Loading [MathJax]/jax/output/SVG/jax.js
  • 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于液质联用和分子对接技术对薄蒴草抗炎活性成分的筛选

吴孟雅, 张楠茜, 张凯月, 吕经纬, 兰梦, 张辉, 孙佳明

吴孟雅,张楠茜,张凯月,等. 基于液质联用和分子对接技术对薄蒴草抗炎活性成分的筛选[J]. 食品工业科技,2022,43(17):19−25. doi: 10.13386/j.issn1002-0306.2021120197.
引用本文: 吴孟雅,张楠茜,张凯月,等. 基于液质联用和分子对接技术对薄蒴草抗炎活性成分的筛选[J]. 食品工业科技,2022,43(17):19−25. doi: 10.13386/j.issn1002-0306.2021120197.
WU Mengya, ZHANG Nanxi, ZHANG Kaiyue, et al. Screening of Anti-inflammatory Active Components of Lepyrodiclis holosteoides Based on LC-MS and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2022, 43(17): 19−25. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120197.
Citation: WU Mengya, ZHANG Nanxi, ZHANG Kaiyue, et al. Screening of Anti-inflammatory Active Components of Lepyrodiclis holosteoides Based on LC-MS and Molecular Docking Technology[J]. Science and Technology of Food Industry, 2022, 43(17): 19−25. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120197.

基于液质联用和分子对接技术对薄蒴草抗炎活性成分的筛选

基金项目: 吉林省重大科技专项,组分中药创制与中成药老品种挖掘开发(20150203005YY)。
详细信息
    作者简介:

    吴孟雅(1997−),女,硕士研究生,研究方向:中药健康产品研究与开发,E-mail:1243110297@qq.com

    通讯作者:

    张辉(1958−),男,硕士,教授,研究方向:中药与天然药物化学,E-mail:zhanghui_8080@163.com

    孙佳明(1976−),男,博士,研究员,研究方向:中药药效物质基础,E-mail:sun_jiaming2000@163.com

  • 中图分类号: R914.4

Screening of Anti-inflammatory Active Components of Lepyrodiclis holosteoides Based on LC-MS and Molecular Docking Technology

  • 摘要: 目的:基于液质联用及分子对接技术筛选薄蒴草中的抗炎活性成分。方法:通过研究薄蒴草不同极性萃取部位对脂多糖(LPS)诱导的小鼠巨噬细胞RAW 264.7产生一氧化氮(NO)、肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)的影响,筛选薄蒴草抗炎活性部位。通过高效液相色谱-质谱联用技术(high performance liquid chromatography-mass spectrometry,HPLC-MS)分析抗炎活性部位的化学成分。选择5个重要的炎症因子TNF-α、IL-6、白细胞介素-1β(IL-1β)、前列腺素E2(PGE2)、核转录因子-κB(NF-κB)分别与活性部位中的有效成分通过Autodock Vina软件进行分子对接。结果:体外抗炎实验结果显示薄蒴草的乙酸乙酯萃取部位具有一定的抗炎活性,与模型组相比在最高实验浓度75 μg/mL下对NO、TNF-α、IL-6的产生均有极显著抑制作用(P<0.01),抑制率分别为63.53%、34.23%、34.58%;液质联用鉴定出11个化学成分,包括8个黄酮类成分芦丁、牡荆素、山奈酚、鼠李秦素、槲皮素、芹菜素、芹菜素-6-C-葡萄糖-8-C-木糖苷、槲皮苷和3个香豆素类成分伞形花内酯、7-甲氧基香豆素、5,7-二羟基香豆素;分子对接结果显示,与TNF-α、IL-6、IL-1β、PGE2、NF-κB结合最好的成分分别是槲皮苷、山奈酚、芦丁、槲皮苷、牡荆素,结合能为−8.5、−7.8、−8.0、−7.2和−10.0 kcal/mol,均优于阳性对照地塞米松,说明这些成分与5个靶点具有较好的亲和力。结论:薄蒴草的乙酸乙酯萃取部位为抗炎活性部位,通过液质联用结合分子对接技术能快速、便捷地筛选出薄蒴草的抗炎活性成分。
    Abstract: Objective: To screen the anti-inflammatory active constituents in Lepyrodiclis holosteoides based on high performance liquid chromatography-mass spectrometry (HPLC-MS) and molecular docking technology. Methods: In order to explore the anti-inflammatory active fraction of Lepyrodiclis holosteoides, inhibitory effects of different polar fractions on nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production in lipopolysaccharide (LPS) stimulated RAW 264.7 were studied. The chemical components of active site were analyzed by HPLC-MS. Five important inflammatory protein receptors such as TNF-α, IL-6, interleukin-1β (IL-1β), prostaglandin E2 (PGE2) and nuclear transcription factor-κB (NF-κB) were selected, and the active ingredients were molecularly docked through Auto Dock Vina software. Results: Experiments in vitro showed that the ethyl acetate fraction could inhibit the production of NO, TNF-α and IL-6 in LPS induced RAW 264.7 cells. Compared with the model control group, inhibitory rates of NO, TNF-α and IL-6 were significantly lower at the highest concentration of 75 μg/mL (P<0.01), which were 63.53%, 34.23% and 34.58% respectively. Eleven chemical components were identified by HPLC-MS, including 8 flavonoids (rutin, vitexin, kaempferol, rhamnazin, quercetin, apigenin, apigenin-6-C-glucose-8-C-xyloside, quercetin) and 3 coumarins (umbelliferone, 7-methoxy coumarin, 5,7-dihydroxy coumarin). Molecular docking results showed that 5 core inflammatory targets had the strongest binding affinity to quercetin, kaempferol, rutin, quercetin and vitexin, with a binding energy of −8.5, −7.8, −8.0, −7.2 and −10.0 kcal/mol respectively, which were superior to standard drug dexamethasone. The results indicated that the ingredients could site bind to 5 target proteins. Conclusion: The ethyl acetate fraction of Lepyrodiclis holosteoides had anti-inflammatory activity. This study clarified the potential material basis of Lepyrodiclis holosteoides quickly and conveniently by using HPLC-MS combined with molecular docking technology.
  • 薄蒴草(Lepyrodiclis holosteoides Fisch. et Mey.)为石竹科薄蒴草属唯一植物,生长于我国西藏、青海、甘肃、陕西、内蒙古、新疆等地,北纬26°~34°的亚洲其他温带地区分布亦较为广泛[1]。薄蒴草为一年生草本植物,因其遮光、吸水、吸肥的特点,在新疆哈密地区豌豆、油菜农地里被作为杂草处理[2],目前对其食用、药用研究仍处于起步阶段,也尚未见有对薄蒴草活性及成分的相关报道。

