    注:同行不同右上标小写字母表示差异显著(P<0.05)。
    下载: 导出CSV

    表  2   三种规格杂交鲟基本营养成分含量

    Table  2   The contents of basic nutritional components of three size of hybrid sturgeon

    测定指标肌肉
    ABCABC
    水分(%)80.20±1.77a77.95±1.11a75.25±1.12a73.41±14.00a70.12±10.22a68.31±14.77a
    蛋白质(%)16.71±6.20a17.44±6.41a16.97±5.11a17.17±7.25a18.02±8.11a17.82±6.52a
    脂肪(%)4.36±3.12a5.15±3.22b4.89±2.61ab4.66±4.34a5.55±4.13b5.11±3.75ab
    灰分(%)1.72±1.57a1.98±1.66a1.85±1.34a1.79±2.12a1.96±1.94a1.89±1.88a
    胶原蛋白(mg/g)5.56±0.02a6.45±0.02a5.85±0.01a67.21±0.02a73.12±0.01b70.12±0.01ab
    注:不同取样组织中的同行不同右上标小写字母表示差异显著(P<0.05),表3表5表6同。
    下载: 导出CSV

    表  3   三种规格杂交鲟氨基酸含量

    Table  3   The amino acid contents of three size of hybrid sturgeon

    蛋白质中氨基酸(mg/g)肌肉
    ABCABC
    *苏氨酸Thr0.76±0.02a0.98±0.02b0.88±0.03ab 0.69±0.01a0.88±0.02b0.74±0.06ab
    *缬氨酸Val1.01±0.03a1.26±0.05a1.09±0.06a0.95±0.04a1.10±0.02a0.99±0.04a
    *蛋氨酸Met0.62±0.05a0.76±0.02a0.72±0.03a0.62±0.01a0.66±0.02a0.63±0.02a
    *异亮氨酸Ile0.86±0.06a1.01±0.03b0.95±0.09ab0.76±0.01a0.91±0.01a0.85±0.02a
    *亮氨酸Leu1.55±0.02a1.69±0.04a1.63±0.05a1.52±0.01a1.61±0.01a1.53±0.04a
    *色氨酸Thy0.67±0.02a0.84±0.03b0.72±0.02ab0.63±0.01a0.72±0.02a0.68±0.02a
    *苯丙氨酸Phe1.05±0.02a1.19±0.02a1.06±0.04a0.95±0.01a1.04±0.02a1.00±0.02a
    *赖氨酸Lys1.77±0.03a1.94±0.02a1.83±0.03a1.67±0.02a1.75±0.02a1.72±0.03a
    必需氨基酸(EAA)8.299.678.887.798.678.14
    A天冬氨酸Asp1.81±0.02a2.22±0.03b1.88±0.02a1.75±0.06a1.87±0.08a1.81±0.06a
    A谷氨酸Glu2.74±0.02a2.88±0.02a2.75±0.04a2.64±0.02a2.72±0.03a2.69±0.03a
    A甘氨酸Gly0.94±0.06a1.01±0.04a0.89±0.03a0.82±0.04a0.99±0.03a0.84±0.03a
    A丙氨酸Ala1.11±0.04a1.28±0.03b1.13±0.05a1.09±0.06a1.15±0.04a1.11±0.02a
    A苯丙氨酸Phe2.24±0.02a2.57±0.03a2.41±0.03a2.01±0.02a2.44±0.02a2.32±0.03a
    A酪氨酸Tyr1.88±0.02a2.02±0.02a1.97±0.04a1.71±0.02a1.99±0.03a1.89±0.03a
    鲜味氨基酸(DAA)10.7211.9811.0910.0311.1610.66
    丝氨酸Ser0.85±0.03a0.89±0.02a0.86±0.03a0.81±0.01a0.84±0.02a0.82±0.01a
    组氨酸His0.62±0.04a0.65±0.02a0.62±0.02a0.59±0.02a0.63±0.02a0.60±0.01a
    精氨酸Arg1.15±0.03a1.22±0.03a1.19±0.02a1.05±0.02a1.12±0.02a1.09±0.02a
    脯氨酸Pro0.57±0.02a0.63±0.03a0.58±0.02a0.55±0.01a0.60±0.01a0.57±0.03a
    氨基酸总量(TAA)18.1020.4918.8417.1118.6217.58
    DAA/TAA0.360.360.360.370.360.37
    EAA/TAA0.460.470.470.460.470.46
    注:*为必需氨基酸,A为鲜味氨基酸。
    下载: 导出CSV

