Effect of Pectin to Improve Corn Starch to Affect the Color Presentation of Paprika Red in Prepared Meat Products
-
摘要: 为改善玉米淀粉对辣椒红在调理肉制品中呈色的不利影响,研究了玉米淀粉、果胶和辣椒红不同浓度对体系颜色影响的特性。采用均匀设计优化了三种成分的浓度,使用偏最小二乘二次多项式进行数据回归分析,建立了以玉米淀粉、辣椒红和果胶浓度为自变量,亮度L*、红绿度a*、黄蓝度b*、色相h、总色差ΔE和散射率为因变量的预测模型。结果表明,该预测模型精度较高,最优呈色效果时各个因素组合为,玉米淀粉浓度5.37%,果胶浓度2.90%,辣椒红浓度0.27%。此时各色差指标为,L* 49.6024,a* 39.7159,b* 40.0236,h 44.6671,ΔE 10.3461,散射率0.2063。经实际体系验证该最优呈色条件能够有效改善玉米淀粉-辣椒红体系在调理肉制品中的呈色效果。本文通过预测模型筛选得到的最优呈色效果的原料配比能够有效的改善玉米淀粉-辣椒红体系的呈色效果。Abstract: To improve the adverse effects of corn starch on the color presentation of paprika red in prepared meat products, the characteristics of the effects of different concentrations of corn starch, pectin and paprika red on the color of the system were studied. The uniform design was used to optimize the concentration of the three components, and the partial least squares quadratic polynomial was used for data regression analysis. The predictive model was established that taking concentration of corn starch, pectin and paprika red as independent variables, L*, a*, b*, h, ΔE and the scattering rate as dependent variable. Results showed that, the prediction model had high accuracy, the ratio of corn starch, pectin and paprika red at best color of system, was the combination of various factors: Corn starch concentration 5.37%, pectin concentration 2.90%, paprika concentration 0.27%. At this time, the total color difference and scattering rate were: L* 49.6024, a* 39.7159, b* 40.0236, h 44.6671, ΔE 10.3461, scattering rate 0.2063. The optimal color conditions were verified to be effective in improving the color of corn starch-paprika red system in prepared meat products. In this paper, the ratio of corn starch, pectin and paprika red at best color of system obtained by the prediction model could effectively improve the color of corn starch-paprika red system.
-
调理肉制品是以畜禽肉为主要原料,经预调制加工,在冷藏或冷冻条件下销售的非即食肉制品[1]。其因具有便捷、味道多样和营养丰富的特点而备受消费者关注[2]。调理肉制品外观色泽和产品质量是消费者购买时重要参考指标,消费者偏好红色和具有良好口感的调理肉制品。在调理肉制品中辣椒红作为着色剂加入以提升调理肉制品感官品质[3]。为了提升肉的鲜嫩口感、营养品质和热加工后的外观,调理肉制品制作过程中常加入淀粉[4]。
辣椒红是一种来源于红辣椒中的天然色素,辣椒红中主要含有辣椒红素、辣椒玉红素、玉米黄质、β-胡萝卜素、β-隐黄质等类胡萝卜素[5-6]。辣椒红由于其着色力强,着色效果优异,安全性高被广泛的应用于调理肉制品加工[3]。淀粉在食品工业中通常作为膨化剂、增稠剂、填充剂等使用。玉米淀粉和土豆淀粉因其自身特性和成本差异,在食品工业中应用也有不同[7]。食品企业在调理肉制品加工过程中,发现与土豆淀粉相比,玉米淀粉对辣椒红的呈色有不利影响,即使用玉米淀粉时调理肉制品偏黄色。玉米淀粉2018年产量2815万吨[8],土豆淀粉2018年产量59万吨[9]。玉米淀粉价格较土豆淀粉低,改善辣椒红对玉米淀粉的呈色效果能够降低调理肉制品价格同时不降低产品品质。Huber等[10-11]报道了玉米淀粉颗粒存在孔径或者通道。Sujka等[12]报道了玉米淀粉颗粒比表面积、平均孔径、孔隙率和总孔隙面积均高于土豆淀粉颗粒。刘立增等[13]报道含羟基红曲红色素能够在淀粉表面吸附。Manca等[14]报道亲脂性分子可与位于颗粒外围的直链淀粉的复合。玉米淀粉可能存在选择性吸附辣椒红中的类胡萝卜素,影响辣椒红的呈色效果。玉米淀粉可能通过其颗粒表面直链淀粉与色素结合影响辣椒红的呈色效果。
果胶是一种天然的植物多糖,由于其结构复杂,功能多样,被广泛应用于食品和医药工业[15-16]。柳艳梅等[17]报道果胶可能与直链淀粉形成氢键和相互缠绕。曲金萍等[18]报道果胶能够包埋淀粉颗粒,影响体系散射率。Bai等[19]报道果胶可能通过阻碍淀粉葡萄糖苷酶与淀粉接触,抑制淀粉的水解。Verrijssen等[20]报道果胶可能吸附在脂滴表面,阻碍脂滴与脂肪酶接触。因此,果胶具有通过将玉米淀粉颗粒包裹、与直链淀粉结合或吸附辣椒红等方式改善玉米淀粉对辣椒红呈色不利影响的潜力。
国内对调理肉制品的研究专注于防腐保鲜[21-22]和贮藏期[23-24]等方向,颜色是消费者购买调理肉制品参考的最重要指标之一,目前研究对呈色效果影响的文献较少。本论文将采用淀粉-水-辣椒红模拟体系,研究玉米淀粉、果胶和辣椒红不同浓度对体系颜色影响的特性,并采用均匀设计优化三种成分的浓度,获得最佳呈色效果的原料配比,建立调理肉制品的颜色预测模型。本论文研究成果为解决玉米淀粉对辣椒红在预调理肉制品中呈色的不利影响奠定技术基础,具有实际意义。
1. 材料与方法
1.1 材料与仪器
食用辣椒红E150、腌料 河北晨光生物科技集团股份有限公司;食用玉米淀粉 沂水大地玉米开发有限公司;食用土豆淀粉 烟台双塔食品股份有限公司;果胶 半乳糖醛酸(干基计)≥74.0%,上海阿拉丁生化科技股份有限公司;鲜鸡胸肉 北京永辉超市有限公司;复合磷酸盐、大豆分离蛋白 河南万邦化工科技有限公司。
CR-800分光测色仪 北京科美润达仪器设备有限公司;KB-5010 Test Tube Shaker 海门市其林贝尔仪器制造有限公司;BSA124S-CW 电子天平 北京赛多利斯仪器系统有限公司;HC-145智能腌制机 山东鼎鸿厨具有限公司。
1.2 实验方法
1.2.1 调理肉腌料液模拟体系制备
称量一定质量玉米淀粉于50 mL离心管中,加入果胶和去离子水,振荡1 h;再加入辣椒红,振荡2 h。离心管内物质总质量为30 g。土豆淀粉-辣椒红体系制备,原料玉米淀粉换为土豆淀粉,制备方法同上。
1.2.2 调理肉腌料液模拟体系中物料浓度对呈色效果的影响
1.2.2.1 辣椒红浓度对体系呈色的影响
按照1.2.1描述的方法,于离心管中加入6.67%玉米淀粉,1.83%果胶和相应质量去离子水,振荡1 h;再加入0.03%、0.10%、0.17%、0.23%、0.30%辣椒红,振荡2 h。研究辣椒红浓度对体系色差和散射率的影响。
1.2.2.2 玉米淀粉浓度对体系呈色的影响
