Loading [MathJax]/jax/output/SVG/fonts/TeX/Main/Regular/BasicLatin.js
  • 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

超高压液相色谱-高分辨质谱法同时筛查蓝莓中90种农药残留

邵影, 张鸿伟, 高瑞刚, 韩芳, 杨帆, 林超, 李明哲, 聂晨, 张晓梅, 赵雪

邵影,张鸿伟,高瑞刚,等. 超高压液相色谱-高分辨质谱法同时筛查蓝莓中90种农药残留[J]. 食品工业科技,2023,44(5):230−240. doi: 10.13386/j.issn1002-0306.2022040026.
引用本文: 邵影,张鸿伟,高瑞刚,等. 超高压液相色谱-高分辨质谱法同时筛查蓝莓中90种农药残留[J]. 食品工业科技,2023,44(5):230−240. doi: 10.13386/j.issn1002-0306.2022040026.
SHAO Ying, ZHANG Hongwei, GAO Ruigang, et al. Simultaneous Screening of 90 Pesticides in Blueberry by Ultra-high Pressure Liquid Chromatography Coupled to High Resolution Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(5): 230−240. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040026.
Citation: SHAO Ying, ZHANG Hongwei, GAO Ruigang, et al. Simultaneous Screening of 90 Pesticides in Blueberry by Ultra-high Pressure Liquid Chromatography Coupled to High Resolution Mass Spectrometry[J]. Science and Technology of Food Industry, 2023, 44(5): 230−240. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040026.

超高压液相色谱-高分辨质谱法同时筛查蓝莓中90种农药残留

基金项目: 青岛市民生科技计划项目(18-6-1-107-nsh);青岛海关科研项目(QK202017)。
详细信息
    作者简介:

    邵影(1996−),女,硕士研究生,研究方向:食品安全与检测研究,E-mail:1504187748@qq.com

    通讯作者:

    张晓梅(1981−),女,博士,高级工程师,研究方向:食品安全与检测研究,E-mail:sdsywL@163.com

    赵雪(1976−),女,博士,副教授,研究方向:海洋生物活性物质研究,E-mail:zhaoxue@ouc.edu.cn

  • 中图分类号: TS207.3

Simultaneous Screening of 90 Pesticides in Blueberry by Ultra-high Pressure Liquid Chromatography Coupled to High Resolution Mass Spectrometry

  • 摘要: 建立了超高压液相色谱-高分辨质谱同时筛查蓝莓中90种农药残留的方法。采用改良的QuEChERS方法提取目标物残留,超高压液相色谱-四极杆/离子回旋轨道阱高分辨质谱正负离子模式全扫描-数据依赖性碎片离子采集,代表性基质匹配标准工作曲线定量。结果显示:改良的QuEChERS净化填料中,PSA和C18净化粉的用量均在150 mg时净化效果最好;方法检出限和定量限分别为0.1~18.7 μg/kg和0.2~20.2 μg/kg,90种农药在0.005~0.1 mg/kg范围内,线性关系良好,决定系数R2≥0.992;在0.01、0.05和0.1 mg/kg浓度水平进行基质添加回收实验,回收率50.1%~130.9%,相对标准偏差为1.0%~14.9%。在对实际样品的筛查中,检测到5种农药残留显示了方法的实际应用效能。本方法前处理简便、目标分析物覆盖范围广、在筛查定量基础上可同时完成高精度定性分析,可有效用于蓝莓中常用农药残留的监测。
    Abstract: A method for simultaneous screening of 90 pesticide residues in blueberries by ultra-high pressure liquid chromatography high resolution mass spectrometry was developed. Target residues in blueberries were extracted by an improved QuEChERS protocol. Ultra-high pressure liquid chromatography coupled to quadrupole/orbitrap high-resolution mass spectrometry was employed for screening analysis with full mass scanning trigged data dependent fragment ion acquisition in positive and negative mode. The analytes were quantified by representative matrix-matched standard curve. The results showed that the optimized ratio of PSA vs C18 was 1:1 with amount of 150 mg respectively in the improved QuEChERS protocol. The limits of detection and limits of quantitation of the method were 0.1~18.7 μg/kg and 0.2~20.2 μg/kg as well. The linearities for 90 pesticides were fitted by regression calculation at the range of 0.005~0.1 mg/kg with determination coefficient R2≥0.992. With calibration of the representative matrix-matched standard curve, recoveries were calculated ranging from 50.1% to 130.9% and relative standard deviations were varied in the scope of 1.0%~14.9% at the three spiking levels of 0.01, 0.05 and 0.1 mg/kg. Five pesticides were detected in the real-life blueberry samples purchased in the market, evidencing the applicability of the developed method. The proposed approach is applicable for routine pesticide monitoring in blueberries with simple sample preparation, broad analyte coverage and powerful capability of quantification and qualification.
  • 蓝莓含有多种营养成分,具有较高的营养和保健价值,是联合国粮农组织推荐的五大健康水果之一。在蓝莓生长过程中会受到各种病害和虫害的侵扰,需要使用农药来减少或避免损失,这些农药在蓝莓中的残留可通过食物链进入人体,可能会对消费者的健康产生危害[1-2]。目前,欧盟、日本和澳大利亚等已经通过法规规定了蓝莓中相关农药的最大残留限量(Maximum residue limit, MRL),我国在GB 2763-2019《食品安全国家标准食品中农药最大残留限量》中针对蓝莓设定MRLs的农药数量有80种,MRLs范围为0.01~10 mg/kg[3],到最新实施的GB 2763-2021中相关农药数量增加至125种,MRLs范围为0.01~20 mg/kg[4],彰显了对蓝莓中农药残留的控制日益严格。

    目前,在农药残留的检测中色质联用技术应用广泛[5-10],已有研究使用气相色谱-质谱法结合QuEChERS前处理技术检测蓝莓中192种农药残留[11],以及液相色谱-串联四级杆质谱法结合QuEChERS前处理技术检测蓝莓中有机磷、氨基甲酸酯和三唑类等3类10种农药残留[12]的报道。上述方法中,气相色谱-质谱法检测需要进行分析物的衍生化,液相色谱-串联四级杆质谱法则需要对每个分析物质谱参数的优化,在面临强基质干扰时仅依靠保留时间和离子比率实现准确的定性还存在困难。相比之下,超高压液相色谱-高分辨质谱(Ultra-high pressure liquid chromatography-high resolution mass spectrometry,UHPLC-HRMS)具有的全扫描监测、高质量精度采集提供了方便快速的多目标物并行分析能力,同时进行数据依赖性碎片离子采集(Full MS-ddMS2),还可通过高分辨前体离子和多碎片离子的组合提供精准的定性分析结果,实现一次数据采集即可完成快速筛查和准确定性分析,因此基于UHPLC-HRMS开发适合蓝莓中农药残留筛查的分析方法可有力支撑不断严格的监控需求。

    本研究以蓝莓作为分析对象,选择国内外6种代表性产地的不同品种的蓝莓(云南南高丛蓝莓、安徽兔眼蓝莓、山东北高丛蓝莓、辽宁半高丛蓝莓、智利北高丛蓝莓和秘鲁南高丛蓝莓),对栽培过程中使用较为频繁的90种农药采用改良的QuEChERS方法提取相关残留,超高压液相色谱-四极杆/离子回旋轨道阱高分辨质谱(UHPLC-Q-Orbitrap HRMS)正负离子全扫描-数据依赖性二级碎片采集(Full MS-ddMS2)测定,并遴选出代表性蓝莓基质匹配标准工作曲线进行定量分析,建立了蓝莓中多种类农药高通量同时筛查分析方法,该方法操作简单准确、快速,可用于蓝莓中多种类农药的同时筛查。

    云南南高丛蓝莓、安徽兔眼蓝莓、山东北高丛蓝莓、辽宁半高丛蓝莓、智利北高丛蓝莓和秘鲁南高丛蓝莓6个不同产地相关品种的蓝莓 市场购买;烯草酮砜、烯草酮亚砜、戊草丹、马拉氧磷、嘧菌胺、苯菌酮和三甲苯草酮7种标准品浓度分别为736.3、808.5、768.2、1061.4、2385.4、1081.8、1178.5 mg/L 坛墨质检标准物质中心;83种农药标准品浓度均为100 mg/L 天津阿尔塔科技有限公司;乙腈 质谱级,德国Merck公司;甲酸、乙酸胺 质谱级,美国Fluka公司;氯化钠 分析纯,国药集团化学试剂有限公司;N-丙基乙二胺(PSA) 天津博耐艾杰尔科技有限公司;十八烷基硅胶键合硅胶(C18) 美国Agilent公司;0.22 μm尼龙滤膜 天津博耐艾杰尔科技有限公司;50 mL离心管 美国Kirgen公司。