    表  4   三种规格杂交鲟AAS和CS评分

    Table  4   The AAS and CS scores of three size of hybrid sturgeon

    必需氨基酸肌肉
    ABCABC
    AASCSAASCSAASCSAASCSAASCSAASCS
    Ile1.190.781.220.911.200.92 1.150.701.200.871.180.85
    Leu1.110.771.190.921.130.941.060.711.150.881.100.84
    Thr1.070.801.210.841.110.851.000.771.150.821.100.81
    Val1.000.611.140.651.050.670.820.570.930.650.880.62
    Met+Cys0.881.010.991.030.891.040.900.580.970.650.930.61
    Phe+Tyr1.250.881.350.931.280.891.200.861.330.911.250.86
    Lys1.751.121.861.221.791.201.671.101.861.191.741.18
    总计1.100.821.160.861.140.841.080.801.140.831.120.81
    EAAI0.970.970.970.970.970.970.970.970.970.970.970.97
    下载: 导出CSV

    表  5   三种规格杂交鲟的脂肪酸组成

    Table  5   The fatty acid compositions of three size of hybrid sturgeon

    脂肪酸(%)肌肉
    ABCABC
    C4:00.15±0.01a0.22±0.01a0.19±0.02a0.11±0.02a0.15±0.01a0.13±0.01a
    C6:00.18±0.02a0.20±0.02a0.19±0.01a0.12±0.01a0.15±0.01a0.13±0.02a
    C14:01.55±0.01a1.72±0.01b1.65±0.02ab1.50±0.02a1.59±0.01a1.54±0.01a
    C15:00.18±0.02a0.22±0.02a0.19±0.01a0.17±0.02a0.19±0.01a0.18±0.02a
    C16:019.18±0.02a22.14±0.01b21.01±0.02ab20.12±0.01a23.21±0.02b22.00±0.01ab
    C17:00.14±0.01a0.19±0.01a0.17±0.02a0.13±0.02a0.14±0.01a0.13±0.01a
    C20:00.15±0.02a0.18±0.02a0.16±0.01a0.13±0.01a0.16±0.01a0.14±0.02a
    C22:00.07±0.02a0.09±0.02a0.08±0.02a0.05±0.01a0.06±0.01a0.05±0.01a
    C24:01.51±0.01a1.73±0.01b1.64±0.02ab1.51±0.02a1.60±0.01a1.55±0.01a
    饱和脂肪酸23.11±0.10a26.69±0.14b25.28±0.04ab23.84±0..08a27.16±0.12b25.85±0.09ab
    C16:13.81±0.02a3.93±0.03a3.82±0.02a3.76±0.02a3.82±0.02a3.80±0.02a
    C18:131.12±0.04a34.22±0.01b32..86±0.10ab25.11±0.04a28.02±0.11b27.19±0.05ab
    C20:11.12±0.02a1.25±0.02a1.17±0.01a1.01±0.02a1.04±0.01a1.02±0.02a
    C22:10.80±0.02a0.93±0.01a0.84±0.00a0.92±0.03a0.98±0.02a0.96±0.02a
    单不饱和脂肪酸36.85±0..19a40.33±0.16b38.69±0.11ab30.80±0.12a33.86±0.10a32.97±0.12a
    C18:226.71±0.03a27.83±0.02a26.97±0.01a24.78±0.02a25.33±0.02a25.12±0.03a
    C18:3n-60.37±0.02a0.40±0.02a0.38±0.01a0.35±0.02a0.38±0.00a0.36±0.02a
    C20:20.91±0.02a0.96±0.02a0.92±0.02a0.65±0.01a0.73±0.02a0.67±0.03a
    C20:3n-30.25±0.01a0.28±0.02a0.26±0.02a0.23±0.03a0.25±0.02a0.24±0.01a
    C20:3n-60.19±0.02a0.22±0.02a0.20±0.01a0.18±0.02a0.19±0.01a0.18±0.01a
    C20:4n-60.32±0.02a0.38±0.02a0.33±0.01a0.35±0.02a0.36±0.02a0.36±0.02a
    C22:20.04±0.01a0.05±0.03a0.04±0.02a0.03±0.02a0.03±0.00a0.03±0.02a
    C20:5n-30.01±0.00a0.02±0.00a0.01±0.00a0.00±0.00a0.01±0.01a0.01±0.01a
    C22:6n-33..82±0.02a4.12±0.05a3.84±0.02a3.12±0.02a3.30±0.03a3.22±0.02a
    多不饱和脂肪酸32.62±0.10a34.26±0.12a32.95±0.10a29.69±0.08a30.58±0.09a30.19±0.05a
    下载: 导出CSV