按照1.2.1描述的方法,于离心管中加入3.33%、5%、6.67%、8.33%、10%玉米淀粉,1.83%果胶和相应质量去离子水,振荡1 h;再加入0.17%辣椒红,振荡2 h。研究玉米淀粉浓度对体系色差和散射率的影响。
1.2.2.3 果胶浓度对体系呈色的影响
按照1.2.1描述的方法,于离心管中加入6.67%玉米淀粉,0.17%、1.00%、1.83%、2.67%、3.50%、4.33%果胶和相应质量去离子水,振荡1 h;再加入0.17%辣椒红,振荡2 h。研究果胶浓度对体系色差和散射率的影响。
1.2.3 模拟体系中物料浓度的优化
以单因素实验结果为依据,以淀粉浓度X1、果胶浓度X2和辣椒红浓度X3为自变量设计均匀实验,实验因素及水平见表1。
表 1 均匀设计实验因素与水平Table 1. Experimental factors and levels of uniform design因素 质量浓度水平 1 2 3 4 5 X1玉米淀粉(%) 3.33 5.00 6.67 8.33 10.00 X2果胶(%) 1.83 2.67 3.50 4.33 5.17 X3辣椒红(%) 0.03 0.10 0.17 0.23 0.30 使用DPS V18.0数据处理系统对均匀实验进行设计,设置因素数为3,水平数为5,实验次数为15次,获得U1553均匀设计表(表5),中心化偏差为0.1147。
表 5 均匀设计实验结果Table 5. Experimental results of uniform design实验号 玉米淀粉(%) 果胶(%) 辣椒红(%) L* a* b* h ΔE 散射率 X1 X2 X3 Y1 Y2 Y3 Y4 Y5 Y6 1 3(6.67) 1(1.83) 1(0.03) 64.21±0.05 26.94±0.08 37.44±0.17 54.27±0.05 18.95±0.05 0.29±0.02 2 5(10.00) 1(1.83) 5(0.30) 53.92±0.06 40.60±0.13 44.53±0.28 47.64±0.09 9.68±0.18 0.21±0.01 3 2(5.00) 2(2.67) 2(0.10) 54.87±0.22 35.40±0.37 42.46±0.15 50.18±0.20 14.40±0.45 0.65±0.04 4 2(5.00) 3(3.50) 4(0.23) 50.49±0.03 38.25±0.42 39.91±0.77 46.22±0.24 11.15±0.75 0.04±0.00 5 2(5.00) 4(4.33) 3(0.17) 51.98±0.04 36.44±0.31 39.76±0.54 47.50±0.14 13.15±0.52 1.18±0.02 6 4(8.33) 4(4.33) 4(0.23) 55.41±0.32 33.22±0.52 34.66±1.11 46.21±0.47 19.78±1.14 0.09±0.00 7 3(6.67) 5(5.17) 5(0.30) 51.15±0.20 36.22±0.43 35.54±0.69 44.46±0.21 15.56±0.80 0.07±0.01 8 1(3.33) 3(3.50) 5(0.30) 47.00±0.47 37.10±0.25 34.95±0.38 43.30±0.12 14.67±0.47 0.25±0.01 9 4(8.33) 4(4.33) 2(0.10) 59.30±0.63 32.14±1.06 38.53±1.17 50.18±0.35 20.76±1.53 0.23±0.02 10 1(3.33) 5(5.17) 1(0.03) 59.17±0.41 21.43±0.34 29.95±1.05 54.41±0.54 32.46±0.89 1.38±0.01 11 5(10.00) 5(5.17) 3(0.17) 59.03±0.27 31.21±0.44 34.60±0.52 47.95±0.04 22.97±0.70 0.08±0.00 12 3(6.67) 2(2.67) 4(0.23) 52.97±0.24 38.38±0.42 40.74±0.80 46.71±0.26 11.78±0.79 0.14±0.00 13 5(10.00) 3(3.50) 1(0.03) 66.23±0.37 26.08±0.31 36.41±0.49 54.39±0.69 30.08±0.30 0.42±0.04 14 1(3.33) 1(1.83) 3(0.17) 50.04±0.22 36.98±0.28 39.48±0.58 46.87±0.20 12.18±0.60 0.68±0.02 15 4(8.33) 2(2.67) 2(0.10) 59.01±0.08 34.85±0.03 43.22±0.22 51.12±0.15 17.39±0.03 0.32±0.01 1.2.4 验证实验
采用1.2.1描述的方法,按照模型计算的辣椒红、玉米淀粉和果胶最优浓度制作样品,验证最优呈色条件时该模型对体系色差及散射率预测的精度。并对比评价改善效果。
1.2.5 实际体系验证实验
调理鸡肉制作方法:鸡胸肉100 g,淀粉4 g,复合磷酸盐1.2 g,大豆分离蛋白1 g,腌料6.3 g,水48.5 g,置于保鲜袋中,滚揉1 h;加入0.1 g辣椒红再滚揉20 min。取成品淀粉糊检测色差。
1.3 检测指标
1.3.1 色差的测定
采用分光测色仪测定色差,检测条件:D65光源,观测者角度10°,照明口径26 mm,测量波长400~700 nm,反射模式。检测样品亮度值(L*)、红度值(a*)和黄度值(b*)。L*为亮度,L*=0为黑色,L*=100为白色;a*为红绿度,+a*为红,−a*为绿;b*为黄蓝度,+b*为黄,−b*为蓝。色相(h)和总色差(ΔE)计算公式分别为式(1)和式(2)。
h=tan−1ba (1) 式中:h为色相,0~90°由红到黄;90°~180°由黄到绿;180°~270°由绿到蓝;270°~360°由蓝到红。
ΔE=√(L−L*)2+(a−a*)2+(b−b*)2 (2) 式中:L为样品亮度,L*为对照品亮度;a为样品红绿度,a*为对照品;b为样品黄蓝度,b*为对照品体系黄度。以土豆淀粉-辣椒红体系颜色为对照计算的总色差记为ΔE;以玉米淀粉-果胶-辣椒红体系颜色为对照计算的总色差记为ΔE*。
1.3.2 散射率的测定
采用分光测色仪测定散射率[25],检测条件:D65光源,观测者角度10°,照明口径26 mm,测量波长400~700 nm,透射模式。
P=II0 (3) 式中:P为散射率;I为散射光强;I0为入射光强。即:
散射率=透光率×雾度 (4) 1.4 数据处理
实验重复3次,结果以平均值±标准偏差(Mean±SD)表示。SPSS 22.0对数据进行显著性分析。DPS V18.0数据处理系统对均匀设计实验结果进行回归分析,根据回归方程计算辣椒红呈色最优条件[26]。
2. 结果与分析
2.1 玉米/土豆淀粉-辣椒红模拟体系呈色效果差异
如图1所示,玉米淀粉-辣椒红体系颜色较土豆淀粉-辣椒红体系黄,这与实际生产中情况一致。
2.2 模拟体系中物料浓度对呈色的影响
2.2.1 辣椒红浓度对体系呈色的影响
辣椒红浓度对体系的色差影响结果见表2,对散射率的影响见图2。
表 2 辣椒红浓度对体系颜色的影响Table 2. Influence of paprika red concentration on the color of the system辣椒红浓度(%) L* a* b* h ΔE 0.03 61.93±0.30e 28.40±0.64a 38.09±0.38a 52.50±0.38e 16.41±0.47c 0.10 57.04±0.27d 36.38±0.31b 44.33±0.40b 50.33±0.06d 13.75±0.16b 0.17 54.48±0.06c 39.13±0.18c 44.94±0.18c 48.95±0.01c 13.19±0.16a 0.23 52.76±0.06b 40.86±0.09d 45.30±0.30c 48.11±0.11b 13.34±0.27ab 0.30 51.62±0.19a 41.59±0.13e 44.81±0.11bc 47.42±0.11a 12.93±0.10a 注:同列的不同字母代表有显著性差异,P<0.05;表3~表4同。 从表2和图2可知,随着辣椒红浓度增大,L*值逐渐减小;a*值逐渐增大;b*值逐渐增大;h值逐渐减小;ΔE逐渐减小;散射率逐渐减小,最后趋于不变。说明增大辣椒红浓度,能降低体系亮度,能够提升体系红度,与土豆淀粉-辣椒红体系颜色越来越接近。表明增大辣椒红浓度能够改善体系呈色效果。辣椒红浓度为0.17%时为最佳浓度,继续增大辣椒红浓度,h值降低有限,且L*值也继续降低造成颜色偏暗。
