Effect of High Pressure Processing Treatment on Nutritional Quality, Antioxidant Properties and Volatile Flavor of Freshly Squeezed Water Bamboo Juice
-
摘要: 为研究超高压处理对茭白汁的影响,本文对比了超高压(HPP,400~500 MPa/5~10 min)和传统热处理(TP,80 ℃/10 min)对非浓缩还原(NFC)茭白汁的理化品质、营养组分、抗氧化特性及挥发性风味成分的影响。结果表明,热处理茭白汁的感官品质降低且出现了明显的分层,而HPP处理对茭白汁中的pH、可溶性固形物、可滴定酸含量无显著影响(P>0.05),且减少了分层现象,提升了茭白汁的感官品质。同时与TP处理相比,HPP处理能更好的保持茭白汁中的总酚、黄酮及DPPH自由基清除率。此外,气相色谱-离子迁移色谱(GC-IMS)风味解析显示,HPP增加了茭白汁中的果香和草香,提升了茭白汁的风味。综上,相较于传统TP处理,HPP处理在保持茭白汁品质特性、抗氧化及风味方面具有显著优势。Abstract: In order to study the effect of high pressure processing on water bamboo (Zizania caduciflora L.) juice, this study compared the effects of high pressure processing (HPP, 400~500 MPa/5~10 min) and conventional heat treatment (TP, 80 ℃/10 min) on the physicochemical quality, nutritional components, antioxidant properties and volatile flavor components of non-concentrated reduced (NFC) water bamboo juice. The results showed that the sensory quality of heat-treated water bamboo juice was reduced and significant stratification occurred, while HPP treatment had no significant effect on pH, soluble solids and titratable acid content in water bamboo juice (P>0.05), and reduced stratification and improved the sensory quality of water bamboo juice. Meanwhile, compared with TP treatment, HPP treatment could better maintain the total phenols, flavonoids and DPPH free radical scavenging rate in water bamboo juice. In addition, gas chromatography-ion mobility chromatography (GC-IMS) flavor analysis showed that HPP increased the fruit and herbaceous aromas in water bamboo juice, which enhanced the flavor of water bamboo juice. In conclusion, compared with the traditional TP treatment, the HPP treatment had significant advantages in maintaining the quality characteristics, antioxidant and flavor of water bamboo juice.
-
茭白(Zizania caduciflora L.),又被称为菰、高瓜、高笋等,属禾本科宿根性多年水生草本植物,是我国江浙地区特有的水生蔬菜[1],茭白肉口感脆嫩鲜美,营养丰富,富含水量高达93%,是餐桌上的美味佳肴[2]。现代研究发现,茭白不仅具有一定的预防高血压和动脉硬化的药用功能,还有清热解毒和预防肠道疾病的功效,被誉为“水中人参”[3],又含有多糖、黄酮、多种维生素等物质,具有一定的抗氧化活性[4],深受消费者的青睐[5],具有良好的经济效益和社会效益。
目前,茭白大多作为新鲜蔬菜销售,而深加工程度较低,常见的研究大多集中在茭白的栽培[6]及保鲜[7]上,而对于茭白的加工制品却鲜为研究。宣晓婷等[8]在研究杨梅复合果蔬汁的贮藏品质时,只对茭白汁的一些基础指标(糖、酸)进行了分析,至于其他指标或者风味成分并未涉及。此外,杀菌作为食品加工中的关键环节,可以抑制微生物的生长,从而延长食品的保质期。其中果蔬汁常见的杀菌方式主要分为热杀菌和非热杀菌,传统的热处理(Thermal processing, TP)极易损失产品中的热敏性营养成分,从而降低产品的品质,而超高压(High pressure processing,HPP)是目前较为成熟的非热杀菌技术,是指将密封在弹性容器里的样品置于水或其他液体作为传压介质的压力系统中,经100 MPa以上的压力处理,在常温甚至更低的温度下,达到杀菌、灭酶及改善食品功能特性的作用[9]。相比较传统热处理,超高压处理很好的保持了食品原有的营养、色泽和风味[10]。米瑞芳等[11]研究不同杀菌方式对胡萝卜片在贮藏期间的挥发性风味成分发现,超高压处理后胡萝卜片的萜烯类物质的含量最高,且较好地保持了胡萝卜原有的香脂气味以及松木芳香味。宋永程等[12]研究发现,超高压能更好的保持苦笋复合果蔬汁原有的颜色,且相较于热处理,超高压更好的保留总酚、黄酮含量及抗氧化活性。王欢欢[13]对番茄汁特征香气组分的保持技术研究发现,热处理后番茄汁风味组分损失严重,与超高压相比,热处理使番茄汁总OAV值降低为9.58%,超高压能更好的保持番茄汁的风味成分。目前对于果蔬汁的研究,大多是以胡萝卜汁、黄瓜汁和番茄汁[14]或复合果蔬汁[15]为研究对象,探讨加工工艺方法或不同条件对其品质的影响,但对于茭白制品的研究较少。
气相色谱-离子迁移谱(gas chromatography-ion mobility spectrometry, GC-IMS)是一种融合了气相色谱的高分离度和离子迁移谱快速响应、高灵敏度的检测技术[16],样品无需进行预处理(无损检测),因此,广泛应用于不同处理方式和不同样品间挥发性风味成分的检测[17]。曹荣等[18]基于GC-IMS技术鉴定出坛紫菜与条斑紫菜的36种挥发性成分。其中,条斑紫菜中正己醇、丁内酯、苯乙醛、壬醛等挥发性风味物质的含量比坛紫菜高,且对紫菜整体愉悦气味有较大贡献的苯乙醛、壬醛等醛类化合物含量差异较大。Chen等[19]研究不同干燥条件下香菇挥发性成分的变化发现,干燥度较低的样品中挥发性风味物质丰富,而干燥程度对挥发性风味品质的影响大于干燥速率。主成分分析能够有效地将不同干燥条件的香菇区分。研究表明,基于GC-IMS技术的高灵敏、高分离的检测优势,能较好地鉴定区分不同样品间的风味成分,因此本文采用GC-IMS技术对比分析超高压和热处理对茭白汁中的挥发性风味成分的影响,并综合茭白汁理化品质、营养品质、抗氧化特性等指标的变化,以期为超高压NFC茭白汁的加工提供理论依据及技术指导。
1. 材料和方法
1.1 材料与仪器
茭白 购于宁波市东柳菜市场,贮存于(4±1)℃,相对湿度为85%~95%的冷库中,24 h内进行实验处理;无水碳酸钠、无水乙醇、亚硝酸钠、硝酸铝、氢氧化钠 分析纯,国药控股化学试剂有限公司;福林酚试剂 北京索莱宝科技有限公司;没食子酸标准品 上海麦克林生化科技有限公司;芦丁标准品 上海阿拉丁生化科技股份有限公司;DPPH自由基清除能力试剂盒 南京建成科技有限公司。
CQC2L-600型全液相超高压设备(容积为2000 mL,最大压力为600 MPa,升压时间<5 min) 北京速原中天股份有限公司;Ci60便携式色差仪 爱色丽(上海)色彩科技有限公司;FE-28型pH计 梅特勒-托利多(上海)仪器公司;MS105DU电子分析天平 Mettler Toledo仪器有限公司;MJ-JS2018A榨汁机 广东美的集团股份有限公司;PAL-BX/ACID F5型数显糖酸度计 ATAGO(爱拓)中国分公司;752S型紫外/可见分光度计 上海棱光技术有限公司;H1850R型台式高速冷冻离心机 湖南湘仪离心机仪器有限公司;FlavourSpec®风味分析仪 德国G.A.S.公司。
1.2 茭白汁样品制备
将新鲜茭白去皮,置于原汁机中榨汁并用200目纱布进行过滤,滤后的茭白汁存放于耐高压聚乙烯塑料瓶中,置于−4 ℃冰箱冷藏备用。
超高压处理:将制得的茭白汁样品置于超高压处理仓中,选取超高压压力400、450、500 MPa,处理时间为5、10 min进行处理,超高压的升压时间为3 min,泄压时间为10 s,温度为25~30 ℃,处理后的茭白汁样品存于−80 ℃,待测。