    《中华本草》记载,薄蒴草花期可全草入药,中药名为娘娘菜,味甘,性微寒,具有清热利肺,散瘀托毒之功效,常用于治疗肺热咳嗽和痈疽疔疮[3]。因肺热引起咳嗽的病人多有细菌或支原体感染所致的炎症反应[4],结合报道从生源相近的漆姑草全草中分离得到四个黄酮衍生物[5],并发现腹腔注射10 mg/kg的漆姑草黄酮苷对大鼠有明显的抗炎作用[6],推测薄蒴草亦可能具有抗炎活性。近年来研究发现食源性黄酮类物质具有一定的抗炎活性并在调节人体健康中起着积极作用,在炎症性疾病的防治中具有广阔的应用前景[7]。因此,从薄蒴草中寻找安全有效的天然黄酮类抗炎物质对于其野生资源的开发利用意义重大。

    因激活的炎症反应能诱导多种促炎介质如一氧化氮(NO)、肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、白细胞介素-1β(IL-1β)和前列腺素E2(PGE2)的过量分泌[8-9],故本文通过考察薄蒴草不同极性萃取部位对脂多糖(LPS)诱导的小鼠巨噬细胞RAW 264.7产生NO、TNF-α、IL-6的影响以筛选其抗炎活性部位。目前,液质联用技术和分子对接技术已被广泛应用于植物活性成分的全面分析[10],本文应用HPLC-MS对抗炎活性部位的化学成分进行分析,结合分子对接技术以小分子化学成分与激活的炎症反应中主要炎症因子TNF-α、IL-6、IL-1β、PGE2、核转录因子-κB(NF-κB)进行对接,最终根据结合能筛选出薄蒴草的抗炎活性因子,为其进一步的开发应用提供有益参考。

    薄蒴草 甘肃中医药大学提供,长春中医药大学张辉教授鉴定为伞形科薄蒴草属薄蒴草(Lepyrodiclis holosteoides Fisch. et Mey.)的干燥全草;小鼠单核巨噬细胞白血病细胞株RAW 264.7 中国医学科学院基础医学研究所细胞资源中心;胎牛血清 美国赛默飞世尔科技公司;胰蛋白酶(2500 Kat) 美国阿姆雷斯科公司;磷酸盐缓冲液(PBS)、DMEM培养基、双抗(100 μg/mL的青霉素、100 μg/mL的链霉素) 美国海克隆公司;脂多糖(LPS) 美国西格玛奥德里奇公司;二甲基亚砜、地塞米松 北京索莱宝科技有限公司;NO检测试剂盒 美国兰德公司;TNF-α、IL-6酶联免疫吸附检测试剂盒 美国普洛麦格公司;甲醇和乙腈为色谱纯,其他试剂均为分析纯。

    RRLC-QTOF/MS高分辨快速液相四极杆飞行时间串联质谱仪 美国沃特斯公司;BSA124S-CW电子天平 德国赛多利斯公司;Milli-Q超纯水仪 美国贝德福德公司;KS-5200DB型清洗器 昆山洁力美超声仪器有限公司;BIO Memory-86 ℃超低温冰箱 法国涞铂锐公司;YZ-875超净工作台 苏州净化设备厂;Microfuge.22RCentrifuge型高速低温离心机 美国贝克曼库尔特公司;多规格培养皿 美国康宁公司;HERAEUS HERA cell 150二氧化碳培养箱 日本三洋公司;THZ-C旋转式恒温振荡器 苏州培英实验设备有限公司;Mode 1680型酶标仪 日本宝生物工程株式会社。

    取薄蒴草300 g,粉碎,置圆底烧瓶中,10倍量70%乙醇回流提取3次,每次1 h。合并提取液,回收乙醇,减压浓缩至无醇味。浓缩液依次用等倍量的石油醚、二氯甲烷、乙酸乙酯、水饱和正丁醇萃取3次,减压回收溶剂,干燥,得到薄蒴草石油醚部位(SYM)8.85 g、二氯甲烷部位(ELJW)0.30 g、乙酸乙酯部位(YSYZ)0.90 g、水饱和正丁醇部位(ZDC)2.82 g和萃后水液(SY)22.14 g,备用。

