• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

奶牛源鼠李糖乳杆菌的12C6+重离子束诱变选育

蒋威, 沈文祥, 郑娟善, 武小虎, 杨雅媛, 吕亚楠, 王胜义, 严作廷

蒋威,沈文祥,郑娟善,等. 奶牛源鼠李糖乳杆菌的12C6+重离子束诱变选育[J]. 食品工业科技,2022,43(17):140−148. doi: 10.13386/j.issn1002-0306.2021110356.
引用本文: 蒋威,沈文祥,郑娟善,等. 奶牛源鼠李糖乳杆菌的12C6+重离子束诱变选育[J]. 食品工业科技,2022,43(17):140−148. doi: 10.13386/j.issn1002-0306.2021110356.
JIANG Wei, SHEN Wenxiang, ZHENG Juanshan, et al. Mutation Breeding of Lactobacillus rhamnosus from Dairy Cow by 12C6+ Heavy Ion Beam[J]. Science and Technology of Food Industry, 2022, 43(17): 140−148. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110356.
Citation: JIANG Wei, SHEN Wenxiang, ZHENG Juanshan, et al. Mutation Breeding of Lactobacillus rhamnosus from Dairy Cow by 12C6+ Heavy Ion Beam[J]. Science and Technology of Food Industry, 2022, 43(17): 140−148. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110356.

奶牛源鼠李糖乳杆菌的12C6+重离子束诱变选育

基金项目: “十三五”国家重点研发项目(2017YFD0502201);甘肃省重点研发计划(20YF8NA029);中国农业科学院农业科技创新工程项目(CAAS-ASTIP-2017-LIHPS-03)。
详细信息
    作者简介:

    蒋威(1994−),男,硕士研究生,研究方向:乳酸菌防治奶牛子宫疾病,E-mail:1748885887@qq.com

    通讯作者:

    严作廷(1962−),男,博士,研究员,研究方向:中兽药研发,E-mail:yanzuoting@caas.cn

  • 中图分类号: Q939.94

Mutation Breeding of Lactobacillus rhamnosus from Dairy Cow by 12C6+ Heavy Ion Beam

  • 摘要: 本研究利用中科院重离子加速器释放的12C6+重离子束作为辐射诱变源,以酸斑值(HC)和抑菌圈值为指标,对鼠李糖乳杆菌JF12-1进行功能性诱变。通过致死率和正负突变率确定诱变的最佳辐照剂量;对最佳辐照剂量下的突变菌株利用酸斑法进行初筛,抑菌圈法复筛,而后通过连续传代之后检测乳酸含量变化来测定遗传稳定性,并对遗传稳定菌株进行16S rDNA测序,定位其突变位点。结果显示辐照剂量为300 Gy时,致死率为79.86%,正突变率为30.33%,负突变率为5.38%,确定为最佳诱变剂量;酸斑法初筛最佳诱变剂量下的突变菌株,得到20株HC值较原始野生菌株提高25%以上的突变株;抑菌法复筛得到8株体外抑菌性较原始野生菌株提高15%以上的菌株;遗传稳定性测定发现这8株突变乳酸菌株产乳酸稳定性良好;16S rDNA测序发现原始野生型菌株JF12-1的可能突变位点不在16S rRNA基因上,促使其产酸和抑菌性能增强的突变位点可能发生在其他基因区段。利用12C6+重离子束成功诱变选育出了高产乳酸及体外抑菌性优良的功能性鼠李糖乳杆菌稳定株,为下一步深入开发该菌株提供了较好的理论基础和应用依据。
    Abstract: In this study, 12C6+ heavy ion beam released from heavy ion accelerator of Chinese Academy of Sciences was used as the radiation mutagenesis source. With acid spot value and bacteriostatic ring value as indexes, functional mutagenesis of Lactobacillus rhamnosus JF12-1 was carried out to determine the optimal radiation dose of mutagenesis through mortality rate and positive and negative mutation rate. The mutated strains under the optimal irradiation dose were screened by acid patch method and screened by inhibition zone method. Then the genetic stability of the genetically stable strains was determined by detecting the change of lactic acid content after continuous passage. 16S rDNA sequencing was performed to locate the mutation sites of the genetically stable strains. The results showed that the mortality rate, positive mutation rate and negative mutation rate were 79.86%, 30.33% and 5.38%, respectively, when the irradiation dose was 300 Gy, which was the best mutagenesis dose. The results showed that the HC value of 20 mutant strains increased by more than 25% compared with the original wild strain. The bacteriostatic activity of 8 strains increased by 15% compared with the original wild strains. Genetic stability analysis showed that the 8 mutant Lactobacillus strains were stable in producing lactic acid. 16S rDNA sequencing revealed that the mutated sites of JF12-1 were not in 16S rRNA gene, and the mutated sites promoting acid production and bacteriostatic performance of JF12-1 were probably in other gene segments. A functional Lactobacillus rhamnosus stable strain with high lactic acid yield and good bacteriostatic activity in vitro was successfully cultured by 12C6+ heavy ion beam mutation, which provided a good theoretical basis and application basis for further development of this strain.
  • 乳酸菌(Lactic acid bacteria,LAB)是一类能够以碳水化合物为底物,发酵产生具有抑菌活性的有机酸、H2O2及细菌素等次级代谢物的细菌的统称[1-2],此外还能够产生功能性的胞外多糖[3],其在食品及医药中具有多种益生功能,菌体通常无芽孢,属于革兰氏阳性细菌,广泛存在于健康动物的口腔[4-5]、胃肠道[6]及生殖道[7-8]。乳酸菌种类繁多,作用广泛,它们以其潜在的健康和营养益生作用而得名,因此被认为是“具有益生性能的微生物”或“当摄入足够量的活的乳酸菌株,可对宿主健康产生益处”[9-10]。鼠李糖乳杆菌是乳酸菌中益生性菌株的最重要来源之一,随着人们物质生活水平的提高,人们对其需求也与日俱增,不管是食品发酵,还是以乳酸菌为主要菌种的益生菌制剂都对其生长、产酸及抑菌活性提出了新的要求;此外,利用乳酸菌活菌制剂或其代谢产物来对人类及动物疾病进行预防和治疗,已切实可行[11-12]。但从动物或自然界分离的乳酸菌株存在代谢物产量低或不稳定的问题。所以,探索提高应用乳酸菌性能的新策略是当前重点研究的方向[13],而诱变选育无疑是当前的最佳选择之一。