    Ultimate 3000-Q/Exactive超高压液相色谱-四级杆/离子回旋轨道阱高分辨质谱联用仪 美国Thermo Fisher公司;CR21GⅡ高速冷冻离心机 日本日立HITACHI公司;MMV-1000 W分液漏斗振荡器 日本EYELA公司;MS3涡旋混匀器 德国IKA公司;PL203电子天平 德国Mettle公司;GM 200刀式粉碎仪 德国Retsch公司。

    将蓝莓采用粉碎仪打碎,称取10.00 g于50 mL离心管中,加入5 mL水,涡旋混匀2 min,再加入10 mL乙腈,用分液漏斗振荡器振荡提取10 min,加入4 g氯化钠,可用于除去样品中的水分,振荡5 min,9000 r/min离心5 min。离心后取上清液(乙腈)2 mL,加入到含有150 mg PSA净化粉和150 mg C18粉的离心管中,涡旋混匀2 min,9000 r/min离心5 min,取上清液过0.22 μm尼龙滤膜,装入进样瓶中,使用UHPLC-Q-Orbitrap HRMS检测。

    色谱柱: Agilent Poroshell 120 EC-C18(100 mm×2.1 mm,2.7 μm);柱温35 ℃;流速为0.3 mL/min;进样量为10 μL。质谱正离子模式下,流动相A为含5 mmol乙酸胺0.1%甲酸水溶液,流动相B为乙腈溶液。梯度洗脱程序:0~1 min,90% A;1~13 min,90% A~0% A;13~14 min,0% A;14~14.1 min,0% A~90% A;14.1~19 min,90% A。质谱负离子模式下,流动相A为含5 mmol乙酸胺水溶液,流动相B为乙腈溶液。梯度洗脱程序:0~1 min,90% A;1~7 min,90% A~10 % A;7~8 min,10% A;8~8.1 min,10% A~90% A;8.1~13 min,90% A。

    质谱离子源:ESI源;扫描模式为Full MS/dd-MS2;正离子模式扫描范围为70~1000 Da,喷雾电压为3500 V;负离子模式扫描范围为100~800 Da,喷雾电压为-3200 V;鞘气(氮气)流速30 Arb;辅助气体流速10 Arb;毛细管温度320 ℃;辅助气体加热温度320 ℃;碰撞能量为20、40和60 eV;dd-MS2触发阈值为2×105 cps。

    标准中间溶液:将烯草酮砜、烯草酮亚砜、戊草丹、马拉氧磷、嘧菌胺、苯菌酮和三甲苯草酮7种标准品溶液分别稀释至100 mg/L,与其它83种标准品溶液一同置于−18 ℃冰箱内避光保存,有效期6个月。

    混合标准中间溶液:将烯草酮砜、烯草酮亚砜等7种化合物的标准中间溶液与其它83种标准品溶液混合,并成1.0 mg/L的标准品工作溶液,置于−18 ℃冰箱内避光保存,有效期3个月。

    溶剂标准工作溶液:将混合标准工作溶液用含5 mmol乙酸胺的水溶液配制成5、10、20、50和100 μg/L一系列浓度梯度的溶剂标准品工作溶液,现用现配。

    取溶剂标准工作溶液,按照上述方法条件进行测定分析,以目标物的质量浓度(μg/L)为横坐标,峰面积为纵坐标,绘制溶剂标准工作曲线。

    分别取6种蓝莓空白样品按上述方法条件进行前处理,获得相应基质提取液,分别使用提取液将混合标准工作溶液配制成0.005、0.01、0.02、0.05和0.1 mg/L一系列浓度梯度的6种基质匹配标准工作溶液,在既定条件下测定分析,以目标物的质量浓度(mg/L)为横坐标,峰面积为纵坐标,绘制基质匹配标准工作曲线。

    利用基质标准工作曲线和溶剂标准工作曲线的斜率比值评价基质效应(ME):

    ME(%)=(kmatrixksolvent1)×100

    式中:kmatrix为基质匹配的标准工作曲线的斜率;ksolvent为溶剂标准工作曲线的斜率。当|ME|≤20%时,表现为弱基质效应;当20%<|ME|≤50%时,表现为中等基质效应;当|ME|>50%时,表现为强基质效应[13-16]

    利用TBtools V1.09876软件(开发者:CJ-chen)绘制6种蓝莓基质的基质效应热图。将基质效应的数据导入软件后,在Graphics中选择HeatMap即可绘制热图。

    取均质后的蓝莓样品10 g,加入浓度为1 mg/L的混合标准中间溶液100 μL,按照1.2.1的方法条件进行前处理,得到添加浓度为0.01 mg/kg的样品;分别加入浓度为10 mg/L的混合标准中间溶液50和100 μL,按照1.2.1的方法进行前处理,得到添加浓度为0.05和0.10 mg/kg的样品。

    回收率的计算公式如下,计算结果需扣除空白样品的本底值:

    (%)=c×n×Vm×c0×10001000

    式中:c为待测组分响应值在标准曲线中计算得到的浓度,μg/L;n为稀释倍数;m为样品称样量,g;V为加入上清液体积,mL;c0为添加标准品浓度,mg/kg。

    分别采用乙腈和甲醇两种溶剂作为有机相,比较90种农药的分离效果。结果表明,在乙腈作为有机相时,灭草隆、氟吗啉和烯草酮亚砜等目标化合物的峰形、离子响应和分离度方面优于甲醇,故采用乙腈作为有机相;由于90种化合物中处于正离子模式下的目标分析物多,且大部分目标化合物呈弱碱性,因此在正离子模式的水相中加入少量的甲酸,促进弱碱性农药的电离,提供质子促进阳离子的产生,提高离子化效率;加入乙酸胺作为缓冲盐,不仅可以增强目标分析物的稳定性和分离效果,还可以减少目标分析物的峰形拖尾。最终确定了5 mmol乙酸胺-0.1%甲酸水溶液作为水相,乙腈作为有机相的流动相梯度洗脱体系。

    由于目标化合物的极性不同,采用梯度进行洗脱,在梯度洗脱的初始阶段先用高比例的水相将极性较强的化合物洗脱出来,随后逐步增加有机相的比例洗脱非极性的化合物,方法设定洗脱梯度下目标物质峰形尖锐,分离度较好,保留时间适中,且目标物质有较好的线性关系。本实验选择的Agilent Poroshell 120 EC-C18(100 mm×2.1 mm,2.7 μm)核-壳型色谱柱,该类型色谱柱在低背压下有较高的柱效,能够有效分离90种农药,分离耗时短,且各目标分析物峰形良好,各目标分析物在浓度为0.01 mg/kg时的溶剂提取离子流色谱图见图1

    图  1  90种农药的提取离子流色谱图(0.01 mg/kg)
    Figure  1.  Extraction ion chromatogram of 90 pesticides(0.01 mg/kg)

    蓝莓提取液经过QuEChERS前处理技术的净化,仍存在一定的基质效应,大部分农药化合物的峰形无明显变化,但对个别化合物的影响较大,出现峰形变宽或峰的前半段拖尾,如:亚砜磷、甲基硫环磷和久效威砜等化合物,90种农药在代表性蓝莓基质(智利蓝莓)中添加浓度为0.01 mg/kg时的提取离子流色谱图见图2

    图  2  90种农药基质添加样品(智利蓝莓,0.01 mg/kg)的提取离子流色谱图
    注:各目标分析物序号及名称与表1中一致;图4同。
    Figure  2.  Extraction ion chromatograms of 90 pesticides in spiked blueberry sample (Chilean blueberry, 0.01 mg/kg)

    根据农药化合物的电离性质,三氟羧草醚、溴敌隆和氟甲腈等10种物质含有氟和羟基等官能团,在负离子模式下易产生带负电的分子离子峰,因此采用ESI扫描模式;其余物质均采用ESI+扫描模式。依据流动相组成,流速优化喷雾电压、鞘气、辅助气压力和毛细管温度等质谱设置参数,通过溶剂标准工作溶液验证90种农药的分子离子响应情况,并根据dd-MS2采集信息选择2~3个特征碎片离子,建立以高分辨分子离子进行定量分析,以高分辨特征碎片离子结合保留时间进行准确定性分析的筛查分析方法。相关目标分析物名称、分子式、母离子、特征子离子和保留时间等相关信息见表1