    本实验通过研究薄蒴草不同极性萃取部位对LPS诱导的RAW 264.7细胞产生NO、TNF-α和IL-6的影响进行薄蒴草抗炎活性部位的筛选。首先,RAW 264.7在37 ℃、5% CO2的培养箱中常规培养于DMEM培养基中。将RAW 264.7细胞(1×106 个/mL)接种在96孔培养板中,在37 ℃、5% CO2完全湿润的环境中孵育24 h。除空白对照组外其他组别用1 μg/mL LPS刺激细胞,孵育24 h。以加入100 μL含有不同浓度(25、50、75 μg/mL)的薄蒴草不同极性部位的培养基为实验组,以加入100 μL地塞米松(100 μmol/L)为阳性对照组,空白对照组和模型对照组加入相同体积的培养基,每组设置三复孔,在培养箱中反应24 h。最后使用NO检测试剂盒(硝酸还原酶法)测定NO水平,使用TNF-α、IL-6酶联免疫吸附检测试剂盒测定TNF-α和IL-6的浓度。

    采用HPLC-MS鉴定薄蒴草抗炎活性部位中的化学成分,样品使用甲醇溶解,浓度为1 μg/mL,设置相应参数,进样方式采用自动进样。

    色谱质谱条件如下[11],固定相:Agilent Eclipse Plus-C18色谱柱(4.6 mm×150 mm,5 μm);流动相A为乙腈,B为1‰甲酸水溶液。采用二元线性梯度洗脱,洗脱条件为0~10 min:35%~60% A、65%~40% B,10~40 min:60%~85% A、40%~15% B。流速:0.6 mL/min,进样量:20 μL,柱温:30 ℃。质谱条件:采用电喷雾负离子模式;质量扫描范围:m/z 100~2200;干燥气流速:10.0 L/min;气体温度:350 ℃;雾化气压力:255 kPa;毛细管电压:3.5 kV,锥孔电压:65 V,裂解电压:150 V。检测样本前,校正质量轴。

    检索Pubchem数据库(https://www.pubchem.org/),下载抗炎活性部位中化学成分的sdf 2D结构的分子式,通过Chem 3D软件转换为pdb格式,使用Autodock确认可旋转的键并保存为pdbqt格式,以备后续对接使用。

    通过RSCB PDB数据库(http://www.rcsb.org/)下载重要蛋白受体的pdb格式文件,经Pymol对其进行去水、加氢等操作,使用Autodock保存为pdbqt格式。通过查询文献确定重要蛋白受体的结合位点坐标及尺寸并按照相关格式保存为txt格式。其中各靶点的box大小均为26×26×26,盒子中心坐标分别为TNF-α(2az5,−17.53,67.5,17.19)、IL-6(4cni,82.27,−33.6,−11.52)、IL-1β(5r8q,48.11,5.14,75.31)、PGE2(5k0i,−1.01,14.38,6.9)、NF-κB(6sh6,18.2,−20.47,0.89)。抗炎活性部位中化学成分所有可旋转键均设为柔性,重要蛋白受体设置为钢性,搜寻精度exhaustiveness设为64,格点间距1Å,其他参数默认,运行Autodock Vina采用拉马克遗传算法对接运算100次。

    实验数据使用SPSS23.0统计软件进行统计分析。所有数据用平均值±标准差(ˉx±s,n=3)表示,多组间比较采用单因素方差分析。使用GraphPad Prism 8.0绘制统计结果图。

    薄蒴草不同极性萃取部位对LPS诱导的RAW 264.7细胞产生NO、TNF-α和IL-6的影响如图1所示。与空白组相比,LPS刺激后NO、TNF-α和IL-6释放量显著增加(P<0.05)。与模型组相比,薄蒴草不同极性萃取部位在不同的试验浓度下,对NO、TNF-α、IL-6的释放均有不同程度地显著抑制(P<0.01,P<0.05)。相比之下,乙酸乙酯部位强于其他各组,与模型组相比在最高实验浓度75 μg/mL下对NO、TNF-α、IL-6的产生均有极显著抑制作用(P<0.01),抑制率分别为63.53%、34.23%、34.58%,且随着浓度的增加,NO、TNF-α、IL-6释放量总体呈下降的趋势。这表明在试验浓度下,乙酸乙酯部位对LPS诱导的RAW 264.7细胞炎症状态具有缓解作用,且呈一定的剂量依赖性。实验组NO、TNF-α、IL-6释放量与阳性药物组无显著差异(P>0.05),该结果表明薄蒴草不同极性部位在25~75 μg/mL的浓度下具有良好的抗炎效果。

    图  1  薄蒴草不同极性萃取部位对LPS诱导的RAW 264.7细胞产生NO、TNF-α和IL-6的影响
    注:与空白组相比,#P<0.05;与模型组相比,*P<0.05,**P<0.01。
    Figure  1.  The effect of Lepyrodiclis holosteoides extractions on LPS-induced production of NO, TNF-α and IL-6 in RAW 264.7 cells

    取“1.2.1”项中薄蒴草抗炎活性部位样品0.1 mg溶于10.0 mL甲醇,过0.45 μm有机膜,经HPLC-ESI-MS/MS分析,得质谱总离子流图(图2)。

    图  2  薄蒴草乙酸乙酯部位中化学成分的总离子流图
    Figure  2.  TIC chromatogram of compounds in the ethyl acetate extract of Lepyrodiclis holosteoides

    依据各色谱峰的分子离子峰及主要碎片峰进行解析,其中峰10在负离子模式下,质谱给出准分子离子峰为269.0430[M-H],推断其分子式为C15H10O5,以m/z 269.0430作为母离子进行二级质谱分析。所得二级质谱图中有明显的碎片离子m/z 227、185、150、133。与文献报道的芹菜素母离子裂解形成特征碎片离子一致,并与文献[12]对比,确定此化合物为芹菜素。基于以上解析过程和裂解规律,结合文献[12-18]对比,从薄蒴草抗炎活性部位指认了8个黄酮类成分芦丁、牡荆素、山奈酚、鼠李秦素、槲皮素、芹菜素、芹菜素-6-C-葡萄糖-8-C-木糖苷、槲皮苷和3个香豆素类成分伞形花内酯、7-甲氧基香豆素、5,7-二羟基香豆素,结果见表1