    诱变选育是借助各种诱变源或诱变剂的理化因素来处理细胞,加速基因突变,再建立适当的筛选方法以获得所需的高产优良株的现代育种方式之一[14]。诱变选育的理论是基于基因突变[15]。经过多年的实践,诱变选育技术已有了长足的发展,出现了传统辐射诱变(X射线、γ射线、紫外线和激光等)、化学诱变[16](甲基磺酸乙酯、氮芥、亚硝酸和亚硝基胍等)、紫外线-亚硝基弧复合诱变、常压室温等离子体诱变[17]及太空诱变[18]等。重离子束诱变具有能量沉积、动量传递和遗传物质的质子转移和重排、损伤后修复效应小及不易回复突变等突出特点[19-20]。重离子的能量通常较高,一般每核子在GeV量级甚至更高,地面上通过加速器获得的重离子,能量可从keV量级到GeV量级[21]。相较于常规X、γ及紫外线等, 重离子束在穿过生物介质时,将大量能量沉积在其移动的径迹上,造成细胞核中DNA分子的显著损伤,故而表现出更高的诱变效率[22],所以通过重离子束辐照来改变微生物的生产性能,提高微生物的产出,是一种切实有效的菌种育种方法[23-25]

    目前利用12C6+重离子束辐照诱变技术在阿维链霉菌[26]、嗜热乳杆菌[27]、谷氨酸棒状杆菌[28]的菌种改良中已经取得了很好的效果,但尚未见重离子束诱变鼠李糖乳杆菌的研究,故本研究利用12C6+重离子束对奶牛源鼠李糖乳杆菌临床分离株进行诱变选育,以期获得体外益生性更强的鼠李糖乳杆菌菌株,为乳酸菌防治奶牛生殖道疾病的基础研究提供标的菌株。

    原始野生菌株鼠李糖乳杆菌临床分离株JF12-1 中国农业科学院兰州畜牧与兽药研究所奶牛创新团队保存;大肠杆菌为ATCC29922 广东环凯微生物科技;MRS肉汤培养基及固体改良培养基 购自广东环凯微生物科技;碳酸钙AR 国药集团化学试剂有限公司;溴甲酚紫99% 天津市永大化学试剂有限公司;葡糖糖AR 天津市大茂化学试剂厂;细菌DNA提取试剂盒(Bacterial DNA Kit D3350) Omega Bio-Tek公司;16S rDNA通用引物 西安擎科生物;1.5%琼脂糖凝胶粉 北京索莱宝生物。

    12C6+重离子束 中科院兰州物理研究所提供;LAI-3-T厌氧培养箱 广州瑞丰实验设备有限公司;WP-UP超纯水机 赛默飞有限公司;细菌浊度仪 北京天安联合科技有限公司;UV-BlueStarPlus紫外-可见分光光度计 北京莱伯泰科仪器有限公司;PHSJ-F型pH计 上海仪电科学仪器股份有限公司;SBA-40D生物传感分析仪 山东省科学院生物研究所; LDZX-30KB立式压力蒸汽灭菌器 上海申安医疗器械厂;1108-150型游标卡尺 中巽云科技有限公司;BSA224S型十万分之一分析天平 赛多利斯科学仪器(北京)有限公司;DYCP-31DN琼脂糖核酸电泳仪 北京六一有限公司;Biometra TOne 96G PCR仪 德国耶拿公司。

    种子及斜面培养基:准确称取MRS固体改良培养基成品54 g,溶解于1 L蒸馏水中,用盐酸调节pH至7.0±0.3,121 ℃,高压灭菌15 min;发酵培养基:称取MRS成品固体改良培养基54 g,加入10%葡萄糖,灭菌方法同上;溴甲酚紫-碳酸钙固体筛选培养基(简称SMBVC):MRS固体改良培养基成品中加入0.01%溴甲酚紫和0.25%的碳酸钙,灭菌方法同上。

    将斜面保存的原始野生菌株JF12-1用接种环刮下,接种于种子培养基,于37 ℃恒温厌氧培养24 h以复壮,4 ℃,4000×g离心15 min,以获得菌体,PBS洗涤2次,利用细菌浊度仪重悬调整浓度至1.0×108 CFU/mL,获得复壮后初始种子菌悬液。取菌悬液按1%(V/V)的接种量接种于MRS培养基,37 ℃、300 r/min厌氧振荡培养24 h,每隔2 h取样,测定菌液的OD620 nm,参照DIANA等[29]报道,以时间为横坐标,对应OD值为纵坐标,绘制原始野生菌株的生长曲线。

    SBA-40D型生物传感仪利用专一性和高效性的固定化酶为分子识别的原件,具有两支生物性的探测电极,并由微电脑控制,可自动进样检测发酵样品中乳酸含量。将1.2.2.1复壮后初始种子菌悬液按10%的比例接种于发酵培养基(250 mL锥形瓶装入100 mL发酵培养基),于37 ℃、300 r/min振荡厌氧发酵24 h,每隔2 h取样发酵上清,参照张金露等[30]报道,利用生物传感仪测定各发酵时间点样品的乳酸含量(g/L),以时间值为横坐标,产乳酸量为纵坐标,绘制原始野生菌株的产乳酸曲线。

    取1.2.2.1复壮后初始种子菌悬液,连续稀释10−5倍之后取100 µL,利用涂布棒均匀涂布于溴甲酚紫-碳酸钙固体筛选培养基(SMBVC),于37 ℃厌氧培养24 h,由于乳酸菌的产酸特性会在菌落周围产生融钙圈,测定融钙圈和菌落直径,按(1)式计算酸斑值(HC)。

    HC=Da/Dc
    (1)

    式中,HC为酸斑值,Da为菌落周围产生的融钙圈直径(cm),而Dc为菌落自身直径(cm)。

    取1.2.2.1复壮后初始种子菌悬液2 mL置辐照皿中,设置重离子束12C+6的辐射参数,利用重离子束12C6+,在吸收剂量率为40 Gy/min的条件下,分别于0、40、80、120、160、200、300、400 Gy的辐照剂量下对原始野生菌株悬浮液分别进行辐照处理,每个辐照剂量下设置3个平行。

    参照王雨辰[31]报道的方法,将重离子束辐照诱变后的各辐照梯度菌悬液,分别稀释至10−5倍之后各取100 µL,均匀涂布于溴甲酚紫-碳酸钙固体筛选培养基(SMBVC),置于37 ℃厌氧培养箱培养24 h,统计各梯度存活菌落数,计算各菌落的HC值;同时将HC值不同菌落分别接种于发酵培养基,37 ℃发酵培养18 h,同1.2.2.2所述方法测定各突变菌株的产乳酸量,得到突变菌株HC值与其产乳酸量之间的关系,建立利用突变菌株HC值进行初筛的方法。

    重离子束辐照结束后,将辐照后的菌悬液进行连续稀释后,吸取0.1 mL均匀涂布于MRS固体培养基上(3个重复),于37 ℃恒温厌氧培养24 h,通过平板菌落计数统计存活菌落数并确定致死率,绘制图得到致死率随辐照剂量变化曲线。同上将突变后的菌悬液均匀涂布于SMBVC上,形成的单菌落在SMBVC上可以形成透明的溶钙圈,统计溶钙圈直径及菌落直径,计算HC值,按式(2)计算致死率,按式(3)和式(4)计算正负突变率,绘制致死率和正、负突变率曲线。最后根据致死率及突变率确定最佳辐照诱变剂量[32]

