• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

QuEChERS-气相色谱串联质谱法同时测定番茄中46种农药残留

薛新花, 李婷婷, 刘盼, 周丽, 任兴权, 王蓉

薛新花,李婷婷,刘盼,等. QuEChERS-气相色谱串联质谱法同时测定番茄中46种农药残留[J]. 食品工业科技,2023,44(4):337−344. doi: 10.13386/j.issn1002-0306.2022040136.
引用本文: 薛新花,李婷婷,刘盼,等. QuEChERS-气相色谱串联质谱法同时测定番茄中46种农药残留[J]. 食品工业科技,2023,44(4):337−344. doi: 10.13386/j.issn1002-0306.2022040136.
XUE Xinhua, LI Tingting, LIU Pan, et al. Simultaneous Determination of 46 Pesticide Residues in Tomatoes by QuEChERS Method Combined with Gas Chromatography-Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(4): 337−344. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040136.
Citation: XUE Xinhua, LI Tingting, LIU Pan, et al. Simultaneous Determination of 46 Pesticide Residues in Tomatoes by QuEChERS Method Combined with Gas Chromatography-Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(4): 337−344. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040136.

QuEChERS-气相色谱串联质谱法同时测定番茄中46种农药残留

基金项目: 甘肃省市场监督管理局科技计划项目(SSCJG-SP-201916);酒泉市科技局2021年科技计划项目(酒科发[2021]47号)。
详细信息
    作者简介:

    薛新花(1978−),女,本科,副教授,研究方向:食品营养与检测,E-mail:1084632824@qq.com

    通讯作者:

    周丽(1980−),女,本科,高级工程师,研究方向:食品分析与检验,E-mail:18909378952@163.com

  • 中图分类号: TS207.7

Simultaneous Determination of 46 Pesticide Residues in Tomatoes by QuEChERS Method Combined with Gas Chromatography-Mass Spectrometry

  • 摘要: 建立一种QuEChERS结合气相色谱-串联质谱同时检测番茄中46种杀菌剂和杀虫剂残留的分析方法。样品用乙腈提取,经PSA、C18、无水MgSO4净化,HP-5MS色谱柱分离,采用多反映监测(MRM)模式检测,基质匹配外标法定量。结果表明,46种农药在0.005~0.500 μg/mL的浓度范围内线性关系良好(R2>0.999),方法检出限和定量限分别在0.07~2.63 μg/kg和0.21~8.39 μg/kg之间;在0.0025、0.025、0.25 mg/kg的加标水平下,46种农药化合物平均加标回收率在70.40%~115.08%范围内,相对标准偏差为0.22%~4.89%。50批次番茄样品中9批次检出毒死蜱和嘧菌酯残留,含量范围在0.0043~0.0365 mg/kg,均未超出GB 2763-2021标准规定的限量值。本方法快速、简单、灵敏、准确,能够满足番茄中多农药残留的检测。
    Abstract: An analysis method for simultaneous determination of 46 kinds of fungicides and insecticides residues in tomatoes by QuEChERS method combined with gas chromatography-mass spectrometry was established. The samples were extracted with acetonitrile, then purified up with PSA, C18 and anhydrous MgSO4, separated by a HP-5MS chromatographic column, analyzed using multiple reflection monitoring (MRM) mode, and quantified by matrix-matched external standard method. The result showed that, the 46 kinds of pesticides showed good linearity when they were in 0.005~0.500 μg/mL (R2>0.999). The limits of detection of the 46 kinds of pesticides were in 0.07~2.63 μg/kg, and the limits of quantitation were in 0.21~8.39 μg/kg. The average recoveries were 70.40%~115.08% with the relative standard deviations of 0.22%~4.89% at the spiked levels of 0.0025, 0.025 and 0.25 mg/kg. Residues of chlorpyrifos and azoxystrobin were detected in 9 of the 50 batches of tomato samples, with the content ranging from 0.0043~0.0365 mg/kg, which did not exceed the limit value specified in GB 2763-2021. The method was rapid, simple, sensitive and accurate, which could meet the detection of multiple pesticide residues in tomato.
  • 番茄(Solanumlycopersicum L.)属茄科茄属,富含番茄红素、维生素、酚类物质、有机酸等多种营养成分,由于其独特的口感和丰富的营养,深受广大消费者的喜爱[1]。同时番茄属于蔬果兼用型蔬菜,是酒泉戈壁日光温室中主要栽培种植的蔬菜种类[2]。由于日光温室是封闭的,其高温、高湿、无雨的种植环境,在满足蔬菜生产周期的同时也为害虫提供了适宜的生态环境,为了保证蔬菜质量,农药被使用到蔬菜生产过程中。但在施用农药用来防治病虫害的过程中,生产者常常盲目或过量使用农药,造成番茄时有农药残留超标问题出现,从而影响番茄质量安全[3]。因此,建立番茄中快速、高效、准确的农药多残留的检测方法对控制番茄农药残留,促进戈壁设施产业健康发展具有重要意义。

    农药残留检测过程中,从样品中提取目标物是关键过程,目前最常见的前处理方法有加速溶剂萃取法[4]、固相萃取法[5-6]、分散液相萃取法[7]等,这些方法都需要特定的设备,不能最大化使用到检测过程中。而QuEChERS法是近年来备受欢迎的样品前处理方法,具有快速(quick)、简单(easy)、廉价(cheap)、高效(effective)、可靠(rugged)、安全(safe)等特点,广泛应用于蔬菜[8]、水果[9-10]、谷物[11]等基质样品中多残留农药的快速前处理技术。对于番茄中农药残留的检测方法主要有气相色谱法[12]、液相色谱法[13]、气相色谱质谱法[14-15]、液相色谱质谱法[16],对于大多数检验检测机构,在合规运营的前提下,多采用快速简便的前处理方法和高灵敏度、高准确度、高通量的检测技术。赵丽敏等[17]利用优化的QuEChERS法结合气相色谱串联质谱法分析了番茄和油菜中的50种农药残留。Yang等[18]等用改进的QuEChERS方法结合气相色谱-串联质谱法测定蔬菜中118种农药残留量。

    本研究采用QuEChERS方法处理样品,根据46种农药的回收率高低对提取溶剂和净化条件进行选择和优化,同时采用气相色谱质谱联用仪分析样品,建立了同时测定番茄中46种农药残留的QuEChERS-GC-MS快速分析方法。考察了所建立方法的灵敏度、精密度以及基质适用性等。该方法高效、快速、灵敏、准确,能满足番茄中农药残留的检测要求,可为番茄的质量控制提供技术支持。