    表  1  薄蒴草乙酸乙酯部位中化学成分的HPLC-DAD-ESI-MS2分析
    Table  1.  HPLC-DAD-ESI-MS2 analysis of compounds in the ethyl acetate extract of Lepyrodiclis holosteoides
    编号保留时间(min)化合物鉴定分子式理论值(m/z)测定值(m/z)偏差(‱)二级离子(m/z)文献来源
    17.0197-甲氧基
    香豆素
    C10H8O3176.1717175.95391.24130.9609, 86.9710[13]
    213.25,7-二羟基香豆素C9H6O4178.1442177.0156.34133.0203, 107.0536,
    93.2883, 89.0348
    [13]
    314.1槲皮苷C21H20O11448.3832447.09632.87437.0619, 327.0563[12]
    415.8芹菜素-6-C-葡萄糖-
    8-C-木糖苷
    C26H28O14564.4999563.14012.41443.0960, 413.0826,
    341.0661, 293.0425,
    175.0004
    [14]
    516.4牡荆素C21H20O10432.3838431.09972.97341.0648, 311.0555,
    283.0591, 239.0696
    [15]
    620.3伞形花内酯C9H6O3162.1448161.02256.92119.0474, 117.0286[13]
    721.5芦丁C27H30O16610.5256609.14752.26463.1115, 301.0751,
    179.0016, 78.2146
    [16]
    823.3槲皮素C15H10O7302.2402301.03283.99227.0212, 150.9974,
    65.0008
    [16]
    926.1山奈酚C15H10O6286.2408285.044.20243.0278, 199.2363,
    133.0273, 107.0116
    [17]
    1028.9芹菜素C15H10O5270.2414269.0434.43227.0322, 185.0145,
    150.9996, 133.0555
    [12]
    1129.2鼠李秦素C17H14O7330.2940329.06563.72299.0133, 271.0215,
    185.0191
    [18]
    下载: 导出CSV 
    | 显示表格

    将质谱鉴定出的结构明确的11个成分与5个靶点,通过Autodock Vina软件进行分子对接,通过多构象的对接结果筛选出每个靶点结合能最低的构象,使用Origin Lab将对接结果绘制成热图(图3)。结果显示,11个成分均可以与TNF-α(2az5)、IL-6(4cni)、IL-1β(5r8q)、PGE2(5k0i)、NF-κB(6sh6)较好地结合,且对接结果中均有优于阳性药地塞米松所对应的成分,即11个成分具有潜在的抗炎活性。结合能结果(表2)表明5个靶点TNF-α、IL-6、IL-1β、PGE2、NF-κB的最佳构象的对接成分分别是槲皮苷、山奈酚、芦丁、槲皮苷、牡荆素,均是黄酮类成分。它们系通过2~3个氢键与对应靶点活性中心的氨基酸残基相互作用而获得了较低的自由结合能。TNF-α、IL-6、IL-1β、PGE2、NF-κB与对应成分结合能最低的构象用Pymol程序进行可视化分析,结果见图4

    图  3  对接结果Total-score热图
    Figure  3.  Total-score heat map of docking results
    表  2  活性成分及阳性药与TNF-α、IL-6、IL-1β、PGE2、NF-κB的结合能(kcal/mol)
    Table  2.  Binding energies of bioactive compounds and positive drug with TNF-α, IL-6, IL-1β, PGE2, NF-κB (kcal/mol)
    靶点TNF-αIL-6IL-1βPGE2NF-κB
    7-甲氧基香豆素−5.7−4.9−5.2−5.3−6.5
    5,7-二羟基香豆素−6.0−5.1−5.7−5.2−6.7
    槲皮苷−8.5*−6.5−7.3−7.2*−9.5
    芹菜素-6-C-葡萄糖-8-C-木糖苷−2.4−2.6−2.1−3.5−3.1
    牡荆素−8.4−6.9−7.8−6.7−10.0*
    伞形花内酯−8.4−4.8−5.6−5.2−6.2
    芦丁−6.1−6.5−8.0*−6.6−9.8
    槲皮素−7.8−7.6−7.0−6.2−8.7
    山奈酚−7.4−7.8*−6.7−6.1−8.7
    芹菜素−7.5−6.7−7.0−6.4−8.8
    鼠李秦素−7.5−6.3−6.6−6.0−8.8
    地塞米松−7.9−7.3−5.7−6.8−8.3
    注:*表示与TNF-α、IL-6、IL-1β、PGE2、NF-κB结合能最低的构象。
    下载: 导出CSV 
    | 显示表格
    图  4  槲皮苷、山奈酚、芦丁、槲皮苷、牡荆素分别与TNF-α、IL-6、IL-1β、PGE2、NF-κB的分子对接模式
    注:图A、B、C、D、E分别为槲皮苷、山奈酚、芦丁、槲皮苷、牡荆素与TNF-α(2az5)、IL-6(4cni)、IL-1β(5r8q)、PGE2(5k0i)、NF-κB(6sh6)的分子对接模式。
    Figure  4.  Molecular docking pattern of quercetin, kaempferol, rutin, quercetin, vitexin with TNF-α, IL-6, IL-1β, PGE2, NF-κB main protease

