• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

超高压处理对鲜榨茭白汁营养品质、抗氧化特性及挥发性风味的影响

林旭东, 孙瑞洋, 崔燕, 尚海涛, 邓文艺, 凌建刚, 宣晓婷

林旭东,孙瑞洋,崔燕,等. 超高压处理对鲜榨茭白汁营养品质、抗氧化特性及挥发性风味的影响[J]. 食品工业科技,2022,43(18):44−52. doi: 10.13386/j.issn1002-0306.2021110314.
引用本文: 林旭东,孙瑞洋,崔燕,等. 超高压处理对鲜榨茭白汁营养品质、抗氧化特性及挥发性风味的影响[J]. 食品工业科技,2022,43(18):44−52. doi: 10.13386/j.issn1002-0306.2021110314.
LIN Xudong, SUN Ruiyang, CUI Yan, et al. Effect of High Pressure Processing Treatment on Nutritional Quality, Antioxidant Properties and Volatile Flavor of Freshly Squeezed Water Bamboo Juice[J]. Science and Technology of Food Industry, 2022, 43(18): 44−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110314.
Citation: LIN Xudong, SUN Ruiyang, CUI Yan, et al. Effect of High Pressure Processing Treatment on Nutritional Quality, Antioxidant Properties and Volatile Flavor of Freshly Squeezed Water Bamboo Juice[J]. Science and Technology of Food Industry, 2022, 43(18): 44−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110314.

超高压处理对鲜榨茭白汁营养品质、抗氧化特性及挥发性风味的影响

基金项目: 宁波市公益类科技计划项目(2019C10033);宁波市中央引导地方科技发展专项资金项目(2019C10104)。
详细信息
    作者简介:

    林旭东(1982−),男,本科,农艺师,研究方向:农产品加工与贮藏,E-mail:lxd2226@163.com

    通讯作者:

    宣晓婷(1991−),女,硕士,助理研究员,研究方向:食品非热加工技术,E-mail:xuanxiaoting163@163.com

  • 中图分类号: TS255

Effect of High Pressure Processing Treatment on Nutritional Quality, Antioxidant Properties and Volatile Flavor of Freshly Squeezed Water Bamboo Juice

  • 摘要: 为研究超高压处理对茭白汁的影响,本文对比了超高压(HPP,400~500 MPa/5~10 min)和传统热处理(TP,80 ℃/10 min)对非浓缩还原(NFC)茭白汁的理化品质、营养组分、抗氧化特性及挥发性风味成分的影响。结果表明,热处理茭白汁的感官品质降低且出现了明显的分层,而HPP处理对茭白汁中的pH、可溶性固形物、可滴定酸含量无显著影响(P>0.05),且减少了分层现象,提升了茭白汁的感官品质。同时与TP处理相比,HPP处理能更好的保持茭白汁中的总酚、黄酮及DPPH自由基清除率。此外,气相色谱-离子迁移色谱(GC-IMS)风味解析显示,HPP增加了茭白汁中的果香和草香,提升了茭白汁的风味。综上,相较于传统TP处理,HPP处理在保持茭白汁品质特性、抗氧化及风味方面具有显著优势。
    Abstract: In order to study the effect of high pressure processing on water bamboo (Zizania caduciflora L.) juice, this study compared the effects of high pressure processing (HPP, 400~500 MPa/5~10 min) and conventional heat treatment (TP, 80 ℃/10 min) on the physicochemical quality, nutritional components, antioxidant properties and volatile flavor components of non-concentrated reduced (NFC) water bamboo juice. The results showed that the sensory quality of heat-treated water bamboo juice was reduced and significant stratification occurred, while HPP treatment had no significant effect on pH, soluble solids and titratable acid content in water bamboo juice (P>0.05), and reduced stratification and improved the sensory quality of water bamboo juice. Meanwhile, compared with TP treatment, HPP treatment could better maintain the total phenols, flavonoids and DPPH free radical scavenging rate in water bamboo juice. In addition, gas chromatography-ion mobility chromatography (GC-IMS) flavor analysis showed that HPP increased the fruit and herbaceous aromas in water bamboo juice, which enhanced the flavor of water bamboo juice. In conclusion, compared with the traditional TP treatment, the HPP treatment had significant advantages in maintaining the quality characteristics, antioxidant and flavor of water bamboo juice.
  • 茭白(Zizania caduciflora L.),又被称为菰、高瓜、高笋等,属禾本科宿根性多年水生草本植物,是我国江浙地区特有的水生蔬菜[1],茭白肉口感脆嫩鲜美,营养丰富,富含水量高达93%,是餐桌上的美味佳肴[2]。现代研究发现,茭白不仅具有一定的预防高血压和动脉硬化的药用功能,还有清热解毒和预防肠道疾病的功效,被誉为“水中人参”[3],又含有多糖、黄酮、多种维生素等物质,具有一定的抗氧化活性[4],深受消费者的青睐[5],具有良好的经济效益和社会效益。

    目前,茭白大多作为新鲜蔬菜销售,而深加工程度较低,常见的研究大多集中在茭白的栽培[6]及保鲜[7]上,而对于茭白的加工制品却鲜为研究。宣晓婷等[8]在研究杨梅复合果蔬汁的贮藏品质时,只对茭白汁的一些基础指标(糖、酸)进行了分析,至于其他指标或者风味成分并未涉及。此外,杀菌作为食品加工中的关键环节,可以抑制微生物的生长,从而延长食品的保质期。其中果蔬汁常见的杀菌方式主要分为热杀菌和非热杀菌,传统的热处理(Thermal processing, TP)极易损失产品中的热敏性营养成分,从而降低产品的品质,而超高压(High pressure processing,HPP)是目前较为成熟的非热杀菌技术,是指将密封在弹性容器里的样品置于水或其他液体作为传压介质的压力系统中,经100 MPa以上的压力处理,在常温甚至更低的温度下,达到杀菌、灭酶及改善食品功能特性的作用[9]。相比较传统热处理,超高压处理很好的保持了食品原有的营养、色泽和风味[10]。米瑞芳等[11]研究不同杀菌方式对胡萝卜片在贮藏期间的挥发性风味成分发现,超高压处理后胡萝卜片的萜烯类物质的含量最高,且较好地保持了胡萝卜原有的香脂气味以及松木芳香味。宋永程等[12]研究发现,超高压能更好的保持苦笋复合果蔬汁原有的颜色,且相较于热处理,超高压更好的保留总酚、黄酮含量及抗氧化活性。王欢欢[13]对番茄汁特征香气组分的保持技术研究发现,热处理后番茄汁风味组分损失严重,与超高压相比,热处理使番茄汁总OAV值降低为9.58%,超高压能更好的保持番茄汁的风味成分。目前对于果蔬汁的研究,大多是以胡萝卜汁、黄瓜汁和番茄汁[14]或复合果蔬汁[15]为研究对象,探讨加工工艺方法或不同条件对其品质的影响,但对于茭白制品的研究较少。

    气相色谱-离子迁移谱(gas chromatography-ion mobility spectrometry, GC-IMS)是一种融合了气相色谱的高分离度和离子迁移谱快速响应、高灵敏度的检测技术[16],样品无需进行预处理(无损检测),因此,广泛应用于不同处理方式和不同样品间挥发性风味成分的检测[17]。曹荣等[18]基于GC-IMS技术鉴定出坛紫菜与条斑紫菜的36种挥发性成分。其中,条斑紫菜中正己醇、丁内酯、苯乙醛、壬醛等挥发性风味物质的含量比坛紫菜高,且对紫菜整体愉悦气味有较大贡献的苯乙醛、壬醛等醛类化合物含量差异较大。Chen等[19]研究不同干燥条件下香菇挥发性成分的变化发现,干燥度较低的样品中挥发性风味物质丰富,而干燥程度对挥发性风味品质的影响大于干燥速率。主成分分析能够有效地将不同干燥条件的香菇区分。研究表明,基于GC-IMS技术的高灵敏、高分离的检测优势,能较好地鉴定区分不同样品间的风味成分,因此本文采用GC-IMS技术对比分析超高压和热处理对茭白汁中的挥发性风味成分的影响,并综合茭白汁理化品质、营养品质、抗氧化特性等指标的变化,以期为超高压NFC茭白汁的加工提供理论依据及技术指导。