    番茄样品 按照NY/T 789-2014《农药残留分析样本的采样方法》[19],采自酒泉市戈壁农业产业园,采集当天运回实验室,并将样品破碎、打成浆后置于−18 ℃冰箱中备用;甲胺磷、敌敌畏、乙酰甲胺磷、氧乐果、灭线磷、甲拌磷、甲拌磷砜、甲拌磷亚砜、乐果、唑螨酯、五氯硝基苯、嘧霉胺、二嗪磷、氯唑磷、氟虫脲、抗蚜威、甲基对硫磷、莠灭净、氟甲腈、氟虫腈、氟虫腈砜、氟虫腈亚砜、杀螟硫磷、毒死蜱、噻虫嗪、嘧菌环胺、戊菌唑、腐霉利、粉唑醇、己唑醇、抑霉唑、咯菌腈、腈菌唑、三唑磷、氟环唑、肟菌酯、亚胺硫磷、联苯肼酯、乙螨唑、伏杀硫磷、氯苯嘧啶醇、哒螨灵、腈苯唑、啶酰菌胺、氟氰戊菊酯、嘧菌酯标准品 浓度均为100 μg/mL(46),农业部环境保护科研监测所;乙腈、甲醇、正己烷 色谱纯,德国Merck公司;丙酮 色谱纯,南京化学试剂股份有限公司;氯化钠、无水硫酸镁 分析纯,天津市科密欧化学试剂有限公司;柠檬酸钠、柠檬酸氢二钠 分析纯,天津光复化学试剂公司;乙二胺-N-丙基硅烷(PSA)40~60 μm Biosun公司;石墨化碳黑(GCB)40~60 μm 日照科谱诺新材料有限公司;C18 40~60 μm Agilent公司。

    TRACE1310+TSQ8000Evo三重串联四极杆气相色谱串联质谱连用仪 赛默飞世尔科技(中国)有限公司;PL602E/02型便携式天平 梅特勒-托利多仪器(上海)有限公司;Vortex-Genie2涡旋混合器 美国Scientific Industries公司;Quintix2102-1CN高速冷冻离心机 长沙英泰仪器有限公司。

    参考GB 23200.113-2018的标准方法[20],将制备好的样品在室温下解冻,准确称取10 g番茄样品于50 mL离心管中,用移液管精密加入10.0 mL乙腈,2000 r·min−1下涡旋振荡10 min,再加入2 g氯化钠、4 g硫酸镁、1 g柠檬酸钠和0.5 g柠檬酸氢二钠后剧烈振荡2 min,再以8000 r/min的转速离心5 min。准确吸取上清液3 mL加入到净化管中,2000 r·min−1下涡旋振荡萃取3 min,再以8000 r·min−1离心5 min,精密移取上清液1 mL,用氮气缓慢吹至近干后用乙酸乙酯复溶,经0.22 μm有机滤膜过滤后用于GC-MS/MS测定。同法处理空白试样,制得空白基质溶液。

    分别吸取各农药标准溶液(100 μg/mL)0.10 mL于10 mL容量瓶中,用乙酸乙酯定容至刻度,得到1 μg/mL的混合标准中间溶液,于−18 ℃冰箱中密封、避光保存。准确吸取混合标准中间溶液,用乙酸乙酯配制成浓度分别为0.005、0.010、0.050、0.100、0.500 μg/mL的农药混合标准系列。吸取6份按照1.2.1制备的空白基质溶液1 mL,用氮气缓缓吹干,再向其中分别加入1 mL农药混合标准系列溶液复溶,配制成基质混合标准系列。以46种农药的基质标准系列的质量浓度为横坐标,各农药的定量离子对的峰面积为纵坐标,绘制标准曲线。

    色谱柱:HP-5MS(30 m×0.25 mm,0.25 μm);程序升温:40 ℃保持1 min,以40 ℃/min升温至120 ℃,以5 ℃/min升温至240 ℃,再以12 ℃/min升温至300 ℃,保持10 min;载气:高纯氦气(纯度为99.999%);流速1.0 mL/min;进样口温度300 ℃;不分流进样,进样量1 μL;碰撞气:高纯氩气(纯度为99.999%)。

    电离方式:电子轰击离子源,70 eV;离子源温度:280 ℃;传输线温度:280 ℃;扫描方式:多反应监测(SRM);溶剂延迟5.0 min。

    采用TraceFinder软件处理数据,用TraceFinder和Microsoft Excel 2010软件分析数据并作图。

    采用全扫描模式对各农药的标准品分别进行扫描,确定46种农药的保留时间,并在质谱图中选择丰度高且质荷比大的特征离子为母离子,母离子通过适宜碰撞能量的碰撞池产生子离子,从中选取1~2个灵敏度高、强度大的子离子,与母离子组成定量离子对和定性离子对。表1为46种农药组分优化的保留时间、定量离子对、定性离子对和碰撞能量。图1为46种农药的总离子流图。

    表  1  46种农药的保留时间和质谱条件
    Table  1.  Retention time and mass spectrometric parameters of 46 kinds of pesticides
    序号农药保留时间(min)定量离子对碰撞电压(eV)定性离子对碰撞电压(eV)
    1甲胺磷(Methamidophos)6.64141.0/95.06141.0/79.014
    2敌敌畏(Dichlorvos)6.84109.0/79.06184.9/93.010
    3乙酰甲胺磷(Acephate)9.88136.0/94.010136.0/42.06
    4氧乐果(Omethoate)12.99109.9/79.016155.9/110.06
    5灭线磷(Ethoprophos)13.77157.9/114.06157.9/97.016
    6甲拌磷(Phorate)14.99260.0/75.06230.9/128.924
    7乐果(Dimethoate)15.6886.9/46.014142.9/111.010
    8唑螨酯(Fenpyroximate)15.95142.1/77.012213.1/145.010
    9五氯硝基苯(Pentachloronitrobenzene)16.57236.9/142.930295.0/237.020
    10嘧霉胺(Pyrimethanil)16.96198.0/183.114198.0/118.034
    11二嗪磷(Diazinon)17.19137.1/54.020137.0/84.010
    12氯唑磷(Isazofos)17.66161.0/119.16161.0/146.06
    13氟虫脲(Flufenoxuron)17.85126.0/98.010305.0/126.122
    14抗蚜威(Pirimicarb)18.17238.0/166.210166.0/55.120
    15甲基对硫磷(Parathion-methyl)18.90262.9/109.010232.9/109.010
    16莠灭净(Ametryn)19.27227.0/58.110227.0/170.110
    17氟甲腈(Fipronildesulfinyl)19.43388.0/333.014333.0/231.026
    18杀螟硫磷(Fenitrothion)19.98277.0/260.06277.0/109.020
    19甲拌磷亚砜(Phoratesulfoxide)20.2796.9/64.920199.0/142.910
    20甲拌磷砜(Phoratesulfone)20.58124.9/96.96153.0/97.05
    21毒死蜱(Chlorpyrifos)20.79196.9/169.016198.9/171.014
    22噻虫嗪(Thiamethoxam)21.50182.0/139.18212.0/125.08
    23嘧菌环胺(Cyprodinil)21.72224.2/208.220225.2/224.310
    24戊菌唑(Penconazole)22.02248.0/192.114248.0/157.124
    25氟虫腈亚砜(Fipronilsulfoxide)22.19350.9/255.016353.0/257.016
    26氟虫腈(Fipronil)22.45366.8/212.824368.8/214.824
    27腐霉利(Procymidone)22.6596.0/67.11096.0/53.114
    28粉唑醇(Flutriafol)23.55219.1/12312164.1/95.026
    29己唑醇(Hexaconazole)23.82231.0/175.010256.0/82.110
    30抑霉唑(Imazalil)23.88214.9/173.06216.8/175.06
    31咯菌腈(Fludioxonil)24.31248.0/182.110248.0/154.120
    32腈菌唑(Myclobutanil)24.55179.0/125.110179.0/9030
    33氟虫腈砜(Fipronilsulfone)24.78254.9/228.012382.9/254.918
    34三唑磷(Triazophos)26.48161.2/134.26161.2/106.110
    35肟菌酯(Trifloxystrobin)27.29116.0/89.014131.0/89.030
    36氟环唑(Epoxiconazole )28.12192.0/138.110192.0/111.024
    37亚胺硫磷(Phosmet)28.61160.0/133.110160.0/77.120
    38联苯肼酯(Bifenazate)28.86258.1/199.110300.1/196.116
    39乙螨唑(Etoxazole)29.04141.1/113.016141.0/63.130
    40伏杀硫磷(Phosalone)29.63182.0/111.016182.0/102.114
    41氯苯嘧啶醇(Fenarimol)30.26219.0/107.110251.0/139.110
    42哒螨灵(Pyridaben)31.15147.2/132.210147.2/117.120
    43腈苯唑(Fenbuconazole31.68197.9/129.06128.9/102.16
    44啶酰菌胺(Boscalid)32.08140.0/112.010140.0/76.012
    45氟氰戊菊酯(Flucythrinate)32.25156.9/107.114198.9/157.010
    46嘧菌酯(Azoxystrobin)34.41344.1/172.036344.1/329.212
    下载: 导出CSV 
    | 显示表格
    图  1  番茄基质中46种农药混合标准溶液的总离子流图
    Figure  1.  TIC of 46 pesticide mixed standard solutionsin tomato matrix