    表  6   三种规格杂交鲟必需矿质元素组成(基于湿重,mg/kg)

    Table  6   The essential mineral contents of three size of hybrid sturgeon (Based on wet weight, mg/kg)

    矿质元素肌肉
    ABCABC
    Na511.32±12..02a581.32±13.41a541.32±10.22a501.32±14.00a571.53±10.22a533.15±14.77a
    Mg345.63±6.20a397.12±6.41a361.52±5.11a611.11±7.25a666.51±8.11a648.22±6.52a
    K305.22±3.12a342.11±3.22a321.32±2.61a350.22±4.34a386.52±4.13a367.34±3.75a
    Ca75.65±1.57a87.18±1.66a79.22±1.34a91.12±2.12a99.42±1.94a93.21±1.88a
    Mn0.15±0.02a0.22±0.02a0.20±0.01a0.44±0.02a0.57±0.01a0.49±0.01a
    Fe10.11±0.11a10.37±0.13a10.25±0.09a16.04±0.25a16.71±0.28a16.51±0.22a
    Zn17.36±1.27a18.02±1.33a17.71±1.23a29.11±1.36a31.60±1.40a30.32±1.44a
    下载: 导出CSV
  • [1] 刘先进, 陈胜军, 李来好, 等. 四种鲍鱼肌肉营养成分分析与品质评价[J]. 食品与发酵工业,2018,44(5):227−231. [LIU X J, CHEN SH J, LI L H, et al. Nutritional analysis and quality evaluation of four kinds of abalone muscle[J]. Food and Fermentation Industries,2018,44(5):227−231. doi: 10.13995/j.cnki.11-1802/ts.015905
    [2]

    ITSIOPOULOS C, MARX W, MAYR H L, et al. The role of Omega-3 polyunsaturated fatty acid supplementation in the management of type 2 diabetes mellitus: A narrative review[J]. Journal of Nutrition & Intermediary Metabolism,2018,14:42−51.

    [3] 谢全森, 蔡灵, 孙彩娟, 等. 不同生长阶段的生态养殖台湾鳗鳅的营养特性研究[J]. 食品研究与开发,2019,40(15):36−42. [XIE Q S, CAI L, SUN C J, et al. Nutritional quality of ecological breeding Taiwan Paracobitis anguillioides with different growth phase[J]. Food Research and Development,2019,40(15):36−42. doi: 10.12161/j.issn.1005-6521.2019.15.007
    [4] 李婷婷, 褚志鹏, 李创举, 等. 饲料中不同脂肪源对杂交鲟幼鱼生长性能、体成分、养分表观消化率、肝脏脂肪代谢酶活性和血清生化指标的影响[J]. 动物营养学报,2021,33(6):3447−3460. [LI T T, CHU Z P, LI C J, et al. Effect of different lipid source in diet on growth performance, body composition, nutrient apparent digestibilities, liver lipid metabolism enzymes activities and serum biochemical parameters of juvenile hybrid sturgeon[J]. Chinese Journal of Animal Nutrition,2021,33(6):3447−3460.
    [5]