热处理:将制得的茭白汁存放于耐高温塑料瓶中,采用传统巴氏杀菌(80 ℃、10 min)处理,处理后的茭白汁样品存于−80 ℃,待测。
1.3 茭白汁品质特性和挥发性风味成分的测定
1.3.1 理化品质测定
可溶性固形物、可滴定酸含量测定:可溶性固形物(TSS)和可滴定酸(TA)含量均采用数显糖酸度计进行测定,每个样品重复测定3次。
pH测定:将待测茭白汁摇匀,取30 mL于烧杯中,采用pH计在室温下测定pH,待示数稳定后读数。每个样品重复测定3次。
色泽测定:采用色差仪进行测定,在室温条件下,将样品摇匀置于比色皿中,测定模式为反射测量,测定口径为30 mm,测定亮度(L*)、红度(a*)、黄度(b*)值。
1.3.2 总酚含量测定
采用福林酚法,参照Jung等[20]的方法略做修改。取茭白汁1 mL置20 mL试管中,加入5 mL蒸馏水,加入稀释一倍的福林酚试剂1 mL,加入质量分数为7.5%的碳酸钠溶液3 mL,黑暗中显色2 h,在765 nm下测定吸光值。代入标准曲线方程y=0.0106x−0.0095(R2=0.9997),即得茭白汁的总酚含量(mg/L)。
1.3.3 黄酮含量测定
采用亚硝酸钠法,参照Veronica等[21]的方法略做修改。取1 mL茭白汁置于10 mL具塞试管中,加0.3 mL的5%亚硝酸钠溶液,放置6 min,然后加入0.3 mL的10%硝酸铝溶液,放置6 min;加1 mol/L的NaOH溶液4 mL,并用60%乙醇溶液稀释至刻度,摇匀。暗处放置15 min,于510 nm波长下测吸光度。代入标准曲线y=0.0012x+0.0009(R2=0.9999),即可茭白汁的黄酮含量(mg/L)。
1.3.4 DPPH自由基清除率测定
使用DPPH自由基清除率试剂盒进行测定,测定方法严格按照试剂盒说明书。
1.3.5 挥发性风味成分测定
样品前处理:制备的茭白汁样品常温水浴解冻,解冻后置于冰水浴中待用。量取茭白汁1 mL,装入20 mL顶空瓶中,50 ℃孵育15 min后进样。
GC-IMS条件:进样体积500 μL,孵育时间15 min,孵育温度50 ℃,进样针温度85 ℃,孵化转速500 r/min。色谱柱类型为FS-SE-54-CB-1,柱温60 ℃,载气为氮气,IMS温度为45 ℃。
定性分析:通过VOCal软件内置的NIST数据库和IMS数据库对物质进行定性分析。
1.4 数据处理
各组数据以平均值±标准差(mean±SD)表示,应用SPSS 26.0软件(美国SPSS公司)对实验数据进行组间比较和差异显著性分析,以P<0.05为存在显著性差异;应用GC-IMS软件内置的NIST数据库和IMS数据库对物质进行定性分析,运用Reporter插件直接对比样品之间的谱图差异,并且采用Gallery Plot插件进行指纹图谱对比,通过dynamic PCA插件程序进行动态主成分分析。
2. 结果与分析
2.1 超高压对NFC茭白汁基本理化品质的影响
pH、可溶性固形物和可滴定酸含量是各种新鲜和加工果蔬汁的重要指标,由表1可知,超高压处理茭白汁的pH显著降低(P<0.05),可能由于超高压影响水溶液的电离平衡,使弱酸向生成更多H+的方向电离,致使pH改变[22];而超高压和热处理都使TA的含量有较小的下降趋势;经超高压处理后,TSS在2.60~3.40之间波动,可能是超高压使茭白汁的折射率发生变化[23],而当压力过高会造成一定的温度上升,使得茭白汁出现少量絮状沉淀物。Moussa-Ayoub等[24]发现超高压处理后的仙人掌汁的可溶性固形物含量与对照组未发生显著性变化。总之超高压和热处理后茭白汁的pH、TSS和TA均在小范围内变化,说明不同杀菌方法对pH、TSS和TA的影响较小。
表 1 超高压对NFC茭白汁pH、TSS、TA的影响Table 1. Effects of high pressure processing on pH, TSS and TA of NFC water bamboo juice处理条件 pH TSS TA CK 6.90±0.01bc 3.32±0.00b 0.79±0.01c TP 6.92±0.01c 3.40±0.01c 0.66±0.02a 400 MPa,5 min 6.85±0.02a 3.34±0.02b 0.72±0.01b 400 MPa,10 min 6.86±0.01a 3.33±0.04b 0.71±0.01ab 450 MPa,5 min 6.85±0.02a 2.61±0.02a 0.70±0.03ab 450 MPa,10 min 6.85±0.02a 2.60±0.02a 0.70±0.01ab 500 MPa,5 min 6.85±0.02a 3.30±0.01b 0.71±0.02b 500 MPa,10 min 6.87±0.01ab 3.30±0.02b 0.71±0.02b 注:同列肩标不同的小写字母表示存在差异显著(P<0.05);表2~表3同。 色泽是评价果蔬及其加工制品品质的一个重要指标,因为色泽会影响消费者的购买欲望[25]。由表2可知,热杀菌和超高压杀菌使茭白汁色泽亮度L*值上升,而且随着压力的升高,L*值也逐渐增大,与陆海霞等[26]超高压处理研究结果类似。同时超高压处理显著降低了茭白汁的a*值和b*值,说明超高压处理可以降低茭白皮衣中带有的绿色,使颜色更加明亮,而热处理则显著升高了a*值和b*值(P<0.05),可能是由于热杀菌过程中伴随着美拉德反应和焦糖化反应,导致其b*值上升[27],这与张微[28]的研究结果一致。综上超高压处理可以更好地保持茭白汁样品原有色泽。
表 2 超高压对NFC茭白汁色泽的影响Table 2. Effect of high pressure processing on the color of NFC water bamboo juice处理条件 色泽 L* a* b* CK 42.53±0.05a −1.61±0.04c 5.52±0.03e TP 45.18±0.01b −1.54±0.09c 6.37±0.04f 400 MPa,5 min 45.31±0.01c −2.17±0.08b 3.56±0.03d 400 MPa,10 min 45.25±0.02c −2.28±0.10b 3.43±0.02c 450 MPa,5 min 46.31±0.02d −2.30±0.08b 3.01±0.05b 450 MPa,10 min 46.54±0.02e −2.37±0.03b 2.86±0.03a 500 MPa,5 min 47.10±0.02f −2.59±0.06a 3.02±0.06b 500 MPa,10 min 47.13±0.01f −2.68±0.07a 3.09±0.03b 表 3 超高压处理NFC茭白汁中挥发性风味化合物的种类Table 3. Types of volatile compounds in NFC water bamboo juice with high pressure processing treatment类别 分子式 序号 RI Rt 峰高(a.u.) CK TP 400 MPa,5 min 400 MPa,10 min 450 MPa,5 min 450 MPa,10 min 500 MPa,5 min 500 MPa,10 min 醛类 (E)-2-Nonenal
反-2-壬醛1 1145 872.45 256.8±14.51b 205.84±22.86a 199.88±8.27a 197.25±14.4a 198.54±5.12a 231.48±14.52ab 233.95±5.14ab 198.05±17.72a (E)-2-Octenal(M)
反-2-辛烯醛(M)2 1068.8 688.03 1007.9±36.91d 383.57±41.3a 608.89±5.81c 588.67±13.02c 562.78±18.74c 586.59±20.89c 619.64±38.35c 482.68±9.49b (E)-2-Octenal(D)
反-2-辛烯醛(D)3 1069.2 689.03 119.29±7.01b 56.22±7.42a 67.85±3.34a 71.83±7.99a 64.82±2.4a 73.72±8.74a 65.92±7.66a 66.38±9.48a (E)-2-Heptenal(M)
反-2-庚醛(M)7 962.1 481.30 574.59±46.98d 232.03±10.92a 446.77±14.24c 445.49±5.05c 401.41±14.51bc 409.41±6.53bc 420.03±27.45c 352.73±20.76b (E)-2-Heptenal(D)
反-2-庚醛(D)8 960.5 478.43 206.21±8.76d 59.52±4.17d 134.71±7.49c 133.64±16.88c 117.59±10.97bc 137.27±7.89c 136.81±12.14c 100.18±8.57b Heptanal(M)
庚醛(M)9 900.9 380.41 904.78±10.72b 1182.42±29.42e 1102.85±31.87d 1009.78±12.03c 952.9±9.01bc 1004.03±3.99c 1001.1±2.62c 830.01±46.18a Heptanal(D)