    (%)=(1N1/N0)×100
    (2)
    (%)=NP/NT×100
    (3)
    (%)=NN/NT×100
    (4)

    式中,N1是辐照后生长的菌落数,N0是辐照对照组(0 Gy)生长菌落数。NP是HC值比原始野生菌株提高20%及以上菌落数,NN是HC值比原始野生菌株降低20%及以上菌落数,NT是该辐照剂量下的菌落总数。

    将最佳辐照剂量下的各突变菌株接种于SMBVC上,计算各突变菌株的HC值,筛选出HC值较原始野生菌株提高25%以上的突变菌株作为初筛后突变菌株。

    将初筛后的突变菌株在接种于发酵培养基,于37 ℃恒温厌氧培养24 h,以大肠杆菌为致病指示菌,对其体外抑菌活性进行测定[33-34],筛选出抑菌圈直径较原始野生菌株提高15%以上的菌株,作为复筛后突变菌株。

    将复筛后突变菌株于发酵培养基中连续传代9次,每隔2代利用1.2.2.2所述方法测定其产乳酸量,依据其产乳酸变化检测突变菌株遗传稳定性[35]

    按细菌DNA提取试剂盒操作说明提取原始野生菌株和稳定突变菌株基因组DNA,利用PCR仪特异性扩增各菌株的16S rDNA片段,引物序列:27F 5′-GAGCGGATAACAATTTCACACAGG-3′,1492R 5′-CGCCAGGGTTTTCCCAGTCACGAC-3′,50 µL的反应体系,PCR反应条件为:94 ℃ 5 min,94 ℃ 1 min、55 ℃ 1 min、72 ℃ 1.5 min,30个循环,72 ℃延伸5 min。PCR产物经电泳检测后进行测序,测序结果经过Seq-man软件拼接后与NCBI核酸数据库比对,MEGA-X构建系统发育树。

    所有实验均进行三次独立重复实验,试验结果数据除HC增加值用百分比表示外,其余结果均采用平均值±标准差的形式表示;利用Excel 2019和SPSS 25.0统计软件进行数据处理。本试验组间比较选用单因素ANOVA检验。若假定等方差则用LSD检验,若不假定等方差则用邓尼特T3检验,P<0.05,则差异显著,具有统计学意义。

    对原始野生菌株生长情况进行研究,为后期诱变菌株的选育提供依据。鼠李糖乳杆菌JF12-1菌体随时间生长规律如图1-a,可知0~4 h阶段,菌体生长缓慢,与培养环境的适应有关;4~12 h,呈指数级增长,为对数生长期,此阶段乳酸菌株代谢最旺盛、活力最好,适合菌株性状研究;12~20 h阶段为稳定期,其阶段菌株代谢稳定,适合菌株代谢物研究;20 h之后开始逐渐步入衰亡期,菌体死亡数开始增多。此乳酸菌株的生长曲线与徐颖等[36]研究中报道的鼠李糖乳杆菌Lr-1和Lr-2相同,均于12 h达对数末期;而与罗素贤等[37]关于鼠李糖乳杆菌JX-1的生长曲线研究结果不同,该菌株于10 h末便开始进入稳定期,这可能与菌株来源及特异性有关。

    图  1  原始野生菌株鼠李糖乳杆菌JF12-1生长曲线(a)和产乳酸曲线(b)
    Figure  1.  Growth curve (a) and lactic acid production curve (b) of primitive wild strain Lactobacillus rhamnosus JF12-1

    发酵生长过程中乳酸产量变化如图1-b,可知,此鼠李糖乳杆菌菌株在2 h内,代谢缓慢,产乳酸变化不明显,2~10 h产乳酸量急剧升高,10~16 h产乳酸量较前一阶段有所放缓,但仍然在升高,16~24 h产乳酸量基本保持恒定,产乳酸量最高峰值为7.12 g/L。

    乳酸菌在特定的筛选培养基上,菌落会在代谢产生的有机酸作用下于其周围产生黄色的融钙圈,其HC值已作为与突变株比较的优良株筛选标准之一。本实验中鼠李糖乳杆菌JF12-1在溴甲酚紫-碳酸钙筛选培养基中产生了明显的融钙圈,如图2。对筛选培养基上同一菌株的5个不同菌落的HC值进行统计,作为原始野生菌株的HC值,作为后续突变株筛选的依据,结果如表1,结果显示原始野生菌株鼠李糖乳杆菌JF12-1平均HC值为3.23。

    图  2  原始野生菌株鼠李糖乳杆菌JF12-1融钙圈效果图
    Figure  2.  Effect diagram of the original wild strain Lactobacillus rhamnosus JF12-1 melting calcium ring
    表  1  原始野生菌株鼠李糖乳杆菌JF12-1的菌落HC值
    Table  1.  HC values of the original wild strain Lactobacillus rhamnosus JF12-1
    菌落编号融钙圈直径(cm)菌落直径(cm)HC值平均HC值
    10.78±0.230.24±0.223.25±323.23±0.29
    20.69±0.110.19±0.313.63±28
    30.87±0.350.28±0.093.11±22
    40.76±0.470.23±0.343.30±18
    50.91±0.380.32±0.372.84±18
    下载: 导出CSV 
    | 显示表格

    将辐照诱变后的所有突变菌株分别接种到溴甲酚紫-碳酸钙固体筛选培养基(SMBVC),测定融钙圈,计算菌株HC值和其对应产乳酸量,结果发现辐照诱变之后的菌株HC值与其产乳酸量之间存在显著的正相关性,以300 Gy辐照梯度下的诱变后10株菌株的HC-产乳酸关系为例(如图3),由此可见诱变后菌株HC-产乳酸关系能够作为高产乳酸突变菌株的筛选方法。

    图  3  突变菌株HC值与其产乳酸量之间的相关性
    Figure  3.  Correlation between HC value and lactic acid production of mutant strains

    建立致死率曲线和正负突变率曲线,确定最佳诱变吸收剂量。致死率反映了菌落的存活情况,12C6+重离子束诱变鼠李糖乳杆菌JF12-1后,各辐照剂量下的致死率变化如图4-a。致死率随辐照剂量的增大呈现出先升高后下降,之后又急剧升高的变化规律。当辐照剂量为0~80 Gy时,致死率随辐照剂量的增加而急剧上升;80~120 Gy时,致死率随辐照剂量的增加而出现降低;120~400 Gy 时,致死率随辐照剂量的增加而再度急剧升高;菌落半致死辐照剂量约为160 Gy,300 Gy时致死率79.86%,400 Gy时致死率接近95.39%。本研究中致死率变化呈马鞍形,与王雨辰等[38]关于植物乳酸菌JTL在经过不同辐照剂量的12C6+重离子束辐照后的研究结果相一致,其致死率虽然随着辐照吸收剂量的增大而增大,但关系并非呈线性而呈马鞍形。但与都雯玥[39]在重离子辐照选育截短侧耳素高产菌株研究中报道的致死率曲线呈线性的报道相反,这可能与菌株特异性有关。起初在低辐照剂量下,重离子束产生自由基对细胞生物膜和DNA、蛋白质等生物大分子直接造成损伤,使辐照菌株致死率急剧增大;随着重离子累积注入量的增加,细胞表面损伤严重,能量沉积及动量传递继续对菌株产生损伤,使其致死率仍呈上升趋势,这种作用的持续会短暂激活细胞的某种损伤修复机制,使得致死率出现短暂下降;但当辐照累积量增加到一定值时,多种物理效应产生的渐变性损伤累积,势必会对菌株造成不可逆的物化损伤[40]