2.2.2 玉米淀粉浓度对体系呈色的影响
玉米淀粉浓度对体系的色差影响结果见表3,对散射率的影响见图3。
表 3 玉米淀粉对体系颜色的影响Table 3. Effect of corn starch concentration on the color of the system玉米淀粉浓度(%) L* a* b* h ΔE 3.33 49.40±0.12a 38.40±0.23a 41.62±0.10a 47.31±0.13a 7.94±0.16a 5 52.17±0.31b 39.11±0.29bc 43.81±0.35b 48.25±0.16b 11.11±0.26b 6.67 54.42±0.14c 39.27±0.16c 45.07±0.18c 48.94±0.02c 13.31±0.11c 8.33 56.09±0.13d 39.07±0.16bc 45.38±0.63c 49.27±0.31cd 14.48±0.50d 10 57.47±0.16e 38.81±0.10b 45.31±0.27c 49.42±0.21d 15.28±0.24e 从表3和图3可知,随着玉米淀粉浓度增大,L*值逐渐增大,增速逐渐减小;a*值先增加后减小,于6.67%浓度取得最大值;b*值逐渐增大,后趋于平缓;h值逐渐增大,增速逐渐减小;ΔE逐渐增大;散射率逐渐减小。说明随着玉米淀粉浓度的增大,体系颜色越来越亮、黄,和土豆淀粉-辣椒红体系颜色相差越来越大。表明增大淀粉浓度会使体系呈色效果更差。最佳玉米淀粉浓度为6.67%,减小淀粉浓度会造成L*值偏低颜色偏暗,且h值降低有限。
2.2.3 果胶浓度对体系呈色的影响
表 4 果胶浓度对体系颜色的影响Table 4. Effect of pectin concentration on the color of the system果胶浓度(%) L* a* b* h ΔE 0.17 55.18±0.16d 39.81±0.20e 46.19±0.45e 49.18±0.13e 14.76±0.31g 1.00 54.58±0.12bc 39.72±0.24e 45.75±0.15e 49.01±0.08de 14.07±0.17f 1.83 54.32±0.02ab 39.71±0.23e 45.74±0.28e 48.94±0.04de 13.25±0.29e 2.67 54.14±0.25a 39.04±0.39d 44.70±0.26d 48.88±0.12d 12.80±0.34d 3.50 54.13±0.17a 37.73±0.44c 42.16±0.16c 48.31±0.19c 10.60±0.13c 4.33 54.72±0.16c 36.39±0.64b 39.83±0.66b 47.59±0.06b 9.40±0.31b 5.17 55.05±0.17d 34.19±0.13a 36.46±0.31a 46.82±0.25a 8.39±0.19a 从表4和图4可知,随着果胶浓度增大,L*值变化不明显;a*值逐渐减小;b*值逐渐减小;h值逐渐减小;ΔE逐渐减小;散射率逐渐减小,最后趋于不变。说明添加果胶后,对体系亮度影响不明显,能够提升体系红度,与土豆淀粉-辣椒红体系颜色越来越接近。表明果胶能够改善体系呈色效果。最佳果胶浓度为3.5%,继续增大果胶浓度,且体系粘度过大难以混合均匀并且可能会影响产品感官品质。
2.3 模拟体系中物料浓度的优化结果
以玉米淀粉、果胶、辣椒红浓度为自变量,L*、a*、b*、h、ΔE和散射率为指标,采用均匀设计实验优化的结果见(表5)。
通过DPS数据处理系统使用最小二乘二次多项式回归分析实验结果获得回归方程见表6,回归方程标准回归系数见表7。
表 6 均匀设计实验偏最小二乘二次多项式回归方程Table 6. Partial least squares quadratic polynomial regression equation of uniform design experiment指标 回归方程 R2 L* Y1=59.8689191+157.127730X1−143.196983X2−9847.020665X3−37.487399X21+2035.023365X22+1459766.468319X23−890.368023X1X2−11661.033567X1X3+36099.454699X2X3 0.9696 a* Y2=20.6450381+199.775675X1+149.207539X2+9346.112117X3−1882.534733X21−4581.431248X22−1789870.708512X23+286.747691X1X2+11820.677649X1X3−13438.605879X2X3 0.8979 b* Y3=27.8703031+316.578026X1+75.882996X2+2554.922820X3−1818.832472X21−2261.816801X22−786028.365836X23−1595.446623X1X2+18255.706746X1X3−16145.237476X2X3 0.7524 h Y4=53.3255461+40.581168X1−74.043815X2−6590.764504X3+461.296465X21+2799.561310X22+1058526.029423X23−1704.682811X1X2+6024.594778X1X3−6846.791414X2X3 0.9184 ΔE Y5=34.9070041−301.886288X1−194.894374X2−11247.200140X3+2533.074796X21+5473.038988X22+2221640.478320X23+402.491701X1X2−21839.427242X1X3+27046.611381X2X3 0.8955 散射率 Y6=1.2572041−23.428149X1−1.049093X2−282.044193X3+174.745820X21+431.083012X22+75303.778210X23−186.479411X1X2+1975.971903X1X3−5240.393491X2X3 0.4559 表 7 均匀设计实验偏最小二乘回归方程标准回归系数Table 7. Standard regression coefficients of partial least squares regression equation of uniform design experiment指标 X1 X2 X3 X21 X22 X23 X1X2 X1X3 X2X3 L* 0.4577 −0.0004 −0.8176 −0.0033 0.0454 0.2149 −0.0508 −0.0536 0.0831 a* −0.0991 −0.4021 0.6884 −0.171 −0.1045 −0.2691 0.0167 0.0555 −0.0316 b* 0.3046 −0.6767 0.1506 −0.2253 −0.0703 −0.1611 −0.1267 0.1169 −0.0518 h 0.3607 −0.0106 −0.8063 0.0627 0.0955 0.238 −0.1484 0.0423 −0.0241 ΔE 0.0496 0.4723 −0.6396 0.1816 0.0985 0.2636 0.0185 −0.081 0.0502 散射率 −0.202 0.2393 −0.2013 0.2063 0.1278 0.1472 −0.1411 0.1207 −0.1602 通过分析表7中标准回归系数,可以得到玉米淀粉、果胶和辣椒红对指标L*、a*、b*、h、ΔE和散射率的影响关系。
2.3.1 对亮度值(L*)的回归分析
使用DPS数据处理软件对均匀实验结果进行回归分析,通过偏最小二乘二次多项式回归分析得到的回归方程。对L*值回归方程决定系数R2为0.9696,拟合度较高。从标准化回归系数中可以得出,影响体系L*值的主要因素为辣椒红浓度,且随着辣椒红浓度的增加,亮度降低。这与李文龙[27]的研究结果一致。辣椒红是从天然辣椒中提取的植物红色色素,吸收其他色光只反射红光,故体系亮度降低。玉米淀粉不溶于冷水,入射光在碰到淀粉颗粒时不能全部透过,一部分被散射,一部分被吸收,使得穿过淀粉颗粒的光强低于入射光光强[28]。
2.3.2 对红度值(a*)的回归分析