    根据所检测的农药极性、检测样品的性质,选择所需要的提取溶剂。本文参照李莎等[21]的研究结果,选择正己烷、丙酮、乙酸乙酯、乙腈作为提取溶剂,以加入1 mg/kg农药混标的番茄样品为研究对象,考察不同溶剂对番茄中农药残留的提取效果,结果如图2所示。46种农药在正己烷、丙酮、乙酸乙酯、乙腈中的平均回收率分别为82.97%、85.39%、70.58%和97.33%。乙酸乙酯作为提取溶剂,部分农药回收率较低;正己烷由于其自身极性较弱,对于部分有机磷等极性较大的农药提取率较低;丙酮虽然极性较大,但是作为提取剂,容易将样品中色素等杂质溶解出来,加大后续净化难度,同时丙酮作为易制毒试剂,其挥发性和毒性较大,不利于环境保护和操作人员身体健康;乙腈作为提取溶剂,对农药溶解度大且通用性强,其回收率高,提取效果最好,同时乙腈对样品中的色素和油脂等非极性组分的提取率低,样品基质干扰小[22],所以本文选择乙腈作为提取溶剂。

    图  2  不同提取溶剂对46种农药提取效果的影响
    Figure  2.  Effects of different extraction solvents on the extraction efficiency of 46 kinds of pesticide compounds

    PSA、GCB、C18、无水MgSO4是QuEChERS方法主要使用的净化试剂[23],其中PSA、GCB和C18主要用于除去样品中的有机酸、色素、糖类等大分子干扰物质,但是GCB表面具有特殊的六元环,会吸附结构对称的极性组分农药[24],无水MgSO4主要用于除去样品中的水分,但是无水MgSO4吸水后会大量放热,使样品温度升高,从而使热不稳定的农药分解,导致其回收率会降低。因此,本文参照杨志敏等[25]的研究结果,设计3种不同填料和配比的QuEChERS净化管(A:PSA 150 mg、GCB 15 mg、MgSO4 885 mg,B:PSA 150 mg、GCB 45 mg、MgSO4 855 mg,C:PSA 150 mg、C18 150 mg、MgSO4 900 mg),以45种农药的回收率考察净化管的净化效率,结果见图3。方案B中45种农药的回收率范围在29.4%~85.4%之间,且回收率在80%以上的只有氟甲腈、乙酰甲胺磷、氧乐果、甲拌磷砜、甲胺磷,其他农药化合物的回收率均较低,无法满足试验要求。方案A和C的回收率均在60%~100%之间,但是方案A的平均回收率只有73.7%,而方案C的平均回收率达到了83.2%,能够满足试验要求,因此,本试验以方案C的填料和配比进行样品净化。

    图  3  不同净化方案对46种农药净化效果的影响
    注:方案A:PSA 150 mg、GCB 15 mg、MgSO4 885 mg;方案B:PSA 150 mg、GCB 45 mg、MgSO4 855 mg;方案C:PSA 150 mg、C18 150 mg、MgSO4 900 mg。
    Figure  3.  Effects of different purification conditions on the extraction efficiency of 46 kinds of pesticide compounds

    本文使用按照1.2.1制备的番茄空白基质溶液和乙酸乙酯溶液分别配制成浓度为0.005、0.05、0.5 μg/mL的基质标液和溶剂标液,用ME来表示基质效应,计算公式为ME=A/B,其中A为基质标液的响应值、B为溶剂标液的响应值。当ME<1时,表示基质对分析物的响应有减小的影响;当ME=1时,表示不存在基质效应,可以用溶剂标准曲线对样品进行定量;当ME>1时,基质对分析物的响应有增大的影响[26-27]。46种农药的基质效应见表2。其中敌敌畏、噻虫嗪、腈苯唑基质效应为0.74、0.87、0.95,均小于1,说明基质的加入会使这三种农药的响应值减小,其他43种农药均表现为基质效应增强,为了补偿基质效应,本文采用机制匹配校准法来消除基质的干扰[28]