    茭白 购于宁波市东柳菜市场,贮存于(4±1)℃,相对湿度为85%~95%的冷库中,24 h内进行实验处理;无水碳酸钠、无水乙醇、亚硝酸钠、硝酸铝、氢氧化钠 分析纯,国药控股化学试剂有限公司;福林酚试剂 北京索莱宝科技有限公司;没食子酸标准品 上海麦克林生化科技有限公司;芦丁标准品 上海阿拉丁生化科技股份有限公司;DPPH自由基清除能力试剂盒 南京建成科技有限公司。

    CQC2L-600型全液相超高压设备(容积为2000 mL,最大压力为600 MPa,升压时间<5 min) 北京速原中天股份有限公司;Ci60便携式色差仪 爱色丽(上海)色彩科技有限公司;FE-28型pH计 梅特勒-托利多(上海)仪器公司;MS105DU电子分析天平 Mettler Toledo仪器有限公司;MJ-JS2018A榨汁机 广东美的集团股份有限公司;PAL-BX/ACID F5型数显糖酸度计 ATAGO(爱拓)中国分公司;752S型紫外/可见分光度计 上海棱光技术有限公司;H1850R型台式高速冷冻离心机 湖南湘仪离心机仪器有限公司;FlavourSpec®风味分析仪 德国G.A.S.公司。

    将新鲜茭白去皮,置于原汁机中榨汁并用200目纱布进行过滤,滤后的茭白汁存放于耐高压聚乙烯塑料瓶中,置于−4 ℃冰箱冷藏备用。

    超高压处理:将制得的茭白汁样品置于超高压处理仓中,选取超高压压力400、450、500 MPa,处理时间为5、10 min进行处理,超高压的升压时间为3 min,泄压时间为10 s,温度为25~30 ℃,处理后的茭白汁样品存于−80 ℃,待测。

    热处理:将制得的茭白汁存放于耐高温塑料瓶中,采用传统巴氏杀菌(80 ℃、10 min)处理,处理后的茭白汁样品存于−80 ℃,待测。

    可溶性固形物、可滴定酸含量测定可溶性固形物(TSS)和可滴定酸(TA)含量均采用数显糖酸度计进行测定,每个样品重复测定3次。

    pH测定将待测茭白汁摇匀,取30 mL于烧杯中,采用pH计在室温下测定pH,待示数稳定后读数。每个样品重复测定3次。

    色泽测定:采用色差仪进行测定,在室温条件下,将样品摇匀置于比色皿中,测定模式为反射测量,测定口径为30 mm,测定亮度(L*)、红度(a*)、黄度(b*)值。

    采用福林酚法,参照Jung等[20]的方法略做修改。取茭白汁1 mL置20 mL试管中,加入5 mL蒸馏水,加入稀释一倍的福林酚试剂1 mL,加入质量分数为7.5%的碳酸钠溶液3 mL,黑暗中显色2 h,在765 nm下测定吸光值。代入标准曲线方程y=0.0106x−0.0095(R2=0.9997),即得茭白汁的总酚含量(mg/L)。

    采用亚硝酸钠法,参照Veronica等[21]的方法略做修改。取1 mL茭白汁置于10 mL具塞试管中,加0.3 mL的5%亚硝酸钠溶液,放置6 min,然后加入0.3 mL的10%硝酸铝溶液,放置6 min;加1 mol/L的NaOH溶液4 mL,并用60%乙醇溶液稀释至刻度,摇匀。暗处放置15 min,于510 nm波长下测吸光度。代入标准曲线y=0.0012x+0.0009(R2=0.9999),即可茭白汁的黄酮含量(mg/L)。

    使用DPPH自由基清除率试剂盒进行测定,测定方法严格按照试剂盒说明书。

    样品前处理:制备的茭白汁样品常温水浴解冻,解冻后置于冰水浴中待用。量取茭白汁1 mL,装入20 mL顶空瓶中,50 ℃孵育15 min后进样。

    GC-IMS条件:进样体积500 μL,孵育时间15 min,孵育温度50 ℃,进样针温度85 ℃,孵化转速500 r/min。色谱柱类型为FS-SE-54-CB-1,柱温60 ℃,载气为氮气,IMS温度为45 ℃。

    定性分析:通过VOCal软件内置的NIST数据库和IMS数据库对物质进行定性分析。

    各组数据以平均值±标准差(mean±SD)表示,应用SPSS 26.0软件(美国SPSS公司)对实验数据进行组间比较和差异显著性分析,以P<0.05为存在显著性差异;应用GC-IMS软件内置的NIST数据库和IMS数据库对物质进行定性分析,运用Reporter插件直接对比样品之间的谱图差异,并且采用Gallery Plot插件进行指纹图谱对比,通过dynamic PCA插件程序进行动态主成分分析。

    pH、可溶性固形物和可滴定酸含量是各种新鲜和加工果蔬汁的重要指标,由表1可知,超高压处理茭白汁的pH显著降低(P<0.05),可能由于超高压影响水溶液的电离平衡,使弱酸向生成更多H+的方向电离,致使pH改变[22];而超高压和热处理都使TA的含量有较小的下降趋势;经超高压处理后,TSS在2.60~3.40之间波动,可能是超高压使茭白汁的折射率发生变化[23],而当压力过高会造成一定的温度上升,使得茭白汁出现少量絮状沉淀物。Moussa-Ayoub等[24]发现超高压处理后的仙人掌汁的可溶性固形物含量与对照组未发生显著性变化。总之超高压和热处理后茭白汁的pH、TSS和TA均在小范围内变化,说明不同杀菌方法对pH、TSS和TA的影响较小。

    表  1  超高压对NFC茭白汁pH、TSS、TA的影响
    Table  1.  Effects of high pressure processing on pH, TSS and TA of NFC water bamboo juice
    处理条件pHTSSTA
    CK6.90±0.01bc3.32±0.00b0.79±0.01c
    TP6.92±0.01c3.40±0.01c0.66±0.02a
    400 MPa,5 min6.85±0.02a3.34±0.02b0.72±0.01b
    400 MPa,10 min6.86±0.01a3.33±0.04b0.71±0.01ab
    450 MPa,5 min6.85±0.02a2.61±0.02a0.70±0.03ab
    450 MPa,10 min6.85±0.02a2.60±0.02a0.70±0.01ab
    500 MPa,5 min6.85±0.02a3.30±0.01b0.71±0.02b
    500 MPa,10 min6.87±0.01ab3.30±0.02b0.71±0.02b
    注:同列肩标不同的小写字母表示存在差异显著(P<0.05);表2~表3同。
    下载: 导出CSV 
    | 显示表格

    色泽是评价果蔬及其加工制品品质的一个重要指标,因为色泽会影响消费者的购买欲望[25]。由表2可知,热杀菌和超高压杀菌使茭白汁色泽亮度L*值上升,而且随着压力的升高,L*值也逐渐增大,与陆海霞等[26]超高压处理研究结果类似。同时超高压处理显著降低了茭白汁的a*值和b*值,说明超高压处理可以降低茭白皮衣中带有的绿色,使颜色更加明亮,而热处理则显著升高了a*值和b*值(P<0.05),可能是由于热杀菌过程中伴随着美拉德反应和焦糖化反应,导致其b*值上升[27],这与张微[28]的研究结果一致。综上超高压处理可以更好地保持茭白汁样品原有色泽。