    图  4  致死率(a)、正负突变率(b)随辐照剂量变化曲线
    注:“*”表示致死率/正突变率变化差异显著(P<0.05);“**”表示差异极显著(P<0.01);“##”表示负突变率变化差异极显著(P<0.01)。
    Figure  4.  Fatality rate (a), positive and negative mutation rate (b) curve with radiation dose

    正、负突变率反映了诱变过程中正、负突变菌株数占全部被诱变菌株数的比率,随辐照剂量的变化而变化,12C6+重离子束各辐照剂量下的正、负突变率变化如图4-b。一定辐照剂量范围内,虽然提高辐照剂量能提高致死率,亦可提高正突变率,但负突变率也会相应增加,为此在最大限度的提高致死率(提高正向突变率)情况下,还要保证负突变率不会明显的增大,才能诱变成功(即找到一个最佳辐照剂量),而多数研究所报道的当致死率处于80%时,会得到一个理想的辐照结果。蔡聪等[41]在产左旋乳酸的乳酸菌诱变研究中,发现当被诱变菌株的致死率在70%~80%范围内,诱变后菌株才会出现较多的正向突变株,对应的诱变剂量才是最佳剂量。杨佩斯[42]对菌株进行ARTP诱变,发现当在约80%致死率时,菌株诱变较理想,若致死率更高,正突变率虽然可能也有所增加,但在此情况下,负突变率都会较高,不宜优良突变菌株的筛选。本研究中辐照吸收剂量为300 Gy时,致死率较高接近80%;而400 Gy时致死率虽然更高,但负突变率相较于300 Gy时有了明显的升高,达到了11.49%,不利于理想突变株的筛选,故选择300 Gy为最佳辐照剂量较为合适。

    对最佳辐照诱变剂量300 Gy下的正向突变菌株采用1.2.6所述的方法进行筛选,以原始野生菌株JF12-1的平均HC值3.26作为初筛对照,筛选出20株HC值相较于原始野生菌株HC值增加25%以上的突变菌株,筛选结果见表2,其中突变株JF11+和JF16+的HC值增加最高,分别较原始野生菌株增加了49.69%和49.97%,但多数突变后菌株的HC值增加百分比介于30%~50%之间。突变后菌株融钙圈如图5,较原始野生菌株有明显变大,说明诱变后菌株产有机酸量有明显提升。

    表  2  最佳诱变剂量下的正向突变株
    Table  2.  Positive mutants at optimum mutagenic dose
    菌株编号融钙圈直径
    (cm)
    菌落直径
    (cm)
    HC值相对于JF12-1的HC值
    增加百分比(%)
    JF0.75±0.210.23±0.193.26±0.12
    JF1+1.12±0.130.25±0.254.48±0.4137.42
    JF2+1.38±0.220.29±0.284.76±0.3245.97
    JF3+1.23±0.520.26±0.554.73±0.1545.12
    JF4+1.35±0.240.29±0.494.66±0.3342.80
    JF5+1.26±0.270.28±0.404.50±0.2238.04
    JF6+1.13±0.550.26±0.384.35±0.1733.32
    JF7+1.31±0.320.27±0.224.85±0.1848.83
    JF8+1.09±0.190.26±0.384.19±0.3228.60
    JF9+1.31±0.280.27±0.614.85±0.2248.83
    JF10+1.15±0.320.24±0.374.79±0.3146.98
    JF11+1.22±0.140.25±0.264.88±0.4149.69
    JF12+1.49±0.170.31±0.324.81±0.4247.44
    JF13+1.25±0.220.27±0.474.63±0.1942.01
    JF14+1.15±0.330.24±0.444.79±0.3246.98
    JF15+1.23±0.520.29±0.314.24±0.2530.10
    JF16+1.32±0.170.27±0.264.89±0.4249.97
    JF17+1.28±0.200.28±0.334.57±0.3740.23
    JF18+1.03±0.330.24±0.414.27±0.2831.65
    JF19+1.26±0.260.28±0.524.50±0.3238.04
    JF20+1.35±0.430.30±0.274.83±0.1948.04
    注:上标“+”表示正向突变菌株。
    下载: 导出CSV 
    | 显示表格
    图  5  初筛突变菌株融钙圈
    Figure  5.  Preliminary screening of calcium melting circle of mutant strain

    对初筛后的突变菌株参照1.2.7所述方法进行大肠杆菌体外抑菌实验,以原始野生菌株JF12-1对大肠杆菌平均抑菌圈直径19.95 mm为参照,发现20株初筛菌株中,只有8株菌株的抑菌圈直径较原始野生菌株JF12-1差异地提高(P<0.05),分别为JF3+、JF4+、JF5+、JF9+、JF10+、JF11+、JF14+及JF16+,其抑菌圈直径分别为23.89、23.94、24.54、23.67、24.34、24.60、25.25及24.33 mm,较原始野生菌株JF12-1提高了18.65%~26.57%,结果见图6。最后确定这8株突变菌株为复筛后突变菌株。

    图  6  原始野生菌株及复筛突变菌株抑菌性
    注:“*”表示与原始野生菌株相比差异显著(P<0.05)。
    Figure  6.  Bacteriostasis of original wild strain and double screening mutant strain

    对筛选出的8株产酸及抑菌性良好的突变菌株连续传代,隔代接种发酵对其产乳酸量进行测定,结果见表3。发菌株JF12-1及各正向突变菌株隔代乳酸含量相比于第1代变化不显著(P>0.05),说明遗传稳定性良好。以原始野生菌株12-1的平均产乳酸量7.92 g/L为对照,发现各正向突变株的产乳酸量较原始野生菌株有明显提升,其中突变菌株JF16+的平均产乳酸量为12.57 g/L,较原始野生菌株提高了58.74%。突变后菌株的产乳酸量及抑菌性除取决于相关基因所控制的代谢产物的表达量外,在很大程度上与菌株的培养条件密不可分。因此后续还需要研究培养基的营养配比来筛选最佳发酵条件,以使突变后的基因得以充分的表达[43],以进一步研究突变后菌株优良特性的表达。