    表  2  番茄中46种农药的线性方程、决定系数、基质效应、检出限、定量限、回收率和相对标准偏差
    Table  2.  Linear equations, determination coefficients, matrixeffects (ME), limit of detection (LOD), limit of quatification (LOQ), recoveries and standard deviations of 46 pesticide residues in tomato
    化合物线性方程R2MELOD
    (μg/kg)
    LOQ
    (μg/kg)
    添加量
    0.0025 mg/kg
    添加量
    0.025 mg/kg
    添加量
    0.25 mg/kg
    回收率
    (%)
    RSD
    (%)
    回收率
    (%)
    RSD
    (%)
    回收率
    (%)
    RSD
    (%)
    甲胺磷(Methamidophos)Y=2.448e6X+7.686e30.99981.700.441.4771.23.1674.01.1678.920.68
    敌敌畏(Dichlorvos)Y=1.326e7X+2.149e41.0000.740.371.2079.62.5282.01.91102.640.64
    乙酰甲胺磷(Acephate)Y=1.266e6X+7.072e30.99991.270.632.0574.83.4671.21.7098.081.22
    氧乐果(Omethoate)Y=2.282e6X+5.797e31.00001.430.843.7588.54.8983.21.5096.960.94
    灭线磷(Ethoprophos)Y=6.6136X+6.735e30.99991.240.240.8082.43.8991.22.0292.521.78
    甲拌磷(Phorate)Y=2.656e6X−1.490e20.99921.400.250.8389.61.1293.61.1489.080.98
    乐果(Dimethoate)Y=3.225e6X+1.808e20.99991.150.270.8672.42.2878.83.1975.61.15
    唑螨酯(Fenpyroximate)Y=1.004e6X+1.106e40.99991.271.133.7571.63.1690.80.9299.120.22
    五氯硝基苯(Pentachloronitrobenzene)Y=1.538e6X+9.274e10.99951.050.070.2170.44.6791.21.9395.720.61
    嘧霉胺(Pyrimethanil)Y=8.817e6X+1.290e41.00001.122.638.3972.41.5789.22.6190.360.54
    二嗪磷(Diazinon)Y=8.732e6X+7.752e20.99991.470.581.8784.04.8899.62.1397.60.56
    氯唑磷(Isazofos)Y=1.218e7X+1.134e41.00001.250.210.7089.61.1293.62.0798.60.61
    氟虫脲(Flufenoxuron)Y=6.072e6X+8.118e30.99901.670.541.7671.22.5298.00.6574.760.49
    抗蚜威(Pirimicarb)Y=1.510e7X+6.519e30.99991.170.632.1178.84.26102.82.1998.040.51
    甲基对硫磷(Parathion-methyl)Y=5.143e6X+7.329e21.00001.260.591.9691.22.5690.02.08103.360.78
    莠灭净(Ametryn)Y=5.113e6X+2.620e31.00001.080.240.8086.82.3482.83.3675.240.98
    氟甲腈(Fipronildesulfinyl)Y=5.271e6X−2.687e31.00001.391.033.4781.21.7775.21.7098.280.63
    杀螟硫磷(Fenitrothion)Y=6.083e6X−5.127e30.99981.430.110.34108.01.66100.82.79104.520.77
    甲拌磷亚砜(Phoratesulfoxide)Y=1.547e6X+5.798e30.99981.460.240.9270.82.4671.61.81115.081.64
    甲拌磷砜(Phoratesulfone)Y=2.475e7X+1.845e41.00001.300.230.9087.21.3592.42.74100.680.62
    毒死蜱(Chlorpyrifos)Y=9.468e6X+2.656e30.99991.670.923.0593.62.1595.62.9598.360.42
    噻虫嗪(Thiamethoxam)Y=2.154e6X+2.326e30.99910.870.953.1589.22.36102.42.75100.440.78
    嘧菌环胺(Cyprodinil)Y=1.009e7X+1.375e41.00001.200.210.7088.02.0393.63.04980.63
    戊菌唑(Penconazole)Y=1.228e7X+8.663e30.99991.070.411.3071.21.3690.83.5197.720.56
    氟虫腈亚砜(Fipronilsulfoxide)Y=1.174e7X−9.256e31.00001.240.842.7988.82.5477.24.5385.280.86
    氟虫腈(Fipronil)Y=2.507e6X−2.639e31.00001.531.244.2282.44.32103.22.8783.560.49
    腐霉利(Procymidone)Y=2.898e7X−9.431e31.00001.211.284.2884.84.0898.02.0091.680.49
    粉唑醇(Flutriafol)Y=1.453e7X+1.208e50.99921.071.625.3771.21.6573.63.4388.080.75
    己唑醇(Hexaconazole)Y=2.157e6X+1.310e40.99991.181.806.0171.61.2484.83.38101.920.53
    抑霉唑(Imazalil)Y=4.173e6X+4.741e40.99971.341.123.4777.23.2773.20.5378.522.88
    咯菌腈(Fludioxonil)Y=7.497e6X+1.574e40.99961.370.290.9780.01.7781.62.8693.60.65
    腈菌唑(Myclobutanil)Y=1.629e7X+1.400e40.99991.090.270.9089.61.1298.42.6394.880.56
    氟虫腈砜(Fipronilsulfone)Y=5.781e6X-4.665e31.00001.230.612.0085.22.15102.42.00100.960.72
    三唑磷(Triazophos)Y=4.546e6X+4.469e31.00001.012.016.7678.83.6182.83.8490.683.71
    氟环唑(Epoxiconazole)Y=2.985e6X+6.951e30.99991.260.451.5572.82.25102.80.38911.75
    肟菌酯(Trifloxystrobin)Y=2.048e67X+7.045e40.99991.260.361.2381.62.2486.82.0399.720.54
    亚胺硫磷(Phosmet)Y=6.772e6X+8.430e21.00001.040.892.9874.83.6799.23.89107.240.68
    联苯肼酯(Bifenazate)Y=3.541e6X+3.877e21.00001.570.772.6485.62.8591.23.4688.362.58
    乙螨唑(Etoxazole)Y=8.530e6X+5.441e31.00001.340.230.8090.81.4171.62.27100.520.56
    伏杀硫磷(Phosalone)Y=1.610e7X+6.818e31.00001.250.732.4386.82.3980.42.9087.682.60
    氯苯嘧啶醇(Fenarimol)Y=7.475e6X+1.907e40.99991.181.073.4472.01.71103.61.95100.920.61
    哒螨灵(Pyridaben)Y=3.459e7X+5.756e41.00001.291.123.7686.41.9586.43.01100.240.70
    腈苯唑(FenbuconazoleY=2.898e7X+2.990e50.99910.950.561.8971.21.7082.81.5180.483.40
    啶酰菌胺(Boscalid)Y=3.773e7X+1.146e51.00001.160.862.8773.61.6074.02.11102.560.67
    氟氰戊菊酯(Flucythrinate)Y=1.256e7X+8.626e31.00003.361.204.1682.82.0992.84.1271.883.63
    嘧菌酯(Azoxystrobin)Y=4.318e6X+1.285e40.99991.172.006.6775.20.8984.03.4299.841.32
    下载: 导出CSV 
    | 显示表格

    采用优化后的提取和净化方法,对空白番茄样品进行提取,利用空白番茄样品的提取液配制基质标准系列,得到46种农药的标准曲线,如表2所示。46种农药在0.005~0.500 μg/mL的浓度范围内线性关系良好,R2值均大于0.999。以仪器3倍的信噪比表示方法的检出限,46种农药的方法检出限在0.07~2.63 μg/kg,以仪器10倍的信噪比表示方法的定量限,46种农药的方法定量限为0.21~8.39 μg/kg,均低于GB 23200.113-2018标准规定的0.01 mg/kg[20],能够满足国家标准对农药残留检测的定量限要求。