庚醛(D)10 900.9 380.41 611.4±8.52a 1314.23±48.03c 982.66±37.23b 902.17±22.81b 856.83±29.51b 857.81±8.19b 907.17±32.22b 594.95±108.81a (E)-2-Hexenal(M)
反-2-己烯醛(M)13 854 320.86 214.61±35.16ab 187.4±9.38a 229.4±13.12abc 244.16±5.92bcd 264.44±14.84cd 268.07±5.96cd 283.64±12.46d 267.44±6.36cd (E)-2-Hexenal(D)
反-2-己烯醛(D)14 852.4 318.99 62.01±17.22bc 27.24±5.79a 68.93±4.29bc 65.95±5.45bc 75.18±1.95bc 78.97±2.62c 75.86±5.73bc 56.11±8.91b Hexanal(M)
正己醛(M)17 792.8 257.60 1137.7±41.2a 1120.83±8.94a 1207.95±10.17b 1144.22±8.33a 1123.93±29.56a 1135.24±8.96a 1157.86±14.12ab 1175.53±17.51ab Hexanal(D)
正己醛(M)18 791.2 256.11 5265.92±302.01c 3049.37±82.39a 4188.86±59.6b 4319.72±32.98b 4265.79±10.97b 4366.62±31.03b 4434.72±92.76b 3323.58±432.21a Butanal
正丁醛23 600 133.28 154.07±27.12a 248.21±11.13b 345.64±9.16c 353.68±7.12c 358.79±30.03c 406.1±3.26d 427.17±7.84d 429.41±7.89d 其他 2-Pentylfuran
2-正戊基呋喃4 995.1 546.57 238.41±5.65a 390.15±15.78c 321.11±13.63b 315.77±6.26b 335.72±10.66b 334.51±1.51b 319.66±19.04b 336.38±4.42b 2-Octanone
仲辛酮5 997.5 551.09 104.87±2.49b 66.4±3.07a 111.29±0.41b 127.9±4.35c 133.3±3.58c 156.88±4.23d 178.57±9.92e 200.98±9.34f 3-Octanone
3-辛酮6 991.2 538.36 144.07±11.91c 80.31±0.94a 142.22±13.93c 143.76±5.39c 118.91±6.63b 127.26±7.24bc 117.08±2.23b 126.34±4.81bc 醇类 1-Hexanol(M)
1-己醇(M)11 881.3 353.82 1302.57±23.7c 1015.74±20.72a 1145.81±26.21b 1140.57±14.84b 1115.93±7.02b 1115.82±30.7b 1136.23±17.78b 1351.99±31.15c 1-Hexanol(D)
1-己醇(D)12 879.5 351.57 1172.29±41.67c 836.41±14.51a 948.5±45.73ab 1021.38±25.33bc 1029.15±17.62bc 1008.7±16.54abc 982.69±24.65ab 1533.74±164.25d 1-Pentanol(M)
1-戊醇(M)19 772.7 238.98 211.54±2.84b 210.75±7.66b 199.44±3.7ab 185.19±13.77a 192.16±1.69ab 193.45±0.53ab 187.81±8.47a 204.04±8.42ab 1-Pentanol(D)
1-戊醇(D)20 771.9 238.27 204.73±2.93ab 267.69±2.01d 181.89±7.88a 223.07±12.39bc 238.16±8.71c 226.09±4.59bc 223.78±13.39bc 230.96±7.47c 1-Penten-3-ol
1-戊烯-3-醇21 694.6 177.03 1938.35±32.92d 1664.62±7.77a 1688.41±10.97ab 1716.24±10.18b 1792.37±13.48c 1764.05±5.18c 1771.27±11.56c 1805.07±9.74c Ethanol
乙醇24 491.4 96.77 10979.51±79.93c 11005.21±18.29c 10758.28±44.32ab 10839.95±82.51bc 10736.42±99.36ab 10687.84±57.73ab 10620.64±49.49a 10657.85±13.58a 3-Methylbutanol(M)
3-甲基丁醇(M)25 742.6 212.89 287.89±4.11c 281.58±1.9bc 249.74±5.2a 253.97±12.51a 255.41±7.7a 258.42±12.33ab 270.21±1.15abc 280.94±12.91bc 3-Methylbutanol(D)
3-甲基丁醇(D)26 740.9 211.51 739.54±28.42c 813.58±17.3d 559.15±16.77a 662.25±34.73b 654.52±9.9b 630.11±3.72b 649.49±13.65b 667.85±8.19b 1-Butanol(M)
1-丁醇(M)27 683.3 170.35 327.67±13.5d 166.69±7.82a 218.91±6.32c 187.59±1.78ab 190.43±8.37b 182.45±4.14ab 180.39±9.23ab 189.31±3.02b 1-Butanol(D)
1-丁醇(D)28 674 165.74 945.8±18.59d 866.52±6.03e 1019.61±7.44c 835.42±7.91bc 795.36±11.4a 814.68±15.49ab 809.97±3.07ab 811.76±12.73ab 2-Methylpropanol
异丁醇46 634.6 147.56 170.76±1.66d 199.52±4.47e 140.84±8.83a 147.31±3.22ab 154.41±7.33abc 160.04±3.87bcd 159.03±4.29bcd 165.01±0.16cd 酯类 Ethyl 2-methylbutyrate(M)
2-甲基丁酸乙酯(M)15 846.4 312.25 636.35±19.01b 473.47±14.98a 879.31±25.47cd 916.6±12.12d 915.29±7.67d 885.93±25.25cd 882.71±11.49cd 843.19±9.25c Ethyl 2-methylbutyrate(D)
2-甲基丁酸乙酯(D)16 845.2 310.81 270.94±32.19b 170.04±7.8a 694.89±14.13d 855.11±14.94e 841.67±18.08e 716.27±6.53d 723.24±11.92d 631.43±6.48c Ethyl acetate
乙酸乙酯22 606.3 135.79 513.33±154.68a 1382.75±115.01b 6681.88±18.1f 6357.94±46.58e 5775.37±8.66d 5504.74±12.28c 5360.4±66.96c 5342.2±21.44c 2.2 超高压对NFC茭白汁总酚和黄酮含量的影响
超高压和热处理后茭白汁的总酚、黄酮含量的变化见图1。结果显示,超高压处理总酚含量有所增加且500 MPa、5 min含量最高,总酚含量的少量增加可能是由于超高压造成的植物细胞膜的通透性升高,导致一些抗氧化成分物质的提取率增加[29]。热处理茭白汁中的总酚含量显著性降低(P<0.05),原因可能是高温作用下,酚类物质热不稳定,高温短时处理可能使得部分酚类物质发生降解;而超高压不破坏分子内部共价键[30],从而对酚类物质的影响相对较小[31]。由图1b可知,超高压茭白汁中的黄酮含量有所增加且在450 MPa、10 min时含量最高,变化趋势与对总酚含量影响相接近,这是因为多数黄酮类化合物属于酚类物质,而超高压对酚类物质的影响较小。Wang等[32]研究也发现,热处理后的桑椹汁中总黄酮降低,与本研究结果相一致。
2.3 超高压对NFC茭白汁DPPH自由基清除率的影响
DPPH是一种含有不对称价电子的氮族自由基,易与具有氢原子供体的物质发生电子转移,当有自由基清除剂存在时,与抗氧化剂反应,由于与其单电子配对而使其吸收逐渐消失,呈现的颜色越浅[33],广泛用于测定样品的抗氧化能力。不同杀菌方式对茭白汁的DPPH自由基清除率如图2所示,结果显示,与未处理组相比,热处理茭白汁的DPPH清除率有所下降,而400 MPa超高压茭白汁的DPPH清除率显著性上升(P<0.05),该变化规律与上述总酚含量的变化规律相一致,这是由于总酚在抗氧化能力方面起到重要作用[34]。王慧倩等[35]研究发现,鲜切西兰花中DPPH自由基、超氧阴离子自由基和羟自由基清除能力都呈先上升后下降趋势,与总酚和黄酮含量的变化趋势相似,闫亚茹等[36]研究芹菜的抗氧化活性发现,多酚含量与DPPH自由基清除率、ARAP值呈正相关。其他研究也相继发现果蔬中的抗氧化能力与总酚、黄酮含量高度相关[37]。