    表  3  突变株传代产乳酸量的稳定性(g/L)
    Table  3.  Stability of lactate production in subculture of mutant strains(g/L)
    传代数13579
    JF12-17.90±0.36Ac7.97±0.47Ac7.97±0.31Ac7.83±0.55Ac7.93±0.59Ac
    JF3+11.37±0.38Ab11.97±1.42Ab11.47±0.31Ab11.77±0.15Ab11.00±0.28Ab
    JF4+12.60±0.30Aa12.43±0.29Aa12.27±0.06Aa12.10±0.40Aa12.40±0.10Aa
    JF5+11.20±0.10Ab11.17±0.06Ab11.37±0.15Ab11.30±0.10Ab11.30±0.17Ab
    JF9+12.33±0.15Aa12.33±0.21Aa12.17±0.21Aa12.67±0.29Aa12.33±0.23Aa
    JF10+12.17±0.21Aa12.17±0.06Aa12.30±0.20Aa12.67±0.47Aa12.27±0.15Aa
    JF11+11.37±0.31Ab11.37±0.21Ab11.47±0.25Ab11.53±0.06Ab11.27±0.15Ab
    JF14+11.40±0.36Ab11.57±0.32Ab11.30±0.10Ab11.53±0.25Ab11.47±0.35Ab
    JF16+12.73±0.68Aa12.37±0.12Aa12.43±0.25Aa12.73±0.59Aa12.60±0.10Aa
    注:肩标大写字母表示同一菌株不同传代数下的产乳酸差异;肩标小写字母表示不同菌株,同一传代数下各自的产乳酸差异。字母相同表示差异不显著(P>0.05),不同表示差异显著(P<0.05)。
    下载: 导出CSV 
    | 显示表格

    通过琼脂糖凝胶电泳拍照,原始野生菌株和稳定突变菌株的16S rDNA序列扩增成功,如图7所示,分子量均为1500 bp,与原始野生型菌株JF12-1的分子量相同。测序比对结果与同源相似序列构建的系统发育树如图8,很好地显示了诱变前后各菌株与鼠李糖乳杆菌的亲缘关系。本研究诱变选育后菌株的16S rRNA基因片段未发现碱基突变,这与WANG等[18]对植物乳杆菌太空诱变菌株的序列研究相似,说明乳酸菌株16s rRNA基因片段普遍具有保守性,这与其物种的亲缘关系有关。而促使其产酸、抑菌功能增强的突变位点可能存在于其他基因区段,这需要进一步对诱变选育后菌株的全基因组序列进行研究才能确定。

    图  7  原始野生菌株及复筛突变菌株的16S rDNA电泳图
    注:图中M是Mark,泳道1~7分别为阴性对照,JF12-1,JF3+,JF4+,JF5+,JF9+,JF10+,JF11+,JF14+ 和JF16+
    Figure  7.  16S rDNA electrophoresis of the original wild strain and the double-screened mutant strain
    图  8  原始野生菌株JF12-1及诱变后菌株的发育进化树
    Figure  8.  The phylogenetic tree of primitive wild strain JF12-1 and the mutated strain

    本研究成功利用12C6+重离子束对奶牛源鼠李糖乳杆菌JF12-1进行了辐照诱变及选育。诱变确定300 Gy为最佳辐照剂量,该剂量下致死率为79.86%,正突变率为30.33%,负突变率为5.38%,正向突变株最多;对最佳辐照剂量下的突变菌株初筛,得到20株HC值较原始野生菌株提高25%突变株,复筛得到JF3+、JF4+、JF5+、JF9+、JF10+、JF11+、JF14+及JF16+为体外对大肠杆菌抑菌性较原始野生菌株提高18.65%~26.57%的菌株;连续传代后接种发酵,发现这8株突变乳酸菌株产乳酸较原始野生菌株提高了43.92%~58.74%且具有良好的遗传稳定性。说明12C6+重离子束在优良稳定鼠李糖乳杆菌菌株选育中的使用是切实可行的。

  • 图  1   原始野生菌株鼠李糖乳杆菌JF12-1生长曲线(a)和产乳酸曲线(b)

    Figure  1.   Growth curve (a) and lactic acid production curve (b) of primitive wild strain Lactobacillus rhamnosus JF12-1

    图  2   原始野生菌株鼠李糖乳杆菌JF12-1融钙圈效果图

    Figure  2.   Effect diagram of the original wild strain Lactobacillus rhamnosus JF12-1 melting calcium ring

    图  3   突变菌株HC值与其产乳酸量之间的相关性

    Figure  3.   Correlation between HC value and lactic acid production of mutant strains

    图  4   致死率(a)、正负突变率(b)随辐照剂量变化曲线

    注:“*”表示致死率/正突变率变化差异显著(P<0.05);“**”表示差异极显著(P<0.01);“##”表示负突变率变化差异极显著(P<0.01)。

    Figure  4.   Fatality rate (a), positive and negative mutation rate (b) curve with radiation dose

    图  5   初筛突变菌株融钙圈

    Figure  5.   Preliminary screening of calcium melting circle of mutant strain

    图  6   原始野生菌株及复筛突变菌株抑菌性

    注:“*”表示与原始野生菌株相比差异显著(P<0.05)。

    Figure  6.   Bacteriostasis of original wild strain and double screening mutant strain

    图  7   原始野生菌株及复筛突变菌株的16S rDNA电泳图

    注:图中M是Mark,泳道1~7分别为阴性对照,JF12-1,JF3+,JF4+,JF5+,JF9+,JF10+,JF11+,JF14+ 和JF16+

    Figure  7.   16S rDNA electrophoresis of the original wild strain and the double-screened mutant strain

    图  8   原始野生菌株JF12-1及诱变后菌株的发育进化树

    Figure  8.   The phylogenetic tree of primitive wild strain JF12-1 and the mutated strain

    表  1   原始野生菌株鼠李糖乳杆菌JF12-1的菌落HC值

    Table  1   HC values of the original wild strain Lactobacillus rhamnosus JF12-1

    菌落编号融钙圈直径(cm)菌落直径(cm)HC值平均HC值
    10.78±0.230.24±0.223.25±323.23±0.29
    20.69±0.110.19±0.313.63±28
    30.87±0.350.28±0.093.11±22
    40.76±0.470.23±0.343.30±18
    50.91±0.380.32±0.372.84±18
    下载: 导出CSV