对a*值回归方程决定系数R2为0.8979,拟合程度较好。从标准化回归系数中可以得出,影响体系红绿度的主要因素为辣椒红浓度,且随着辣椒红浓度的增加,红度增加。辣椒红是一种天然红色色素添加后可以提高体系a*值。这与李文龙[27]、刘学军等[29]研究结果一致。果胶浓度与a*值呈负相关。果胶在食品中可以用作乳化剂[30-32],果胶可能将辣椒红包埋,导致a*值降低。玉米淀粉颗粒存在孔洞[6,33-34]和表面亲水性羟基[13],可能吸附辣椒红导致a*值降低。
2.3.3 对黄度值(b*)的回归分析
对b*值回归方程决定系数R2为0.7524,拟合程度较好。从标准化回归系数中可以得出,影响体系黄度的主要因素为果胶浓度,且随着果胶浓度的增加,b*值降低。辣椒红是一种从天然辣椒中提取得到的红色色素,其中主要包括偏红色的辣椒红素和辣椒玉红素和偏黄色的β-胡萝卜素、玉米黄质和β-隐黄质等。果胶将辣椒红包埋不仅能够使a*值降低,同样也能使b*值降低。玉米淀粉浓度与b*值呈正相关,可能是由于,随着玉米淀粉浓度的增加,体系反射率增加,b*值增大。辣椒红与b*值呈正相关,辣椒红中含有β-胡萝卜素、玉米黄质和β-隐黄质等色素能够提高体系b*值。
2.3.4 对色相值(h)的回归分析
对h值的回归方程决定系数R2为0.9184,拟合度较高。从标准化回归系数中可以得出,影响体系色相的主要因素为辣椒红浓度,且随着辣椒红浓度的增加,h值降低,即体系越红。辣椒红是一种天然红色色素添加后可降低体系h值,增加体系红度。玉米淀粉浓度与色相呈负相关,可能对辣椒红存在选择性吸附,吸附红色色素多余黄色色素。果胶与h值呈负相关,果胶可能通过将玉米淀粉颗粒包埋阻止其吸附辣椒红中的红色素。
2.3.5 对总色差(ΔE)的回归分析
对ΔE值的回归方程决定系数R2为0.8955,拟合度较高。从标准化回归系数中可以得出,影响体系总色差的主要因素为辣椒红浓度,且随着辣椒红浓度的增加,总色差降低。由于辣椒红对土豆淀粉着色较玉米淀粉更红,故增加辣椒红浓度能够降低总色差。由于ΔE为计算值由L*、a*和b*值共同决定,故玉米淀粉和果胶对总色差的影响可解释为对L*、a*和b*值的影响。
2.3.6 对散射率的回归分析
对散射率的回归方程决定系数R2为0.4559,拟合度一般。玉米淀粉浓度、果胶浓度和辣椒红浓度并不能很好的解释体系散射率的变化原因。
2.4 最优呈色条件与验证实验
利用建立的模型(表6),经数据处理获得最优呈色条件为,玉米淀粉浓度5.37%,果胶浓度2.90%,辣椒红浓度0.27%,目标参数预测值和验证结果见表8。
表 8 最优呈色条件呈色效果验证Table 8. Verification of the color rendering effect of the optimal color rendering conditions指标 预测值 实际值 相对误差 L* 49.6024 49.9467 0.69% a* 39.7159 39.4267 0.73% b* 40.0236 40.4767 1.13% 散射率 0.2063 0.1646 20.21% 通过表8预测值与实际值的误差可以得出结论,该预测模型对L*、a*、b*值预测的精度很高,对散射率的精度较低。
表 9 呈色效果比较Table 9. Comparison of color rendering effects体系 L* a* b* h ΔE* 土豆淀粉-辣椒红 46.71±0.14 33.98±0.20 35.60±0.27 46.33±0.21 8.00±0.61 玉米淀粉-辣椒红 56.99±0.18 37.19±0.14 46.75±0.11 51.50±0.10 9.69±0.42 玉米淀粉-果胶-辣椒红 49.95±0.21 39.43±0.17 40.48±0.33 45.75±0.13 − 注:此表中ΔE*是以玉米淀粉-果胶-辣椒红分散体系为对照计算的总色差。 通过表9可知,最优呈色条件呈色效果与玉米淀粉-辣椒红分散体系对比,L*值较低,即更暗;a*值较高,b*值较低,h值较低,即更红;ΔE*=9.69>3,差异性非常显著[35-36]。与土豆淀粉-辣椒红分散体系对比,L*值较高,即更亮;a*值较高,b*值较高,h值较低,即更红;ΔE*=8.00>3,差异性非常显著。上述分析说明最优呈色条件呈色效果较好。
2.5 实际体系验证实验
按照1.2.5配方制作调理肉。色差检测结果见表10。
表 10 调理鸡肉呈色效果比较Table 10. Comparison of color rendering effect between different systems of prepared chicken体系 L* a* b* h ΔE* 土豆淀粉-辣椒红 42.63±0.41 22.45±1.84 20.83±1.40 42.88±0.53 5.10±1.90 玉米淀粉-辣椒红 46.01±0.41 26.90±0.23 25.39±0.50 43.34±0.54 2.26±0.53 玉米淀粉-果胶-辣椒红 45.04±0.28 25.52±0.68 23.92±0.79 43.14±0.45 − 通过表10和图6可知,实际体系最优呈色条件与玉米淀粉-辣椒红比较,L*值较低,即更暗;a*值较低,b*值较低,h值较低,即更红;1.5<ΔE*=2.26<3,差异显著。与土豆淀粉-辣椒红比较,L*值较高,即更亮;a*值较高,b*值较高,h值较高,即更黄;ΔE*=5.10>3,差异极其显著。添加果胶不能够完全达到土豆淀粉-辣椒红的呈色效果,但能够有效改善玉米淀粉-辣椒红的呈色效果。实际体系最优呈色条件呈色效果与模拟体系结果相同,即果胶能够改善实际调理肉制品呈色效果,最优配比在实际体系中同样可行。
3. 结论
本文研究了玉米淀粉、果胶和辣椒红不同浓度对体系颜色影响的特性。采用多次重复均匀设计实验,建立有效的颜色预测模型。结果表明添加果胶能够改善模拟体系呈色效果。通过均匀设计优化得到颜色预测模型和最优呈色条件原料配比。经验证该预测模型精度较高,最优呈色条件下原料配比着色效果较好。本文通过预测模型筛选得到的最优呈色效果的原料配比能够有效的改善辣椒红的呈色效果。实际体系中存在许多难以控制的因素,如生鲜肉的新鲜度、生鲜肉的本身颜色、滚揉效果等对呈色效果的影响。如能有效解决上述问题,在实际体系中进行实验所获得数据与结果,则更具有代表性。
-
表 1 均匀设计实验因素与水平
Table 1 Experimental factors and levels of uniform design
因素 质量浓度水平 1 2 3 4 5 X1玉米淀粉(%) 3.33 5.00 6.67 8.33 10.00 X2果胶(%) 1.83 2.67 3.50 4.33 5.17 X3辣椒红(%) 0.03 0.10 0.17 0.23 0.30 表 5 均匀设计实验结果
Table 5 Experimental results of uniform design
实验号 玉米淀粉(%) 果胶(%) 辣椒红(%) L* a* b* h ΔE 散射率 X1 X2 X3 Y1 Y2 Y3 Y4 Y5 Y6 1 3(6.67) 1(1.83) 1(0.03) 64.21±0.05 26.94±0.08 37.44±0.17 54.27±0.05 18.95±0.05 0.29±0.02 2 5(10.00) 1(1.83) 5(0.30) 53.92±0.06 40.60±0.13 44.53±0.28 47.64±0.09 9.68±0.18 0.21±0.01 3 2(5.00) 2(2.67) 2(0.10) 54.87±0.22 35.40±0.37 42.46±0.15 50.18±0.20 14.40±0.45 0.65±0.04 4 2(5.00) 3(3.50) 4(0.23) 50.49±0.03 38.25±0.42 39.91±0.77 46.22±0.24 11.15±0.75 0.04±0.00 5 2(5.00) 4(4.33) 3(0.17) 51.98±0.04 36.44±0.31 39.76±0.54 47.50±0.14 13.15±0.52 1.18±0.02 6 4(8.33) 4(4.33) 4(0.23) 55.41±0.32 33.22±0.52 34.66±1.11 46.21±0.47 19.78±1.14 0.09±0.00 7 3(6.67) 5(5.17) 5(0.30) 51.15±0.20 36.22±0.43 35.54±0.69 44.46±0.21 15.56±0.80 0.07±0.01 8 1(3.33) 3(3.50) 5(0.30) 47.00±0.47 37.10±0.25 34.95±0.38 43.30±0.12 14.67±0.47 0.25±0.01 9 4(8.33) 4(4.33) 2(0.10) 59.30±0.63 32.14±1.06 38.53±1.17 