    YU H H, XING W, LI T L, et al. Effects of alternative dietary lipid sources on growth performance, health status and fillet fatty acid composition of hybrid sturgeon (Acipenser baeri Brandt ×Acipenser schrenckii Brandt ♂)[J]. Journal of Aquaculture Nutrition,2020,26(05):1419−1430. doi: 10.1111/anu.13086

    [6] 张配瑜, 刘海燕, 杨振才. 鲟营养需求与饲料研究进展[J]. 水生生物学报,2020,44(6):1342−1359. [ZHANG P Y, LIU H Y, YANG Z C. Research progress in nutritional requirements and feed of sturgeons[J]. Acta Hydrobiologica Sinica,2020,44(6):1342−1359. doi: 10.7541/2020.155
    [7]

    SUN B, ZHAO Y, YU J, et al. The combined efficacy of superchilling and high CO2 modified atmosphere packaging on shelf life and quality of swimming crab (Portunus trituberculatus)[J]. Journal of Aquatic Food Product Technology,2017,26(6):655−664. doi: 10.1080/10498850.2016.1252822

    [8]

    PAN Z, LI L, SHEN Z, et al. Effects of tea polyphenol treatments on the quality and microbiota of crisp grass carp fillets during storage at 4 ℃[J]. Applied Sciences,2021,11(10):4370−4389. doi: 10.3390/app11104370

    [9]

    HA J H, KIM H N, MOON K B, et al. Recombinant human acidic fibroblast growth factor (aFGF) expressed in Nicotiana benthamiana potentially inhibits skin photoaging[J]. Planta Medica,2017,83(10):862−869. doi: 10.1055/s-0043-103964

    [10] 李艳华, 胡佳, 罗杰, 等. 不同蚯蚓替饲水平对大杂交鲟含肉率和肌肉营养成分影响[J]. 饲料研究,2021,44(7):69−72. [LI Y H, HU J, LUO J, et al. Effects of different earthworm replacement levels on meat content and muscle nutrients of hybrid sturgeon (Acipenser baeri)[J]. Feed Research,2021,44(7):69−72. doi: 10.13557/j.cnki.issn1002-2813.2021.07.016
    [11] 国家卫生和计划生育委员会. GB 5009.4-2016 食品安全国家标准 食品中灰分的测定[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. GB 5009.4-2016 National food safety standard-Determination of ash in foods[S]. Beijing: China Standards Press, 2016.

    [12] 国家卫生和计划生育委员会. GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京: 中国标准出版社, 2016

    National Health and Family Planning Commission. GB 5009.5-2016 National food safety standard-Determination of protein in foods[S]. Beijing: China Standards Press, 2016.

    [13] 国家卫生和计划生育委员会. GB 5009.6-2016 食品安全国家标准 食品中脂肪的测定[S]. 北京: 中国标准出版社, 2016

    National Health and Family Planning Commission. GB 5009.6-2016 National food safety standard-Determination of lipid in foods[S]. Beijing: China Standards Press, 2016.