    巨噬细胞在自然免疫中起着关键作用,活化的巨噬细胞可以引发和促进多种炎症反应[19]。炎症发生时,巨噬细胞分泌大量NO,激活NF-κB信号通路,诱导高浓度促炎细胞因子NO、TNF-α和IL-6的分泌[20-21]。中和和抑制LPS诱导的炎症介质和细胞因子已经成为预防和治疗炎症损伤的主要思想和方法之一。薄蒴草抗炎活性部位能够较好地抑制NO、TNF-α和IL-6等炎症因子的释放,说明薄蒴草具有良好的抗炎活性。经液质联用分析,从薄蒴草抗炎活性部位中分析出了8个黄酮类成分和3个香豆素类成分。黄酮类成分有芦丁、牡荆素、山奈酚、鼠李秦素、槲皮素、芹菜素、芹菜素-6-C-葡萄糖-8-C-木糖苷、槲皮苷等,香豆素类有伞形花内酯、7-甲氧基香豆素、5,7-二羟基香豆素等,其中含量较高的为芦丁和伞形花内酯。分子对接结果显示槲皮苷、山奈酚、芦丁、槲皮苷、牡荆素与TNF-α、IL-6、IL-1β、PGE2、NF-κB等5个重要抗炎靶点结合较好,提示黄酮类成分为薄蒴草的潜在抗炎活性物质。

    近年来研究发现,芦丁是一种广泛存在于自然界多种植物中的天然黄酮类化合物,含量较为丰富,具有良好的抗炎作用。杨杰[22]发现芦丁能够通过介导TLR4-MYD88-TRAF6-NF-κB炎症信号通路,调节细胞因子和炎症介质,发挥抗炎作用。LI等[23]发现牡荆素可下调炎症因子如TNF-α、IL-1β的表达,并改变高脂饮食小鼠肠道微生物群的组成,通过调节特定细菌的丰度来调节炎症。陈丹[24]发现山奈酚能够有效降低CFA造模引起的IL-6、TNF-α、IL-β等炎症因子的表达,减少炎症因子聚集,改善小鼠足底造模部位炎症情况。赵妍[25]发现山奈酚能够通过抑制肺组织促炎因子NF-κB、IL-1β、TNF-α的表达而发挥LPS致小鼠急性肺损伤的保护效应。YANG等[26]发现鼠李秦素能通过抑制氧化应激和炎症反应对创伤性脑损伤小鼠起到保护作用。司丽君等[27]发现槲皮素具有良好的抗炎活性,能促进小鼠脾淋巴细胞增殖,抑制T、B细胞增殖和细胞因子的分泌。芹菜素是一种天然黄酮类化合物,广泛分布于各种蔬菜、水果、豆科植物、茶叶等食源性植物中。大量关于芹菜素的研究表明,这种特殊的天然化合物具有潜在的抗氧化、抗炎、抗癌、抗病毒、提高自身免疫等多种生物活性[28]。GAN等[29]发现伞形花内酯给药能有效逆转心肌梗死大鼠中TNF-α、IL-6和IL-1β等炎症因子浓度的升高。唐春丽等[30]发现从青花椒根皮中分离得到的7-甲氧基香豆素具有较强的抗NO生成活性。

    综上所述,薄蒴草抗炎活性部位中多个黄酮类成分能够抑制NO、IL-6和TNF-α等炎症因子释放以发挥其抗炎活性。因此,薄蒴草的主要抗炎功能因子为黄酮类成分,这为其在抗炎相关食品中的进一步应用和开发提供了参考。

  • 图  1   薄蒴草不同极性萃取部位对LPS诱导的RAW 264.7细胞产生NO、TNF-α和IL-6的影响

    注:与空白组相比,#P<0.05;与模型组相比,*P<0.05,**P<0.01。

    Figure  1.   The effect of Lepyrodiclis holosteoides extractions on LPS-induced production of NO, TNF-α and IL-6 in RAW 264.7 cells

    图  2   薄蒴草乙酸乙酯部位中化学成分的总离子流图

    Figure  2.   TIC chromatogram of compounds in the ethyl acetate extract of Lepyrodiclis holosteoides

    图  3   对接结果Total-score热图

    Figure  3.   Total-score heat map of docking results

    图  4   槲皮苷、山奈酚、芦丁、槲皮苷、牡荆素分别与TNF-α、IL-6、IL-1β、PGE2、NF-κB的分子对接模式

    注:图A、B、C、D、E分别为槲皮苷、山奈酚、芦丁、槲皮苷、牡荆素与TNF-α(2az5)、IL-6(4cni)、IL-1β(5r8q)、PGE2(5k0i)、NF-κB(6sh6)的分子对接模式。

    Figure  4.   Molecular docking pattern of quercetin, kaempferol, rutin, quercetin, vitexin with TNF-α, IL-6, IL-1β, PGE2, NF-κB main protease

    表  1   薄蒴草乙酸乙酯部位中化学成分的HPLC-DAD-ESI-MS2分析

    Table  1   HPLC-DAD-ESI-MS2 analysis of compounds in the ethyl acetate extract of Lepyrodiclis holosteoides