    表  2  超高压对NFC茭白汁色泽的影响
    Table  2.  Effect of high pressure processing on the color of NFC water bamboo juice
    处理条件色泽
    L*a*b*
    CK42.53±0.05a−1.61±0.04c5.52±0.03e
    TP45.18±0.01b−1.54±0.09c6.37±0.04f
    400 MPa,5 min45.31±0.01c−2.17±0.08b3.56±0.03d
    400 MPa,10 min45.25±0.02c−2.28±0.10b3.43±0.02c
    450 MPa,5 min46.31±0.02d−2.30±0.08b3.01±0.05b
    450 MPa,10 min46.54±0.02e−2.37±0.03b2.86±0.03a
    500 MPa,5 min47.10±0.02f−2.59±0.06a3.02±0.06b
    500 MPa,10 min47.13±0.01f−2.68±0.07a3.09±0.03b
    下载: 导出CSV 
    | 显示表格
    表  3  超高压处理NFC茭白汁中挥发性风味化合物的种类
    Table  3.  Types of volatile compounds in NFC water bamboo juice with high pressure processing treatment
    类别分子式序号RIRt峰高(a.u.)
    CKTP400 MPa,5 min400 MPa,10 min450 MPa,5 min450 MPa,10 min 500 MPa,5 min500 MPa,10 min
    醛类(E)-2-Nonenal
    反-2-壬醛
    11145872.45256.8±14.51b205.84±22.86a199.88±8.27a197.25±14.4a198.54±5.12a231.48±14.52ab233.95±5.14ab198.05±17.72a
    (E)-2-Octenal(M)
    反-2-辛烯醛(M)
    21068.8688.031007.9±36.91d383.57±41.3a608.89±5.81c588.67±13.02c562.78±18.74c586.59±20.89c619.64±38.35c482.68±9.49b
    (E)-2-Octenal(D)
    反-2-辛烯醛(D)
    31069.2689.03119.29±7.01b56.22±7.42a67.85±3.34a71.83±7.99a64.82±2.4a73.72±8.74a65.92±7.66a66.38±9.48a
    (E)-2-Heptenal(M)
    反-2-庚醛(M)
    7962.1481.30574.59±46.98d232.03±10.92a446.77±14.24c445.49±5.05c401.41±14.51bc409.41±6.53bc420.03±27.45c352.73±20.76b
    (E)-2-Heptenal(D)
    反-2-庚醛(D)
    8960.5478.43206.21±8.76d59.52±4.17d134.71±7.49c133.64±16.88c117.59±10.97bc137.27±7.89c136.81±12.14c100.18±8.57b
    Heptanal(M)
    庚醛(M)
    9900.9380.41904.78±10.72b1182.42±29.42e1102.85±31.87d1009.78±12.03c952.9±9.01bc1004.03±3.99c1001.1±2.62c830.01±46.18a
    Heptanal(D)
    庚醛(D)
    10900.9380.41611.4±8.52a1314.23±48.03c982.66±37.23b902.17±22.81b856.83±29.51b857.81±8.19b907.17±32.22b594.95±108.81a
    (E)-2-Hexenal(M)
    反-2-己烯醛(M)
    13854320.86214.61±35.16ab187.4±9.38a229.4±13.12abc244.16±5.92bcd264.44±14.84cd268.07±5.96cd283.64±12.46d267.44±6.36cd
    (E)-2-Hexenal(D)
    反-2-己烯醛(D)
    14852.4318.9962.01±17.22bc27.24±5.79a68.93±4.29bc65.95±5.45bc75.18±1.95bc78.97±2.62c75.86±5.73bc56.11±8.91b
    Hexanal(M)
    正己醛(M)
    17792.8257.601137.7±41.2a1120.83±8.94a1207.95±10.17b1144.22±8.33a1123.93±29.56a1135.24±8.96a1157.86±14.12ab1175.53±17.51ab
    Hexanal(D)
    正己醛(M)
    18791.2256.115265.92±302.01c3049.37±82.39a4188.86±59.6b4319.72±32.98b4265.79±10.97b4366.62±31.03b4434.72±92.76b3323.58±432.21a
    Butanal
    正丁醛
    23600133.28154.07±27.12a248.21±11.13b345.64±9.16c353.68±7.12c358.79±30.03c406.1±3.26d427.17±7.84d429.41±7.89d
    其他2-Pentylfuran
    2-正戊基呋喃
    4995.1546.57238.41±5.65a390.15±15.78c321.11±13.63b315.77±6.26b335.72±10.66b334.51±1.51b319.66±19.04b336.38±4.42b
    2-Octanone
    仲辛酮
    5997.5551.09104.87±2.49b66.4±3.07a111.29±0.41b127.9±4.35c133.3±3.58c156.88±4.23d178.57±9.92e200.98±9.34f
    3-Octanone
    3-辛酮
    6991.2538.36144.07±11.91c80.31±0.94a142.22±13.93c143.76±5.39c118.91±6.63b127.26±7.24bc117.08±2.23b126.34±4.81bc
    醇类1-Hexanol(M)
    1-己醇(M)
    11881.3353.821302.57±23.7c1015.74±20.72a1145.81±26.21b1140.57±14.84b1115.93±7.02b1115.82±30.7b1136.23±17.78b1351.99±31.15c
    1-Hexanol(D)
    1-己醇(D)
    12879.5351.571172.29±41.67c836.41±14.51a948.5±45.73ab1021.38±25.33bc1029.15±17.62bc1008.7±16.54abc982.69±24.65ab1533.74±164.25d
    1-Pentanol(M)
    1-戊醇(M)
    19772.7238.98211.54±2.84b210.75±7.66b199.44±3.7ab185.19±13.77a192.16±1.69ab193.45±0.53ab187.81±8.47a204.04±8.42ab
    1-Pentanol(D)
    1-戊醇(D)
    20771.9238.27204.73±2.93ab267.69±2.01d181.89±7.88a223.07±12.39bc238.16±8.71c226.09±4.59bc223.78±13.39bc230.96±7.47c
    1-Penten-3-ol
    1-戊烯-3-醇
    21694.6177.031938.35±32.92d1664.62±7.77a1688.41±10.97ab1716.24±10.18b1792.37±13.48c1764.05±5.18c1771.27±11.56c1805.07±9.74c
    Ethanol
    乙醇
    24491.496.7710979.51±79.93c11005.21±18.29c10758.28±44.32ab10839.95±82.51bc10736.42±99.36ab10687.84±57.73ab10620.64±49.49a10657.85±13.58a
    3-Methylbutanol(M)
    3-甲基丁醇(M)
    25742.6212.89287.89±4.11c281.58±1.9bc249.74±5.2a253.97±12.51a255.41±7.7a258.42±12.33ab270.21±1.15abc280.94±12.91bc
    3-Methylbutanol(D)
    3-甲基丁醇(D)
    26740.9211.51739.54±28.42c813.58±17.3d559.15±16.77a662.25±34.73b654.52±9.9b630.11±3.72b649.49±13.65b667.85±8.19b
    1-Butanol(M)
    1-丁醇(M)
    27683.3170.35327.67±13.5d166.69±7.82a218.91±6.32c187.59±1.78ab190.43±8.37b182.45±4.14ab180.39±9.23ab189.31±3.02b
    1-Butanol(D)
    1-丁醇(D)
    28674165.74945.8±18.59d866.52±6.03e1019.61±7.44c835.42±7.91bc795.36±11.4a814.68±15.49ab809.97±3.07ab811.76±12.73ab
    2-Methylpropanol
    异丁醇
    46634.6147.56170.76±1.66d199.52±4.47e140.84±8.83a147.31±3.22ab154.41±7.33abc160.04±3.87bcd159.03±4.29bcd165.01±0.16cd
    酯类Ethyl 2-methylbutyrate(M)
    2-甲基丁酸乙酯(M)
    15846.4312.25636.35±19.01b473.47±14.98a879.31±25.47cd916.6±12.12d915.29±7.67d885.93±25.25cd882.71±11.49cd843.19±9.25c
    Ethyl 2-methylbutyrate(D)
    2-甲基丁酸乙酯(D)
    16845.2310.81270.94±32.19b170.04±7.8a694.89±14.13d855.11±14.94e841.67±18.08e716.27±6.53d723.24±11.92d631.43±6.48c
    Ethyl acetate
    乙酸乙酯
    22606.3135.79513.33±154.68a1382.75±115.01b6681.88±18.1f6357.94±46.58e5775.37±8.66d5504.74±12.28c5360.4±66.96c5342.2±21.44c
    下载: 导出CSV 
    | 显示表格