    表  1  90种农药相关信息及分析参数
    Table  1.  Chemical information and analysis parameters of 90 pesticides
    序号目标分析物分子式母离子特征子离子保留时间
    (min)
    平均回收
    率(%)
    相对标准
    偏差(%)
    线性范围
    (μg/kg)
    检出限
    (μg/kg)
    定量限
    (μg/kg)
    1亚砜磷
    (Oxydemeton-methyl)
    C6H15O4PS2247.022(+)169.008, 105.0372.6780.23.75~1008.210.2
    2甲基硫环磷
    (Phosfolan-methyl)
    C5H10NO3PS2227.991(+)167.988, 127.015, 61.0113.3494.22.65~1006.59.4
    3甲基内吸磷砜
    (Demeton-S-methyl)
    C6H15O5PS2263.017(+)169.008, 121.0313.3784.02.05~1007.38.5
    4久效威亚砜
    (Thiofanox sulfoxide)
    C9H18N2O3S235.111(+)104.017, 63.998, 57.0703.7296.05.65~10012.114.3
    5敌百虫(Trichlorphon)C4H8Cl3O4P256.929(+)220.953, 196.956, 127.0153.8579.65.25~10013.814.6
    6苯嗪草酮(Metamitron)C10H10N4O203.092(+)175.097, 104.0494.0277.23.25~1004.45.0
    7对甲抑菌灵代谢物
    (DMST)
    C9H14N2O2S215.084(+)106.065, 79.0544.3888.11.85~10010.310.8
    8久效威砜
    (Thiofanox sulfone)
    C9H18N2O4S251.106(+)194.085, 57.0704.55105.310.05~1006.78.4
    9达草止代谢产物
    (Pyridafol)
    C10H7ClN2O207.031(+)104.049, 68.01384.5985.53.85~10011.512.2
    10胺鲜酯(Diethyl aminoethyl hexanoate)C12H25NO2216.195(+)143.106, 118.122, 100.1124.7585.33.85~1003.45.6
    11氧化萎锈灵(Oxycarboxin)C12H13NO4S268.063(+)193.016, 175.005, 164.9855.2772.74.15~1007.38.9
    12三氟咪唑代谢物(FM 6-1Triflumizole metabolite)C12H14ClF3N2O295.081(+)215.018, 176.007, 73.0655.3491.91.65~1000.10.2
    13苯线磷亚砜
    (Fenamiphos sulfoxide)
    C13H22NO4PS320.107(+)250.029, 171.047, 156.0235.4389.73.25~1003.64.2
    14亚胺硫磷(Phosmet-oxon)C11H12NO5PS302.024(+)160.038, 133.0275.5295.33.45~1009.712.5
    15灭草隆(Monuron)C9H11ClN2O199.063(+)154.005, 126.010, 72.0455.7591.93.45~10011.513.3
    16咪唑喹啉酸(Imazaquin)C17H17N3O3312.134(+)267.112, 199.050, 86.0965.871.13.25~1007.88.3
    17敌敌畏(Dichlorvos)C4H7Cl2O4P220.953(+)164.053, 147.091, 105.0705.9281.76.75~10012.314.4
    18环氧嘧磺隆(Oxasulfuron)C17H18N4O6S407.101(+)183.987, 122.0725.9587.43.75~1004.75.9
    19环草定(Lenacil)C13H18N2O2235.144(+)153.065, 136.039, 83.0866.176.53.35~10010.211.3
    20嘧菌腙(Ferimzone)C15H18N4255.160(+)132.081, 124.087, 91.0546.2192.34.15~1001.32.7
    21马拉氧磷(Malaoxon)C10H19O7PS315.066(+)142.992, 127.039, 99.0086.31105.54.35~1006.48.2
    22双氟磺草胺(Florasulam)C12H8F3N5O3S360.037(+)296.074, 191.992, 129.0386.3968.24.55~10010.211.4
    23倍硫磷亚砜
    (Fenthion sulfoxide)
    C10H15O4PS2295.022(+)279.998, 127.0156.488.01.95~10014.715.8
    24乙拌磷亚砜
    (Disulfoton sulfoxide)
    C8H19O3PS3291.030(+)184.985, 156.954, 114.9616.6882.03.65~1005.67.0
    25甲拌磷亚砜
    (Phorate sulfoxide)
    C7H17O3PS3277.015(+)199.002, 171.022, 142.9376.6998.07.15~1002.84.4
    26噻唑磷(Fosthiazate)C9H18NO3PS2284.053(+)227.990, 199.959, 104.0166.7694.93.95~1004.55.7
    27四唑嘧磺隆(Azimsulfuron)C13H16N10O5S425.109(+)182.055, 156.0766.8885.94.05~1006.17.7
    28磺草胺唑(Metosulam)C14H13Cl2N5O4S418.013(+)237.948, 189.981, 174.9946.9188.53.05~1003.44.8
    29烯草酮亚砜
    (Clethodim sulfoxide)
    C17H26ClNO4S376.134(+)268.136, 206.117, 164.0706.9574.84.45~1006.26.9
    30十二环吗啉(Dodemorph)C18H35NO282.279(+)116.106, 98.0967.0568.22.25~10016.217.6
    31氟吗啉(Flumorph)C21H22FNO4372.160(+)285.090, 165.053, 114.0547.185.64.15~1002.33.4
    32氧倍硫磷(Fenthion oxon)C10H15O4PS263.050(+)231.024, 216.0097.2489.34.65~1008.89.7
    33混灭威
    (3,4,5-Trimethacarb)
    C11H15NO2194.117(+)137.096, 122.0727.2965.21.95~1003.94.5
    34毒草胺(Propachlor)C11H14ClNO212.083(+)170.03671, 152.026, 94.0657.3777.62.55~1002.72.5
    35N-去乙基-甲基嘧啶磷(N-Desethyl-pirimiphos-methyl)C9H16N3O3PS278.072(+)246.046, 142.993, 108.0567.39104.15.65~1004.14.9
    36五氟磺草胺(Penoxsulam)C16H14F5N5O5S484.070(+)444.057, 195.0757.3988.44.15~1006.97.6
    37内吸磷(Demeton)C8H19O3PS2259.058(+)202.067, 194.102, 89.0427.4114.57.85~1001.72.5
    38二甲草胺(Dimethachlor)C13H18ClNO2256.109(+)224.083, 148.111, 132.0807.4989.32.65~1004.04.7
    39咪唑磺隆(Imazosulfuron)C14H13ClN6O5S413.042(+)279.039, 231.994, 153.0217.4973.64.75~1003.24.3
    40达灭净(Diclomezine)C11H8Cl2N2O255.008(+)158.982, 141.039, 123.0047.6576.33.95~1001.22.1
    41烯草酮砜
    (Clethodim sulfone)
    C17H26ClNO5S392.129(+)300.125, 208.132, 164.0697.7578.42.85~1007.18.3
    42乙拌磷砜
    (Disulfoton sulfone)
    C8H19O4PS3307.025(+)260.983, 171.023, 114.9617.7788.85.25~10015.516.2
    43甲拌磷砜(Phorate sulfone)C7H17O4PS3293.009(+)171.023, 142.992, 114.9617.8579.14.85~1005.26.0
    44丙苯磺隆(Propoxycarbazone)C15H17N4NaO7S421.078(+)335.111, 180.073, 138.0267.9399.54.55~1003.34.1
    45氟磺隆(Prosulfuron)C15H16F3N5O4S420.094(+)167.056, 141.077, 109.0457.9977.74.15~1000.91.7
    46啶斑肟(Pyrifenox)C14H12Cl2N2O295.039(+)263.014, 93.0588.0779.55.25~1005.15.9
    47吡嘧磺隆
    (Pyrazosulfuron-ethyl)
    C14H18N6O7S415.103(+)182.056, 145.0658.0987.73.05~1004.15.0
    48氯吡嘧磺隆(Halosulfuron methyl)C13H15ClN6O7S435.048(+)403.021, 156.0768.1589.03.75~1002.23.4
    49喹禾灵(Quizalofop)C17H13ClN2O4345.063(+)299.058, 272.034, 244.0398.1873.03.35~1003.44.2
    50乙氧磺隆(Ethoxysulfuron)C15H18N4O7S399.096(+)279.038, 261.028, 139.0378.2784.53.95~1006.98.1
    51烯效唑(Uniconazole)C15H18ClN3O292.121(+)138.994, 125.015, 70.0408.3584.14.45~10018.520.2
    52氧皮蝇磷(Fenchlorphos)C8H8Cl3O4P304.929(+)127.015, 108.0578.38103.04.85~10011.312.2
    53禾草敌(Molinate)C9H17NOS188.110(+)126.091, 83.0858.4177.85.05~1000.81.6
    54杀草隆(Daimuron)C17H20N2O269.164(+)151.087, 119.086, 108.0818.4998.46.85~1003.54.6
    55多果定(Dodine)C13H29N3228.243(+)60.056, 57.0708.563.14.05~1006.77.4
    56吡喃草酮(Tepraloxydim)C17H24ClNO4342.146(+)250.143, 222.148, 166.0868.5783.93.15~10016.517.3
    57唑嘧菌胺(Ametoctradin)C15H25N5276.218(+)176.092, 123.0668.6577.03.75~1001.12.0
    58氟吡禾灵(Haloxyfop)C15H11ClF3NO4362.040(+)316.034, 288.039, 91.0548.6662.43.45~1006.57.8
    59氟吡菌酰胺(Fluopyram)C16H11ClF6N2O397.053(+)208.013, 190.047, 173.0208.7499.38.25~1002.53.3
    60异恶酰草胺(Isoxaben)C18H24N2O4333.180(+)222.075, 165.054, 85.1018.7488.26.05~1004.35.4
    61嘧菌胺(Mepanipyrim)C14H13N3224.118(+)206.083, 106.0658.7683.44.15~1005.76.9
    62异稻瘟净(Iprobenfos)C13H21O3PS289.102(+)247.055, 205.008, 91.0558.980.43.55~10018.719.6
    63烯草胺(Pethoxamid)C16H22ClNO2296.141(+)250.098, 131.0858.97100.14.15~1003.13.8
    64唑啉草酯(Pinoxaden)C23H32N2O4401.243(+)317.185, 116.1079.08110.83.35~1004.55.2
    65联苯吡菌胺(Bixafen)C18H12Cl2F3N3O414.038(+)394.031, 265.9939.2378.53.75~1005.46.1
    66硅噻菌胺(Silthiofam)C13H21NOSSi268.118(+)252.087, 139.0219.3196.63.45~1003.24.0
    67吡唑酯(Pyrazoxyfen)C20H16Cl2N2O3403.061(+)157.061, 105.0349.499.55.65~1001.22.0
    68茵草敌(EPTC)C9H19NOS190.126(+)163.031, 136.0219.4177.54.15~1008.49.5
    69唑菌酯(Pyraoxystrobin)C22H21ClN2O4413.126(+)205.093, 145.070, 115.0589.7195.73.95~1004.15.2
    70吡草醚(Pyraflufen-ethyl)C15H13Cl2F3N2O4413.027(+)384.996, 338.990, 253.0179.7471.75.45~1003.64.4
    712-羟基丙苯磺隆(2-Hydroxypropoxycarbazone)C15H18N4O8S415.091(+)199.005, 174.086, 116.0459.7995.84.95~1002.43.1
    72地散磷(Bensulide)C14H24NO4PS3398.067(+)313.973, 218.0309.7997.96.25~1007.88.8
    73吡氟酰草胺(Diflufenican)C19H11F5N2O2395.081(+)301.128, 209.135, 164.06910.3894.14.15~1000.30.9
    74苯菌酮(Metrafeone)C19H21BrO5409.064(+)226.969, 209.08010.4870.03.65~10010.912.3
    75丙草胺(Pretilachlor)C17H26ClNO2312.172(+)252.115, 176.14310.590.74.05~1008.49.1
    76氯啶菌酯(Triclopyricarbe)C15H13Cl3N2O4391.001(+)194.081, 163.06310.6475.02.15~1000.61.0
    77烯肟菌酯(Enestroburin)C22H22ClNO4400.131(+)205.086, 178.042, 137.01510.9690.15.05~10010.211.4
    78戊草丹(Esprocarb)C15H23NOS266.157(+)196.079, 71.08611.0383.35.05~1006.06.7
    79吡氟禾草灵
    (Fluazifop-butyl)
    C15H12F3NO4384.141(+)328.078, 282.073, 254.07811.172.13.15~1002.12.7
    80三甲苯草酮(Tralkoxydim)C20H27NO3330.206(+)284.164, 138.055, 96.04411.3264.34.35~1005.36.1
    81环丙酸酰胺(Cyclanilide)C11H9Cl2NO3271.988(-)227.998, 159.971, 123.995472.84.55~10012.714.1
    82三氟甲磺隆(Tritosulfuron)C13H9F6N5O4S444.020(-)193.040, 66.0104.2697.34.35~1003.84.7
    83氟啶虫胺腈(Sulfoxaflor)C10H10F3N3OS276.042(-)261.019, 213.052, 87.9734.4494.44.25~1002.83.6
    84三氟羧草醚(Acifluorfen)C14H7ClF3NO5359.989(-)315.999, 122.0084.5973.42.65~1004.56.1
    85氟磺胺草醚(Fomesafen)C15H10ClF3N2O6S436.982(-)315.999, 194.9824.82100.44.95~1008.59.3
    86磺菌胺(Flusulfamide)C13H7Cl2F3N2O4S412.938(-)348.977, 283.002, 170.9975.694.33.15~1000.51.2
    87溴敌隆(Bromadiolon)C30H23BrO4525.070(-)250.063, 93.034, 78.9185.6268.74.45~10011.111.9
    88噻酰菌胺(Tradinil)C11H10ClN3OS266.016(-)238.010, 70.9966.1582.02.25~1006.68.0
    89氟甲腈(Fipronil desulfinyl)C12H4Cl2F6N4386.964(-)281.992, 350.9876.8393.64.95~1006.27.4
    90氟虫腈亚砜
    (Fipronil sulfide)
    C12H4Cl2F6N4S418.936(-)382.960, 313.964, 170.0097.01100.35.05~1009.811.1
    注:“(+)”为正离子模式;“(-)”为负离子模式。
    下载: 导出CSV 
    | 显示表格