    表  2   最佳诱变剂量下的正向突变株

    Table  2   Positive mutants at optimum mutagenic dose

    菌株编号融钙圈直径
    (cm)
    菌落直径
    (cm)
    HC值相对于JF12-1的HC值
    增加百分比(%)
    JF0.75±0.210.23±0.193.26±0.12
    JF1+1.12±0.130.25±0.254.48±0.4137.42
    JF2+1.38±0.220.29±0.284.76±0.3245.97
    JF3+1.23±0.520.26±0.554.73±0.1545.12
    JF4+1.35±0.240.29±0.494.66±0.3342.80
    JF5+1.26±0.270.28±0.404.50±0.2238.04
    JF6+1.13±0.550.26±0.384.35±0.1733.32
    JF7+1.31±0.320.27±0.224.85±0.1848.83
    JF8+1.09±0.190.26±0.384.19±0.3228.60
    JF9+1.31±0.280.27±0.614.85±0.2248.83
    JF10+1.15±0.320.24±0.374.79±0.3146.98
    JF11+1.22±0.140.25±0.264.88±0.4149.69
    JF12+1.49±0.170.31±0.324.81±0.4247.44
    JF13+1.25±0.220.27±0.474.63±0.1942.01
    JF14+1.15±0.330.24±0.444.79±0.3246.98
    JF15+1.23±0.520.29±0.314.24±0.2530.10
    JF16+1.32±0.170.27±0.264.89±0.4249.97
    JF17+1.28±0.200.28±0.334.57±0.3740.23
    JF18+1.03±0.330.24±0.414.27±0.2831.65
    JF19+1.26±0.260.28±0.524.50±0.3238.04
    JF20+1.35±0.430.30±0.274.83±0.1948.04
    注:上标“+”表示正向突变菌株。
    下载: 导出CSV

    表  3   突变株传代产乳酸量的稳定性(g/L)

    Table  3   Stability of lactate production in subculture of mutant strains(g/L)

    传代数13579
    JF12-17.90±0.36Ac7.97±0.47Ac7.97±0.31Ac7.83±0.55Ac7.93±0.59Ac
    JF3+11.37±0.38Ab11.97±1.42Ab11.47±0.31Ab11.77±0.15Ab11.00±0.28Ab
    JF4+12.60±0.30Aa12.43±0.29Aa12.27±0.06Aa12.10±0.40Aa12.40±0.10Aa
    JF5+11.20±0.10Ab11.17±0.06Ab11.37±0.15Ab11.30±0.10Ab11.30±0.17Ab
    JF9+12.33±0.15Aa12.33±0.21Aa12.17±0.21Aa12.67±0.29Aa12.33±0.23Aa
    JF10+12.17±0.21Aa12.17±0.06Aa12.30±0.20Aa12.67±0.47Aa12.27±0.15Aa
    JF11+11.37±0.31Ab11.37±0.21Ab11.47±0.25Ab11.53±0.06Ab11.27±0.15Ab
    JF14+11.40±0.36Ab11.57±0.32Ab11.30±0.10Ab11.53±0.25Ab11.47±0.35Ab
    JF16+12.73±0.68Aa12.37±0.12Aa12.43±0.25Aa12.73±0.59Aa12.60±0.10Aa
    注:肩标大写字母表示同一菌株不同传代数下的产乳酸差异;肩标小写字母表示不同菌株,同一传代数下各自的产乳酸差异。字母相同表示差异不显著(P>0.05),不同表示差异显著(P<0.05)。
    下载: 导出CSV
  • [1]

    ISLAM R, HOSSAIN M N, ALAM M K, et al. Antibacterial activity of lactic acid bacteria and extraction of bacteriocin protein[J]. Advances in Bioscience and Biotechnology,2020,11(2):49−59. doi: 10.4236/abb.2020.112004

    [2]

    KAPRASOB R, KERDCHOECHUEN O, LAOHAKUNJIT N, et al. Fermentation-based biotransformation of bioactive phenolics and volatile compounds from cashew apple juice by select lactic acid bacteria[J]. Process Biochemistry,2017,59:141−149. doi: 10.1016/j.procbio.2017.05.019

    [3]

    DO T, BAO K T, TRAN T, et al. Decoding the capability of Lactobacillus plantarum W1 isolated from soybean whey in producing an exopolysaccharide[J]. ACS Omega,2020,5(51):33387−33394. doi: 10.1021/acsomega.0c05256

    [4]

    TAMBUR Z, MILJKOVI-SELIMOVI B, OPAI D, et al. Inhibitory effects of different medicinal plants on growth of some oral microbiome member[J]. Medycyna Weterynaryjna,2020,76(8):6433−2020. doi: 10.21521/mw.6433

    [5]

    SOPHATHA B, PIWAT S, TEANPAISAN R. Adhesion, anti-adhesion and aggregation properties relating to surface charges of selected Lactobacillus strains: Study in Caco-2 and H357 cells[J]. Archives of Microbiology,2020,202(6):1349−1357. doi: 10.1007/s00203-020-01846-7

    [6]

    SALEHIZADEH M, MODARRESSI M H, MOUSAVI S N, et al. Evaluation of lactic acid bacteria isolated from poultry feces as potential probiotic and its in vitro competitive activity against Salmonella typhimurium[C]//Veterinary Research Forum. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran, 2020, 11(1): 67.

    [7]

    JACKMAN C M, DEANS K W, FORNEY L J, et al. Microdroplet co-cultivation and interaction characterization of human vaginal bacteria[J]. Integrative Biology,2019,11(3):69−78. doi: 10.1093/intbio/zyz006

    [8]

    ADEOSHUN F G, RUPPITSCH W, ALLERBERGER F, et al. Prevalence and antimicrobial properties of lactic acid bacteria in Nigerian women during the menstrual cycle[J]. Polish Journal of Microbiology,2019,68(2):203−209. doi: 10.33073/pjm-2019-020

    [9]

    KOSTELAC D, GERIĆ M, GAJSKI G, et al. Lactic acid bacteria isolated from equid milk and their extracellular metabolites show great probiotic properties and anti-inflammatory potential[J]. International Dairy Journal,2021,112:104828. doi: 10.1016/j.idairyj.2020.104828

    [10]

    MILJKOVIC M, MARINKOVIC P, NOVOVIC K, et al. AggLr, a novel aggregation factor in Lactococcus raffinolactis BGTRK10-1: Its role in surface adhesion[J]. Biofouling,2018,34(5−6):685−698.

    [11] 陈舜华. 乳酸菌阴道胶囊对产后6周妇女特异性阴道炎防治作用的临床观察[J]. 家庭医药. 就医选药,2017(6):38−39. [CHEN S H. Clinical observation of Lactobacillus vaginalis capsule on prevention and treatment of specific vaginitis in women 6 weeks after delivery[J]. Family Medicine. Medical Selection of Medicine,2017(6):38−39.

    CHEN S H. Clinical observation of Lactobacillus vaginalis capsule on prevention and treatment of specific vaginitis in women 6 weeks after delivery[J]. Family Medicine. Medical Selection of Medicine, 2017(6): 38-39.

    [12] 李艳欣. 犬源乳酸菌的筛选及其对番泻叶介导的犬腹泻的防治试验[D]. 长春: 吉林大学, 2018.

    LI Y X. Screening of canine Lactobacillus and its prevention and treatment of senna leaf mediated diarrhea in dogs[D]. Changchun: Jilin University, 2018.

    [13]

    BRON P A, MARCELLI B, MULDER J, et al. Renaissance of traditional DNA transfer strategies for improvement of industrial lactic acid bacteria[J]. Current Opinion in Biotechnology,2019,56:61−68. doi: 10.1016/j.copbio.2018.09.004

    [14]

    YOKOTA A. Breeding of useful microorganisms by mutation in energy metabolism[J]. Journal of the Agricultural Chemical Society of Japan,1997,71:9−14.