2.4 超高压对NFC茭白汁中挥发性风味成分的影响
图3为基于GC-IMS风味分析超高压和热处理对茭白汁中挥发性风味化合物的三维图谱和二维图谱。图中GC-IMS俯视图纵坐标代表气相色谱的保留时间,横坐标代表离子迁移时间,横坐标1.0处竖线为RIP峰(反应离子峰,经归一化处理),RIP峰两侧的每一个点代表一种挥发性有机物,颜色代表物质的浓度,白色表示浓度较低,红色表示浓度较高,颜色越深表示浓度越大。图3俯视图可以直观看出不同灭菌方式茭白汁中挥发性有机物的差异,为了更加明显地对比这种差异,采用差异对比图进行分析。
图4为超高压和热处理茭白汁的差异图。首先选取B1的谱图(空白组)作为参比,其他样品的谱图扣减参比,如果二者挥发性有机物一致,则扣减后的背景为白色,而红色代表该物质的浓度高于参比,蓝色代表该物质的浓度低于参比。由图5可知,茭白汁灭菌前后挥发性有机物发生了变化,加热灭菌和高压灭菌的茭白汁中的挥发性有机物存在差异,红色区域内,虽然超高压和热处理都会使挥发性有机物浓度升高,但是,超高压处理,其增加的趋势更高,叶田等[38]研究超高压和巴氏杀菌对鲜榨西芹汁挥发性成分的影响时发现,超高压处理对西芹汁的挥发性成分的影响较小, 能更好的维持西芹汁的天然香气,与本研究结果一致。
图5为超高压和热处理茭白汁中挥发性化合物指纹图谱。图中每一行代表一个样品中选取的全部信号峰,每一列代表同一挥发性有机物在不同样品中的信号峰。黄色区域中表示,超高压处理后茭白汁的挥发性物质含量高于对照组和热处理组,正丁醛、2-辛酮、2-甲基丁酸乙酯、乙酸乙酯等物质含量明显升高,且其中2-辛酮(苹果香)和正丁醛(红酸栗味)含量随压力和时间升高而增加;乙酸乙酯(水果香)含量随压力和时间升高而降低。橙色区域中表示,茭白汁经超高压和热处理后1-丁醇和1-己醇含量均明显减少,尤其是1-丁醇(酒精味),说明超高压和热处理降低了茭白汁发酵的趋势,使产生的酒香类物质减少。茭白汁经热处理后,红色区域中1-戊醇、2-丁醇、3-甲基丁醇等物质含量明显上升,而超高压处理则会降低,绿色区域中反-2-辛烯醛、反-2-庚醛、反-2-己烯醛、3-辛酮等物质含量明显降低,说明热处理会使茭白汁出现发酵的趋势,导致部分酒香类物质含量增加,反而使部分草香和水果香等物质含量减少。所以超高压处理可以更好的保持茭白汁香气成分。
通过GC-IMS对超高压和热处理茭白汁挥发性风味成分的检测,共鉴定出29种挥发性化合物,如表3所示,主要包括醇类、烯醛类、醛类、酮类和酯类等,其中醇类物质最多且乙醇含量较高。酯类挥发性成分大多具有令人愉悦的香气[39],乙酸乙酯具有清甜、微带果香的酒香香气[40],而醛类化合物如己醛、顺-2-己烯醛等呈青草香[41],其中含量最高的乙醇是典型的酒香气物质。茭白汁中酮类挥发性成分含量较少,可能这些成分对茭白汁的香气贡献度不高。
图6为超高压和热处理茭白汁的PCA图(主成分分析图)。由图所示,PC1贡献率为48%,PC2贡献率为23%,PC1和PC2的累计贡献率为71%,样品之间距离近则代表差异小,距离远则代表差异明显。从图6中可以看出,主成分分析将不同灭菌方式的茭白汁很好的区分开来,且灭菌前后挥发性有机物发生了明显变化,加热灭菌和高压灭菌的茭白汁中的挥发性有机物存在较大差异,而不同压力和时间灭菌的茭白汁中的挥发性有机物比较相似,与上述差异图得到的结论一致。
3. 结论
本文研究了超高压和热处理对NFC茭白汁的营养品质和挥发性风味成分的影响,研究结果表明超高压处理提升了茭白汁的感官品质,而热处理茭白汁出现了明显的分层且感官品质降低;对于总酚、黄酮含量和抗氧化能力(DPPH自由基清除率),超高压处理后其含量都显著增加(P<0.05)。利用GC-IMS风味分析技术对超高压和热处理的茭白汁的挥发性风味成分进行检测与分析,共检测出29种挥发性香气物质,PCA可以将超高压处理组、热处理组和未处理组明显区分开,而不同参数超高压组(400~500 MPa,5~10 min)之间香气物质较为相似。经热处理后,一些草香和果香的挥发性化合物含量有所降低,而酒香的物质含量有所升高,从而对茭白汁的香气影响较大,超高压处理增加了茭白汁的果香和草香,提升了茭白汁的风味。综上,超高压处理不仅提高了茭白汁的营养品质,而且在保持茭白汁特征风味方面具有显著优势。
-
表 1 超高压对NFC茭白汁pH、TSS、TA的影响
Table 1 Effects of high pressure processing on pH, TSS and TA of NFC water bamboo juice
处理条件 pH TSS TA CK 6.90±0.01bc 3.32±0.00b 0.79±0.01c TP 6.92±0.01c 3.40±0.01c 0.66±0.02a 400 MPa,5 min 6.85±0.02a 3.34±0.02b 0.72±0.01b 400 MPa,10 min 6.86±0.01a 3.33±0.04b 0.71±0.01ab 450 MPa,5 min 6.85±0.02a 2.61±0.02a 0.70±0.03ab 450 MPa,10 min 6.85±0.02a 2.60±0.02a 0.70±0.01ab 500 MPa,5 min 6.85±0.02a 3.30±0.01b 0.71±0.02b 500 MPa,10 min 6.87±0.01ab 3.30±0.02b 0.71±0.02b 注:同列肩标不同的小写字母表示存在差异显著(P<0.05);表2~表3同。 表 2 超高压对NFC茭白汁色泽的影响
Table 2 Effect of high pressure processing on the color of NFC water bamboo juice
处理条件 色泽 L* a* b* CK 42.53±0.05a −1.61±0.04c 5.52±0.03e TP 45.18±0.01b −1.54±0.09c 6.37±0.04f 400 MPa,5 min 45.31±0.01c −2.17±0.08b 3.56±0.03d 400 MPa,10 min 45.25±0.02c −2.28±0.10b 3.43±0.02c 450 MPa,5 min 46.31±0.02d −2.30±0.08b 3.01±0.05b 450 MPa,10 min 46.54±0.02e −2.37±0.03b 2.86±0.03a 500 MPa,5 min 47.10±0.02f −2.59±0.06a 3.02±0.06b 500 MPa,10 min 47.13±0.01f −2.68±0.07a 3.09±0.03b 表 3 超高压处理NFC茭白汁中挥发性风味化合物的种类
Table 3 Types of volatile compounds in NFC water bamboo juice with high pressure processing treatment
类别 分子式 序号 RI Rt 峰高(a.u.) CK TP 400 MPa,5 min 400 MPa,10 min 450 MPa,5 min 450 MPa,10 min 500 MPa,5 min 500 MPa,10 min 醛类 (E)-2-Nonenal
反-2-壬醛1 1145 872.45 256.8±14.51b 205.84±22.86a 199.88±8.27a 197.25±14.4a 198.54±5.12a 231.48±14.52ab 233.95±5.14ab 198.05±17.72a (E)-2-Octenal(M)
反-2-辛烯醛(M)2 1068.8 688.03 1007.9±36.91d 383.57±41.3a 608.89±5.81c 588.67±13.02c 562.78±18.74c 586.59±20.89c 619.64±38.35c 482.68±9.49b (E)-2-Octenal(D)
反-2-辛烯醛(D)3 1069.2 689.03 119.29±7.01b 56.22±7.42a 67.85±3.34a 71.83±7.99a 64.82±2.4a 73.72±8.74a 65.92±7.66a 66.38±9.48a (E)-2-Heptenal(M)
反-2-庚醛(M)7 962.1 481.30 574.59±46.98d 232.03±10.92a 446.77±14.24c 445.49±5.05c 401.41±14.51bc 409.41±6.53bc 420.03±27.45c 352.73±20.76b (E)-2-Heptenal(D)
反-2-庚醛(D)8 960.5 478.43 206.21±8.76d 59.52±4.17d 134.71±7.49c 133.64±16.88c 117.59±10.97bc 137.27±7.89c 136.81±12.14c 100.18±8.57b Heptanal(M)