    在番茄样品中分别加入0.0025、0.025、0.25 mg/kg三个水平浓度的46种农药标液,涡旋混匀2 min,静置2 h,按照1.2.1的步骤对样品进行提取和净化,每个添加浓度做5次平行试验,得到各农药组分三个添加水平的回收率和精密度,结果见表2。46种农药残留的加标回收率在70.40%~115.08%范围内,相对标准偏差在0.22%~4.89%范围内。番茄样品检测结果的精密度和准确度均能达到GB/T 27404-2008标准中农药残留检测的要求[29]

    利用优化好的QuEChERS前处理方法和GC-MS/MS条件,对50批酒泉市戈壁设施产番茄样品中的农药残留量进行检测,发现9批样品中检出农药残留。其中9批样品中均检出毒死蜱,含量分别为0.0144、0.0127、0.0075、0.0125、0.0117、0.0088、0.0057、0.0051、0.0043 mg/kg,其中3批样品同时检出嘧菌酯,含量分别为0.0365、0.0278、0.0112 mg/kg,但是检出的残留农药均未超出GB 2763-2021[30]标准规定的限量值(毒死蜱为0.02 mg/kg、嘧菌酯为3 mg/kg)。

    本文采用乙腈提取,PSA、C18、无水MgSO4净化,HP-5MS色谱柱分离,采用多反映监测(MRM)模式检测,机制匹配外标法定量,建立了同时测定番茄中46种农药残留的分析检测方法。结果表明,46种农药组分在0.005~0.500 μg/mL的浓度范围内线性关系良好,决定系数均大于0.999,方法检出限和定量限分别在0.07~2.63 μg/kg和0.21~8.39 μg/kg之间,添加低、中、高三个浓度水平的平均回收率在70.40%~115.08%范围内,相对标准偏差为0.22%~4.89%。本文的方法快速、简单、环保、灵敏度高,能够满足番茄中多农药残留的检测,可为戈壁设施产番茄的质量监测提供一种快速高效的分析手段。

  • 图  1   番茄基质中46种农药混合标准溶液的总离子流图

    Figure  1.   TIC of 46 pesticide mixed standard solutionsin tomato matrix

    图  2   不同提取溶剂对46种农药提取效果的影响

    Figure  2.   Effects of different extraction solvents on the extraction efficiency of 46 kinds of pesticide compounds

    图  3   不同净化方案对46种农药净化效果的影响

    注:方案A:PSA 150 mg、GCB 15 mg、MgSO4 885 mg;方案B:PSA 150 mg、GCB 45 mg、MgSO4 855 mg;方案C:PSA 150 mg、C18 150 mg、MgSO4 900 mg。

    Figure  3.   Effects of different purification conditions on the extraction efficiency of 46 kinds of pesticide compounds

    表  1   46种农药的保留时间和质谱条件

    Table  1   Retention time and mass spectrometric parameters of 46 kinds of pesticides

    序号农药保留时间(min)定量离子对碰撞电压(eV)定性离子对碰撞电压(eV)
    1甲胺磷(Methamidophos)6.64141.0/95.06141.0/79.014
    2敌敌畏(Dichlorvos)6.84109.0/79.06184.9/93.010
    3乙酰甲胺磷(Acephate)9.88136.0/94.010136.0/42.06
    4氧乐果(Omethoate)12.99109.9/79.016155.9/110.06
    5灭线磷(Ethoprophos)13.77157.9/114.06157.9/97.016
    6甲拌磷(Phorate)14.99260.0/75.06230.9/128.924
    7乐果(Dimethoate)15.6886.9/46.014142.9/111.010
    8唑螨酯(Fenpyroximate)15.95142.1/77.012213.1/145.010
    9五氯硝基苯(Pentachloronitrobenzene)16.57236.9/142.930295.0/237.020
    10嘧霉胺(Pyrimethanil)16.96198.0/183.114198.0/118.034
    11二嗪磷(Diazinon)17.19137.1/54.020137.0/84.010
    12氯唑磷(Isazofos)17.66161.0/119.16161.0/146.06
    13氟虫脲(Flufenoxuron)17.85126.0/98.010305.0/126.122
    14抗蚜威(Pirimicarb)18.17238.0/166.210166.0/55.120
    15甲基对硫磷(Parathion-methyl)18.90262.9/109.010232.9/109.010
    16莠灭净(Ametryn)19.27227.0/58.110227.0/170.110
    17氟甲腈(Fipronildesulfinyl)19.43388.0/333.014333.0/231.026
    18杀螟硫磷(Fenitrothion)19.98277.0/260.06277.0/109.020
    19甲拌磷亚砜(Phoratesulfoxide)20.2796.9/64.920199.0/142.910
    20甲拌磷砜(Phoratesulfone)20.58124.9/96.96153.0/97.05
    21毒死蜱(Chlorpyrifos)20.79196.9/169.016198.9/171.014
    22噻虫嗪(Thiamethoxam)21.50182.0/139.18212.0/125.08
    23嘧菌环胺(Cyprodinil)21.72224.2/208.220225.2/224.310
    24戊菌唑(Penconazole)22.02248.0/192.114248.0/157.124
    25氟虫腈亚砜(Fipronilsulfoxide)22.19350.9/255.016353.0/257.016
    26氟虫腈(Fipronil)22.45366.8/212.824368.8/214.824
    27腐霉利(Procymidone)22.6596.0/67.11096.0/53.114
    28粉唑醇(Flutriafol)23.55219.1/12312164.1/95.026
    29己唑醇(Hexaconazole)23.82231.0/175.010256.0/82.110
    30抑霉唑(Imazalil)23.88214.9/173.06216.8/175.06
    31咯菌腈(Fludioxonil)24.31248.0/182.110248.0/154.120
    32腈菌唑(Myclobutanil)24.55179.0/125.110179.0/9030
    33氟虫腈砜(Fipronilsulfone)24.78254.9/228.012382.9/254.918
    34三唑磷(Triazophos)26.48161.2/134.26161.2/106.110
    35肟菌酯(Trifloxystrobin)27.29116.0/89.014131.0/89.030
    36氟环唑(Epoxiconazole )28.12192.0/138.110192.0/111.024
    37亚胺硫磷(Phosmet)28.61160.0/133.110160.0/77.120
    38联苯肼酯(Bifenazate)28.86258.1/199.110300.1/196.116
    39乙螨唑(Etoxazole)29.04141.1/113.016141.0/63.130
    40伏杀硫磷(Phosalone)29.63182.0/111.016182.0/102.114
    41氯苯嘧啶醇(Fenarimol)30.26219.0/107.110251.0/139.110
    42哒螨灵(Pyridaben)31.15147.2/132.210147.2/117.120
    43腈苯唑(Fenbuconazole31.68197.9/129.06128.9/102.16
    44啶酰菌胺(Boscalid)32.08140.0/112.010140.0/76.012
    45氟氰戊菊酯(Flucythrinate)32.25156.9/107.114198.9/157.010
    46嘧菌酯(Azoxystrobin)34.41344.1/172.036344.1/329.212
    下载: 导出CSV