    [14] 陈细华, 李创举, 杨长庚, 等. 中国鲟鱼产业技术研发现状与展望[J]. 淡水渔业,2017,47(6):108−112. [CHEN X H, LI CH J, YANG CH G, et al. Status and prospects of techniques in the sturgeon aquaculture industry in China[J]. Freshwater Fisheries,2017,47(6):108−112. doi: 10.3969/j.issn.1000-6907.2017.06.016
    [15] 黄卉, 魏涯, 李来好, 等. 季节变化对杂交鲟鱼肉营养成分的影响[J]. 食品工业科技,2021,42(7):360−365. [HUANG H, WEI Y, LI L H, et al. Effects of seasonal variation on nutrient composition of hybrid sturgeon (Huso dauricus ♀×Acipenser schrenckii ♂)[J]. Science and Technology of Food Industry,2021,42(7):360−365. doi: 10.13386/j.issn1002-0306.2020060131
    [16] 高雪, 张颖, 纪锋, 等. “鲟龙1号”含肉率及肌肉营养成分分析与评价[J]. 水产学杂志,2019,32(4):31−37. [GAO X, ZHANG Y, JI F, et al. Analysis and evaluation of nutritional composition in muscle of hybrid sturgeon“Huso dauricus ♀×Acipenser schrenckii ♂”[J]. Chinese Journal of Fisheries,2019,32(4):31−37. doi: 10.3969/j.issn.1005-3832.2019.04.005
    [17] 郑捷, 杨潞潞, 高建忠, 等. 腌制工艺对泥鳅鱼骨及其罐头感官品质的影响[J]. 食品工业,2017,38(1):76−80. [ZHENG J, YANG L L, GAO J Z, et al. Effect of curing process on sensory quality of loach bone and its canned food[J]. The Food Industry,2017,38(1):76−80.
    [18]

    FERDAOUS B, DARIA V, ELENA K, et al. Targeted and untargeted techniques coupled with chemometric tools for the evaluation of sturgeon (Acipenser gueldenstaedtii) freshness during storage at 4 ℃[J]. Journal of Food Chemistry,2020,312(C):126000.

    [19] 李忠莹, 丁红秀, 张露, 等. 不同生境来源的草鱼肌肉营养品质比较[J]. 食品与发酵工业,2021,47(17):133−139. [LI Z Y, DING H X, ZHANG L, et al. Comparative analysis on the nutritional quality of grass carp muscle from different habitats[J]. Food and Fermentation Industries,2021,47(17):133−139.
    [20] 黄攀, 王文秋, 宫臣, 等. 大型鲟鱼不同部位肌肉的营养成分分析[J]. 食品研究与开发,2020,41(18):162−168. [HUANG P, WANG W Q, GONG C, et al. Chemical compositions of different muscle zones in giant hybrid sturgeon[J]. Food Research and Development,2020,41(18):162−168. doi: 10.12161/j.issn.1005-6521.2020.18.027
    [21] 任华, 蓝泽桥, 孙宏懋, 等. 鲟鱼营养价值及其精深加工产品市场[J]. 江西水产科技,2015(1):36−39. [REN H, LAN Z Q, SUN H M, et al. Nutritional value of sturgeon and market of its intensive processing products[J]. Jiangxi Fishery Science and Technology,2015(1):36−39. doi: 10.3969/j.issn.1006-3188.2015.01.012
    [22] 张美彦, 曾圣, 杨星, 等. 不同生长阶段杂交鲟肌肉营养成分的比较研究[J]. 动物营养学报,2019,31(9):4378−4386. [ZHANG M Y, ZENG SH, YANG X, et al. Comparative study on nutrient components in muscle of hybrid sturgeon at different growth stages[J]. Chinese Journal of Animal Nutrition,2019,31(9):4378−4386.
    [23]

    YESILSUA F, OZYURT G. Oxidative stability of microencapsulated fish oil with rosemary, thyme and laurel extracts: A kinetic assessment[J]. Journal of Food Engineering,2019,240(1):171−182.