50.18±0.35 20.76±1.53 0.23±0.02 10 1(3.33) 5(5.17) 1(0.03) 59.17±0.41 21.43±0.34 29.95±1.05 54.41±0.54 32.46±0.89 1.38±0.01 11 5(10.00) 5(5.17) 3(0.17) 59.03±0.27 31.21±0.44 34.60±0.52 47.95±0.04 22.97±0.70 0.08±0.00 12 3(6.67) 2(2.67) 4(0.23) 52.97±0.24 38.38±0.42 40.74±0.80 46.71±0.26 11.78±0.79 0.14±0.00 13 5(10.00) 3(3.50) 1(0.03) 66.23±0.37 26.08±0.31 36.41±0.49 54.39±0.69 30.08±0.30 0.42±0.04 14 1(3.33) 1(1.83) 3(0.17) 50.04±0.22 36.98±0.28 39.48±0.58 46.87±0.20 12.18±0.60 0.68±0.02 15 4(8.33) 2(2.67) 2(0.10) 59.01±0.08 34.85±0.03 43.22±0.22 51.12±0.15 17.39±0.03 0.32±0.01 表 2 辣椒红浓度对体系颜色的影响
Table 2 Influence of paprika red concentration on the color of the system
辣椒红浓度(%) L* a* b* h ΔE 0.03 61.93±0.30e 28.40±0.64a 38.09±0.38a 52.50±0.38e 16.41±0.47c 0.10 57.04±0.27d 36.38±0.31b 44.33±0.40b 50.33±0.06d 13.75±0.16b 0.17 54.48±0.06c 39.13±0.18c 44.94±0.18c 48.95±0.01c 13.19±0.16a 0.23 52.76±0.06b 40.86±0.09d 45.30±0.30c 48.11±0.11b 13.34±0.27ab 0.30 51.62±0.19a 41.59±0.13e 44.81±0.11bc 47.42±0.11a 12.93±0.10a 注:同列的不同字母代表有显著性差异,P<0.05;表3~表4同。 表 3 玉米淀粉对体系颜色的影响
Table 3 Effect of corn starch concentration on the color of the system
玉米淀粉浓度(%) L* a* b* h ΔE 3.33 49.40±0.12a 38.40±0.23a 41.62±0.10a 47.31±0.13a 7.94±0.16a 5 52.17±0.31b 39.11±0.29bc 43.81±0.35b 48.25±0.16b 11.11±0.26b 6.67 54.42±0.14c 39.27±0.16c 45.07±0.18c 48.94±0.02c 13.31±0.11c 8.33 56.09±0.13d 39.07±0.16bc 45.38±0.63c 49.27±0.31cd 14.48±0.50d 10 57.47±0.16e 38.81±0.10b 45.31±0.27c 49.42±0.21d 15.28±0.24e 表 4 果胶浓度对体系颜色的影响
Table 4 Effect of pectin concentration on the color of the system
果胶浓度(%) L* a* b* h ΔE 0.17 55.18±0.16d 39.81±0.20e 46.19±0.45e 49.18±0.13e 14.76±0.31g 1.00 54.58±0.12bc 39.72±0.24e 45.75±0.15e 49.01±0.08de 14.07±0.17f 1.83 54.32±0.02ab 39.71±0.23e 45.74±0.28e 48.94±0.04de 13.25±0.29e 2.67 54.14±0.25a 39.04±0.39d 44.70±0.26d 48.88±0.12d 12.80±0.34d 3.50 54.13±0.17a 37.73±0.44c 42.16±0.16c 48.31±0.19c 10.60±0.13c 4.33 54.72±0.16c 36.39±0.64b 39.83±0.66b 47.59±0.06b 9.40±0.31b 5.17 55.05±0.17d 34.19±0.13a 36.46±0.31a 46.82±0.25a 8.39±0.19a 表 6 均匀设计实验偏最小二乘二次多项式回归方程
Table 6 Partial least squares quadratic polynomial regression equation of uniform design experiment
指标 回归方程 R2 L* Y1=59.8689191+157.127730X1−143.196983X2−9847.020665X3−37.487399X21+2035.023365X22+1459766.468319X23−890.368023X1X2−11661.033567X1X3+36099.454699X2X3 0.9696 a* Y2=20.6450381+199.775675X1+149.207539X2+9346.112117X3−1882.534733X21−4581.431248X22−1789870.708512X23+286.747691X1X2+11820.677649X1X3−13438.605879X2X3 0.8979 b* Y3=27.8703031+316.578026X1+75.882996X2+2554.922820X3−1818.832472X21−2261.816801X22−786028.365836X23−1595.446623X1X2+18255.706746X1X3−16145.237476X2X3 0.7524 h Y4=53.3255461+40.581168X1−74.043815X2−6590.764504X3+461.296465X21+2799.561310X22+1058526.029423X23−1704.682811X1X2+6024.594778X1X3−6846.791414X2X3 0.9184 ΔE Y5=34.9070041−301.886288X1−194.894374X2−11247.200140X3+2533.074796X21+5473.038988X22+2221640.478320X23+402.491701X1X2−21839.427242X1X3+27046.611381X2X3 0.8955 散射率 Y6=1.2572041−23.428149X1−1.049093X2−282.044193X3+174.745820X21+431.083012X22+75303.778210X23−186.479411X1X2+1975.971903X1X3−5240.393491X2X3 0.4559 表 7 均匀设计实验偏最小二乘回归方程标准回归系数
Table 7 Standard regression coefficients of partial least squares regression equation of uniform design experiment
指标 X1 X2 X3 X21 X22 X23 X1X2 X1X3 X2X3 L* 0.4577 −0.0004 −0.8176 −0.0033 0.0454 0.2149 −0.0508 −0.0536 0.0831 a* −0.0991 −0.4021 0.6884 −0.171 −0.1045 −0.2691 0.0167 0.0555 −0.0316 b* 0.3046 −0.6767 0.1506 −0.2253 −0.0703 −0.1611 −0.1267 0.1169 −0.0518 h 0.3607 −0.0106 −0.8063 0.0627 0.0955 0.238 −0.1484 0.0423 −0.0241 ΔE 0.0496 0.4723 −0.6396 0.1816 0.0985 0.2636 0.0185 −0.081 0.0502 散射率 −0.202 0.2393 −0.2013 0.2063 0.1278 0.1472 −0.1411 0.1207 −0.1602 表 8 最优呈色条件呈色效果验证