    超高压和热处理后茭白汁的总酚、黄酮含量的变化见图1。结果显示,超高压处理总酚含量有所增加且500 MPa、5 min含量最高,总酚含量的少量增加可能是由于超高压造成的植物细胞膜的通透性升高,导致一些抗氧化成分物质的提取率增加[29]。热处理茭白汁中的总酚含量显著性降低(P<0.05),原因可能是高温作用下,酚类物质热不稳定,高温短时处理可能使得部分酚类物质发生降解;而超高压不破坏分子内部共价键[30],从而对酚类物质的影响相对较小[31]。由图1b可知,超高压茭白汁中的黄酮含量有所增加且在450 MPa、10 min时含量最高,变化趋势与对总酚含量影响相接近,这是因为多数黄酮类化合物属于酚类物质,而超高压对酚类物质的影响较小。Wang等[32]研究也发现,热处理后的桑椹汁中总黄酮降低,与本研究结果相一致。

    图  1  超高压对NFC茭白汁总酚(a)、黄酮(b)含量的影响
    注:不同的小写字母表示存在差异显著(P<0.05);图1~图2同。
    Figure  1.  Effect of high pressure processing on total phenol (a) and flavonoid (b) content of NFC water bamboo juice

    DPPH是一种含有不对称价电子的氮族自由基,易与具有氢原子供体的物质发生电子转移,当有自由基清除剂存在时,与抗氧化剂反应,由于与其单电子配对而使其吸收逐渐消失,呈现的颜色越浅[33],广泛用于测定样品的抗氧化能力。不同杀菌方式对茭白汁的DPPH自由基清除率如图2所示,结果显示,与未处理组相比,热处理茭白汁的DPPH清除率有所下降,而400 MPa超高压茭白汁的DPPH清除率显著性上升(P<0.05),该变化规律与上述总酚含量的变化规律相一致,这是由于总酚在抗氧化能力方面起到重要作用[34]。王慧倩等[35]研究发现,鲜切西兰花中DPPH自由基、超氧阴离子自由基和羟自由基清除能力都呈先上升后下降趋势,与总酚和黄酮含量的变化趋势相似,闫亚茹等[36]研究芹菜的抗氧化活性发现,多酚含量与DPPH自由基清除率、ARAP值呈正相关。其他研究也相继发现果蔬中的抗氧化能力与总酚、黄酮含量高度相关[37]

    图  2  超高压对NFC茭白汁DPPH自由基清除率的影响
    Figure  2.  Effect of high pressure processing on the scavenging rate of DPPH free radicals in NFC water bamboo juice

    图3为基于GC-IMS风味分析超高压和热处理对茭白汁中挥发性风味化合物的三维图谱和二维图谱。图中GC-IMS俯视图纵坐标代表气相色谱的保留时间,横坐标代表离子迁移时间,横坐标1.0处竖线为RIP峰(反应离子峰,经归一化处理),RIP峰两侧的每一个点代表一种挥发性有机物,颜色代表物质的浓度,白色表示浓度较低,红色表示浓度较高,颜色越深表示浓度越大。图3俯视图可以直观看出不同灭菌方式茭白汁中挥发性有机物的差异,为了更加明显地对比这种差异,采用差异对比图进行分析。

    图  3  超高压处理NFC茭白汁挥发性风味成分的三维谱图(a)和二维图谱(b)
    注:B1为对照组;B2为热处理组;B3~B8为超高压处理组(B3: 400 MPa,5 min;B4:400 MPa,10 min;B5:450 MPa,5 min;B6:450 MPa,10 min;B7:500 MPa,5 min;B8:500 MPa,10 min);图4~图5同。
    Figure  3.  3D (a) and 2D (b) of volatile compounds in NFC water bamboo juice treated with high pressure processing

    图4为超高压和热处理茭白汁的差异图。首先选取B1的谱图(空白组)作为参比,其他样品的谱图扣减参比,如果二者挥发性有机物一致,则扣减后的背景为白色,而红色代表该物质的浓度高于参比,蓝色代表该物质的浓度低于参比。由图5可知,茭白汁灭菌前后挥发性有机物发生了变化,加热灭菌和高压灭菌的茭白汁中的挥发性有机物存在差异,红色区域内,虽然超高压和热处理都会使挥发性有机物浓度升高,但是,超高压处理,其增加的趋势更高,叶田等[38]研究超高压和巴氏杀菌对鲜榨西芹汁挥发性成分的影响时发现,超高压处理对西芹汁的挥发性成分的影响较小, 能更好的维持西芹汁的天然香气,与本研究结果一致。

    图  4  超高压处理NFC茭白汁挥发性风味成分的差异图
    Figure  4.  Difference diagram of volatile compounds in high pressure processing treatment of NFC water bamboo juice
    图  5  超高压处理NFC茭白汁挥发性化合物的指纹图谱
    Figure  5.  Fingerprinting of volatile compounds in NFC water bamboo juice with high pressure processing treatment

    图5为超高压和热处理茭白汁中挥发性化合物指纹图谱。图中每一行代表一个样品中选取的全部信号峰,每一列代表同一挥发性有机物在不同样品中的信号峰。黄色区域中表示,超高压处理后茭白汁的挥发性物质含量高于对照组和热处理组,正丁醛、2-辛酮、2-甲基丁酸乙酯、乙酸乙酯等物质含量明显升高,且其中2-辛酮(苹果香)和正丁醛(红酸栗味)含量随压力和时间升高而增加;乙酸乙酯(水果香)含量随压力和时间升高而降低。橙色区域中表示,茭白汁经超高压和热处理后1-丁醇和1-己醇含量均明显减少,尤其是1-丁醇(酒精味),说明超高压和热处理降低了茭白汁发酵的趋势,使产生的酒香类物质减少。茭白汁经热处理后,红色区域中1-戊醇、2-丁醇、3-甲基丁醇等物质含量明显上升,而超高压处理则会降低,绿色区域中反-2-辛烯醛、反-2-庚醛、反-2-己烯醛、3-辛酮等物质含量明显降低,说明热处理会使茭白汁出现发酵的趋势,导致部分酒香类物质含量增加,反而使部分草香和水果香等物质含量减少。所以超高压处理可以更好的保持茭白汁香气成分。

    通过GC-IMS对超高压和热处理茭白汁挥发性风味成分的检测,共鉴定出29种挥发性化合物,如表3所示,主要包括醇类、烯醛类、醛类、酮类和酯类等,其中醇类物质最多且乙醇含量较高。酯类挥发性成分大多具有令人愉悦的香气[39],乙酸乙酯具有清甜、微带果香的酒香香气[40],而醛类化合物如己醛、顺-2-己烯醛等呈青草香[41],其中含量最高的乙醇是典型的酒香气物质。茭白汁中酮类挥发性成分含量较少,可能这些成分对茭白汁的香气贡献度不高。

    图6为超高压和热处理茭白汁的PCA图(主成分分析图)。由图所示,PC1贡献率为48%,PC2贡献率为23%,PC1和PC2的累计贡献率为71%,样品之间距离近则代表差异小,距离远则代表差异明显。从图6中可以看出,主成分分析将不同灭菌方式的茭白汁很好的区分开来,且灭菌前后挥发性有机物发生了明显变化,加热灭菌和高压灭菌的茭白汁中的挥发性有机物存在较大差异,而不同压力和时间灭菌的茭白汁中的挥发性有机物比较相似,与上述差异图得到的结论一致。

    图  6  超高压处理NFC茭白汁的PCA图
    Figure  6.  PCA plots of NFC water bamboo juice treated with high pressure processing

    本文研究了超高压和热处理对NFC茭白汁的营养品质和挥发性风味成分的影响,研究结果表明超高压处理提升了茭白汁的感官品质,而热处理茭白汁出现了明显的分层且感官品质降低;对于总酚、黄酮含量和抗氧化能力(DPPH自由基清除率),超高压处理后其含量都显著增加(P<0.05)。利用GC-IMS风味分析技术对超高压和热处理的茭白汁的挥发性风味成分进行检测与分析,共检测出29种挥发性香气物质,PCA可以将超高压处理组、热处理组和未处理组明显区分开,而不同参数超高压组(400~500 MPa,5~10 min)之间香气物质较为相似。经热处理后,一些草香和果香的挥发性化合物含量有所降低,而酒香的物质含量有所升高,从而对茭白汁的香气影响较大,超高压处理增加了茭白汁的果香和草香,提升了茭白汁的风味。综上,超高压处理不仅提高了茭白汁的营养品质,而且在保持茭白汁特征风味方面具有显著优势。