庚醛(M)9 900.9 380.41 904.78±10.72b 1182.42±29.42e 1102.85±31.87d 1009.78±12.03c 952.9±9.01bc 1004.03±3.99c 1001.1±2.62c 830.01±46.18a Heptanal(D)
庚醛(D)10 900.9 380.41 611.4±8.52a 1314.23±48.03c 982.66±37.23b 902.17±22.81b 856.83±29.51b 857.81±8.19b 907.17±32.22b 594.95±108.81a (E)-2-Hexenal(M)
反-2-己烯醛(M)13 854 320.86 214.61±35.16ab 187.4±9.38a 229.4±13.12abc 244.16±5.92bcd 264.44±14.84cd 268.07±5.96cd 283.64±12.46d 267.44±6.36cd (E)-2-Hexenal(D)
反-2-己烯醛(D)14 852.4 318.99 62.01±17.22bc 27.24±5.79a 68.93±4.29bc 65.95±5.45bc 75.18±1.95bc 78.97±2.62c 75.86±5.73bc 56.11±8.91b Hexanal(M)
正己醛(M)17 792.8 257.60 1137.7±41.2a 1120.83±8.94a 1207.95±10.17b 1144.22±8.33a 1123.93±29.56a 1135.24±8.96a 1157.86±14.12ab 1175.53±17.51ab Hexanal(D)
正己醛(M)18 791.2 256.11 5265.92±302.01c 3049.37±82.39a 4188.86±59.6b 4319.72±32.98b 4265.79±10.97b 4366.62±31.03b 4434.72±92.76b 3323.58±432.21a Butanal
正丁醛23 600 133.28 154.07±27.12a 248.21±11.13b 345.64±9.16c 353.68±7.12c 358.79±30.03c 406.1±3.26d 427.17±7.84d 429.41±7.89d 其他 2-Pentylfuran
2-正戊基呋喃4 995.1 546.57 238.41±5.65a 390.15±15.78c 321.11±13.63b 315.77±6.26b 335.72±10.66b 334.51±1.51b 319.66±19.04b 336.38±4.42b 2-Octanone
仲辛酮5 997.5 551.09 104.87±2.49b 66.4±3.07a 111.29±0.41b 127.9±4.35c 133.3±3.58c 156.88±4.23d 178.57±9.92e 200.98±9.34f 3-Octanone
3-辛酮6 991.2 538.36 144.07±11.91c 80.31±0.94a 142.22±13.93c 143.76±5.39c 118.91±6.63b 127.26±7.24bc 117.08±2.23b 126.34±4.81bc 醇类 1-Hexanol(M)
1-己醇(M)11 881.3 353.82 1302.57±23.7c 1015.74±20.72a 1145.81±26.21b 1140.57±14.84b 1115.93±7.02b 1115.82±30.7b 1136.23±17.78b 1351.99±31.15c 1-Hexanol(D)
1-己醇(D)12 879.5 351.57 1172.29±41.67c 836.41±14.51a 948.5±45.73ab 1021.38±25.33bc 1029.15±17.62bc 1008.7±16.54abc 982.69±24.65ab 1533.74±164.25d 1-Pentanol(M)
1-戊醇(M)19 772.7 238.98 211.54±2.84b 210.75±7.66b 199.44±3.7ab 185.19±13.77a 192.16±1.69ab 193.45±0.53ab 187.81±8.47a 204.04±8.42ab 1-Pentanol(D)
1-戊醇(D)20 771.9 238.27 204.73±2.93ab 267.69±2.01d 181.89±7.88a 223.07±12.39bc 238.16±8.71c 226.09±4.59bc 223.78±13.39bc 230.96±7.47c 1-Penten-3-ol
1-戊烯-3-醇21 694.6 177.03 1938.35±32.92d 1664.62±7.77a 1688.41±10.97ab 1716.24±10.18b 1792.37±13.48c 1764.05±5.18c 1771.27±11.56c 1805.07±9.74c Ethanol
乙醇24 491.4 96.77 10979.51±79.93c 11005.21±18.29c 10758.28±44.32ab 10839.95±82.51bc 10736.42±99.36ab 10687.84±57.73ab 10620.64±49.49a 10657.85±13.58a 3-Methylbutanol(M)
3-甲基丁醇(M)25 742.6 212.89 287.89±4.11c 281.58±1.9bc 249.74±5.2a 253.97±12.51a 255.41±7.7a 258.42±12.33ab 270.21±1.15abc 280.94±12.91bc 3-Methylbutanol(D)
3-甲基丁醇(D)26 740.9 211.51 739.54±28.42c 813.58±17.3d 559.15±16.77a 662.25±34.73b 654.52±9.9b 630.11±3.72b 649.49±13.65b 667.85±8.19b 1-Butanol(M)
1-丁醇(M)27 683.3 170.35 327.67±13.5d 166.69±7.82a 218.91±6.32c 187.59±1.78ab 190.43±8.37b 182.45±4.14ab 180.39±9.23ab 189.31±3.02b 1-Butanol(D)
1-丁醇(D)28 674 165.74 945.8±18.59d 866.52±6.03e 1019.61±7.44c 835.42±7.91bc 795.36±11.4a 814.68±15.49ab 809.97±3.07ab 811.76±12.73ab 2-Methylpropanol
异丁醇46 634.6 147.56 170.76±1.66d 199.52±4.47e 140.84±8.83a 147.31±3.22ab 154.41±7.33abc 160.04±3.87bcd 159.03±4.29bcd 165.01±0.16cd 酯类 Ethyl 2-methylbutyrate(M)
2-甲基丁酸乙酯(M)15 846.4 312.25 636.35±19.01b 473.47±14.98a 879.31±25.47cd 916.6±12.12d 915.29±7.67d 885.93±25.25cd 882.71±11.49cd 843.19±9.25c Ethyl 2-methylbutyrate(D)
2-甲基丁酸乙酯(D)16 845.2 310.81 270.94±32.19b 170.04±7.8a 694.89±14.13d 855.11±14.94e 841.67±18.08e 716.27±6.53d 723.24±11.92d 631.43±6.48c Ethyl acetate
乙酸乙酯22 606.3 135.79 513.33±154.68a 1382.75±115.01b 6681.88±18.1f 6357.94±46.58e 5775.37±8.66d 5504.74±12.28c 5360.4±66.96c 5342.2±21.44c -
[1] GUO H B, LI S M, PENG J, et al. Zizania latifolia Turcz. cultivated in China[J]. Genetic Resources and Crop Evolution,2007,54(6):1211−1217. doi: 10.1007/s10722-006-9102-8
[2] 韦满棋. 茭白种植现状及发展建议[J]. 新农业,2021(17):44−45. [WEI Manqi. Current situation and development suggestions of watercress planting[J]. New Agriculture,2021(17):44−45. WEI Manqi. Current situation and development suggestions of watercress planting[J]. New Agriculture, 2021(17): 44-45.