    [24] 赵仲孟, 张露, 赵瀚, 等. 西伯利亚鲟、施氏鲟及其杂交种(西伯利亚鲟♀×施氏鲟♂)肌肉的营养成分比较及评价[J]. 渔业科学进展,2022,43(2):129−136. [ZHAO ZH M, ZHANG L, ZHAO H, et al. Analysis and evaluation of nutritive compositon in muscles of Acipenser baerii, Acipenser schrenckii, and their hybrids[J]. Progress in Fishery Sciences,2022,43(2):129−136. doi: 10.19663/j.issn2095-9869.20210104001
    [25] 王念民, 杨贵强, 彭涛, 等. 三种鲟鱼及其杂交种肌肉营养成分分析[J]. 吉林农业大学学报,2010,32(S1):53−56. [WANG N M, YANG G Q, PENG T, et al. Analysis on muscle nutritive components of three kinds of sturgeons and their hybrids[J]. Journal of Jinlin Agricultural University,2010,32(S1):53−56. doi: 10.13327/j.jjlau.2010.s1.017
    [26]

    LI J, LIU Q, WANG J, et al. Effect of red pepper (Zanthoxylum bungeanum Maxim) leaf extract on volatile flavor compounds of salted silver carp[J]. Food Science & Nutrition,2020,8(3):1355−1364.

    [27]

    LEUNG K, LEUNG H, WU C, et al. Limited antioxidant effect of rosemary in lipid oxidation of pan-fried salmon[J]. Biomolecules,2019,9(8):313−323. doi: 10.3390/biom9080313

    [28]

    MAKI K C, YURKO-MAURO K, DICKLIN M R, et al. A new, microalgal DHA- and EPA-containing oil lowers triacylglycerols in adults with mild-to-moderate hypertriglyceridemia[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids,2014,91(4):141−148. doi: 10.1016/j.plefa.2014.07.012

    [29]

    JIANG Q X, LI S J, XU Y S, et al. Nutrient compositions and properties of Antarctic krill (Euphausia superba) muscle and processing by-products[J]. Journal of Aquatic Food Product Technology,2016,25(3):434−443. doi: 10.1080/10498850.2013.809621

    [30]

    ZENG X F, XIA W S, YANG F, et al. Changes of biogenic amines in Chinese low-salt fermented fish pieces (Suan yu) inoculated with mixed starter cultures[J]. International Journal of Food Science & Technology,2013,48(4):685−692.

    [31] 董颖, 胡红霞, 马国庆, 等. 大小两种规格鲟鱼肉质营养成分的比较分析[J]. 营养学报,2018,40(2):200−202. [DONG Y, HU H X, MA G Q, et al. Nutritional comparative analysis of compositions in sturgeons of different sizes[J]. Acta Nutrimenta Sinica,2018,40(2):200−202. doi: 10.3969/j.issn.0512-7955.2018.02.021
    [32] 陈泽凡, 刘天红, 韩贵新, 等. 6种鲟鱼鱼皮营养评价与组织学分析[J]. 水产科学,2022,41(6):938−948. [CHEN Z F, LIU T H, HAN G X, et al. Nutritional evaluation and histological analysis of six species of sturgeon skin[J]. Fisheries Science,2022,41(6):938−948.
    [33] 陈晓婷, 吴靖娜, 许旻, 等. 四种河鲀鱼皮和鱼肉的营养成分分析与评价[J]. 现代食品科技,2020,36(1):69−77. [CHEN X T, WU J N, XU M, et al. Analysis and evaluation of nutritional component in fish skin and fish meat of four species of puffer fish[J]. Modern Food Science and Technology,2020,36(1):69−77. doi: 10.13982/j.mfst.1673-9078.2020.1.010
    [34] 杨宪时, 王丽丽, 李学英, 等. 秘鲁鱿鱼和日本海鱿鱼营养成分分析与评价[J]. 现代食品科技,2013,29(9):2247−2251, 2293. [YANG X SH, WANG L L, LI X Y, et al. Analysis and evaluation of nutritional component of Dosidicus gigas and Onychoteuthis borealijaponics okada[J]. Modern Food Science and Technology,2013,29(9):2247−2251, 2293. doi: 10.13982/j.mfst.1673-9078.2013.09.048
    [35]

    LIU S, WU M, YAO X. Effects of reactive oxygen species scavengers on thermophilic micro-aerobic digestion for sludge stabilization[J]. Environmental Research,2020,185(1):453−467.