    编号保留时间(min)化合物鉴定分子式理论值(m/z)测定值(m/z)偏差(‱)二级离子(m/z)文献来源
    17.0197-甲氧基
    香豆素
    C10H8O3176.1717175.95391.24130.9609, 86.9710[13]
    213.25,7-二羟基香豆素C9H6O4178.1442177.0156.34133.0203, 107.0536,
    93.2883, 89.0348
    [13]
    314.1槲皮苷C21H20O11448.3832447.09632.87437.0619, 327.0563[12]
    415.8芹菜素-6-C-葡萄糖-
    8-C-木糖苷
    C26H28O14564.4999563.14012.41443.0960, 413.0826,
    341.0661, 293.0425,
    175.0004
    [14]
    516.4牡荆素C21H20O10432.3838431.09972.97341.0648, 311.0555,
    283.0591, 239.0696
    [15]
    620.3伞形花内酯C9H6O3162.1448161.02256.92119.0474, 117.0286[13]
    721.5芦丁C27H30O16610.5256609.14752.26463.1115, 301.0751,
    179.0016, 78.2146
    [16]
    823.3槲皮素C15H10O7302.2402301.03283.99227.0212, 150.9974,
    65.0008
    [16]
    926.1山奈酚C15H10O6286.2408285.044.20243.0278, 199.2363,
    133.0273, 107.0116
    [17]
    1028.9芹菜素C15H10O5270.2414269.0434.43227.0322, 185.0145,
    150.9996, 133.0555
    [12]
    1129.2鼠李秦素C17H14O7330.2940329.06563.72299.0133, 271.0215,
    185.0191
    [18]
    下载: 导出CSV

    表  2   活性成分及阳性药与TNF-α、IL-6、IL-1β、PGE2、NF-κB的结合能(kcal/mol)

    Table  2   Binding energies of bioactive compounds and positive drug with TNF-α, IL-6, IL-1β, PGE2, NF-κB (kcal/mol)

    靶点TNF-αIL-6IL-1βPGE2NF-κB
    7-甲氧基香豆素−5.7−4.9−5.2−5.3−6.5
    5,7-二羟基香豆素−6.0−5.1−5.7−5.2−6.7
    槲皮苷−8.5*−6.5−7.3−7.2*−9.5
    芹菜素-6-C-葡萄糖-8-C-木糖苷−2.4−2.6−2.1−3.5−3.1
    牡荆素−8.4−6.9−7.8−6.7−10.0*
    伞形花内酯−8.4−4.8−5.6−5.2−6.2
    芦丁−6.1−6.5−8.0*−6.6−9.8
    槲皮素−7.8−7.6−7.0−6.2−8.7
    山奈酚−7.4−7.8*−6.7−6.1−8.7
    芹菜素−7.5−6.7−7.0−6.4−8.8
    鼠李秦素−7.5−6.3−6.6−6.0−8.8
    地塞米松−7.9−7.3−5.7−6.8−8.3
    注:*表示与TNF-α、IL-6、IL-1β、PGE2、NF-κB结合能最低的构象。
    下载: 导出CSV
  • [1] 方文培, 张泽荣. 中国植物志: 第26卷[M]. 北京: 科学出版社, 2004: 120

    FANG Wenpei, ZHNAG Zerong. Flora reipublicae popularis sinicae: Vol. 26[M]. Beijing: Beijing Scientific Publisher, 2004: 120.

    [2] 宋维敏. 青海燕麦田杂草群落组成及其防控对策[D]. 西宁: 青海大学, 2021

    SONG Weimin. Weed community composition and control measures in oat field of Qinghai Province[D]. Xining: Qinghai University, 2021.

    [3] 国家中医药管理局. 中华本草[M]. 上海: 上海科学技术出版社, 2005: 134

    National Administration of Traditional Chinese Medicine. Chinese materia medica[M]. Shanghai: Shanghai Scientific & Technical Publisher, 2005: 134.

    [4]

    ZHANG Han, LI Xiang, WANG Juan, et al. Baicalin relieves mycoplasma pneumoniae infection-induced lung injury through regulating microRNA-221 to inhibit the TLR4/NF-κB signaling pathway[J]. Molecular Medicine Reports,2021,24(2):571. doi: 10.3892/mmr.2021.12210

    [5] 庄林根. 漆姑草中的C-糖基黄酮衍生物[J]. 中草药,1983,14(7):7−9. [ZHUANG Lingen. C-glycosyl flavonoid derivatives in Sagina japonica[J]. Chinese Traditional and Herbal Drugs,1983,14(7):7−9.

    ZHUANG Lingen. C-glycosyl flavonoid derivatives in Sagina japonica[J]. Chinese Traditional and Herbal Drugs, 1983, 14(7): 7-9.

    [6] 黄厚骋, 程才芬, 林文琴, 等. 漆姑草黄酮甙的抗炎作用[J]. 贵阳医学院学报,1985(2):98−100. [HUANG Houcheng, CHENG Caifen, LIN Wenqin, et al. Anti-inflammatory effect of flavonoid glycosides from Sagina japonica[J]. Journal of Guiyang Medical College,1985(2):98−100. doi: 10.19367/j.cnki.1000-2707.1985.02.005

    HUANG Houcheng, CHENG Caifen, LIN Wenqin, et al. Anti-inflammatory effect of flavonoid glycosides from Sagina japonica[J]. Journal of Guiyang Medical College, 1985(2): 98-100. doi: 10.19367/j.cnki.1000-2707.1985.02.005

    [7] 沈圆圆, 于福田, 赵笑颍, 等. 食源性抗炎活性肽对肠道炎症的作用研究进展[J]. 食品科学,2022,43(7):305−316. [SHEN Yuanyuan, YU Futian, ZHAO Xiaoying, et al. Research progress of food-derived anti-inflammatory peptides on intestinal inflammation[J]. Food Science,2022,43(7):305−316.

    SHEN Yuanyuan, YU Futian, ZHAO Xiaoying, et al. Research progress of food-derived anti-inflammatory peptides on intestinal inflammation[J]. Food Science, 2022, 43(7): 305-316.