[3] 周超, 李臣. 我国茭白的营养与开发利用研究综述[J]. 长江蔬菜,2017(20):32−35. [ZHOU Chao, LI Chen. A review of research on the nutrition, development and utilization of wild rice in my country[J]. Changjiang Vegetables,2017(20):32−35. ZHOU Chao, LI Chen. A review of research on the nutrition, development and utilization of wild rice in my country[J]. Changjiang Vegetables, 2017(20): 32-35.
[4] 郑杰, 郭春裕, 张进杰. 茭白苞叶中总黄酮提取及其体外抗氧化性能研究[J]. 中国计量学院学报,2008(3):283−288. [ZHENG Jie, GUO Chunyu, ZHANG Jinjie. Extraction of total flavonoids from the husk leaves and their antioxidative properties in vitro[J]. Journal of China Jiliang University,2008(3):283−288. ZHENG Jie, GUO Chunyu, ZHANG Jinjie. Extraction of total flavonoids from the husk leaves and their antioxidative properties in vitro[J]. Journal of China Jiliang University, 2008(3): 283-288.
[5] WANG M, ZHAO S, ZHU P, et al. Purification, characterization and immunomodulatory activity of water extractable polysaccharides from the swollen culms of Zizania latifolia[J]. International Journal of Biological Macromolecules,2018,107:882−890. doi: 10.1016/j.ijbiomac.2017.09.062
[6] 李通, 武占会, 王宝驹, 等. 不同栽培基质对温室茭白幼苗生长及光合特性的影响[J]. 中国瓜菜,2021,34(4):99−104. [LI Tong, WU Zhanhui, WANG Baoju, et al. Effects of different cultivation substrates on growth and photosynthetic characteristics of greenhouse watercress seedlings[J]. China Cucurbita,2021,34(4):99−104. doi: 10.3969/j.issn.1673-2871.2021.04.018 LI Tong, WU Zhanhui, WANG Baoju, et al. Effects of different cultivation substrates on growth and photosynthetic characteristics of greenhouse watercress seedlings[J]. China Cucurbita, 2021, 34(4): 99-104. doi: 10.3969/j.issn.1673-2871.2021.04.018
[7] 董桂君, 乔勇进, 王春芳, 等. 茭白采后生理变化及保鲜技术研究进展[J]. 保鲜与加工,2021,21(9):133−138. [DONG Guijun, QIAO Yongjin, WANG Chunfang, et al. Research progress on postharvest physiological changes and fresh-keeping technology of jasmine rice[J]. Fresh-keeping and Processing,2021,21(9):133−138. doi: 10.3969/j.issn.1009-6221.2021.09.021 DONG Guijun, QIAO Yongjin, WANG Chunfang, et al. Research progress on postharvest physiological changes and fresh-keeping technology of jasmine rice[J]. Fresh-keeping and Processing, 2021, 21(9): 133-138. doi: 10.3969/j.issn.1009-6221.2021.09.021
[8] 宣晓婷, 张赛佳, 崔燕, 等. 超高压杨梅复合果蔬汁的研制及贮藏品质[J]. 食品工业科技,2019,40(12):156−162. [XUAN Xiaoting, ZHANG Saijia, CUI Yan, et al. Development and storage quality of ultra-high pressure bayberry compound fruit and vegetable juice[J]. Science and Technology of Food Industry,2019,40(12):156−162. doi: 10.13386/j.issn1002-0306.2019.12.026 XUAN Xiaoting, ZHANG Saijia, CUI Yan, et al. Development and storage quality of ultra-high pressure bayberry compound fruit and vegetable juice[J]. Food Industry Science and Technology, 2019, 40(12): 156-162. doi: 10.13386/j.issn1002-0306.2019.12.026
[9] 张晓, 王永涛, 李仁杰, 等. 我国食品超高压技术的研究进展[J]. 中国食品学报,2015,15(5):157−165. [ZHANG Xiao, WANG Yongtao, LI Renjie, et al. Research progress of food ultra-high pressure technology in my country[J]. Chinese Journal of Food Science,2015,15(5):157−165. ZHANG Xiao, WANG Yongtao, LI Renjie, et al. Research progress of food ultra-high pressure technology in my country[J]. Chinese Journal of Food Science, 2015, 15(5): 157-165.
[10] BUTZ P, GARCÍA A F, LINDAUER R, et al. Influence of ultra high pressure processing on fruit and vegetable products[J]. Journal of Food Engineering,2003,56(2):233−236.
[11] 米瑞芳, 刘俊梅, 胡小松, 等. 杀菌方式对即食胡萝卜片挥发性风味物质的影响[J]. 农业工程学报,2016,32(9):264−270. [MI Ruifang, LIU Junmei, HU Xiaosong, et al. Effects of sterilization methods on volatile flavor compounds in ready-to-eat carrot slices[J]. Chinese Journal of Agricultural Engineering,2016,32(9):264−270. doi: 10.11975/j.issn.1002-6819.2016.09.037 MI Ruifang, LIU Junmei, HU Xiaosong, et al. Effects of sterilization methods on volatile flavor compounds in ready-to-eat carrot slices[J]. Chinese Journal of Agricultural Engineering, 2016, 32(9): 264-270. doi: 10.11975/j.issn.1002-6819.2016.09.037
[12] 宋永程, 王晓琼, 唐玲玲, 等. 超高压对苦笋复合果蔬汁饮料品质的影响[J]. 食品与发酵工业,2020,46(18):173−179. [SONG Yongcheng, WANG Xiaoqiong, TANG Lingling, et al. Effect of ultra-high pressure on the quality of bitter bamboo shoot compound fruit and vegetable juice beverage[J]. Food and Fermentation Industry,2020,46(18):173−179. SONG Yongcheng, WANG Xiaoqiong, TANG Lingling, et al. Effect of ultra-high pressure on the quality of bitter bamboo shoot compound fruit and vegetable juice beverage[J]. Food and Fermentation Industry, 2020, 46(18): 173-179.