    [36] 周贤君, 代应贵. 喀斯特地区四川裂腹鱼肌肉营养成分分析[J]. 渔业现代化,2013,40(4):32−50. [ZHOU X J, DAI Y G. Analysis of the nutritional components in muscle of Schizothorax kozlovi in Karst area[J]. Fishery Modernization,2013,40(4):32−50. doi: 10.3969/j.issn.1007-9580.2013.04.007
    [37]

    NIEMINEN P, WESTENIUS E, HALONEN T, et al. Fatty acid composition in tissues of the farmed Siberian sturgeon (Acipenser baerii)[J]. Food Chemistry,2014,159:80−84. doi: 10.1016/j.foodchem.2014.02.148

    [38]

    PYZ-LUKASIK R, KOWALCZYK-PECKA D. Fatty acid profile of fat of grass carp, bighead carp, siberian sturgeon, and wels catfish[J]. Journal of Food Quality,2017,2017:1−6.

    [39]

    KATOPODIS C, CAI L, JOHNSON D. Sturgeon survival: The role of swimming performance and fish passage research[J]. Fisheries Research,2019,212:162−171. doi: 10.1016/j.fishres.2018.12.027

    [40] 黄攀, 高瑞昌, 白帆, 等. 大型杂交鲟不同部位肌肉的理化特性[J]. 食品科学,2021,42(7):52−59. [HUANG P, GAO R C, BAI F, et al. Physicochemical properties of muscles from different parts of giant hybrid sturgeon[J]. Food Science,2021,42(7):52−59. doi: 10.7506/spkx1002-6630-20200331-453
    [41]

    JI L, ZHANG T, FENG D, et al. Dielectric properties and deacetylation of konjac glucomannan[J]. Current Topics in Nutraceuticals Research,2015,13(4):267−274.

    [42]

    GAO J, KOSHIO S, NGUYEN B T, et al. Comparative studies on lipid profiles and amino acid composition of wild and cultured Dojo loach Misgurnus anguillicaudatus obtained from southern Japan[J]. Fisheries Science,2012,78(6):1331−1336. doi: 10.1007/s12562-012-0561-x

    [43]

    XIE H K, ZHOU D Y, LIU Z Y, et al. Effects of natural phenolics on shelf life and lipid stability of freeze-dried scallop adductor muscle[J]. Food Chemistry,2019,295(15):423−431.

    [44] 刘飞, 孟昱林, 韩志琦, 等. 金鳙和黑鳙的肌肉营养 成分分析及评价[J]. 淡水渔业,2017,47(2):101−106. [LIU F, MENG Y L, HAN Z Q, et al. Analysis and evaluation of nutrient components in muscle of red bighead carp and Aristichthys nobilis[J]. Freshwater Fisheries,2017,47(2):101−106. doi: 10.3969/j.issn.1000-6907.2017.02.016
    [45]

    LIANG C Y, JIA M Y, TIAN D N, et al. Edible sturgeon skin gelatine film: Tensile strength and UV light-barrier as enhanced by blending with esculine[J]. Journal of Functional Foods,2017,37:219−228. doi: 10.1016/j.jff.2017.07.051

    [46] 刘延岭, 邓林. 养殖三文鱼与挪威三文鱼营养成分的比较分析[J]. 食品与发酵科技, 2011, 47(6): 84–86

    LIU Y L, DENG L. Comparision of the nutritional components in muscles of Norway salmon and artificial breeding salmon[J]. Food and Fermentation Technology, 2011, 47(6): 84–86.