    本实验分别考察了农药中常用提取试剂丙酮和乙腈的提取效果,实验过程发现使用丙酮作为提取溶剂时上清液与沉淀物分离效果差,得到的提取液颜色较深,干扰物质较多,不利于后期的净化,并且经过净化粉处理后的净化液颜色没有明显变化,上机进样可能会导致仪器污染;而采用乙腈作为提取溶剂时,得到的提取液颜色较浅,经净化粉净化后满足仪器上机要求,因此选择乙腈作为提取溶剂。在乙腈提取前加入适量超纯水,不仅有利于蓝莓基质的分散,还可以提高极性化合物的提取效果。

    QuEChERS方法常用净化材料有PSA和C18等,PSA主要吸附糖类、色素和有机酸等[17-20],C18主要吸附脂肪、色素、维生素和非极性物质等[17,21-25]。虽然蓝莓中脂肪、蛋白质等物质含量少,但仍需要除去糖类、有机酸、维生素及色素等物质,因此选择PAS和C18作为净化材料,以智利蓝莓为试验基质进行前处理方法优化。基于称样量和预实验结果,对PAS和C18净化材料设定不同比例进行试验,相关比例及相应的回收率情况见表2。按照相应的比例混合进行试验,对比其相应的回收率范围。

    表  2  PSA和C18净化粉在不同比例时的回收率范围
    Table  2.  Recovery range of PSA and C18 purification powder in different proportions
    PSA净化粉(mg)C18净化粉(mg)回收率范围(%)相对标准偏差(%)
    15010046.1~134.70.9~14.4
    15015057.7~125.42.0~12.8
    15020042.8~123.90.4~15.8
    10015045.8~137.61.1~11.6
    20015042.5~123.50.7~13.8
    下载: 导出CSV 
    | 显示表格

    表2可见,当PSA和C18净化粉的比例为1:1(150 mg/150 mg)时,回收率范围最优(57.7%~125.4%),因此选择比例为1:1即PSA和C18净化粉各150 mg作为优化的净化条件,其他配比条件下回收率低于50%目标化合物的试验结果如图3。此外,在选择盐析剂时,由于在提取液中加入无水硫酸镁会发生局部过热而影响部分物质的回收,并且提取液的颜色变深,不利于后期净化,因此选择加入氯化钠盐析分层[26-30]

    图  3  部分农药在PSA和C18净化粉配比不同时的回收率(n=6)
    注:图中比例为 C18净化粉:PSA净化粉。
    Figure  3.  Recovery rate of some pesticides with different proportion of PSA and C18 purification powder (n=6)

    本实验分别研究了6种不同产地、不同品种的蓝莓对90种农药的基质效应。结果显示,咪唑喹啉酸、亚砜磷、久效威亚砜3种物质在6种蓝莓基质中均表现为强基质效应,啶斑肟在6种蓝莓基质中均表现为弱基质效应,其余86种物质在6种蓝莓基质中也均表现出不同强度的基质效应,各目标分析物在6种基质中的基质效应见图4。强基质效应的物质在6种蓝莓基质中比例均在45%左右,但秘鲁蓝莓基质中有36%的目标分析物表现为弱基质效应,总体基质效应的影响比其它蓝莓基质相对较小。蓝莓基质效应相对较强是由多方面的因素造成的。PSA和C18能够吸附蓝莓中糖类、脂肪、维生素和非极性物质等[17-20],但它们对蓝莓中的色素类物质的吸附能力有限,无法完全去除色素类物质,因此提取液净化后不能达到无色透明的状态,这些残余的色素是造成基质效应的重要影响因素。

    图  4  90种农药在6种不同产地品种蓝莓基质中的基质效应热图
    Figure  4.  Hot map of matrix effects of 90 pesticides in blueberries from 6 different origins as well as variants

    由于蓝莓的产地不同,蓝莓生长的环境也不同会对部分目标分析物产生不同程度的基质效应影响;而同一品种的蓝莓由于在不同的产地栽培对目标分析物产生的基质效应也不同,因此在筛查分析中需要基质匹配的标准曲线进行定量分析。