[13] 王欢欢. 番茄汁特征香气组分保持技术及机制研究[D]. 沈阳: 沈阳农业大学, 2019 WANG Huanhuan. Research on the technology and mechanism of maintaining characteristic aroma components of tomato juice[D]. Shenyang: Shenyang Agricultural University, 2019.
[14] 张程慧, 石超, 冯叙桥. 胡萝卜、番茄、黄瓜和西芹制汁过程中酶解工艺的优化[J]. 食品工业科技,2020,41(21):199−207. [ZHANG Chenghui, SHI Chao, FENG Xuqiao. Optimization of enzymatic hydrolysis in the process of carrot, tomato, cucumber and celery juice production[J]. Science and Technology of Food Industry,2020,41(21):199−207. doi: 10.13386/j.issn1002-0306.2019100007 ZHANG Chenghui, SHI Chao, FENG Xuqiao. Optimization of enzymatic hydrolysis in the process of carrot, tomato, cucumber and celery juice production[J]. Science and Technology of Food Industry, 2020, 41(21): 199-207. doi: 10.13386/j.issn1002-0306.2019100007
[15] 侯小歌, 赖颖, 胡炳义, 等. 红萝卜西红柿复合蔬菜汁饮料的加工工艺研究[J]. 食品研究与开发,2017,38(9):112−117. [HOU Xiaoge, LAI Ying, HU Bingyi, et al. Research on processing technology of carrot and tomato compound vegetable juice beverage[J]. Food Research and Development,2017,38(9):112−117. doi: 10.3969/j.issn.1005-6521.2017.09.025 HOU Xiaoge, LAI Ying, HU Bingyi, et al. Research on processing technology of carrot and tomato compound vegetable juice beverage[J]. Food Research and Development, 2017, 38(9): 112-117. doi: 10.3969/j.issn.1005-6521.2017.09.025
[16] VAUTZ W, FRANZKE J, ZAMPOLLI S, et al. On the potential of ion mobility spectrometry coupled to GC pre-separation–a tutorial[J]. Analytica Chimica Acta,2018,1024:52−64. doi: 10.1016/j.aca.2018.02.052
[17] 陈东杰, 张明岗, 聂小宝, 等. 基于气相离子迁移谱检测静电场处理的大菱鲆品质[J]. 食品科学,2019,40(24):313−319. [CHEN Dongjie, ZHANG Minggang, NIE Xiaobao, et al. Quality detection of turbot treated with electrostatic field based on gas-phase ion mobility spectrometry[J]. Food Science,2019,40(24):313−319. doi: 10.7506/spkx1002-6630-20180904-044 CHEN Dongjie, ZHANG Minggang, NIE Xiaobao, et al. Quality detection of turbot treated with electrostatic field based on gas-phase ion mobility spectrometry[J]. Food Science, 2019, 40(24): 313-319. doi: 10.7506/spkx1002-6630-20180904-044
[18] 曹荣, 胡梦月, 谭志军, 等. 基于电子舌和气相色谱-离子迁移谱分析坛紫菜与条斑紫菜的风味特征[J]. 食品科学,2021,42(8):186−191. [CAO Rong, HU Mengyue, TAN Zhijun, et al. Analysis of the flavor characteristics of Porphyra alba and Porphyra japonica based on electronic tongue and gas chromatography-ion mobility spectrometry[J]. Food Science,2021,42(8):186−191. doi: 10.7506/spkx1002-6630-20191110-101 CAO Rong, HU Mengyue, TAN Zhijun, et al. Analysis of the flavor characteristics of Porphyra alba and Porphyra japonica based on electronic tongue and gas chromatography-ion mobility spectrometry[J]. Food Science, 2021, 42(8): 186-191. doi: 10.7506/spkx1002-6630-20191110-101
[19] CHEN D, QIN L, GENG Y, et al. The aroma fingerprints and discrimination analysis of shiitake mushrooms from three different drying conditions by GC-IMS, GC-MS and DSA[J]. Foods,2021,10(12):2991. doi: 10.3390/foods10122991
[20] JUNG J K, LEE S U, KOZUKUE N, et al. Distribution of phenolic compounds and antioxidative activities in parts of sweet potato (Ipomoea batata L.) plants and in home processed roots[J]. Journal of Food Composition and Analysis,2010,24(1):29−37.
[21] VERONICA D, XIANZHONG W, KAFUI K ADOM, et al. Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity[J]. Journal of Agricultural and Food Chemistry,2002,50(10):3010−3014. doi: 10.1021/jf0115589
[22] STIPPL V M, DELGADO A, BECKER T M. Ionization equilibria at high pressure[J]. European Food Research and Technology,2005,221(1−2):151−156. doi: 10.1007/s00217-004-1130-z
[23] 谢慧明, 王颖, 周典飞. 超高压处理对猕猴桃汁品质的影响[J]. 食品科学,2012,33(11):17−20. [XIE Huiming, WANG Ying, ZHOU Dianfei. Effects of ultra-high pressure treatment on the quality of kiwifruit juice[J]. Food Science,2012,33(11):17−20. XIE Huiming, WANG Ying, ZHOU Dianfei. Effects of ultra-high pressure treatment on the quality of kiwifruit juice[J]. Food Science, 2012, 33(11): 17-20.
[24] MOUSSA-AYOUB T E, JAEGER H, KNORR D, et al. Impact of pulsed electric fields, high hydrostatic pressure, and thermal pasteurization on selected characteristics of Opuntia dillenii Cactus juice[J]. Lwt-Food Science and Technology,2017,79:534−542. doi: 10.1016/j.lwt.2016.10.061
[25] 邓红, 刘旻昊, 马婧, 等. UHP与HTST杀菌处理的猕猴桃NFC果汁贮藏期品质变化[J]. 食品工业科技,2020,41(9):269−277,296. [DENG Hong, LIU Minhao, MA Jing, et al. Quality changes of kiwifruit NFC juice treated by UHP and HTST sterilization during storage period[J]. Science and Technology of Food Industry,2020,41(9):269−277,296. DENG Hong, LIU Minhao, MA Jing, et al. Quality changes of kiwifruit NFC juice treated by UHP and HTST sterilization during storage period[J]. Science and Technology of Food Industry, 2020, 41(9): 269-277, 296.
[26] 陆海霞, 胡友栋, 励建荣, 等. 超高压和热处理对胡柚汁理化品质的影响[J]. 中国食品学报,2010,10(2):160−166. [LU Haixia, HU Youdong, LI Jianrong, et al. Effects of ultra-high pressure and heat treatment on physicochemical quality of grapefruit juice[J]. Chinese Journal of Food Science,2010,10(2):160−166. doi: 10.3969/j.issn.1009-7848.2010.02.024 LU Haixia, HU Youdong, LI Jianrong, et al. Effects of ultra-high pressure and heat treatment on physicochemical quality of grapefruit juice[J]. Chinese Journal of Food Science, 2010, 10(2): 160-166. doi: 10.3969/j.issn.1009-7848.2010.02.024
[27] 张婷婷. 基于微波及声热技术的苹果全果果汁褐变抑制研究[D]. 杭州: 浙江大学, 2019 ZHANG Tingting. Research on the browning inhibition of apple whole fruit juice based on microwave and acousto-thermal technology[D]. Hangzhou: Zhejiang University, 2019.