Table 8 Verification of the color rendering effect of the optimal color rendering conditions
指标 预测值 实际值 相对误差 L* 49.6024 49.9467 0.69% a* 39.7159 39.4267 0.73% b* 40.0236 40.4767 1.13% 散射率 0.2063 0.1646 20.21% 表 9 呈色效果比较
Table 9 Comparison of color rendering effects
体系 L* a* b* h ΔE* 土豆淀粉-辣椒红 46.71±0.14 33.98±0.20 35.60±0.27 46.33±0.21 8.00±0.61 玉米淀粉-辣椒红 56.99±0.18 37.19±0.14 46.75±0.11 51.50±0.10 9.69±0.42 玉米淀粉-果胶-辣椒红 49.95±0.21 39.43±0.17 40.48±0.33 45.75±0.13 − 注:此表中ΔE*是以玉米淀粉-果胶-辣椒红分散体系为对照计算的总色差。 表 10 调理鸡肉呈色效果比较
Table 10 Comparison of color rendering effect between different systems of prepared chicken
体系 L* a* b* h ΔE* 土豆淀粉-辣椒红 42.63±0.41 22.45±1.84 20.83±1.40 42.88±0.53 5.10±1.90 玉米淀粉-辣椒红 46.01±0.41 26.90±0.23 25.39±0.50 43.34±0.54 2.26±0.53 玉米淀粉-果胶-辣椒红 45.04±0.28 25.52±0.68 23.92±0.79 43.14±0.45 − -
[1] 孙京新. 调理肉制品加工技术[M]. 北京: 中国农业出版社, 2014: 1−5 SUN Jingxin. Prepared meat products processing technology[M]. Beijing: China Agriculture Press, 2014: 1−5.
[2] 张晓倩, 孙悦, 池福敏, 等. 偏最小二乘回归法分析藏鸡胸肉质地特性[J/OL]. 食品科学: 1−16[2022-01-11]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210927.2316.050.html ZHANG Xiaoqian, SUN Yue, CHI Fumin, et al. Partial least squares regression study on the texture characteristics of Tibetan chicken[J/OL]. Food Science: 1−16[2022-01-11]. http://kns.cnki.net/kcms/detail/11.2206.ts.20210927.2316.050.html.
[3] 鲁青. 添加辣椒红色素调理鸡排颜色稳定性研究[D]. 南京: 南京农业大学, 2018 LU Qing. Studies on the color stability of ready-to-eat breast prepared with capsanthin[D]. Nanjing: Nanjing Agriculture University, 2018.
[4] 张桂凤, 李文武. 调理肉制品工艺参数优化及低温放置过程中品质变化研究[J]. 中国调味品,2021,46(10):87−93. [ZHANG Guifeng, LI Wenwu. Optimization of process parameters of prepared meat products and study on quality changes during low-temperature storage[J]. China Condiment,2021,46(10):87−93. doi: 10.3969/j.issn.1000-9973.2021.10.016 ZHANG Guifeng, LI Wenwu. Optimization of process parameters of prepared meat products and study on quality changes during low-temperature storage[J]. China Condiment, 2021, 46(10): 87-93. doi: 10.3969/j.issn.1000-9973.2021.10.016
[5] ARRIZABALAGA-LARRANAG A, CAMPMAJO G, SAURINA J, et al. Determination of capsaicinoids and carotenoids for the characterization and geographical origin authentication of paprika by UHPLC-APCI-HRMS[J]. LWT,2021,139:110533. doi: 10.1016/j.lwt.2020.110533
[6] KIM J S, AN C G, PARK J S, et al. Carotenoid profiling from 27 types of paprika (Capsicum annuum L.) with different colors, shapes, and cultivation methods[J]. Food Chemistry,2016,201:64−71. doi: 10.1016/j.foodchem.2016.01.041
[7] 潘明. 马铃薯淀粉和玉米淀粉的特性及其应用比较[J]. 中国马铃薯,2001(4):222−226. [PAN Ming. Comparison of the properties of potato starch and corn starch and their applications[J]. Chinese Potato Journal,2001(4):222−226. doi: 10.3969/j.issn.1672-3635.2001.04.010 PAN Ming. Comparison of the properties of potato starch and corn starch and their applications[J]. Chinese Potato Journal, 2001(4): 222-226. doi: 10.3969/j.issn.1672-3635.2001.04.010
[8] 佟毅. 中国玉米淀粉与淀粉糖工业技术发展历程与展望[J]. 食品与发酵工业,2019,45(17):294−298. [[TONG Yi. Development history and prospect of China corn starch and starch sugar industry technology[J]. Food and Fermentation Industries,2019,45(17):294−298. doi: 10.13995/j.cnki.11-1802/ts.021575 [TONG Yi. Development history and prospect of China corn starch and starch sugar industry technology[J]. Food and Fermentation Industries, 2019, 45(17): 294-298. doi: 10.13995/j.cnki.11-1802/ts.021575
[9] 中国淀粉工业协会. 2020年中国玉米市场和淀粉行业年度分析及预测报告(第4期)[EB/OL]. 北京: 中国淀粉工业协会, 2020[2022-1-17] China Starch Industry Association. Annual analysis and forecast report of China's corn market and starch industry in 2020 (Issue 4)[EB/OL]. Beijing: China Starch Industry Association, 2020[2022-1-17].