    表  2   番茄中46种农药的线性方程、决定系数、基质效应、检出限、定量限、回收率和相对标准偏差

    Table  2   Linear equations, determination coefficients, matrixeffects (ME), limit of detection (LOD), limit of quatification (LOQ), recoveries and standard deviations of 46 pesticide residues in tomato

    化合物线性方程R2MELOD
    (μg/kg)
    LOQ
    (μg/kg)
    添加量
    0.0025 mg/kg
    添加量
    0.025 mg/kg
    添加量
    0.25 mg/kg
    回收率
    (%)
    RSD
    (%)
    回收率
    (%)
    RSD
    (%)
    回收率
    (%)
    RSD
    (%)
    甲胺磷(Methamidophos)Y=2.448e6X+7.686e30.99981.700.441.4771.23.1674.01.1678.920.68
    敌敌畏(Dichlorvos)Y=1.326e7X+2.149e41.0000.740.371.2079.62.5282.01.91102.640.64
    乙酰甲胺磷(Acephate)Y=1.266e6X+7.072e30.99991.270.632.0574.83.4671.21.7098.081.22
    氧乐果(Omethoate)Y=2.282e6X+5.797e31.00001.430.843.7588.54.8983.21.5096.960.94
    灭线磷(Ethoprophos)Y=6.6136X+6.735e30.99991.240.240.8082.43.8991.22.0292.521.78
    甲拌磷(Phorate)Y=2.656e6X−1.490e20.99921.400.250.8389.61.1293.61.1489.080.98
    乐果(Dimethoate)Y=3.225e6X+1.808e20.99991.150.270.8672.42.2878.83.1975.61.15
    唑螨酯(Fenpyroximate)Y=1.004e6X+1.106e40.99991.271.133.7571.63.1690.80.9299.120.22
    五氯硝基苯(Pentachloronitrobenzene)Y=1.538e6X+9.274e10.99951.050.070.2170.44.6791.21.9395.720.61
    嘧霉胺(Pyrimethanil)Y=8.817e6X+1.290e41.00001.122.638.3972.41.5789.22.6190.360.54
    二嗪磷(Diazinon)Y=8.732e6X+7.752e20.99991.470.581.8784.04.8899.62.1397.60.56
    氯唑磷(Isazofos)Y=1.218e7X+1.134e41.00001.250.210.7089.61.1293.62.0798.60.61
    氟虫脲(Flufenoxuron)Y=6.072e6X+8.118e30.99901.670.541.7671.22.5298.00.6574.760.49
    抗蚜威(Pirimicarb)Y=1.510e7X+6.519e30.99991.170.632.1178.84.26102.82.1998.040.51
    甲基对硫磷(Parathion-methyl)Y=5.143e6X+7.329e21.00001.260.591.9691.22.5690.02.08103.360.78
    莠灭净(Ametryn)Y=5.113e6X+2.620e31.00001.080.240.8086.82.3482.83.3675.240.98
    氟甲腈(Fipronildesulfinyl)Y=5.271e6X−2.687e31.00001.391.033.4781.21.7775.21.7098.280.63
    杀螟硫磷(Fenitrothion)Y=6.083e6X−5.127e30.99981.430.110.34108.01.66100.82.79104.520.77
    甲拌磷亚砜(Phoratesulfoxide)Y=1.547e6X+5.798e30.99981.460.240.9270.82.4671.61.81115.081.64
    甲拌磷砜(Phoratesulfone)Y=2.475e7X+1.845e41.00001.300.230.9087.21.3592.42.74100.680.62
    毒死蜱(Chlorpyrifos)Y=9.468e6X+2.656e30.99991.670.923.0593.62.1595.62.9598.360.42
    噻虫嗪(Thiamethoxam)Y=2.154e6X+2.326e30.99910.870.953.1589.22.36102.42.75100.440.78
    嘧菌环胺(Cyprodinil)Y=1.009e7X+1.375e41.00001.200.210.7088.02.0393.63.04980.63
    戊菌唑(Penconazole)Y=1.228e7X+8.663e30.99991.070.411.3071.21.3690.83.5197.720.56
    氟虫腈亚砜(Fipronilsulfoxide)Y=1.174e7X−9.256e31.00001.240.842.7988.82.5477.24.5385.280.86
    氟虫腈(Fipronil)Y=2.507e6X−2.639e31.00001.531.244.2282.44.32103.22.8783.560.49
    腐霉利(Procymidone)Y=2.898e7X−9.431e31.00001.211.284.2884.84.0898.02.0091.680.49
    粉唑醇(Flutriafol)Y=1.453e7X+1.208e50.99921.071.625.3771.21.6573.63.4388.080.75
    己唑醇(Hexaconazole)Y=2.157e6X+1.310e40.99991.181.806.0171.61.2484.83.38101.920.53
    抑霉唑(Imazalil)Y=4.173e6X+4.741e40.99971.341.123.4777.23.2773.20.5378.522.88
    咯菌腈(Fludioxonil)Y=7.497e6X+1.574e40.99961.370.290.9780.01.7781.62.8693.60.65
    腈菌唑(Myclobutanil)Y=1.629e7X+1.400e40.99991.090.270.9089.61.1298.42.6394.880.56
    氟虫腈砜(Fipronilsulfone)Y=5.781e6X-4.665e31.00001.230.612.0085.22.15102.42.00100.960.72
    三唑磷(Triazophos)Y=4.546e6X+4.469e31.00001.012.016.7678.83.6182.83.8490.683.71
    氟环唑(Epoxiconazole)Y=2.985e6X+6.951e30.99991.260.451.5572.82.25102.80.38911.75
    肟菌酯(Trifloxystrobin)Y=2.048e67X+7.045e40.99991.260.361.2381.62.2486.82.0399.720.54
    亚胺硫磷(Phosmet)Y=6.772e6X+8.430e21.00001.040.892.9874.83.6799.23.89107.240.68
    联苯肼酯(Bifenazate)Y=3.541e6X+3.877e21.00001.570.772.6485.62.8591.23.4688.362.58
    乙螨唑(Etoxazole)Y=8.530e6X+5.441e31.00001.340.230.8090.81.4171.62.27100.520.56
    伏杀硫磷(Phosalone)Y=1.610e7X+6.818e31.00001.250.732.4386.82.3980.42.9087.682.60
    氯苯嘧啶醇(Fenarimol)Y=7.475e6X+1.907e40.99991.181.073.4472.01.71103.61.95100.920.61
    哒螨灵(Pyridaben)Y=3.459e7X+5.756e41.00001.291.123.7686.41.9586.43.01100.240.70
    腈苯唑(FenbuconazoleY=2.898e7X+2.990e50.99910.950.561.8971.21.7082.81.5180.483.40
    啶酰菌胺(Boscalid)Y=3.773e7X+1.146e51.00001.160.862.8773.61.6074.02.11102.560.67
    氟氰戊菊酯(Flucythrinate)Y=1.256e7X+8.626e31.00003.361.204.1682.82.0992.84.1271.883.63
    嘧菌酯(Azoxystrobin)Y=4.318e6X+1.285e40.99991.172.006.6775.20.8984.03.4299.841.32
    下载: 导出CSV
  • [1]