[28] 张微. 超高压和热处理对热带果汁品质影响的比较研究[D]. 广州: 华南理工大学, 2010 ZHANG Wei. Comparative study on the effects of ultra-high pressure and heat treatment on the quality of tropical fruit juice[D]. Guangzhou: South China University of Technology, 2010.
[29] PRASAD K N, YANG B, SHI J, et al. Enhanced antioxidant and antityrosinase activities of longan fruit pericarp by ultra-high-pressure-assisted extraction[J]. Journal of Pharmaceutical and Biomedical Analysis,2010,51(2):471−477. doi: 10.1016/j.jpba.2009.02.033
[30] 赵俊芳, 赵玉生. 初探食品工业中的超高压灭菌技术[J]. 包装与食品机械,2006(5):27−30. [ZHAO Junfang, ZHAO Yusheng. A preliminary study on ultra-high pressure sterilization technology in food industry[J]. Packaging and Food Machinery,2006(5):27−30. doi: 10.3969/j.issn.1005-1295.2006.05.009 ZHAO Junfang, ZHAO Yusheng. A preliminary study on ultra-high pressure sterilization technology in food industry[J]. Packaging and Food Machinery, 2006(5): 27-30. doi: 10.3969/j.issn.1005-1295.2006.05.009
[31] 高婧昕, 刘旭, 丁皓玥, 等. 超高压处理对复合果汁微生物和品质的影响[J]. 中国食品学报,2020,20(9):118−130. [GAO Jingxin, LIU Xu, DING Haoyue, et al. Effects of ultra-high pressure treatment on microorganisms and quality of composite juice[J]. Chinese Journal of Food Science,2020,20(9):118−130. GAO Jingxin, LIU Xu, DING Haoyue, et al. Effects of ultra-high pressure treatment on microorganisms and quality of composite juice[J]. Chinese Journal of Food Science, 2020, 20(9): 118-130.
[32] WANG F, DU B L, CUI Z W, et al. Effects of high hydrostatic pressure and thermal processing on bioactive compounds, antioxidant activity, and volatile profile of mulberry juice[J]. Food Science and Technology International,2017,23(2):119−127. doi: 10.1177/1082013216659610
[33] 王彦淇, 郭玉蓉, 王永涛, 等. 不同品种苹果非浓缩还原汁的多酚组成及与抗氧化能力的关系[J]. 中国食品学报,2020,20(5):74−83. [WANG Yanqi, GUO Yurong, WANG Yongtao, et al. Polyphenol composition of different varieties of apple non-concentrated reduced juice and its relationship with antioxidant capacity[J]. Chinese Journal of Food Science,2020,20(5):74−83. WANG Yanqi, GUO Yurong, WANG Yongtao, et al. Polyphenol composition of different varieties of apple non-concentrated reduced juice and its relationship with antioxidant capacity[J]. Chinese Journal of Food Science, 2020, 20(5): 74-83.
[34] 王振帅, 曾秋烦, 信思悦, 等. 超声联合杀菌对火龙果汁品质及抗氧化性的影响[J]. 食品与发酵工业,2019,45(5):157−163. [WANG Zhenshuai, ZENG Qiufan, XIN Siyue, et al. Effects of ultrasonic combined with sterilization on the quality and antioxidant activity of dragon fruit juice[J]. Food and Fermentation Industry,2019,45(5):157−163. WANG Zhenshuai, ZENG Qiufan, XIN Siyue, et al. Effects of ultrasonic combined with sterilization on the quality and antioxidant activity of dragon fruit juice[J]. Food and Fermentation Industry, 2019, 45(5): 157-163.
[35] 王慧倩, 郑聪, 王华东, 等. 乙醇熏蒸处理对鲜切西兰花活性成分和抗氧化活性的影响[J]. 食品科学,2014,35(16):250−254. [WANG Huiqian, ZHENG Cong, WANG Huadong, et al. Effects of ethanol fumigation on active components and antioxidant activity of fresh-cut broccoli[J]. Food Science,2014,35(16):250−254. doi: 10.7506/spkx1002-6630-201416048 WANG Huiqian, ZHENG Cong, WANG Huadong, et al. Effects of ethanol fumigation on active components and antioxidant activity of fresh-cut broccoli[J]. Food Science, 2014, 35(16): 250-254. doi: 10.7506/spkx1002-6630-201416048
[36] 闫亚茹, 孙飞龙. 芹菜多酚的抗氧化性及其稳定性研究[J]. 包装与食品机械,2017,35(6):13−17. [YAN Yaru, SUN Feilong. Antioxidative activity and stability of celery polyphenols[J]. Packaging and Food Machinery,2017,35(6):13−17. doi: 10.3969/j.issn.1005-1295.2017.06.003 YAN Yaru, SUN Feilong. Antioxidative activity and stability of celery polyphenols[J]. Packaging and Food Machinery, 2017, 35(6): 13-17. doi: 10.3969/j.issn.1005-1295.2017.06.003
[37] BALWINDER S, PAL S J, AMRITPAL K, et al. Bioactive compounds in banana and their associated health benefits-a review[J]. Food Chemistry,2016,206:1−11. doi: 10.1016/j.foodchem.2016.03.033
[38] 叶田, 张献忠, 秦静, 等. 超高压和巴氏热杀菌处理对鲜榨西芹汁品质影响的比较研究[J]. 饮料工业,2018,21(3):43−46. [YE Tian, ZHANG Xianzhong, QIN Jing, et al. Comparative study on the effects of ultra-high pressure and pasteurization on the quality of freshly squeezed celery juice[J]. Beverage Industry,2018,21(3):43−46. doi: 10.3969/j.issn.1007-7871.2018.03.011 YE Tian, ZHANG Xianzhong, QIN Jing, et al. Comparative study on the effects of ultra-high pressure and pasteurization on the quality of freshly squeezed celery juice[J]. Beverage Industry, 2018, 21(3): 43-46. doi: 10.3969/j.issn.1007-7871.2018.03.011
[39] DU X F, KURNIANTA A, MCDANIEL M, et al. Flavour profiling of ‘Marion’ and thornless blackberries by instrumental and sensory analysis[J]. Food Chemistry,2010,121(4):1080−1088. doi: 10.1016/j.foodchem.2010.01.053
[40] 黄苏婷, 杭方学, 陆海勤, 等. 水果挥发性香气成分研究进展[J]. 轻工科技,2019,35(2):1−4. [HUANG Suting, HANG Fangxue, LU Haiqin, et al. Research progress on volatile aroma components of fruit[J]. Light Industry Science and Technology,2019,35(2):1−4. HUANG Suting, HANG Fangxue, LU Haiqin, et al. Research progress on volatile aroma components of fruit[J]. Light Industry Science and Technology, 2019, 35(2): 1-4.
[41] 汤泽波, 冯涛, 庄海宁. 大宗水果风味物质的研究进展[J]. 中国果菜,2020,40(6):2−9,22. [TANG Zebo, FENG Tao, ZHUANG Haining. Research progress on flavor compounds in bulk fruits[J]. China Fruit and Vegetables,2020,40(6):2−9,22. TANG Zebo, FENG Tao, ZHUANG Haining. Research progress on flavor compounds in bulk fruits[J]. China Fruit and Vegetables, 2020, 40(6): 2-9, 22.
-
期刊类型引用(2)
1. 王嘉慧,柳志诚,杨国华,杨玉升,陶欧,马涛,刘永刚. ICP-MS法结合化学计量学分析不同菲牛蛭元素差异. 化学研究与应用. 2024(07): 1625-1631 . 百度学术
2. 管佳宁,桂新景,范雪花,张迪,王恪辉,呼海涛,刘瑞新. 气相色谱-离子迁移谱技术在中药质量评价中的应用研究进展. 药物评价研究. 2024(08): 1891-1905 . 百度学术
其他类型引用(1)