[10] HUBER K C, BEMILLER J N. Channels of maize and sorghum starch granules[J]. Carbohydrate Polymers,2000,41(3):269−276. doi: 10.1016/S0144-8617(99)00145-9
[11] HUBER K C, BEMILLER J N. Visualization of channels and cavities of corn and sorghum starch granules[J]. Cereal Chemistry,1997,74(5):537−541. doi: 10.1094/CCHEM.1997.74.5.537
[12] SUJKA M, JAMROZ J. Characteristics of pores in native and hydrolyzed starch granules[J]. Starch-Stärke,2010,62(5):229−235.
[13] 刘立增, 孟宪昉, 郭俊杰, 等. 红曲红色素在淀粉颗粒表面吸附机制研究[J]. 食品研究与开发,2015,36(14):41−44. [LIU Lizeng, MENG Xianfang, GUO Junjie, et al. Study on the adsorption mechanism of red monascus pigment on the surface of starch[J]. Food Research and Development,2015,36(14):41−44. doi: 10.3969/j.issn.1005-6521.2015.14.011 LIU Lizeng, MENG Xianfang, GUO Junjie, et al. Study on the adsorption mechanism of red monascus pigment on the surface of starch[J]. Food Research and Development, 2015, 36(14): 41-44. doi: 10.3969/j.issn.1005-6521.2015.14.011
[14] MANCA M, WOORTMAN A J J, LOOS K, et al. Imaging inclusion complex formation in starch granules using confocal laser scanning microscopy[J]. Starch-Stärke,2015,67(1−2):132−138.
[15] 刘成梅, 刘琪, 陈军, 等. 果胶功能性质新进展[J]. 食品工业科技,2019,40(21):344−351. [LIU Chengmei, LIU Qi, CHEN Jun, et al. New advances in functional properties of pectin[J]. Science and Technology of Food Industry,2019,40(21):344−351. doi: 10.13386/j.issn1002-0306.2019.21.056 LIU Chengmei, LIU Qi, CHEN Jun, et al. New advances in functional properties of pectin[J]. Science and Technology of Food Industry, 2019, 40(21): 344-351. doi: 10.13386/j.issn1002-0306.2019.21.056
[16] 谢明勇, 李精, 聂少平. 果胶研究与应用进展[J]. 中国食品学报,2013,13(8):1−14. [XIE Mingyong, LI Jing, NIE Shaoping. A review about the research and applications of pectin[J]. Journal of Chinese Institute of Food Science and Technology,2013,13(8):1−14. doi: 10.16429/j.1009-7848.2013.08.031 XIE Mingyong, LI Jing, NIE Shaoping. A review about the research and applications of pectin[J]. Journal of Chinese Institute of Food Science and Technology, 2013, 13(8): 1-14. doi: 10.16429/j.1009-7848.2013.08.031
[17] 柳艳梅, 左小博, 房升, 等. 亲水性胶体对大米淀粉流变与回生性的影响[J]. 食品科学,2017,38(1):47−52. [LIU Yanmei, ZUO Xiaobo, FANG Sheng, et al. Effect of hydrocolloids on the rheology and retrogradation of rice starch[J]. Food Science,2017,38(1):47−52. doi: 10.7506/spkx1002-6630-201701008 LIU Yanmei, ZUO Xiaobo, FANG Sheng, et al. Effect of hydrocolloids on the rheology and retrogradation of rice starch[J]. Food Science, 2017, 38(1): 47-52. doi: 10.7506/spkx1002-6630-201701008
[18] 曲金萍, 陈金玉, 张亚杰, 等. 玉米淀粉与食用胶共混体系理化性质的研究[J]. 食品工业科技,2019,40(10):1−5. [QU Jinping, CHEN Jinyu, ZHANG Yajie, et al. Physicochemical properties of corn starch and edible hydrocolloid mixed system[J]. Science and Technology of Food Industry,2019,40(10):1−5. doi: 10.13386/j.issn1002-0306.2019.10.001 QU Jinping, CHEN Jinyu, ZHANG Yajie, et al. Physicochemical properties of corn starch and edible hydrocolloid mixed system[J]. Science and Technology of Food Industry, 2019, 40(10): 1-5. doi: 10.13386/j.issn1002-0306.2019.10.001
[19] BAI Y, WU P, WANG K, et al. Effects of pectin on molecular structural changes in starch during digestion[J]. Food Hydrocolloids,2017,69:10−18. doi: 10.1016/j.foodhyd.2017.01.021
[20] VERRIJSSEN T A J, VERKEMPINCK S H E, CHRISTIAENS S, et al. The effect of pectin on in vitro β-carotene bioaccessibility and lipid digestion in low fat emulsions[J]. Food Hydrocolloids,2015,49:73−81. doi: 10.1016/j.foodhyd.2015.02.040
[21] 雷英杰, 王卫, 刘文龙, 等. 调理肉制品防腐保鲜技术研究进展[J]. 农产品加工,2020(22):98−102. [LEI Yingjie, WANG Wei, LIU Wenlong, et al. Research progress in preservative preservation technology of processed meat products[J]. Farm Products Processing,2020(22):98−102. doi: 10.16693/j.cnki.1671-9646(X).2020.11.066 LEI Yingjie, WANG Wei, LIU Wenlong, et al. Research progress in preservative preservation technology of processed meat products[J]. Farm Products Processing, 2020(22): 98-102. doi: 10.16693/j.cnki.1671-9646(X).2020.11.066
[22] 张根生, 丁一丹, 郑野, 等. 预调理肉制品防腐保鲜技术的研究进展[J]. 中国调味品,2020,45(6):185−190. [ZHANG Gensheng, DING Yidan, ZHENG Ye, et al. Research progress on antispsis and preservation technology of pre-prepared meat products[J]. China Condiment,2020,45(6):185−190. doi: 10.3969/j.issn.1000-9973.2020.06.041 ZHANG Gensheng, DING Yidan, ZHENG Ye, et al. Research progress on antispsis and preservation technology of pre-prepared meat products[J]. China Condiment, 2020, 45(6): 185-190. doi: 10.3969/j.issn.1000-9973.2020.06.041
[23] 郭美. 调理牛肉饼贮藏品质变化规律研究[D]. 银川: 宁夏大学, 2021 GUO Mei. Variation rule of quality in storage of prepared beef patties[D]. Yinchuan: Ningxia University, 2021.