    [15] 刘璐. 重离子束辐照恩拉霉素菌株的选育研究[D]. 北京: 中国科学院大学(中国科学院近代物理研究所), 2020.

    LIU L. Breeding of enramycin strain irradiated by heavy ion beam[D]. Beijing: University of Chinese Academy of Sciences (Institute of modern physics, Chinese Academy of Sciences), 2020.

    [16]

    LÜ Y, LI J, CHEN Z, et al. Species identification and mutation breeding of silicon-activating bacteria isolated from electrolytic manganese residue[J]. Environmental Science and Pollution Research,2020,28(2):1491−1501.

    [17]

    LIU K Y, FANG H, CUI F J, et al. ARTP mutation and adaptive laboratory evolution improve probiotic performance of Bacillus coagulans[J]. Applied Microbiology and Biotechnology,2020,104(14):6363−6373. doi: 10.1007/s00253-020-10703-y

    [18]

    WANG D, ZHANG T, YE H, et al. In vitro probiotic screening and evaluation of space-induced mutant Lactobacillus plantarum[J]. Food Science & Nutrition,2020,8(11):6031−6036.

    [19]

    GUO X, ZHANG M, GAO Y, et al. Repair characteristics and time-dependent effects in response to heavy-ion beam irradiation in Saccharomyces cerevisiae: A comparison with X-ray irradiation[J]. Applied Microbiology and Biotechnology,2020,104(4):4043−4057.

    [20] 杨阳. 重离子诱变谷氨酸高产菌株选育及阿莫西林诱导发酵机理研究[D]. 兰州: 兰州理工大学, 2019.

    YANG Y. Screening of high yield glutamate strain induced by heavy ion and study on the mechanism of amoxicillin induced fermentation[D]. Lanzhou: Lanzhou University of Technology, 2019.

    [21] 王志. 利用重离子碰撞研究原子核内核子的短程关联及高动量分布[D]. 南京: 南京大学, 2019.

    WANG Z. Study of short-range correlation and high momentum distribution of nucleons in nuclei by heavy ion collisions[D]. Nanjing: Nanjing University, 2019.

    [22] 贾蓉, 苏锋涛, 胡步荣. 重离子的辐射生物效应及其在生命科学中的应用[J]. 生物技术通报,2018,34(1):67−78. [JIA R, SU F T, HU B R. Biological effects of heavy ions and their applications in life sciences[J]. Biotechnology Bulletin,2018,34(1):67−78. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0735

    JIA R, SU F T, HU B R. Biological effects of heavy ions and their applications in life sciences[J]. Biotechnology Bulletin, 2018, 34(1): 67-78. doi: 10.13560/j.cnki.biotech.bull.1985.2017-0735

    [23] 孙玲, 刘利平, 徐婉茹, 等. 物理诱变在药食用菌育种中的应用研究进展[J]. 安徽农业科学,2018,46(14):29−33, 153. [SUN L, LIU L P, XU W R, et al. Research progress in the application of physical mutagenesis in the breeding of medicinal edible fungi[J]. Journal of Anhui Agricultural Sciences,2018,46(14):29−33, 153. doi: 10.3969/j.issn.0517-6611.2018.14.009

    SUN L, LIU L P, XU W R, et al. Research progress in the application of physical mutagenesis in the breeding of medicinal edible fungi[J]. Journal of Anhui Agricultural Sciences, 2018, 46(14): 29-33, 153. doi: 10.3969/j.issn.0517-6611.2018.14.009

    [24]

    YANG Y N, LIU C L, WANG Y K, et al. Mutation effects of C2+ ion irradiation on the greasy Nitzschia sp.[J]. Mutation Research/Fundamental & Molecular Mechanisms of Mutagenesis,2013,751(4):24−28.

    [25] 李垄清. 重离子诱变技术选育高产β-葡聚糖酵母菌株的研究[D]. 北京: 中国科学院大学(中国科学院近代物理研究所), 2017.

    LI L Q. Breeding of high-yield β-glucan yeast strains by heavy ion mutagenesis[D]. Beijing: University of Chinese Academy of Sciences (Institute of Modern Physics, Chinese Academy of Sciences), 2017.

    [26]

    WANG S, BO Y, CHEN J, et al. Effects of heavy-ion beam irradiation on avermectin B1a and its analogues production by Streptomyces avermitilis[J]. Engineering in Life Sciences,2018,18(10):711−720. doi: 10.1002/elsc.201800094

    [27]

    JIANG A, HU W, LI W, et al. Enhanced production of l‐lactic acid by Lactobacillus thermophilus SRZ50 mutant generated by high-linear energy transfer heavy ion mutagenesis[J]. Engineering in Life Sciences,2018,18(9):626−634. doi: 10.1002/elsc.201800052

    [28] 缪建顺, 曹国珍, 张苗苗, 等. 重离子束诱变选育谷氨酸高产菌株[J]. 辐射研究与辐射工艺学报,2015,33(5):39−45. [MIAO J S, CAO G Z, ZHANG M M, et al. Breeding of high glutamic acid producing strain by heavy ion beam mutation[J]. Journal of Radiation Research and Radiation Processing Technology,2015,33(5):39−45. doi: 10.11889/j.1000-3436.2015.rrj.33.050401

    MIAO J S, CAO G Z, ZHANG M M, et al. Breeding of high glutamic acid producing strain by heavy ion beam mutation[J]. Journal of Radiation Research and Radiation Processing Technology, 2015, 33(5): 39-45 doi: 10.11889/j.1000-3436.2015.rrj.33.050401

    [29]

    DIANA R M, ERICA K, GONZALO M C, et al. Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells[J]. Journal of Dairy Science,2016,103(9):7707−7718.

    [30] 张金露, 吴涛, 唐艳. 生物传感仪-除NH4+法测定发酵液中L-谷氨酸含量的研究[J]. 中国食品添加剂,2021,32(1):86−91. [ZHANG J L, WU T, TANG Y. Study on determination of L-glutamic acid by biosensor removing NH4+ method[J]. China Food Additives,2021,32(1):86−91.

    ZHANG J L, WU T, TANG Y. Study on determination of L-glutamic acid by biosensor removing NH4+ method[J]. China Food Additives, 2021, 32(1): 86-91.

    [31] 王雨辰. 重离子辐照诱变选育高产酸乳酸菌株及其发酵条件优化研究[D]. 兰州: 甘肃农业大学, 2017

    WANG Y C. Breeding of lactic acid producing strain by heavy ion irradiation and optimization of fermentation conditions[D]. Lanzhou: Gansu Agricultural University, 2017.