    [8]

    JHÉSSICA B B, MARTINS M F, MOREIRA F M, et al. Potential anti-inflammatory, antioxidant and antimicrobial activities of Sambucus australis[J]. Pharmaceutical Biology,2017,55(1):991−997. doi: 10.1080/13880209.2017.1285324

    [9]

    ZHANG Tiantian, HU Ting, JIANG Jianguo, et al. Antioxidant and anti-inflammatory effects of polyphenols extracted from Ilex latifolia Thunb[J]. RSC Advances,2018,8(13):7134,7141.

    [10]

    CHEN Kai, LI Tonghua, CAO Tongcheng. Tribe-PSO: Novel global optimization algorithm and its application in molecular docking[J]. Chemometrics and Intelligent Laboratory Systems,2005,82(1):248−259.

    [11] 赵娜娜, 孟令文, 孙道磊, 等. 金银花体外抑制乙酰胆碱酯酶活性部位筛选及液质联用分析研究[J]. 时珍国医国药,2017,28(10):2358−2360. [ZHAO Nana, MENG Lingwen, SUN Daolei, et al. Investigation hypoglycemic and antioxidant activities of the refined extract of Glycyrrhiza uralensis in vitro and analysis of it by HPLC-DAD-ESI-MS/MS[J]. Lishizhen Medicine and Materia Medica Research,2017,28(10):2358−2360.

    ZHAO Nana, MENG Lingwen, SUN Daolei, et al. Investigation hypoglycemic and antioxidant activities of the refined extract of Glycyrrhiza uralensis in vitro and analysis of it by HPLC-DAD-ESI-MS/MS[J]. Lishizhen Medicine and Materia Medica Research, 2017, 28(10): 2358-2360.

    [12] 黄元, 董琦, 乔善义. 繁缕属植物的化学成分和药理活性研究进展[J]. 解放军药学学报,2006(3):210−212. [HUANG Yuan, DONG Qi, QIAO Shanyi. Advances on chemical constituents and pharmacological activities of Stellaria[J]. Pharmaceutical Journal of Chinese Liberation Army,2006(3):210−212. doi: 10.3969/j.issn.1008-9926.2006.03.016

    HUANG Yuan, DONG Qi, QIAO Shanyi. Advances on chemical constituents and pharmacological activities of Stellaria[J]. Pharmaceutical Journal of Chinese Liberation Army, 2006(3): 210-212. doi: 10.3969/j.issn.1008-9926.2006.03.016

    [13] 贾爱群, 谭宁华, 周俊. 漆姑草中酚性成分研究[J]. 中草药,2008,39(11):1609−1612. [JIA Aiqun, TAN Ninghua, ZHOU Jun, et al. Phenolic components of Sagina japonica[J]. Chinese Traditional and Herbal Drugs,2008,39(11):1609−1612. doi: 10.3321/j.issn:0253-2670.2008.11.004

    JIA Aiqun, TAN Ninghua, ZHOU Jun, et al. Phenolic components of Sagina japonica[J]. Chinese Traditional and Herbal Drugs, 2008, 39(11): 1609-1612. doi: 10.3321/j.issn:0253-2670.2008.11.004

    [14] 李焱, 晏雨寒, 黄筑艳. 中药漆姑草化学成分的初步研究[J]. 广州化工,2011,39(1):92,148. [LI Miao, YAN Yuhan, HUANG Zhuyan. Preliminary test of chemical components of Sagina japonica (Sweet) Ohwi[J]. Guangzhou Chemical Industry,2011,39(1):92,148. doi: 10.3969/j.issn.1001-9677.2011.01.034

    LI Miao, YAN Yuhan, HUANG Zhuyan. Preliminary test of chemical components of Sagina japonica (Sweet) Ohwi[J]. Guangzhou Chemical Industry, 2011, 39(1): 92, 148. doi: 10.3969/j.issn.1001-9677.2011.01.034

    [15] 徐霞, 李亚仲, 冯煦, 等. 繁缕属植物化学成分研究进展[J]. 中国野生植物资源,2008(2):11−14. [XU Xia, LI Yazhong, FENG Xu, et al. Advances on chemical constituents of Stellaria[J]. Chinese Wild Plant Resources,2008(2):11−14. doi: 10.3969/j.issn.1006-9690.2008.02.003

    XU Xia, LI Yazhong, FENG Xu, et al. Advances on chemical constituents of Stellaria[J]. Chinese Wild Plant Resources, 2008(2): 11-14. doi: 10.3969/j.issn.1006-9690.2008.02.003

    [16] 高智席, 吴艳红, 黎刚, 等. 高效液相色谱法测定漆姑草中芦丁和槲皮素含量[J]. 湖北农业科学,2012,51(7):1444−1446. [GAO Zhixi, WU Yanhong, LI Gang, et al. Contents of rutin and quercetin in Sagina japonica (Sweet) Ohwi determined by HPLC[J]. Hubei Agricultural Science,2012,51(7):1444−1446. doi: 10.3969/j.issn.0439-8114.2012.07.044

    GAO Zhixi, WU Yanhong, LI Gang, et al. Contents of rutin and quercetin in Sagina japonica (Sweet) Ohwi determined by HPLC[J]. Hubei Agricultural Science, 2012, 51(7): 1444-1446. doi: 10.3969/j.issn.0439-8114.2012.07.044

    [17] 程霜杰, 李燕, 袁明智, 等. 瞿麦化学成分及药理作用研究进展[J]. 中华中医药学刊,2021,39(3):134−139. [CHENG Shuangjie, LI Yan, YUAN Mingzhi, et al. Research progress on chemical constituents and pharmacological activities of Qumai (Dianthi herba)[J]. Chinese Archeives of Traditional Chinese Medicine,2021,39(3):134−139. doi: 10.13193/j.issn.1673-7717.2021.03.033