    根据基质效应分布范围(图5),安徽蓝莓和智利蓝莓的基质效应分布范围相对居中,可有效平衡基质效应的影响。分别选用安徽蓝莓和智利蓝莓制备基质匹配标准工作曲线,计算90种农药在其它4种蓝莓基质中的添加回收(0.01、0.05和0.1 mg/kg)。结果发现,使用安徽蓝莓制备的基质匹配标准工作曲线,唑嘧菌胺、咪唑磺隆和环草定等化合物的回收率低于50%,90种农药的回收率范围在45.8%~132.4%;使用智利蓝莓制备的基质匹配标准工作曲线上述各化合物的回收率均在50%以上,90种农药的回收率范围在50.1%~130.9%(表3)。因此,在筛查方法的可接受范围内,选择智利蓝莓作为代表基质制备基质匹配标准工作曲线。

    图  5  90种农药在6种不同产地蓝莓基质中的基质效应范围
    Figure  5.  The range of matrix effects of 90 pesticides in blueberries from 6 different origins

    采用智利蓝莓制备基质匹配标准工作曲线,在质量浓度为0.005~0.1 mg/kg范围内,90种农药的校准曲线呈现较为良好的线性关系,决定系数(R2)位于0.992~0.999之间。以信噪比(S/N)为3和10确定方法检出限和定量限,90种农药的检出限和定量限范围分别为0.1~18.7 μg/kg和0.2~20.2 μg/kg。

    此外,为对比代表性蓝莓基质和相应蓝莓基质匹配标准工作曲线的定量分析效果,试验还在6种蓝莓样品中分别添加0.01、0.05和0.1 mg/kg三个浓度水平,各6份(n=6),分别绘制6种蓝莓的基质匹配标准工作曲线,并采用6种基质匹配的标准工作曲线定量。90种物质在6种蓝莓基质中的回收率范围为51.0%~125.8%,相对标准偏差(RSD)范围在1.4%~12.3%之间。同时,采用智利蓝莓作为代表性基质制备基质匹配的标准工作曲线,对6种蓝莓基质中的90种目标物质定量,回收率范围为50.1%~130.9%,相对标准偏差为1.0%~14.9%,6种蓝莓基质在三个浓度水平上的添加回收范围见表3,回收率范围均在筛查方法可接受范围内,这表明代表性基质匹配标准工作曲线可有效用于方法的筛查定量分析。

    表  3  6种蓝莓基质在代表性基质匹配的标准曲线定量时的回收率范围
    Table  3.  Recovery range of six blueberry matrices quantified by representative matrix-matched standard curves
    蓝莓产地回收率范围(%)相对标准偏差(%)
    云南蓝莓59.0~128.21.5~11.6
    安徽蓝莓53.7~108.01.7~8.6
    山东蓝莓51.5~128.51.3~14.9
    辽宁蓝莓50.1~130.91.3~13.3
    秘鲁蓝莓50.5~119.41.0~14.1
    智利蓝莓57.7~125.42.0~12.8
    下载: 导出CSV 
    | 显示表格

    从市场中购买新鲜蓝莓并采用本实验建立的方法进行筛查,检测到唑嘧菌胺、多果定、氟吡菌酰胺、杀草隆和马拉氧磷,相应残留物质的母离子和特征子离子的一级全扫描离子流图及二级碎片质谱图见6。各目标分析物提取母离子质量精度窗口为5 ppm,二级碎片离子与标准溶液二级碎片离子比对吻合,采用代表性基质匹配标准工作曲线定量,5种药物的残留量分别为0.0039、0.0036、0.0055、0.0047和0.0033 mg/kg,虽均未超过其相应的MRLs,但相关残留的存在提示需要加强对相应药物的使用控制和有效监测。

    图  6  市售蓝莓样品中90种农药的筛查分析结果
    注:(a):唑嘧菌胺、杀草隆、氟吡菌酰胺、马拉氧磷、多果定等检出残留农药的母离子提取离子流图(质量精度5 ppm);(b):相应残留农药的特征二级碎片图谱。
    Figure  6.  Analysis of 90 pesticides in real-life commercial blueberry samples

    本研究采用超高压液相色谱-四极杆/离子回旋轨道阱高分辨质谱建立了蓝莓中90种多种类农药残留的高通量筛查方法,通过改良QuEChERS方法实现了多种类农药残留的同时提取,遴选智利蓝莓作为代表性基质进行定量分析,90种农药在6种基质中的回收率在50.1%~130.9%。本方法操作简单,快速,效率高,可满足法规和日常监测分析要求。

    目前,实施的GB 2763-2021中对蓝莓鲜果规定的农药残留种类较之前的版本有所增加,规定的MRLs的范围也比之前更加严格,且限量要求不一,基于UPLC-HRMS的Full MS-ddMS2采集方式提供了多种类目标物高通量并行定量定性分析的有效模式。采用改良的QuEChERS方法较好的平衡了多种类残留基质效应对方法性能指标的影响,采用基质匹配的标准曲线进行定量分析可有效保证定量的准确度。采用本方法对实际样品的筛查结果证实了蓝莓中部分农药残留的存在,为后续的监管和监测提供了技术参考数据和方法学支持。

  • 图  1   90种农药的提取离子流色谱图(0.01 mg/kg)

    Figure  1.   Extraction ion chromatogram of 90 pesticides(0.01 mg/kg)

    图  2   90种农药基质添加样品(智利蓝莓,0.01 mg/kg)的提取离子流色谱图

    注:各目标分析物序号及名称与表1中一致;图4同。

    Figure  2.   Extraction ion chromatograms of 90 pesticides in spiked blueberry sample (Chilean blueberry, 0.01 mg/kg)

    图  3   部分农药在PSA和C18净化粉配比不同时的回收率(n=6)

    注:图中比例为 C18净化粉:PSA净化粉。

    Figure  3.   Recovery rate of some pesticides with different proportion of PSA and C18 purification powder (n=6)

    图  4   90种农药在6种不同产地品种蓝莓基质中的基质效应热图

    Figure  4.   Hot map of matrix effects of 90 pesticides in blueberries from 6 different origins as well as variants

    图  5   90种农药在6种不同产地蓝莓基质中的基质效应范围

    Figure  5.   The range of matrix effects of 90 pesticides in blueberries from 6 different origins