    SANSKRITI V, RUCHI B, NITIKA R, et al. Unexplored nutritive potential of tomato to combat global malnutrition[J]. Critical Reviews in Food Science and Nutrition,2022,62(4):1003−1034. doi: 10.1080/10408398.2020.1832954

    [2] 王学强, 李波, 米兴旺, 等. 基于戈壁日光温室的有机基质栽培番茄需肥量研究[J]. 农业技术与装备,2021(9):168−169, 172. [WANG X Q, LI B, MI X W, et al. Study on fertilizer requirement of tomato cultivated on organic substrate based on gobisolargreenhouse[J]. Agricultural Technology Equipment,2021(9):168−169, 172. doi: 10.3969/j.issn.1673-887X.2021.09.077
    [3] 黄晓春, 周禹, 赵丽丽, 等. 番茄中农药残留现状调查与风险评估[J]. 安徽农业科学,2020,48(23):231−233. [HUANG X C, ZHOU Y, ZHAO L L, et al. Investigation and risk assessment of pesticide residues in tomato[J]. Journal of Anhui Agricultural Sciences,2020,48(23):231−233. doi: 10.3969/j.issn.0517-6611.2020.23.060
    [4]

    WU H Z, ZHOU M, XU J, et al. Simultaneous determination of 64 pesticide residues in shellfish by accelerated solvent extraction coupled with gas chromatography-tandem mass spectrometry[J]. Analytical Methods: Advancing Methods and Applications,2020,38(6):143−154.

    [5]

    ZHU B Q, XU X Y, LUO J W, et al. Simultaneous determination of 131 pesticides in tea by on-line GPC-GC-MS/MS using graphitized multi-walled carbon nanotubes as dispersive solid phase extraction sorbent[J]. Food Chemistry,2019,276:202−208. doi: 10.1016/j.foodchem.2018.09.152

    [6] 李俊芳, 景伟文, 李德强, 等. 分散固相萃取-超高效液相色谱-串联高分辨质谱法测定新疆苹果中7种农药残留[J]. 食品科学,2018,39(8):295−301. [LI J F, JING WW, LI D Q, et al. Determination of 7 pesticide residues in Xinjiang grown apple by dispersivesolid-phase extraction combined with ultra-performance liquid chromatography-high resolution tandem mass spectrometry[J]. Food Science,2018,39(8):295−301. doi: 10.7506/spkx1002-6630-201808046
    [7]

    SALEMI A, KHALEGHIFAR N, MIRIKARAM N. Optimization and comparison of membrane-protected micro-solid-phase extraction coupled with dispersive liquid-liquid microextraction for organochlorine pesticides using three different sorbents[J]. Microchemical Journal,2019,144:215−220. doi: 10.1016/j.microc.2018.09.011

    [8] 王晓园, 李志梅, 谢循策. QuEChERS-气相色谱-串联质谱法测定山药中50种农药残留[J]. 药物分析杂质,2021,41(11):1979−1989. [WANG X Y, LI Z M, XIE X C. Determination of 50 pesticide residues in Chinese yam by QuEChERS-gas chromatography-tandem mass spectrometry[J]. Chinese Pharmaceutical Association,2021,41(11):1979−1989.
    [9] 杨元超, 郑彩玲, 刘鑫, 等. QuEChERS-液相色谱-串联质谱法测定草莓中烯酰吗啉残留量的不确定度评定[J]. 农药,2022,61(2):127−231. [YANG Y C, ZHENG C L, LIU X, et al. Evaluation of uncertainty in determination of dimethomorphresiduein strawberry by QuEChERS-liquid chromatography-tandemmass spectrometry method[J]. Agrochemicals,2022,61(2):127−231. doi: 10.3969/j.issn.1006-0413.2022.2.ny202202013
    [10] 高霞, 陈辉, 谭敏, 等. QuEChERS-气相色谱质谱法测定苹果中45种农药残留[J]. 食品工业科技,2020,41(16):243−251. [GAO X, CHEN H, TAN M, et al. Determination of 45 pesticide residues in apples by QuEChERS-gas chromatography-mass spectrometry[J]. Science and Technology of Food Industry,2020,41(16):243−251. doi: 10.13386/j.issn1002-0306.2020.16.039
    [11] 王堃, 徐意祥, 付文雯. QuEChERS-气相色谱-串联质谱法同时测定高粱中16种农药残留[J]. 食品安全质量检测学报,2021,12(20):8093−8098. [WANG K, XU Y X, FU W W. Simultaneous determination of 16 kinds of pesticides residues in sorghum by QuEChERS-gas chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality,2021,12(20):8093−8098. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.20.026
    [12] 庄件兵, 袁艳丽. 气相色谱法测定番茄中腐霉利残留量的不确定度评定[J]. 食品安全质量检测学报,2018,9(6):1455−1459. [ZHUANG J B, YUAN Y L. Determination of the uncertainty of procymidone residue in tomato by gaschromatography[J]. Journal of Food Safety and Quality,2018,9(6):1455−1459. doi: 10.3969/j.issn.2095-0381.2018.06.039
    [13] 迟梦宇, 陈子雷, 毛江胜, 等. 高效液相色谱法测定番茄中甲氧虫酰肼的残留[J]. 安徽农业科学,2021,49(23):201−202,205. [CHI M Y, CHEN Z L, MAO J S, et al. Determination of methoxyfenozide residues on tomatoes by high performance liquid chromatography[J]. Journal of Anhui Agricultural Sciences,2021,49(23):201−202,205. doi: 10.3969/j.issn.0517-6611.2021.23.056
    [14] 张瑶, 马桂娟, 王紫昕, 等. 气相色谱-质谱法结合固相萃取技术同时测定番茄中53种农药残留[J]. 食品科技,2021,46(1):292−297. [ZHANG Y, MA G J, WANG Z X, et al. Simultaneous determination of 53 pesticide residues in tomato by gas chromatography-mass spectrometry combined with solid phaseextraction[J]. Food Science and Technology,2021,46(1):292−297. doi: 10.13684/j.cnki.spkj.2021.01.047
    [15] 徐鹏, 赵建珍, 闫伟伟, 等. QuEChERS-气相色谱-串联质谱法测定番茄中九种甲氧基丙烯酸酯类杀菌剂[J]. 食品与发酵工业,2020,46(21):242−246. [XU P, HAO J Z, YAN W W, et al. Determination of nine strobilurin fungicides in tomatoes by QuEChERS-gaschroatography-tandem mass spectrometry[J]. Food and Fermentation Industries,2020,46(21):242−246. doi: 10.13995/j.cnki.11-1802/ts.024392
    [16] 李晨雨, 杨松, 任震, 等. 基于UPLC-MS/MS检测番茄中10种杀虫剂农药残留[J]. 农药,2020,59(2):127−131. [LI C Y, YANG S, REN Z, et al. Detection of 10 pesticides residues in tomato based on UPLC-MS/MS[J]. Agrochemicals,2020,59(2):127−131. doi: 10.16820/j.cnki.1006-0413.2020.02.012
    [17] 赵丽敏, 孟志娟, 黄云霞, 等. 基于改进的QuEChERS-气相色谱-串联质谱检测蔬菜中50种农药残留[J]. 食品科技,2021,46(4):296−304. [ZHAO L M, MENG Z J, HUANG Y X, et al. Detection of 50 pesticide residues in vegetables by improved QuEChERS-gas chromatography-tandem mass spectrometry[J]. Food Science and Technology,2021,46(4):296−304.
    [18]