[24] 胡欣颖. 调理猪肉制品的研制及贮藏期品质变化研究[D]. 重庆: 西南大学, 2020 HU Xinying. Study on the development and quality change of marinated pork products during storge[D]. Chongqing: Southwest University, 2020.
[25] 丁小明, 周长吉. 温室透光覆盖材料透光特性的测试[J]. 农业工程学报,2008(8):210−213. [DING Xiaoming, ZHOU Changji. Test and measurement of solar visible radiation transmittance of greenhouse glazing[J]. Transactions of the Chinese Society of Agricultural Engineering,2008(8):210−213. doi: 10.3321/j.issn:1002-6819.2008.08.046 DING Xiaoming, ZHOU Changji. Test and measurement of solar visible radiation transmittance of greenhouse glazing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008(8): 210-213. doi: 10.3321/j.issn:1002-6819.2008.08.046
[26] 唐启义. DPS数据处理系统[M]. 北京: 科学出版社, 2013: 505−510 TANG Qiyi. DPS data processing system[M]. Beijing: Science Press, 2013: 505−510.
[27] 李文龙. 低亚硝酸盐西式熏煮火腿品质改良及产品质量评价[D]. 吉林: 吉林大学, 2020 LI Wenlong. Quality improvement and product quality evaluation of low-nitrite western-style smoked ham[D]. Jilin: Jilin University, 2020.
[28] 王清华. 光散射法颗粒大小与形状分析[D]. 南京: 南京工业大学, 2003 WANG Qinghua. Particle size and shape analysis with light scattering[D]. Nanjing: Nanjing Tech University, 2003.
[29] 刘学军, 于欣, 路鑫. 适用于酱卤肉制品的天然复合上色剂的研究[J]. 肉类工业,2013(3):25−27. [LIU Xuejun, YU Xin, LI Xin. Study on natural compound colorant applied to sauced meat products[J]. Meat Industry,2013(3):25−27. doi: 10.3969/j.issn.1008-5467.2013.03.008 LIU Xuejun, YU Xin, LI Xin. Study on natural compound colorant applied to sauced meat products[J]. Meat Industry, 2013(3): 25-27. doi: 10.3969/j.issn.1008-5467.2013.03.008
[30] 任多多, 江伟, 孙印石, 等. 果胶的分类、功能及其在食品工业中应用的研究进展[J]. 食品工业科技, 2022, 43(3):438-446. REN Duoduo, JIANG Wei, SUN Yinshi, et al. Research progress on the classification, function and application of pectin in food industry[J]. Science and Technology of Food Industry, 2022, 43(3):438-446.
[31] 彭小燕, 木泰华, 孙红男, 等. 超高压处理对甜菜果胶结构及乳化特性的影响[J]. 中国农业科学,2015,48(7):1405−1414. [PENG Xiaoyan, MU Taihua, SUN Hongnan, et al. Effects of high hydrostatic pressure on the structural and emulsifying properties of sugar beet pectin[J]. Scientia Agricultura Sinica,2015,48(7):1405−1414. doi: 10.3864/j.issn.0578-1752.2015.07.15 PENG Xiaoyan, MU Taihua, SUN Hongnan, et al. Effects of high hydrostatic pressure on the structural and emulsifying properties of sugar beet pectin[J]. Scientia Agricultura Sinica, 2015, 48(7): 1405-1414. doi: 10.3864/j.issn.0578-1752.2015.07.15
[32] 杨金姝, 木泰华, 马梦梅. 果胶结构、提取方法及乳化特性研究进展[J]. 食品工业科技,2018,39(14):315−322. [YANG Jinshu, MU Taihua, MA Mengmei. Research progress in structure, extraction methods and emulsifying properties of pectin[J]. Science and Technology of Food Industry,2018,39(14):315−322. doi: 10.13386/j.issn1002-0306.2018.14.060 YANG Jinshu, MU Taihua, MA Mengmei. Research progress in structure, extraction methods and emulsifying properties of pectin[J]. Science and Technology of Food Industry, 2018, 39(14): 315-322. doi: 10.13386/j.issn1002-0306.2018.14.060
[33] BENMOUSSA M, SUHENDRA B, ABOUBACAR A, et al. Distinctive sorghum starch granule morphologies appear to improve raw starch digestibility[J]. Starch-Stärke,2006,58(2):92−99.
[34] KIM H S, HUBER K C. Channels within soft wheat starch A- and B-type granules[J]. Journal of Cereal Science,2008,48(1):159−172. doi: 10.1016/j.jcs.2007.09.002
[35] LAUNGE D. Fundamentals of colourimetry-application report No. 10e[J]. Dr Launge, 1999.
[36] BELLARY A N, INDIRAMMA A R, PRAKASH M, et al. Anthocyanin infused watermelon rind and its stability during storage[J]. Innovative Food Science & Emerging Technologies,2016,33:554−562.
-
期刊类型引用(9)
1. 方丽,江晓,李雪莹,张丽,黄嘉颖,张方圆. 气相色谱-三重四极杆质谱法同时测定乌梅中25种多环芳烃及其污染来源分析. 食品安全质量检测学报. 2024(02): 74-82 . 百度学术
2. 王润博,刘思琪,王林山. 发酵型含乳饮料研究概况及新产品开发. 漯河职业技术学院学报. 2024(01): 34-40 . 百度学术
3. 杨小丽,李本姣,章攀,李松,李智佳. 青梅果酒加工工艺研究进展. 南方农业. 2024(21): 130-133 . 百度学术
4. 周丹英,姜慧洁,胡云莉,章越. 茶多酚银杏叶胶囊的研制及其辅助降血脂功能评价. 食品科技. 2023(05): 113-119 . 百度学术
5. 郭锦荣. 中药调脂及抗动脉粥样硬化作用研究进展. 中国中医药现代远程教育. 2023(13): 200-202 . 百度学术
6. 蒋维,舒晓燕,王玉霞,唐志康,梅国富,杨兴蓉,刘欣雨,侯大斌. 四川主产区不同品种青梅果实品质分析. 食品工业科技. 2023(16): 321-330 . 本站查看
7. 周芳,陈文明,陈新宇,蔡嘉洛,LAU Yutong. 冬春谧阳方对高脂血症患者PPARγ/ANGPTL受体配体的影响. 陕西中医. 2023(11): 1537-1541 . 百度学术
8. 任蓉,杜雅薇,冉隆开. 血脂异常的中医病因病机及辨证施治的研究进展. 疑难病杂志. 2023(11): 1228-1232 . 百度学术
9. 裴占阳,韦经利,余江游,赵先游,班明政,陈福. 几种中草药饲料添加剂在动物生产中的应用研究. 现代畜牧兽医. 2022(09): 60-63 . 百度学术
其他类型引用(1)