    图  6   市售蓝莓样品中90种农药的筛查分析结果

    注:(a):唑嘧菌胺、杀草隆、氟吡菌酰胺、马拉氧磷、多果定等检出残留农药的母离子提取离子流图(质量精度5 ppm);(b):相应残留农药的特征二级碎片图谱。

    Figure  6.   Analysis of 90 pesticides in real-life commercial blueberry samples

    表  1   90种农药相关信息及分析参数

    Table  1   Chemical information and analysis parameters of 90 pesticides

    序号目标分析物分子式母离子特征子离子保留时间
    (min)
    平均回收
    率(%)
    相对标准
    偏差(%)
    线性范围
    (μg/kg)
    检出限
    (μg/kg)
    定量限
    (μg/kg)
    1亚砜磷
    (Oxydemeton-methyl)
    C6H15O4PS2247.022(+)169.008, 105.0372.6780.23.75~1008.210.2
    2甲基硫环磷
    (Phosfolan-methyl)
    C5H10NO3PS2227.991(+)167.988, 127.015, 61.0113.3494.22.65~1006.59.4
    3甲基内吸磷砜
    (Demeton-S-methyl)
    C6H15O5PS2263.017(+)169.008, 121.0313.3784.02.05~1007.38.5
    4久效威亚砜
    (Thiofanox sulfoxide)
    C9H18N2O3S235.111(+)104.017, 63.998, 57.0703.7296.05.65~10012.114.3
    5敌百虫(Trichlorphon)C4H8Cl3O4P256.929(+)220.953, 196.956, 127.0153.8579.65.25~10013.814.6
    6苯嗪草酮(Metamitron)C10H10N4O203.092(+)175.097, 104.0494.0277.23.25~1004.45.0
    7对甲抑菌灵代谢物
    (DMST)
    C9H14N2O2S215.084(+)106.065, 79.0544.3888.11.85~10010.310.8
    8久效威砜
    (Thiofanox sulfone)
    C9H18N2O4S251.106(+)194.085, 57.0704.55105.310.05~1006.78.4
    9达草止代谢产物
    (Pyridafol)
    C10H7ClN2O207.031(+)104.049, 68.01384.5985.53.85~10011.512.2
    10胺鲜酯(Diethyl aminoethyl hexanoate)C12H25NO2216.195(+)143.106, 118.122, 100.1124.7585.33.85~1003.45.6
    11氧化萎锈灵(Oxycarboxin)C12H13NO4S268.063(+)193.016, 175.005, 164.9855.2772.74.15~1007.38.9
    12三氟咪唑代谢物(FM 6-1Triflumizole metabolite)C12H14ClF3N2O295.081(+)215.018, 176.007, 73.0655.3491.91.65~1000.10.2
    13苯线磷亚砜
    (Fenamiphos sulfoxide)
    C13H22NO4PS320.107(+)250.029, 171.047, 156.0235.4389.73.25~1003.64.2
    14亚胺硫磷(Phosmet-oxon)C11H12NO5PS302.024(+)160.038, 133.0275.5295.33.45~1009.712.5
    15灭草隆(Monuron)C9H11ClN2O199.063(+)154.005, 126.010, 72.0455.7591.93.45~10011.513.3
    16咪唑喹啉酸(Imazaquin)C17H17N3O3312.134(+)267.112, 199.050, 86.0965.871.13.25~1007.88.3
    17敌敌畏(Dichlorvos)C4H7Cl2O4P220.953(+)164.053, 147.091, 105.0705.9281.76.75~10012.314.4
    18环氧嘧磺隆(Oxasulfuron)C17H18N4O6S407.101(+)183.987, 122.0725.9587.43.75~1004.75.9
    19环草定(Lenacil)C13H18N2O2235.144(+)153.065, 136.039, 83.0866.176.53.35~10010.211.3
    20嘧菌腙(Ferimzone)C15H18N4255.160(+)132.081, 124.087, 91.0546.2192.34.15~1001.32.7
    21马拉氧磷(Malaoxon)C10H19O7PS315.066(+)142.992, 127.039, 99.0086.31105.54.35~1006.48.2
    22双氟磺草胺(Florasulam)C12H8F3N5O3S360.037(+)296.074, 191.992, 129.0386.3968.24.55~10010.211.4
    23倍硫磷亚砜
    (Fenthion sulfoxide)
    C10H15O4PS2295.022(+)279.998, 127.0156.488.01.95~10014.715.8
    24乙拌磷亚砜
    (Disulfoton sulfoxide)
    C8H19O3PS3291.030(+)184.985, 156.954, 114.9616.6882.03.65~1005.67.0
    25甲拌磷亚砜
    (Phorate sulfoxide)
    C7H17O3PS3277.015(+)199.002, 171.022, 142.9376.6998.07.15~1002.84.4
    26噻唑磷(Fosthiazate)C9H18NO3PS2284.053(+)227.990, 199.959, 104.0166.7694.93.95~1004.55.7
    27四唑嘧磺隆(Azimsulfuron)C13H16N10O5S425.109(+)182.055, 156.0766.8885.94.05~1006.17.7
    28磺草胺唑(Metosulam)C14H13Cl2N5O4S418.013(+)237.948, 189.981, 174.9946.9188.53.05~1003.44.8
    29烯草酮亚砜
    (Clethodim sulfoxide)
    C17H26ClNO4S376.134(+)268.136, 206.117, 164.0706.9574.84.45~1006.26.9
    30十二环吗啉(Dodemorph)C18H35NO282.279(+)116.106, 98.0967.0568.22.25~10016.217.6
    31氟吗啉(Flumorph)C21H22FNO4372.160(+)285.090, 165.053, 114.0547.185.64.15~1002.33.4
    32氧倍硫磷(Fenthion oxon)C10H15O4PS263.050(+)231.024, 216.0097.2489.34.65~1008.89.7
    33混灭威
    (3,4,5-Trimethacarb)
    C11H15NO2194.117(+)137.096, 122.0727.2965.21.95~1003.94.5
    34毒草胺(Propachlor)C11H14ClNO212.083(+)170.03671, 152.026, 94.0657.3777.62.55~1002.72.5
    35N-去乙基-甲基嘧啶磷(N-Desethyl-pirimiphos-methyl)C9H16N3O3PS278.072(+)246.046, 142.993, 108.0567.39104.15.65~1004.14.9
    36五氟磺草胺(Penoxsulam)C16H14F5N5O5S484.070(+)444.057, 195.0757.3988.44.15~1006.97.6
    37内吸磷(Demeton)C8H19O3PS2259.058(+)202.067, 194.102, 89.0427.4114.57.85~1001.72.5
    38二甲草胺(Dimethachlor)C13H18ClNO2256.109(+)224.083, 148.111, 132.0807.4989.32.65~1004.04.7
    39咪唑磺隆(Imazosulfuron)C14H13ClN6O5S413.042(+)279.039, 231.994, 153.0217.4973.64.75~1003.24.3
    40达灭净(Diclomezine)C11H8Cl2N2O255.008(+)158.982, 141.039, 123.0047.6576.33.95~1001.22.1
    41烯草酮砜
    (Clethodim sulfone)
    C17H26ClNO5S392.129(+)300.125, 208.132, 164.0697.7578.42.85~1007.18.3
    42乙拌磷砜
    (Disulfoton sulfone)
    C8H19O4PS3307.025(+)260.983, 171.023, 114.9617.7788.85.25~10015.516.2
    43甲拌磷砜(Phorate sulfone)C7H17O4PS3293.009(+)171.023, 142.992, 114.9617.8579.14.85~1005.26.0
    44丙苯磺隆(Propoxycarbazone)C15H17N4NaO7S421.078(+)335.111, 180.073, 138.0267.9399.54.55~1003.34.1
    45氟磺隆(Prosulfuron)C15H16F3N5O4S420.094(+)167.056, 141.077, 109.0457.9977.74.15~1000.91.7
    46啶斑肟(Pyrifenox)C14H12Cl2N2O295.039(+)263.014, 93.0588.0779.55.25~1005.15.9
    47吡嘧磺隆
    (Pyrazosulfuron-ethyl)
    C14H18N6O7S415.103(+)182.056, 145.0658.0987.73.05~1004.15.0
    48氯吡嘧磺隆(Halosulfuron methyl)C13H15ClN6O7S435.048(+)403.021, 156.0768.1589.03.75~1002.23.4
    49喹禾灵(Quizalofop)C17H13ClN2O4345.063(+)299.058, 272.034, 244.0398.1873.03.35~1003.44.2
    50乙氧磺隆(Ethoxysulfuron)C15H18N4O7S399.096(+)279.038, 261.028, 139.0378.2784.53.95~1006.98.1
    51烯效唑(Uniconazole)C15H18ClN3O292.121(+)138.994, 125.015, 70.0408.3584.14.45~10018.520.2
    52氧皮蝇磷(Fenchlorphos)C8H8Cl3O4P304.929(+)127.015, 108.0578.38103.04.85~10011.312.2
    53禾草敌(Molinate)C9H17NOS188.110(+)126.091, 83.0858.4177.85.05~1000.81.6
    54杀草隆(Daimuron)C17H20N2O269.164(+)151.087, 119.086, 108.0818.4998.46.85~1003.54.6
    55多果定(Dodine)C13H29N3228.243(+)60.056, 57.0708.563.14.05~1006.77.4
    56吡喃草酮(Tepraloxydim)C17H24ClNO4342.146(+)250.143, 222.148, 166.0868.5783.93.15~10016.517.3
    57唑嘧菌胺(Ametoctradin)C15H25N5276.218(+)176.092, 123.0668.6577.03.75~1001.12.0
    58氟吡禾灵(Haloxyfop)C15H11ClF3NO4362.040(+)316.034, 288.039, 91.0548.6662.43.45~1006.57.8
    59氟吡菌酰胺(Fluopyram)C16H11ClF6N2O397.053(+)208.013, 190.047, 173.0208.7499.38.25~1002.53.3
    60异恶酰草胺(Isoxaben)C18H24N2O4333.180(+)222.075, 165.054, 85.1018.7488.26.05~1004.35.4
    61嘧菌胺(Mepanipyrim)C14H13N3224.118(+)206.083, 106.0658.7683.44.15~1005.76.9
    62异稻瘟净(Iprobenfos)C13H21O3PS289.102(+)247.055, 205.008, 91.0558.980.43.55~10018.719.6
    63烯草胺(Pethoxamid)C16H22ClNO2296.141(+)250.098, 131.0858.97100.14.15~1003.13.8
    64唑啉草酯(Pinoxaden)C23H32N2O4401.243(+)317.185, 116.1079.08110.83.35~1004.55.2
    65联苯吡菌胺(Bixafen)C18H12Cl2F3N3O414.038(+)394.031, 265.9939.2378.53.75~1005.46.1
    66硅噻菌胺(Silthiofam)C13H21NOSSi268.118(+)252.087, 139.0219.3196.63.45~1003.24.0
    67吡唑酯(Pyrazoxyfen)C20H16Cl2N2O3403.061(+)157.061, 105.0349.499.55.65~1001.22.0
    68茵草敌(EPTC)C9H19NOS190.126(+)163.031, 136.0219.4177.54.15~1008.49.5
    69唑菌酯(Pyraoxystrobin)C22H21ClN2O4413.126(+)205.093, 145.070, 115.0589.7195.73.95~1004.15.2
    70吡草醚(Pyraflufen-ethyl)C15H13Cl2F3N2O4413.027(+)384.996, 338.990, 253.0179.7471.75.45~1003.64.4
    712-羟基丙苯磺隆(2-Hydroxypropoxycarbazone)C15H18N4O8S415.091(+)199.005, 174.086, 116.0459.7995.84.95~1002.43.1
    72地散磷(Bensulide)C14H24NO4PS3398.067(+)313.973, 218.0309.7997.96.25~1007.88.8
    73吡氟酰草胺(Diflufenican)C19H11F5N2O2395.081(+)301.128, 209.135, 164.06910.3894.14.15~1000.30.9
    74苯菌酮(Metrafeone)C19H21BrO5409.064(+)226.969, 209.08010.4870.03.65~10010.912.3
    75丙草胺(Pretilachlor)C17H26ClNO2312.172(+)252.115, 176.14310.590.74.05~1008.49.1
    76氯啶菌酯(Triclopyricarbe)C15H13Cl3N2O4391.001(+)194.081, 163.06310.6475.02.15~1000.61.0
    77烯肟菌酯(Enestroburin)C22H22ClNO4400.131(+)205.086, 178.042, 137.01510.9690.15.05~10010.211.4
    78戊草丹(Esprocarb)C15H23NOS266.157(+)196.079, 71.08611.0383.35.05~1006.06.7
    79吡氟禾草灵
    (Fluazifop-butyl)
    C15H12F3NO4384.141(+)328.078, 282.073, 254.07811.172.13.15~1002.12.7
    80三甲苯草酮(Tralkoxydim)C20H27NO3330.206(+)284.164, 138.055, 96.04411.3264.34.35~1005.36.1
    81环丙酸酰胺(Cyclanilide)C11H9Cl2NO3271.988(-)227.998, 159.971, 123.995472.84.55~10012.714.1
    82三氟甲磺隆(Tritosulfuron)C13H9F6N5O4S444.020(-)193.040, 66.0104.2697.34.35~1003.84.7
    83氟啶虫胺腈(Sulfoxaflor)C10H10F3N3OS276.042(-)261.019, 213.052, 87.9734.4494.44.25~1002.83.6
    84三氟羧草醚(Acifluorfen)C14H7ClF3NO5359.989(-)315.999, 122.0084.5973.42.65~1004.56.1
    85氟磺胺草醚(Fomesafen)C15H10ClF3N2O6S436.982(-)315.999, 194.9824.82100.44.95~1008.59.3
    86磺菌胺(Flusulfamide)C13H7Cl2F3N2O4S412.938(-)348.977, 283.002, 170.9975.694.33.15~1000.51.2
    87溴敌隆(Bromadiolon)C30H23BrO4525.070(-)250.063, 93.034, 78.9185.6268.74.45~10011.111.9
    88噻酰菌胺(Tradinil)C11H10ClN3OS266.016(-)238.010, 70.9966.1582.02.25~1006.68.0
    89氟甲腈(Fipronil desulfinyl)C12H4Cl2F6N4386.964(-)281.992, 350.9876.8393.64.95~1006.27.4
    90氟虫腈亚砜
    (Fipronil sulfide)
    C12H4Cl2F6N4S418.936(-)382.960, 313.964, 170.0097.01100.35.05~1009.811.1
    注:“(+)”为正离子模式;“(-)”为负离子模式。
    下载: 导出CSV