  • 图  1   超高压对NFC茭白汁总酚(a)、黄酮(b)含量的影响

    注:不同的小写字母表示存在差异显著(P<0.05);图1~图2同。

    Figure  1.   Effect of high pressure processing on total phenol (a) and flavonoid (b) content of NFC water bamboo juice

    图  2   超高压对NFC茭白汁DPPH自由基清除率的影响

    Figure  2.   Effect of high pressure processing on the scavenging rate of DPPH free radicals in NFC water bamboo juice

    图  3   超高压处理NFC茭白汁挥发性风味成分的三维谱图(a)和二维图谱(b)

    注:B1为对照组;B2为热处理组;B3~B8为超高压处理组(B3: 400 MPa,5 min;B4:400 MPa,10 min;B5:450 MPa,5 min;B6:450 MPa,10 min;B7:500 MPa,5 min;B8:500 MPa,10 min);图4~图5同。

    Figure  3.   3D (a) and 2D (b) of volatile compounds in NFC water bamboo juice treated with high pressure processing

    图  4   超高压处理NFC茭白汁挥发性风味成分的差异图

    Figure  4.   Difference diagram of volatile compounds in high pressure processing treatment of NFC water bamboo juice

    图  5   超高压处理NFC茭白汁挥发性化合物的指纹图谱

    Figure  5.   Fingerprinting of volatile compounds in NFC water bamboo juice with high pressure processing treatment

    图  6   超高压处理NFC茭白汁的PCA图

    Figure  6.   PCA plots of NFC water bamboo juice treated with high pressure processing

    表  1   超高压对NFC茭白汁pH、TSS、TA的影响

    Table  1   Effects of high pressure processing on pH, TSS and TA of NFC water bamboo juice

    处理条件pHTSSTA
    CK6.90±0.01bc3.32±0.00b0.79±0.01c
    TP6.92±0.01c3.40±0.01c0.66±0.02a
    400 MPa,5 min6.85±0.02a3.34±0.02b0.72±0.01b
    400 MPa,10 min6.86±0.01a3.33±0.04b0.71±0.01ab
    450 MPa,5 min6.85±0.02a2.61±0.02a0.70±0.03ab
    450 MPa,10 min6.85±0.02a2.60±0.02a0.70±0.01ab
    500 MPa,5 min6.85±0.02a3.30±0.01b0.71±0.02b
    500 MPa,10 min6.87±0.01ab3.30±0.02b0.71±0.02b
    注:同列肩标不同的小写字母表示存在差异显著(P<0.05);表2~表3同。
    下载: 导出CSV

    表  2   超高压对NFC茭白汁色泽的影响

    Table  2   Effect of high pressure processing on the color of NFC water bamboo juice

    处理条件色泽
    L*a*b*
    CK42.53±0.05a−1.61±0.04c5.52±0.03e
    TP45.18±0.01b−1.54±0.09c6.37±0.04f
    400 MPa,5 min45.31±0.01c−2.17±0.08b3.56±0.03d
    400 MPa,10 min45.25±0.02c−2.28±0.10b3.43±0.02c
    450 MPa,5 min46.31±0.02d−2.30±0.08b3.01±0.05b
    450 MPa,10 min46.54±0.02e−2.37±0.03b2.86±0.03a
    500 MPa,5 min47.10±0.02f−2.59±0.06a3.02±0.06b
    500 MPa,10 min47.13±0.01f−2.68±0.07a3.09±0.03b
    下载: 导出CSV

    表  3   超高压处理NFC茭白汁中挥发性风味化合物的种类

    Table  3   Types of volatile compounds in NFC water bamboo juice with high pressure processing treatment

    类别分子式序号RIRt峰高(a.u.)
    CKTP400 MPa,5 min400 MPa,10 min450 MPa,5 min450 MPa,10 min 500 MPa,5 min500 MPa,10 min
    醛类(E)-2-Nonenal
    反-2-壬醛
    11145872.45256.8±14.51b205.84±22.86a199.88±8.27a197.25±14.4a198.54±5.12a231.48±14.52ab233.95±5.14ab198.05±17.72a
    (E)-2-Octenal(M)
    反-2-辛烯醛(M)
    21068.8688.031007.9±36.91d383.57±41.3a608.89±5.81c588.67±13.02c562.78±18.74c586.59±20.89c619.64±38.35c482.68±9.49b
    (E)-2-Octenal(D)
    反-2-辛烯醛(D)
    31069.2689.03119.29±7.01b56.22±7.42a67.85±3.34a71.83±7.99a64.82±2.4a73.72±8.74a65.92±7.66a66.38±9.48a
    (E)-2-Heptenal(M)
    反-2-庚醛(M)
    7962.1481.30574.59±46.98d232.03±10.92a446.77±14.24c445.49±5.05c401.41±14.51bc409.41±6.53bc420.03±27.45c352.73±20.76b
    (E)-2-Heptenal(D)
    反-2-庚醛(D)
    8960.5478.43206.21±8.76d59.52±4.17d134.71±7.49c133.64±16.88c117.59±10.97bc137.27±7.89c136.81±12.14c100.18±8.57b
    Heptanal(M)
    庚醛(M)
    9900.9380.41904.78±10.72b1182.42±29.42e1102.85±31.87d1009.78±12.03c952.9±9.01bc1004.03±3.99c1001.1±2.62c830.01±46.18a
    Heptanal(D)
    庚醛(D)
    10900.9380.41611.4±8.52a1314.23±48.03c982.66±37.23b902.17±22.81b856.83±29.51b857.81±8.19b907.17±32.22b594.95±108.81a
    (E)-2-Hexenal(M)
    反-2-己烯醛(M)
    13854320.86214.61±35.16ab187.4±9.38a229.4±13.12abc244.16±5.92bcd264.44±14.84cd268.07±5.96cd283.64±12.46d267.44±6.36cd
    (E)-2-Hexenal(D)
    反-2-己烯醛(D)
    14852.4318.9962.01±17.22bc27.24±5.79a68.93±4.29bc65.95±5.45bc75.18±1.95bc78.97±2.62c75.86±5.73bc56.11±8.91b
    Hexanal(M)
    正己醛(M)
    17792.8257.601137.7±41.2a1120.83±8.94a1207.95±10.17b1144.22±8.33a1123.93±29.56a1135.24±8.96a1157.86±14.12ab1175.53±17.51ab
    Hexanal(D)
    正己醛(M)
    18791.2256.115265.92±302.01c3049.37±82.39a4188.86±59.6b4319.72±32.98b4265.79±10.97b4366.62±31.03b4434.72±92.76b3323.58±432.21a
    Butanal
    正丁醛
    23600133.28154.07±27.12a248.21±11.13b345.64±9.16c353.68±7.12c358.79±30.03c406.1±3.26d427.17±7.84d429.41±7.89d
    其他2-Pentylfuran
    2-正戊基呋喃
    4995.1546.57238.41±5.65a390.15±15.78c321.11±13.63b315.77±6.26b335.72±10.66b334.51±1.51b319.66±19.04b336.38±4.42b
    2-Octanone
    仲辛酮
    5997.5551.09104.87±2.49b66.4±3.07a111.29±0.41b127.9±4.35c133.3±3.58c156.88±4.23d178.57±9.92e200.98±9.34f
    3-Octanone
    3-辛酮
    6991.2538.36144.07±11.91c80.31±0.94a142.22±13.93c143.76±5.39c118.91±6.63b127.26±7.24bc117.08±2.23b126.34±4.81bc
    醇类1-Hexanol(M)
    1-己醇(M)
    11881.3353.821302.57±23.7c1015.74±20.72a1145.81±26.21b1140.57±14.84b1115.93±7.02b1115.82±30.7b1136.23±17.78b1351.99±31.15c
    1-Hexanol(D)
    1-己醇(D)
    12879.5351.571172.29±41.67c836.41±14.51a948.5±45.73ab1021.38±25.33bc1029.15±17.62bc1008.7±16.54abc982.69±24.65ab1533.74±164.25d
    1-Pentanol(M)
    1-戊醇(M)
    19772.7238.98211.54±2.84b210.75±7.66b199.44±3.7ab185.19±13.77a192.16±1.69ab193.45±0.53ab187.81±8.47a204.04±8.42ab
    1-Pentanol(D)
    1-戊醇(D)
    20771.9238.27204.73±2.93ab267.69±2.01d181.89±7.88a223.07±12.39bc238.16±8.71c226.09±4.59bc223.78±13.39bc230.96±7.47c
    1-Penten-3-ol
    1-戊烯-3-醇
    21694.6177.031938.35±32.92d1664.62±7.77a1688.41±10.97ab1716.24±10.18b1792.37±13.48c1764.05±5.18c1771.27±11.56c1805.07±9.74c
    Ethanol
    乙醇
    24491.496.7710979.51±79.93c11005.21±18.29c10758.28±44.32ab10839.95±82.51bc10736.42±99.36ab10687.84±57.73ab10620.64±49.49a10657.85±13.58a
    3-Methylbutanol(M)
    3-甲基丁醇(M)
    25742.6212.89287.89±4.11c281.58±1.9bc249.74±5.2a253.97±12.51a255.41±7.7a258.42±12.33ab270.21±1.15abc280.94±12.91bc
    3-Methylbutanol(D)
    3-甲基丁醇(D)
    26740.9211.51739.54±28.42c813.58±17.3d559.15±16.77a662.25±34.73b654.52±9.9b630.11±3.72b649.49±13.65b667.85±8.19b
    1-Butanol(M)
    1-丁醇(M)
    27683.3170.35327.67±13.5d166.69±7.82a218.91±6.32c187.59±1.78ab190.43±8.37b182.45±4.14ab180.39±9.23ab189.31±3.02b
    1-Butanol(D)
    1-丁醇(D)
    28674165.74945.8±18.59d866.52±6.03e1019.61±7.44c835.42±7.91bc795.36±11.4a814.68±15.49ab809.97±3.07ab811.76±12.73ab
    2-Methylpropanol
    异丁醇
    46634.6147.56170.76±1.66d199.52±4.47e140.84±8.83a147.31±3.22ab154.41±7.33abc160.04±3.87bcd159.03±4.29bcd165.01±0.16cd
    酯类Ethyl 2-methylbutyrate(M)
    2-甲基丁酸乙酯(M)
    15846.4312.25636.35±19.01b473.47±14.98a879.31±25.47cd916.6±12.12d915.29±7.67d885.93±25.25cd882.71±11.49cd843.19±9.25c
    Ethyl 2-methylbutyrate(D)
    2-甲基丁酸乙酯(D)
    16845.2310.81270.94±32.19b170.04±7.8a694.89±14.13d855.11±14.94e841.67±18.08e716.27±6.53d723.24±11.92d631.43±6.48c
    Ethyl acetate
    乙酸乙酯
    22606.3135.79513.33±154.68a1382.75±115.01b6681.88±18.1f6357.94±46.58e5775.37±8.66d5504.74±12.28c5360.4±66.96c5342.2±21.44c
    下载: 导出CSV
  • [1]