    YANG Y, YU H H, YANG Y J, et al. Simultaneous determination of 118 pesticides in vegetables by atmospheric pressure gas chromatography-tandem mass spectrometry and QuEChERS based on multiwalled carbon nanotubes[J]. ACS Agricultural Science and Technology,2021,23(6):279−288.

    [19] 中华人民共和国农业部. 农药残留分析样本的采样方法: NY/T 789-2004 农药残留分析样本的采样方法[S]. 北京: 中国标准出版社, 2004.

    Ministry of Agriculture of the People's Republic of China. NY/T 789-2004 Guideline on sampling for pesticide residue analysis[S]. Beijing: Standards Press of China, 2004.

    [20] 中华人民共和国国家卫生健康委员会, 中华人民共和国农业农村部, 国家市场监督管理局. GB 23200.113-2018食品安全国家标准植物源性食品中208种农药及其代谢物残留量的测定 气相色谱-质谱连用法[S]. 北京: 中国农业出版社, 2018.

    National Health Commission of the People's Republic of China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Administration for Market Regulation. GB 23200.113-2018 National food safety standard. Determination of 208 pesticides and metabolites residues in foods of plant origin. Gas chromatography-tandem mass spectrometry method[S]. Beijing: China Agriculture Press, 2018.

    [21] 李莎, 曾习文, 李亦蔚, 等. QuEChERS-气相色谱-三重四级杆质谱法同时测定枸杞中的46种农药残留[J]. 食品工业科技,2020,41(10):244−249. [LI S, ZENG X W, LI Y W, et al. Simultaneous determination of 46 pesticide residuesin Lycium barbarum by QuEChERS method combined with gas chromatography- triple quadrupolemass spectrometry[J]. Science and Technology of Food Industry,2020,41(10):244−249.
    [22] 李俊超, 秦学磊, 吴圣江, 等. QuEChERS前处理方法在食品检测中的应用进展[J]. 食品研究与开发,2021,42(24):206−212. [LI J C, QIN X L, WU S J, et al. Progress in the applications of the QuEChERS method in the food determination process[J]. Food Research and Development,2021,42(24):206−212. doi: 10.12161/j.issn.1005-6521.2021.24.030
    [23] 黄小兰, 周祥德, 何旭峰, 等. QuEChERS结合气相色谱-三重四极杆串联质谱法快速测定地参中63种农药残留[J]. 中国酿造,2021,40(3):170−176. [HUANG X L, ZHOU X D, HE X F, et al. QuEChERS combined with gaschromatography-triple quadrupole tandem mass spectrometry for rapid determination of 63 pesticide residues in ground ginseng[J]. China Brew,2021,40(3):170−176. doi: 10.11882/j.issn.0254-5071.2021.03.032
    [24]

    MNYANDU H M, MAHLAMBI P N. Optimizationand application of QuEChERS and SPE methods followed byLC-PDA for the determination of triazines residues in fruits and vegetables from Pietermaritzburg local supermarkets[J]. Food Chemistry,2021,360:129818.

    [25] 杨志敏, 吴福祥, 许晓辉, 等. 基于多动态反应监测模式下的高校液相色谱-串联质谱法同时测定枸杞中44种农药残留[J]. 食品工业科技,2020,41(1):201−208. [YANG Z M, WU F X, XU X H, et al. Determination of 44 kinds of pesticide residues in Wolfberry by high performance liquid chromatography-tandem mass spectrometry with dynamic multi-reaction monitoring[J]. Science and Technology of Food Industry,2020,41(1):201−208.
    [26]

    SOUSA F A, COSTA A I G, QUEIROZ M E L R, et al. Influence of pH and matrix components in the chromatographic response of pesticides[J]. Chromatographia,2013,76:67−73. doi: 10.1007/s10337-012-2365-7

    [27]

    SANDRA M, NINA M, SASCHA R, et al. A comparison between a two-dimensional liquid chromatography system and a traditional QuEChERS-LC method with regard to matrix removal and matrix effects in pesticide analysis using time-of-flight mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2021,69(49):15005−15019. doi: 10.1021/acs.jafc.1c05199

    [28] 徐炎炎, 李森, 张芹, 等. 气质联用和液质连用中基质效应的分析和总结[J]. 农药,2017,56(3):162−167. [XU YY, LI S, ZHANG Q, et al. Analysis and summary of matrix effects in GC-MS and LC-MS[J]. Agrochemicals,2017,56(3):162−167.
    [29] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 27404-2008 实验室质量控制规范 食品理化检测[S]. 北京: 中国标准出版社, 2008.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 27404-2008 Criterion on quality control of laboratories. Chemical testing of food[S]. Beijing: Standards Press of China, 2008.

    [30] 中华人民共和国国家卫生健康委员会, 中华人民共和国农业农村部, 国家市场监督管理局. GB 2763-2021食品安全国家标准 食品中农药最大残留限量[S]. 北京: 中国农业出版社, 2021.

    National Health Commission of the People's Republic of China, Ministry of Agriculture and Rural Affairs of the People's Republic of China, State Administration for Market Regulation. GB 2763-2021 National food safety standard. Maximum residue limits for pesticides in food[S]. Beijing: China Agriculture Press, 2021.

  • 期刊类型引用(3)

    1. 杨春晖,王文平,续丹丹,崔宇倩,鞠岩,许春艳,吕小婷. 不同原料酿造酱油功能成分及抗氧化活性比较. 食品工业科技. 2023(14): 318-325 . 本站查看
    2. 张荣,古丽吉合热·阿布拉. 新疆黑枸杞原花青素的提取及抗氧化活性研究. 食品工业. 2023(12): 27-31 . 百度学术
    3. 只德贤,张妮,李建颖. 微波超声协同提取白刺果原花青素工艺及抗氧化性研究. 食品工业科技. 2022(13): 171-179 . 本站查看

    其他类型引用(2)

图(3)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 5
出版历程
  • 收稿日期:  2022-04-12
  • 网络出版日期:  2022-12-05
  • 刊出日期:  2023-02-14

目录

/

返回文章
返回
x 关闭 永久关闭