    表  2   PSA和C18净化粉在不同比例时的回收率范围

    Table  2   Recovery range of PSA and C18 purification powder in different proportions

    PSA净化粉(mg)C18净化粉(mg)回收率范围(%)相对标准偏差(%)
    15010046.1~134.70.9~14.4
    15015057.7~125.42.0~12.8
    15020042.8~123.90.4~15.8
    10015045.8~137.61.1~11.6
    20015042.5~123.50.7~13.8
    下载: 导出CSV

    表  3   6种蓝莓基质在代表性基质匹配的标准曲线定量时的回收率范围

    Table  3   Recovery range of six blueberry matrices quantified by representative matrix-matched standard curves

    蓝莓产地回收率范围(%)相对标准偏差(%)
    云南蓝莓59.0~128.21.5~11.6
    安徽蓝莓53.7~108.01.7~8.6
    山东蓝莓51.5~128.51.3~14.9
    辽宁蓝莓50.1~130.91.3~13.3
    秘鲁蓝莓50.5~119.41.0~14.1
    智利蓝莓57.7~125.42.0~12.8
    下载: 导出CSV
  • [1] 唐颖. 高铵胁迫对土壤性质、蓝莓苗生长及生理的影响[D]. 大连: 大连理工大学, 2018

    TANG Ying. Effects of high ammonium stress on soil properties, growth and physiology of blueberry seedlings[D]. Dalian: Dalian University of Technology, 2018.

    [2] 张佳. 北高丛蓝莓内在品质评价研究[D]. 北京: 中国农业科学院, 2020

    ZHANG Jia. Research on inner quality evaluation of Northern highbush blueberry[D]. Beijing: Chinese Academy of Agricultural Sciences Thesis, 2020.

    [3] 中华人民共和国国家卫生健康委员会, 中华人民共和国农业农村部, 国家市场监督管理总局. GB 2763-2019食品安全国家标准 食品中农药最大残留限量[S]. 北京: 中国农业出版社, 2019.

    The State Health Commission of the People's Republic of China, The Ministry of Agriculture and Rural Areas of the People's Republic of China, The State Market Supervision and Administration. GB 2763-2019 National Food Safety Standard-Maximum residue limits of pesticides in food[S]. Beijing: China Agriculture Press, 2019.

    [4] 中华人民共和国国家卫生健康委员会, 中华人民共和国农业农村部, 国家市场监督管理总局. GB 2763-2019食品安全国家标准 食品中农药最大残留限量[S]. 北京: 中国农业出版社, 2021

    The State Health Commission of the People's Republic of China, The Ministry of Agriculture and Rural Areas of the People's Republic of China, The State Market Supervision and Administration. GB 2763-2021 National Food Safety Standard-Maximum residue limits of pesticides in food[S]. Beijing: China Agriculture Press, 2021.

    [5] 嬴金鹏, 王绪凤. 快速检测农残方法的研究[J]. 食品安全导刊,2021,9(84):153−154. [YING Jinpeng, WANG Xufeng. Study on rapid detection of pesticide residues[J]. China Food Safety Magazine,2021,9(84):153−154.
    [6] 李婷婷, 朱璐, 李玲. 果蔬中农药残留检测方法浅析[J]. 食品安全导刊,2021,18(59):102−103. [LI Tingting, ZHU Lu, LI Ling. Analysis on detection methods of pesticide residues in fruits and vegetables[J]. China Food Safety Magazine,2021,18(59):102−103.
    [7] 刘渊, 朱虎, 高迎利. 食品中快速检测农药残留技术探究[J]. 食品安全导刊,2021,15(89):158−160. [LIU Yuan, ZHU Hu, GAO Yingli. Research on rapid detection of pesticide residues in food[J]. China Food Safety Magazine,2021,15(89):158−160.
    [8] 朱仁萍. 果蔬中农药多组分残留的检测方法研究[J]. 食品安全导刊,2020,36(104):167−168. [ZHU Renping. Study on detection method of pesticide multicomponent residues in fruits and vegetables[J]. China Food Safety Magazine,2020,36(104):167−168.
    [9]

    HELEN S, KITTLAUS S, KEMPE G, et al. Reduction of matrix effects in liquid chromatography−electrospray ionization−mass spectrometry by dilution of the sample extracts: How much dilution is needed?[J]. Analytical Chemistry,2012,84(3):1474−1482. doi: 10.1021/ac202661j

    [10]

    SAVINII S, BANDINI M, SANNINO A. An improved, rapid, and sensitive ultra-high-performance liquid chromatography-high-resolution Orbitrap mass spectrometry analysis for the determination of highly polar pesticides and contaminants in processed fruits and vegetables[J]. Journal of Agricultural and Food Chemistry,2019,67(9):2716−2722. doi: 10.1021/acs.jafc.8b06483

    [11] 吴建霞, 梁小刚, 王垄, 等. QuEChERS-三重四极杆气质联用法测定蓝莓中192种农药残留[J]. 酿酒科技,2021,8(326):118−125. [WU Jianxia, LIANG Xiaogang, WANG Long, et al. Determination of 192 pesticide residues in blueberry by QuEChERS-GS-MS/MS[J]. Liquor-making Science & Technology,2021,8(326):118−125.
    [12] 李长滨, 杨盛茄, 杨谨旭, 等. QuEChERS-LC-MS/MS联用技术对浆果中多种农药残留的测定[J]. 中国酿造,2019,38(7):174−177. [LI Changbin, YANG Shengru, YANG Jinxu, et al. Determination of multiple pesticide residues in berries by QuEChERS combined with LC-MS/MS[J]. China Brewing,2019,38(7):174−177.
    [13]

    NATALIA B, CESIO V, HEINZEN H, et al. Matrix effects and interferences of different citrus fruit coextractives in pesticide residue analysis using ultrahigh-performance liquid chromatography-high resolution mass spectrometry[J]. Journal of Agricultural and Food Chemistry,2017,65(23):4819−4829. doi: 10.1021/acs.jafc.7b00243

    [14] 吴学进, 刘春华, 罗金辉, 等. QuEChERS净化—超高效液相色谱—串联质谱法同步测定荔枝中10种植物生长调节剂残留[J]. 南方农业学报,2020,51(10):2532−2539. [WU Xuejin, LIU Chunhua, LUO Jinhui, et al. Simultaneous determination of ten plant growth regulators residues in litchi by QuEChERS clean up-ultra high performance liquid chromatography-tandem mass spectrometr[J]. Journal of Southern Agriculture,2020,51(10):2532−2539.
    [15]

    LUPO S A, ROMESBERG R L, LU X. Automated inline pigment removal for the analysis of pesticide residues in spinach by liquid chromatography tandem mass spectrometry[J]. Journal of Chromatography A,2020,1629:461−477.