    [32] 陈积红, 胡伟, 李文建, 等. 重离子束12C6+累进辐照诱变柠檬酸菌株选育研究[J]. 原子核物理评论,2013,30(4):483−487. [CHEN J H, HU W, LI W J, et al. Breeding of citric acid strain induced by heavy ion beam 12C6+ progressive irradiation[J]. Nuclear Physics Review,2013,30(4):483−487. doi: 10.11804/NuclPhysRev.30.04.483

    CHEN J H, HU W, LI W J, et al. Breeding of citric acid strain induced by heavy ion beam 12C6+ progressive irradiation[J]. Nuclear Physics Review, 2013, 30(4): 483-487. doi: 10.11804/NuclPhysRev.30.04.483

    [33]

    ABOULOIFA H, ROKNI Y, BELLAOUCHI R, et al. Characterization of probiotic properties of antifungal Lactobacillus strains isolated from traditional fermenting green olives[J]. Probiotics & Antimicrobial Proteins,2019,12(2):683−696.

    [34] 佘之蕴, 黄宝莹, 刘海卿, 等. 牛津杯法测定食品添加剂对五种益生菌的抑菌活力[J]. 食品工业,2016,37(1):171−174. [SHE Z Y, HUANG B Y, LIU H Q, et al. Determination of the antibacterial activity of food additives against five probiotics by Oxford cup method[J]. Food Industry,2016,37(1):171−174.

    SHE Z Y, HUANG B Y, LIU H Q, et al. Determination of the antibacterial activity of food additives against five probiotics by Oxford cup method[J]. Food Industry, 2016, 37(1): 171-174.

    [35] 吴庆华, 陈积红, 张珍, 等. X射线对嗜热乳杆菌产L-乳酸的选育研究[J]. 食品工业科技,2015,36(3):116−118,127. [WU Q H, CHEN J H, ZHANG Z, et al. Breeding of L-lactic acid produced by Lactobacillus thermophilus by X-ray[J]. Science and Technology of Food Industry,2015,36(3):116−118,127. doi: 10.13386/j.issn1002-0306.2015.03.015

    WU Q H, CHEN J H, ZHANG Z, et al. Breeding of L-lactic acid produced by Lactobacillus thermophilus by X-ray[J]. Science and Technology of Food Industry, 2015, 36(3): 116-118, 127. doi: 10.13386/j.issn1002-0306.2015.03.015

    [36] 徐颖, 贺黎, 吕嘉枥, 等. 富硒鼠李糖乳杆菌稳定性及其冻干保护剂研究[J]. 中国食品学报,2020,20(9):102−108. [XU Y, HE L, LÜ J Z, et al. Study on the stability of selenium enriched Lactobacillus rhamnosus and its freeze-drying protectant[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(9):102−108. doi: 10.16429/j.1009-7848.2020.09.013

    XU Y, HE L, LÜ J Z, et al. Study on the stability of selenium enriched Lactobacillus rhamnosus and its freeze-drying protectant[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(9): 102-108. doi: 10.16429/j.1009-7848.2020.09.013

    [37] 罗素贤, 叶昱, 周信荣, 等. 一株鼠李糖乳杆菌的培养条件优化研究[J]. 江西农业大学学报,2018,40(2):365−370. [LUO S X, YE Y, ZHOU X R, et al. Optimization of culture conditions of a Lactobacillus rhamnosus[J]. Journal of Jiangxi Agricultural University,2018,40(2):365−370. doi: 10.13836/j.jjau.2018048

    LUO S X, YE Y, ZHOU X R, et al. Optimization of culture conditions of a Lactobacillus rhamnosus[J]. Journal of Jiangxi Agricultural University, 2018, 40(2): 365-370. doi: 10.13836/j.jjau.2018048

    [38] 王雨辰, 王曙阳, 董妙音, 等. 重离子束辐照选育高产植物乳酸菌[J]. 辐射研究与辐射工艺学报,2017,35(1):52−58. [WANG Y C, WANG S Y, DONG M Y, et al. Breeding of high yield plant lactic acid bacteria by heavy ion beam irradiation[J]. Journal of Radiation Research and Radiation Processing Technology,2017,35(1):52−58. doi: 10.11889/j.1000-3436.2017.rrj.35.010401

    WANG Y C, WANG S Y, DONG M Y, et al. Breeding of high yield plant lactic acid bacteria by heavy ion beam irradiation[J]. Journal of Radiation Research and Radiation Processing Technology, 2017, 35(1): 52-58. doi: 10.11889/j.1000-3436.2017.rrj.35.010401

    [39] 都雯玥. 重离子辐照并筛选截短侧耳素高产菌株的研究[D]. 兰州: 兰州理工大学, 2016.

    DU W Y. Study on the high yield strains of truncated lateral otoxin by heavy ion irradiation[D]. Lanzhou: Lanzhou University of Technology, 2016.

    [40]

    LIU J, QI Z, HUANG Q, et al. Study of energetic-particle-irradiation induced biological effect on Rhizopus oryzae through synchrotron-FTIR micro-spectroscopy[J]. Journal of Molecular Structure,2013,1031:1−8. doi: 10.1016/j.molstruc.2012.07.025

    [41] 蔡聪, 姜婷, 郑兆娟, 等. 等离子体诱变凝结芽孢杆菌提高木糖利用能力高产 L-乳酸[J]. 食品科学,2014,35(1):125−129. [CAI C, JIANG T, ZHENG Z J, et al. Improved xylose utilization of Bacillus coagulans by atmospheric and room temperature plasma mutation for production of lactic acid[J]. Food Science,2014,35(1):125−129. doi: 10.7506/spkx1002-6630-201401024

    CAI C, JIANG T, ZHENG Z J, et al. Improved xylose utilization of Bacillus coagulans by atmospheric and room temperature plasma mutation for production of lactic acid[J]. Food Science, 2014, 35(1): 125-129. doi: 10.7506/spkx1002-6630-201401024

    [42] 杨佩斯. ARTP诱变黑曲霉絮凝菌株及应用研究[D]. 贵阳: 贵州大学, 2020.

    YANG P S. Mutation of Aspergillus niger flocculating strain by ARTP and its application[D]. Guiyang: Guizhou University, 2020.

    [43] 杨然, 范光森, 郦金龙, 等. 重组毕赤酵母高产木聚糖酶菌株筛选及发酵条件优化[J]. 中国食品学报,2017,17(12):95−104. [YANG R, FAN G S, LI J L, et al. Screening of recombinant Pichia pastoris strains with high xylanase production and optimization of fermentation conditions[J]. Journal of Chinese Institute of Food Science and Technology,2017,17(12):95−104. doi: 10.16429/j.1009-7848.2017.12.013

    YANG R, FAN G S, LI J L, et al. Screening of recombinant Pichia pastoris strains with high xylanase production and optimization of fermentation conditions[J]. Journal of Chinese Institute of Food Science and Technology, 2017, 17(12): 95-104. doi: 10.16429/j.1009-7848.2017.12.013

图(8)  /  表(3)
计量
  • 文章访问数:  125
  • HTML全文浏览量:  22
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-29
  • 网络出版日期:  2022-07-02
  • 刊出日期:  2022-08-31

目录

/

返回文章
返回
x 关闭 永久关闭