    CHENG Shuangjie, LI Yan, YUAN Mingzhi, et al. Research progress on chemical constituents and pharmacological activities of Qumai (Dianthi herba)[J]. Chinese Archeives of Traditional Chinese Medicine, 2021, 39(3): 134-139. doi: 10.13193/j.issn.1673-7717.2021.03.033

    [18] 李振凯, 宋乐, 雷燕, 等. 银柴胡生物学、化学成分及药理作用研究进展[J]. 南京中医药大学学报,2020,36(1):136−140. [LI Zhenkai, SONG Le, LEI Yan, et al. Advances in biology, chemical constituents and pharmacological activities of Stellaria dichotoma L. var. lanceolata[J]. Journal of Nanjing University of Chinese Medicine,2020,36(1):136−140. doi: 10.14148/j.issn.1672-0482.2020.0136

    LI Zhenkai, SONG Le, LEI Yan, et al. Advances in biology, chemical constituents and pharmacological activities of Stellaria Dichotoma L. var. lanceolata[J]. Journal of Nanjing University of Chinese Medicine, 2020, 36(1): 136-140. doi: 10.14148/j.issn.1672-0482.2020.0136

    [19]

    SPAGNUOLO C, MOCCIA S, RUSSO G L. Anti-inflammatory effects of flavonoids in neurodegenerative disorders[J]. European Journal of Medicinal Chemistry,2018,153:105. doi: 10.1016/j.ejmech.2017.09.001

    [20]

    YOON S B, LEE Y J, PARK S K, et al. Anti-inflammatory effects of Scutellaria baicalensis water extraction LPS activated RAW 264.7 macrophages[J]. Ethnopharmacol,2009,125:286−290. doi: 10.1016/j.jep.2009.06.027

    [21]

    SU J H, KIM Y W, PARK Y, et al. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells[J]. Inflammation Research,2014,63:81−90. doi: 10.1007/s00011-013-0674-4

    [22] 杨杰. 芦丁的体外抗炎作用及机制研究[D]. 沈阳: 沈阳农业大学, 2019

    YANG Jie. Study on anti-inflammatory effect and mechanism of rutin in vitro[D]. Shenyang: Shenyang Agricultural University, 2019.

    [23]

    LI Sen, LIANG Ting, ZHANG Yu, et al. Vitexin alleviates high-fat diet induced brain oxidative stress and inflammation via anti-oxidant, anti-inflammatory and gut microbiota modulating properties[J]. Free Radical Biology & Medicine,2021,171:332−344.

    [24] 陈丹. 山奈酚的抗炎镇痛作用及其机制研究[D]. 南京: 南京中医药大学, 2021

    CHEN Dan. Study on the anti-inflammatory and analgesic effects of kaempferol and its mechanism[D]. Nanjing: Nanjing University of Chinese Medicine, 2021.

    [25] 赵妍. 山奈酚对脂多糖诱导小鼠急性肺损伤的保护作用[D]. 哈尔滨: 东北农业大学, 2013

    ZHAO Yan. Protective effects of kaempferol on the acute lung injury induced in mice[D]. Harbin: Northeast Agricultural University, 2013.

    [26]

    YANG Boxiao, ZHANG Rui, QIRE S, et al. Rhamnazin ameliorates traumatic brain injury in mice via reduction in apoptosis, oxidative stress, and inflammation[J]. Neuroimmunomodulation,2021,12:1−8.

    [27] 司丽君, 王雪, 王林林, 等. 槲皮素的抗炎免疫及部分机制研究[J]. 中国医药导报,2021,18(27):26−29,34. [SI Lijun, WANG Xue, WANG Linlin, et al. Research on anti-inflammatory and immune effects of quercetin and its partial mechanism[J]. China Medical Herald,2021,18(27):26−29,34.

    SI Lijun, WANG Xue, WANG Linlin, et al. Research on anti -inflammatory and immune effects of quercetin and its partial mechanism[J]. China Medical Herald, 2021, 18(27): 26-29, 34.

    [28] 刘琴, 吕庆云. 芹菜素的提取及应用研究进展[J]. 食品研究与开发,2020,41(21):208−213. [LIU Qin, LÜ Qingyun. Progress in extraction and application of apigenin[J]. Food Research and Development,2020,41(21):208−213.

    LIU Qin, LYU Qingyun. Progress in extraction and application of apigenin[J]. Food Research and Development, 2020, 41(21): 208-213.

    [29]

    GAN Jianxiang, QIAN Weichun, LIN Song. Umbelliferone alleviates myocardial ischemia: The role of inflammation and apoptosis[J]. Inflammation,2018,41(2):464−473. doi: 10.1007/s10753-017-0702-6

    [30] 唐春丽, 魏江存, 滕红丽, 等. 黄酮类成分抗炎活性及其作用机制研究进展[J]. 中华中医药学刊,2021,39(4):154−159. [TANG Chunli, WEI Jiangcun, TENG Hongli, et al. Research progress on anti-inflammatory activity of flavonoids and its mechanism[J]. Chinese Archives of Traditional Chinese Medicine,2021,39(4):154−159. doi: 10.13193/j.issn.1673-7717.2021.04.040

    TANG Chunli, WEI Jiangcun, TENG Hongli, et al. Research progress on anti-inflammatory activity of flavonoids and its mechanism[J]. Chinese Archives of Traditional Chinese Medicine, 2021, 39(4): 154-159. doi: 10.13193/j.issn.1673-7717.2021.04.040

图(4)  /  表(2)
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-19
  • 网络出版日期:  2022-06-29
  • 刊出日期:  2022-08-31

目录

/

返回文章
返回
x 关闭 永久关闭