    GUO H B, LI S M, PENG J, et al. Zizania latifolia Turcz. cultivated in China[J]. Genetic Resources and Crop Evolution,2007,54(6):1211−1217. doi: 10.1007/s10722-006-9102-8

    [2] 韦满棋. 茭白种植现状及发展建议[J]. 新农业,2021(17):44−45. [WEI Manqi. Current situation and development suggestions of watercress planting[J]. New Agriculture,2021(17):44−45.

    WEI Manqi. Current situation and development suggestions of watercress planting[J]. New Agriculture, 2021(17): 44-45.

    [3] 周超, 李臣. 我国茭白的营养与开发利用研究综述[J]. 长江蔬菜,2017(20):32−35. [ZHOU Chao, LI Chen. A review of research on the nutrition, development and utilization of wild rice in my country[J]. Changjiang Vegetables,2017(20):32−35.

    ZHOU Chao, LI Chen. A review of research on the nutrition, development and utilization of wild rice in my country[J]. Changjiang Vegetables, 2017(20): 32-35.

    [4] 郑杰, 郭春裕, 张进杰. 茭白苞叶中总黄酮提取及其体外抗氧化性能研究[J]. 中国计量学院学报,2008(3):283−288. [ZHENG Jie, GUO Chunyu, ZHANG Jinjie. Extraction of total flavonoids from the husk leaves and their antioxidative properties in vitro[J]. Journal of China Jiliang University,2008(3):283−288.

    ZHENG Jie, GUO Chunyu, ZHANG Jinjie. Extraction of total flavonoids from the husk leaves and their antioxidative properties in vitro[J]. Journal of China Jiliang University, 2008(3): 283-288.

    [5]

    WANG M, ZHAO S, ZHU P, et al. Purification, characterization and immunomodulatory activity of water extractable polysaccharides from the swollen culms of Zizania latifolia[J]. International Journal of Biological Macromolecules,2018,107:882−890. doi: 10.1016/j.ijbiomac.2017.09.062

    [6] 李通, 武占会, 王宝驹, 等. 不同栽培基质对温室茭白幼苗生长及光合特性的影响[J]. 中国瓜菜,2021,34(4):99−104. [LI Tong, WU Zhanhui, WANG Baoju, et al. Effects of different cultivation substrates on growth and photosynthetic characteristics of greenhouse watercress seedlings[J]. China Cucurbita,2021,34(4):99−104. doi: 10.3969/j.issn.1673-2871.2021.04.018

    LI Tong, WU Zhanhui, WANG Baoju, et al. Effects of different cultivation substrates on growth and photosynthetic characteristics of greenhouse watercress seedlings[J]. China Cucurbita, 2021, 34(4): 99-104. doi: 10.3969/j.issn.1673-2871.2021.04.018

    [7] 董桂君, 乔勇进, 王春芳, 等. 茭白采后生理变化及保鲜技术研究进展[J]. 保鲜与加工,2021,21(9):133−138. [DONG Guijun, QIAO Yongjin, WANG Chunfang, et al. Research progress on postharvest physiological changes and fresh-keeping technology of jasmine rice[J]. Fresh-keeping and Processing,2021,21(9):133−138. doi: 10.3969/j.issn.1009-6221.2021.09.021

    DONG Guijun, QIAO Yongjin, WANG Chunfang, et al. Research progress on postharvest physiological changes and fresh-keeping technology of jasmine rice[J]. Fresh-keeping and Processing, 2021, 21(9): 133-138. doi: 10.3969/j.issn.1009-6221.2021.09.021

    [8] 宣晓婷, 张赛佳, 崔燕, 等. 超高压杨梅复合果蔬汁的研制及贮藏品质[J]. 食品工业科技,2019,40(12):156−162. [XUAN Xiaoting, ZHANG Saijia, CUI Yan, et al. Development and storage quality of ultra-high pressure bayberry compound fruit and vegetable juice[J]. Science and Technology of Food Industry,2019,40(12):156−162. doi: 10.13386/j.issn1002-0306.2019.12.026

    XUAN Xiaoting, ZHANG Saijia, CUI Yan, et al. Development and storage quality of ultra-high pressure bayberry compound fruit and vegetable juice[J]. Food Industry Science and Technology, 2019, 40(12): 156-162. doi: 10.13386/j.issn1002-0306.2019.12.026

    [9] 张晓, 王永涛, 李仁杰, 等. 我国食品超高压技术的研究进展[J]. 中国食品学报,2015,15(5):157−165. [ZHANG Xiao, WANG Yongtao, LI Renjie, et al. Research progress of food ultra-high pressure technology in my country[J]. Chinese Journal of Food Science,2015,15(5):157−165.

    ZHANG Xiao, WANG Yongtao, LI Renjie, et al. Research progress of food ultra-high pressure technology in my country[J]. Chinese Journal of Food Science, 2015, 15(5): 157-165.

    [10]

    BUTZ P, GARCÍA A F, LINDAUER R, et al. Influence of ultra high pressure processing on fruit and vegetable products[J]. Journal of Food Engineering,2003,56(2):233−236.