    [47] 苏红, 李雨欣, 钱雪丽, 等. 鳙鱼、金枪鱼和三文鱼鱼头的营养分析与品质评 价[J]. 食品工业科技,2019,40(17):212−217, 224. [SU H, LI Y X, QIAN X L, et al. Nutrition analysis and quality evaluation of Aristichthys nobilis, Thunnus obesus and Salmon salar head[J]. Science and Technology of Food Industry,2019,40(17):212−217, 224.
    [48] 陈芳芳, 宋华东, 郑雪莉, 等. 不同年龄秦岭细鳞鲑肌肉中矿质元素含量特征[J]. 陕西林业科技,2016(2):11−13, 22. [CHEN F F, SONG H D, ZHENG X L, et al. Mineral element content in muscle of Brachymystax lenok at the different growth stages from Qingling Moutains[J]. Shanxi Forest Science and Technology,2016(2):11−13, 22. doi: 10.3969/j.issn.1001-2117.2016.02.003
    [49] 周文博, 褚志鹏, 李罗新, 等. 杂交鲟幼鱼饲料中有效磷需要量的研究[J]. 淡水渔业,2021,51(2):63−71. [ZHOU W B, CHU Z P, LI L X, et al. Studies on dietary available phosphorus requirement of juvenile hybrid sturgeon (Acipenser baerii ♀×A. schrenckii ♂)[J]. Freshwater Fisheries,2021,51(2):63−71. doi: 10.3969/j.issn.1000-6907.2021.02.008
    [50]

    LUO Z, TAN X Y, LIU X, et al. Dietary total phosphorus requirement of juvenile yellow catfish Pelteobagrus fulvidraco[J]. Aquaclture International,2010,18(5):897−908. doi: 10.1007/s10499-009-9310-2

    [51]

    ZAFAR N, KHAN M. A. Determination of dietary phosphorus requirement of stinging catfish Heteropneustes fossilis based on feed conversion, growth, vertebrae phosphorus, whole body phosphorus, haematology and antioxidant status[J]. Aquaclture Nutrition,2018,24(5):1577−1586. doi: 10.1111/anu.12794

    [52] 施晓玲, 蒋林惠, 程晓宏, 等. 鲟鱼软骨中微量元素含量分析及营养评价[J]. 水产养殖,2017,38(10):38−41. [SHI X L, JIANG H L, CHENG X H, et al. Analysis of trace elements in strurgeon’s cartilage and nutrition evaluation[J]. Journal of Aquaculture,2017,38(10):38−41. doi: 10.3969/j.issn.1004-2091.2017.10.008
    [53] 杨霞. 狭鳕鱼皮明胶和罗非鱼皮明胶抗贫血活性的研究[D]. 青岛: 中国海洋大学, 2013

    YANG X. Study on the antianemia activity of gelatin from Walleye Pollock skin and Tilapia skin[D]. Qingdao: Ocean University of China, 2013.

    [54] 高岳, 林研彤, 侯淑敏, 等. 不同产地和养殖方式的刺参微量元素含量的比较[J]. 大连海洋大学学报,2014,29(5):498−501. [GAO Y, LIN Y T, HOU S M, et al. Comparative analysis of trace element contents in sea cucumber Apostichopus japonicus from different regions and farming methods[J]. Journal of Dalian Ocean University,2014,29(5):498−501. doi: 10.3969/J.ISSN.2095-1388.2014.05.014
    [55] 李俊伟, 胡瑞萍, 郭永坚, 等. 方格星虫矿物元素组成及其生物富集特征[J]. 中 国 海 洋 药 物,2021,40(2):1−9. [LI J W, HU R P, GUO Y J, et al. The composition and bioaccumulation of mineral element in Sipunculus nudus[J]. Chinese Journal of Marine Drugs,2021,40(2):1−9.
  • 期刊类型引用(2)

    1. 文华英,王傅玉,张玉红. 青稞蕨麻酵素发酵工艺优化及其品质评价. 中国酿造. 2024(02): 199-205 . 百度学术
    2. 董平,徐向波,周奎,曹娜娜,吴华昌,邓静. 沙米面包配方优化及其品质研究. 食品工业科技. 2024(14): 155-164 . 本站查看

    其他类型引用(3)

表(6)
计量
  • 文章访问数:  366
  • HTML全文浏览量:  42
  • PDF下载量:  11
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-05-08
  • 网络出版日期:  2023-01-02
  • 刊出日期:  2023-02-28

目录

/

返回文章
返回
x 关闭 永久关闭