    [16]

    NATALIA M, LUANA F, MAIARA S, et al. Determination of pesticide residues in golden berry (Physalis peruviana L.) by modified QuEChERS method and ultra-high performance liquid chromatography-tandem quadrupole mass spectrometry[J]. Food Analytical Methods,2017,10(2):320−329. doi: 10.1007/s12161-016-0582-7

    [17] 平新亮, 林媚, 姚周麟, 等. 杨梅中36种农药残留快速检测技术研究[J]. 食品科技,2020,45(5):328−333. [PING Xinliang, LIN Mei, YAO Zhoulin, et al. Study on rapid detection of 36 pesticide residues in Myrica rubra[J]. Food Science and Technology,2020,45(5):328−333.
    [18] 刘华文, 苏海雁, 陆小康, 等. QuEChERS/超高效液相色谱-串联质谱法测定茶叶中28种农药残留[J]. 食品工业科技,2021,42(2):223−229. [LIU Huawen, SU Haiyan, LU Xiaokang, et al. Determination of 28 kinds of pesticide residues in tea by QuEChERS/ultra performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry,2021,42(2):223−229.
    [19]

    PUGAJEVA I, IKKERE L E, JUDJALLO E, et al. Determination of residues and metabolites of more than 140 pharmacologically active substances in meat by liquid chromatography coupled to high resolution Orbitrap mass spectrometry[J]. Journal of Pharmaceutical and Biomedical Analysis,2019,166:252−263. doi: 10.1016/j.jpba.2019.01.024

    [20]

    VALERA-TARIFA N M, SANTIAGO-VALVERDE R, HERNÁNDEZ-TORRES E, et al. Development and full validation of a multiresidue method for the analysis of a wide range of pesticides in processed fruit by UHPLC-MS/MS[J]. Food Chemistry,2020,315:226−304.

    [21] 司露露, 梁杨琳, 吕春秋, 等. QuEChERS-气相色谱-串联质谱法和高效液相色谱-串联质谱法快速检测蔬菜中267种香港规例中的农药残留量[J]. 食品安全质量检测学报,2021,12(1):122−136. [SI Lulu, LIANG Yanglin, LYU Chunqiu, et al. Rapid determination of 267 kinds of Hong Kong regulatory pesticide residues in vegetables by QuEChERS combined with gas chromatography-tandem mass spectrometry and high performance liquid chromatography-tandem mass spectrometry[J]. Journal of Food Safety and Quality,2021,12(1):122−136.
    [22]

    SUN R, YANG W, LI Y, et al. Multi-residue analytical methods for pesticides in teas: A review[J]. European Food Research and Technology,2021,247(8):1839−1858. doi: 10.1007/s00217-021-03765-3

    [23]

    KWON H, LEHOTAY S J, L GEIS-ASTEGGIANTE. Variability of matrix effects in liquid and gas chromatography-mass spectrometry analysis of pesticide residues after QuEChERS sample preparation of different food crops[J]. Journal of Chromatography A,2012,12(7):235−245.

    [24]

    GUO Z, ZHU Z, HUANG S, et al. Non-targeted screening of pesticides for food analysis using liquid chromatography high-resolution mass spectrometry-A review[J]. Food Additives & Contaminants,2020,37(7):1180−1201.

    [25] 梁秀美, 张维一, 张微, 等. QuEChERS-HPLC-MS/MS法同时测定水果中38种农药的残留量[J]. 食品科学,2021,41(8):288−296. [LIANG Xiumei, ZHANG Weiyi, ZHANG Wei, et al. Simultaneous determination of residues of 38 pesticides in fruits by QuEChERS combined with high performance liquid chromatography-tandem mass spectrometry[J]. Food Science,2021,41(8):288−296.
    [26]

    SONG N, MIYOUNG Y, TAE G N. Multi-residue analysis of 203 pesticides in strawberries by liquid chromatography tandem mass spectrometry in combination with the QuEChERS method[J]. CYTA: Journal of Food,2019,17(1):976−987. doi: 10.1080/19476337.2019.1680579

    [27] 袁瑷金, 崔凌峰. QuEChERS前处理方法在食品检测中的应用[J]. 分析检测,2020(12):173−175. [YUAN Aijin, CUI Lingfeng. Application of QuEChERS pretreatment method in food testing[J]. Analysis and Testing,2020(12):173−175.
    [28]

    CHAMKASEM N. Rapid determination of polar pesticides and plant growth regulators in fruits and vegetables by liquid chromatography-tandem mass spectrometry[J]. J Environ Sci Health B,2018,53(9):622−631. doi: 10.1080/03601234.2018.1473977

    [29]

    WANG Z, CHANG Q, KANG J, et al. Screening and identification strategy for 317 pesticides in fruits and vegetables by liquid chromatography-quadrupole time-of-flight high resolution mass spectrometry[J]. Analytical Methods,2015,7(15):6385−6402. doi: 10.1039/C5AY01478F

    [30]

    CASADO J, BRIGDEN K, SANTILLO D, et al. Screening of pesticides and veterinary drugs in small streams in the European Union by liquid chromatography high resolution mass spectrometry[J]. Science of the Total Environment,2019,6(7):1204−1225.

  • 期刊类型引用(11)

    1. 苏敏,李红丽,白亚敏,黄大亮,刘元,吴彦蕾. 基于液相色谱-串联高分辨质谱技术的食品中污染物检测技术研究进展. 食品安全质量检测学报. 2025(04): 44-52 . 百度学术
    2. 张君. 我国南方部分地区蓝莓种植过程中农药残留检测结果分析. 河北农机. 2024(03): 136-138 . 百度学术
    3. 张申平,秦宇,顾颖娟. QuEChERS-超高效液相色谱-四极杆/静电场轨道阱质谱法测定牛羊乳及其乳粉中21种兽药. 乳业科学与技术. 2024(02): 24-29 . 百度学术
    4. 李红洲,国果,李博岩,梁桂娟,李志远. 超高效液相色谱-四极杆-飞行时间-高分辨质谱法分析6种李果实中的代谢物差异性. 食品安全质量检测学报. 2024(11): 63-73 . 百度学术
    5. 刘宇航,于寒冰,杨红菊,马啸,温雅君,孙志伟,习佳林,熊慧勤,肖志勇. 高效液相色谱-四极杆-飞行时间质谱法快速筛查蔬菜中124种药物与个人护理品残留量. 食品安全质量检测学报. 2024(16): 175-184 . 百度学术
    6. 朱春雨,吴移山,郑景娇. 高效液相色谱-串联质谱法测定鸡蛋中地克珠利、妥曲珠利及其代谢物残留量. 食品安全质量检测学报. 2024(16): 211-218 . 百度学术
    7. 肖泳,曾小明,李政,袁列江,邓航,王淑霞,潘照. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法测定鸡蛋中94种农药残留. 食品与发酵工业. 2024(21): 333-340 . 百度学术
    8. 王颖怡,吴玉田,孟春杨,周贻兵,刘利亚. HPLC-MS/MS技术同时测定鸡蛋中5种抗球虫药. 食品工业. 2023(06): 291-294 . 百度学术
    9. 李晓慧,李建洪,王洪萍,金芬. 植物源性食品中化学性危害物质的色谱-质谱检测技术研究进展. 分析测试学报. 2023(10): 1357-1369 . 百度学术
    10. 周雪莼,胡婷婷,王佳慧,白静,杨颖,侯宇,张哲,张勋. 高效液相色谱-高分辨质谱法快速筛查动物源性药食同源产品中32种抗生素兽药残留. 吉林中医药. 2023(12): 1469-1474 . 百度学术
    11. 范轶欧,迟英欣,杨路平,焦燕妮. 高分辨质谱技术在环境和食品风险物质非靶向筛查检测中应用的研究进展. 预防医学论坛. 2023(12): 955-960 . 百度学术

    其他类型引用(0)

图(8)  /  表(3)
计量
  • 文章访问数:  224
  • HTML全文浏览量:  51
  • PDF下载量:  28
  • 被引次数: 11
出版历程
  • 收稿日期:  2022-04-05
  • 网络出版日期:  2023-01-02
  • 刊出日期:  2023-02-28

目录

/

返回文章
返回
x 关闭 永久关闭