    [11] 米瑞芳, 刘俊梅, 胡小松, 等. 杀菌方式对即食胡萝卜片挥发性风味物质的影响[J]. 农业工程学报,2016,32(9):264−270. [MI Ruifang, LIU Junmei, HU Xiaosong, et al. Effects of sterilization methods on volatile flavor compounds in ready-to-eat carrot slices[J]. Chinese Journal of Agricultural Engineering,2016,32(9):264−270. doi: 10.11975/j.issn.1002-6819.2016.09.037

    MI Ruifang, LIU Junmei, HU Xiaosong, et al. Effects of sterilization methods on volatile flavor compounds in ready-to-eat carrot slices[J]. Chinese Journal of Agricultural Engineering, 2016, 32(9): 264-270. doi: 10.11975/j.issn.1002-6819.2016.09.037

    [12] 宋永程, 王晓琼, 唐玲玲, 等. 超高压对苦笋复合果蔬汁饮料品质的影响[J]. 食品与发酵工业,2020,46(18):173−179. [SONG Yongcheng, WANG Xiaoqiong, TANG Lingling, et al. Effect of ultra-high pressure on the quality of bitter bamboo shoot compound fruit and vegetable juice beverage[J]. Food and Fermentation Industry,2020,46(18):173−179.

    SONG Yongcheng, WANG Xiaoqiong, TANG Lingling, et al. Effect of ultra-high pressure on the quality of bitter bamboo shoot compound fruit and vegetable juice beverage[J]. Food and Fermentation Industry, 2020, 46(18): 173-179.

    [13] 王欢欢. 番茄汁特征香气组分保持技术及机制研究[D]. 沈阳: 沈阳农业大学, 2019

    WANG Huanhuan. Research on the technology and mechanism of maintaining characteristic aroma components of tomato juice[D]. Shenyang: Shenyang Agricultural University, 2019.

    [14] 张程慧, 石超, 冯叙桥. 胡萝卜、番茄、黄瓜和西芹制汁过程中酶解工艺的优化[J]. 食品工业科技,2020,41(21):199−207. [ZHANG Chenghui, SHI Chao, FENG Xuqiao. Optimization of enzymatic hydrolysis in the process of carrot, tomato, cucumber and celery juice production[J]. Science and Technology of Food Industry,2020,41(21):199−207. doi: 10.13386/j.issn1002-0306.2019100007

    ZHANG Chenghui, SHI Chao, FENG Xuqiao. Optimization of enzymatic hydrolysis in the process of carrot, tomato, cucumber and celery juice production[J]. Science and Technology of Food Industry, 2020, 41(21): 199-207. doi: 10.13386/j.issn1002-0306.2019100007

    [15] 侯小歌, 赖颖, 胡炳义, 等. 红萝卜西红柿复合蔬菜汁饮料的加工工艺研究[J]. 食品研究与开发,2017,38(9):112−117. [HOU Xiaoge, LAI Ying, HU Bingyi, et al. Research on processing technology of carrot and tomato compound vegetable juice beverage[J]. Food Research and Development,2017,38(9):112−117. doi: 10.3969/j.issn.1005-6521.2017.09.025

    HOU Xiaoge, LAI Ying, HU Bingyi, et al. Research on processing technology of carrot and tomato compound vegetable juice beverage[J]. Food Research and Development, 2017, 38(9): 112-117. doi: 10.3969/j.issn.1005-6521.2017.09.025

    [16]

    VAUTZ W, FRANZKE J, ZAMPOLLI S, et al. On the potential of ion mobility spectrometry coupled to GC pre-separation–a tutorial[J]. Analytica Chimica Acta,2018,1024:52−64. doi: 10.1016/j.aca.2018.02.052

    [17] 陈东杰, 张明岗, 聂小宝, 等. 基于气相离子迁移谱检测静电场处理的大菱鲆品质[J]. 食品科学,2019,40(24):313−319. [CHEN Dongjie, ZHANG Minggang, NIE Xiaobao, et al. Quality detection of turbot treated with electrostatic field based on gas-phase ion mobility spectrometry[J]. Food Science,2019,40(24):313−319. doi: 10.7506/spkx1002-6630-20180904-044

    CHEN Dongjie, ZHANG Minggang, NIE Xiaobao, et al. Quality detection of turbot treated with electrostatic field based on gas-phase ion mobility spectrometry[J]. Food Science, 2019, 40(24): 313-319. doi: 10.7506/spkx1002-6630-20180904-044

    [18] 曹荣, 胡梦月, 谭志军, 等. 基于电子舌和气相色谱-离子迁移谱分析坛紫菜与条斑紫菜的风味特征[J]. 食品科学,2021,42(8):186−191. [CAO Rong, HU Mengyue, TAN Zhijun, et al. Analysis of the flavor characteristics of Porphyra alba and Porphyra japonica based on electronic tongue and gas chromatography-ion mobility spectrometry[J]. Food Science,2021,42(8):186−191. doi: 10.7506/spkx1002-6630-20191110-101

    CAO Rong, HU Mengyue, TAN Zhijun, et al. Analysis of the flavor characteristics of Porphyra alba and Porphyra japonica based on electronic tongue and gas chromatography-ion mobility spectrometry[J]. Food Science, 2021, 42(8): 186-191. doi: 10.7506/spkx1002-6630-20191110-101

    [19]

    CHEN D, QIN L, GENG Y, et al. The aroma fingerprints and discrimination analysis of shiitake mushrooms from three different drying conditions by GC-IMS, GC-MS and DSA[J]. Foods,2021,10(12):2991. doi: 10.3390/foods10122991

    [20]

    JUNG J K, LEE S U, KOZUKUE N, et al. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots[J]. Journal of Food Composition and Analysis,2010,24(1):29−37.

    [21]

    VERONICA D, XIANZHONG W, KAFUI K ADOM, et al. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity[J]. Journal of Agricultural and Food Chemistry,2002,50(10):3010−3014. doi: 10.1021/jf0115589

    [22]

    STIPPL V M, DELGADO A, BECKER T M. Ionization equilibria at high pressure[J]. European Food Research and Technology,2005,221(1−2):151−156. doi: 10.1007/s00217-004-1130-z

    [23] 谢慧明, 王颖, 周典飞. 超高压处理对猕猴桃汁品质的影响[J]. 食品科学,2012,33(11):17−20. [XIE Huiming, WANG Ying, ZHOU Dianfei. Effects of ultra-high pressure treatment on the quality of kiwifruit juice[J]. Food Science,2012,33(11):17−20.

    XIE Huiming, WANG Ying, ZHOU Dianfei. Effects of ultra-high pressure treatment on the quality of kiwifruit juice[J]. Food Science, 2012, 33(11): 17-20.

    [24]

    MOUSSA-AYOUB T E, JAEGER H, KNORR D, et al. Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii Cactus juice[J]. Lwt-Food Science and Technology,2017,79:534−542. doi: 10.1016/j.lwt.2016.10.061

    [25] 邓红, 刘旻昊, 马婧, 等. UHP与HTST杀菌处理的猕猴桃NFC果汁贮藏期品质变化[J]. 食品工业科技,2020,41(9):269−277,296. [DENG Hong, LIU Minhao, MA Jing, et al. Quality changes of kiwifruit NFC juice treated by UHP and HTST sterilization during storage period[J]. Science and Technology of Food Industry,2020,41(9):269−277,296.

    DENG Hong, LIU Minhao, MA Jing, et al. Quality changes of kiwifruit NFC juice treated by UHP and HTST sterilization during storage period[J]. Science and Technology of Food Industry, 2020, 41(9): 269-277, 296.

    [26] 陆海霞, 胡友栋, 励建荣, 等. 超高压和热处理对胡柚汁理化品质的影响[J]. 中国食品学报,2010,10(2):160−166. [LU Haixia, HU Youdong, LI Jianrong, et al. Effects of ultra-high pressure and heat treatment on physicochemical quality of grapefruit juice[J]. Chinese Journal of Food Science,2010,10(2):160−166. doi: 10.3969/j.issn.1009-7848.2010.02.024

    LU Haixia, HU Youdong, LI Jianrong, et al. Effects of ultra-high pressure and heat treatment on physicochemical quality of grapefruit juice[J]. Chinese Journal of Food Science, 2010, 10(2): 160-166. doi: 10.3969/j.issn.1009-7848.2010.02.024

    [27] 张婷婷. 基于微波及声热技术的苹果全果果汁褐变抑制研究[D]. 杭州: 浙江大学, 2019

    ZHANG Tingting. Research on the browning inhibition of apple whole fruit juice based on microwave and acousto-thermal technology[D]. Hangzhou: Zhejiang University, 2019.

    [28] 张微. 超高压和热处理对热带果汁品质影响的比较研究[D]. 广州: 华南理工大学, 2010

    ZHANG Wei. Comparative study on the effects of ultra-high pressure and heat treatment on the quality of tropical fruit juice[D]. Guangzhou: South China University of Technology, 2010.

    [29]

    PRASAD K N, YANG B, SHI J, et al. Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,51(2):471−477. doi: 10.1016/j.jpba.2009.02.033

    [30] 赵俊芳, 赵玉生. 初探食品工业中的超高压灭菌技术[J]. 包装与食品机械,2006(5):27−30. [ZHAO Junfang, ZHAO Yusheng. A preliminary study on ultra-high pressure sterilization technology in food industry[J]. Packaging and Food Machinery,2006(5):27−30. doi: 10.3969/j.issn.1005-1295.2006.05.009

    ZHAO Junfang, ZHAO Yusheng. A preliminary study on ultra-high pressure sterilization technology in food industry[J]. Packaging and Food Machinery, 2006(5): 27-30. doi: 10.3969/j.issn.1005-1295.2006.05.009

    [31] 高婧昕, 刘旭, 丁皓玥, 等. 超高压处理对复合果汁微生物和品质的影响[J]. 中国食品学报,2020,20(9):118−130. [GAO Jingxin, LIU Xu, DING Haoyue, et al. Effects of ultra-high pressure treatment on microorganisms and quality of composite juice[J]. Chinese Journal of Food Science,2020,20(9):118−130.

    GAO Jingxin, LIU Xu, DING Haoyue, et al. Effects of ultra-high pressure treatment on microorganisms and quality of composite juice[J]. Chinese Journal of Food Science, 2020, 20(9): 118-130.

    [32]

    WANG F, DU B L, CUI Z W, et al. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice[J]. Food Science and Technology International,2017,23(2):119−127. doi: 10.1177/1082013216659610

    [33] 王彦淇, 郭玉蓉, 王永涛, 等. 不同品种苹果非浓缩还原汁的多酚组成及与抗氧化能力的关系[J]. 中国食品学报,2020,20(5):74−83. [WANG Yanqi, GUO Yurong, WANG Yongtao, et al. Polyphenol composition of different varieties of apple non-concentrated reduced juice and its relationship with antioxidant capacity[J]. Chinese Journal of Food Science,2020,20(5):74−83.

    WANG Yanqi, GUO Yurong, WANG Yongtao, et al. Polyphenol composition of different varieties of apple non-concentrated reduced juice and its relationship with antioxidant capacity[J]. Chinese Journal of Food Science, 2020, 20(5): 74-83.

    [34] 王振帅, 曾秋烦, 信思悦, 等. 超声联合杀菌对火龙果汁品质及抗氧化性的影响[J]. 食品与发酵工业,2019,45(5):157−163. [WANG Zhenshuai, ZENG Qiufan, XIN Siyue, et al. Effects of ultrasonic combined with sterilization on the quality and antioxidant activity of dragon fruit juice[J]. Food and Fermentation Industry,2019,45(5):157−163.

    WANG Zhenshuai, ZENG Qiufan, XIN Siyue, et al. Effects of ultrasonic combined with sterilization on the quality and antioxidant activity of dragon fruit juice[J]. Food and Fermentation Industry, 2019, 45(5): 157-163.

    [35] 王慧倩, 郑聪, 王华东, 等. 乙醇熏蒸处理对鲜切西兰花活性成分和抗氧化活性的影响[J]. 食品科学,2014,35(16):250−254. [WANG Huiqian, ZHENG Cong, WANG Huadong, et al. Effects of ethanol fumigation on active components and antioxidant activity of fresh-cut broccoli[J]. Food Science,2014,35(16):250−254. doi: 10.7506/spkx1002-6630-201416048

    WANG Huiqian, ZHENG Cong, WANG Huadong, et al. Effects of ethanol fumigation on active components and antioxidant activity of fresh-cut broccoli[J]. Food Science, 2014, 35(16): 250-254. doi: 10.7506/spkx1002-6630-201416048

    [36] 闫亚茹, 孙飞龙. 芹菜多酚的抗氧化性及其稳定性研究[J]. 包装与食品机械,2017,35(6):13−17. [YAN Yaru, SUN Feilong. Antioxidative activity and stability of celery polyphenols[J]. Packaging and Food Machinery,2017,35(6):13−17. doi: 10.3969/j.issn.1005-1295.2017.06.003

    YAN Yaru, SUN Feilong. Antioxidative activity and stability of celery polyphenols[J]. Packaging and Food Machinery, 2017, 35(6): 13-17. doi: 10.3969/j.issn.1005-1295.2017.06.003

    [37]

    BALWINDER S, PAL S J, AMRITPAL K, et al. Bioactive compounds in banana and their associated health benefits-a review[J]. Food Chemistry,2016,206:1−11. doi: 10.1016/j.foodchem.2016.03.033

    [38] 叶田, 张献忠, 秦静, 等. 超高压和巴氏热杀菌处理对鲜榨西芹汁品质影响的比较研究[J]. 饮料工业,2018,21(3):43−46. [YE Tian, ZHANG Xianzhong, QIN Jing, et al. Comparative study on the effects of ultra-high pressure and pasteurization on the quality of freshly squeezed celery juice[J]. Beverage Industry,2018,21(3):43−46. doi: 10.3969/j.issn.1007-7871.2018.03.011

    YE Tian, ZHANG Xianzhong, QIN Jing, et al. Comparative study on the effects of ultra-high pressure and pasteurization on the quality of freshly squeezed celery juice[J]. Beverage Industry, 2018, 21(3): 43-46. doi: 10.3969/j.issn.1007-7871.2018.03.011

    [39]

    DU X F, KURNIANTA A, MCDANIEL M, et al. Flavour profiling of ‘Marion’ and thornless blackberries by instrumental and sensory analysis[J]. Food Chemistry,2010,121(4):1080−1088. doi: 10.1016/j.foodchem.2010.01.053

    [40] 黄苏婷, 杭方学, 陆海勤, 等. 水果挥发性香气成分研究进展[J]. 轻工科技,2019,35(2):1−4. [HUANG Suting, HANG Fangxue, LU Haiqin, et al. Research progress on volatile aroma components of fruit[J]. Light Industry Science and Technology,2019,35(2):1−4.

    HUANG Suting, HANG Fangxue, LU Haiqin, et al. Research progress on volatile aroma components of fruit[J]. Light Industry Science and Technology, 2019, 35(2): 1-4.

    [41] 汤泽波, 冯涛, 庄海宁. 大宗水果风味物质的研究进展[J]. 中国果菜,2020,40(6):2−9,22. [TANG Zebo, FENG Tao, ZHUANG Haining. Research progress on flavor compounds in bulk fruits[J]. China Fruit and Vegetables,2020,40(6):2−9,22.

    TANG Zebo, FENG Tao, ZHUANG Haining. Research progress on flavor compounds in bulk fruits[J]. China Fruit and Vegetables, 2020, 40(6): 2-9, 22.

  • 期刊类型引用(2)

    1. 王嘉慧,柳志诚,杨国华,杨玉升,陶欧,马涛,刘永刚. ICP-MS法结合化学计量学分析不同菲牛蛭元素差异. 化学研究与应用. 2024(07): 1625-1631 . 百度学术
    2. 管佳宁,桂新景,范雪花,张迪,王恪辉,呼海涛,刘瑞新. 气相色谱-离子迁移谱技术在中药质量评价中的应用研究进展. 药物评价研究. 2024(08): 1891-1905 . 百度学术

    其他类型引用(1)

图(6)  /  表(3)
计量
  • 文章访问数:  174
  • HTML全文浏览量:  41
  • PDF下载量:  18
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-11-25
  • 网络出版日期:  2022-07-18
  • 刊出日期:  2022-09-14

目录

/

返回文章
返回
x 关闭 永久关闭