Comprehensive Evaluation of Blueberry Quality Based on Principal Component Analysis and Cluster Analysis
-
摘要: 目的:探究蓝莓的综合品质特性。方法:利用全自动氨基酸分析仪、气相色谱-质谱联用仪等仪器,测定四川地区6个品种蓝莓的感官形态、营养功能、游离氨基酸、挥发性风味物质等20个指标,并结合主成分分析法及聚类分析评价其综合品质。结果:不同品种蓝莓各项指标间存在差异,布里吉塔的单果重(2.06 g)最重,横径(14.39 mm)最大,但胶粘性(151.96 N)和总酚含量(1.64 mg/g)最低;密斯梯的游离氨基酸含量最高(453.72 mg/100 g),鲜味氨基酸和甜味氨基酸占比较大;绿宝石的游离氨基酸含量最低(122.93 mg/100 g)且种类最少;园蓝的硬度适中,糖酸比(28.23)、花青素(2.09 mg/g)、总酚(5.78 mg/g)及挥发性风味物质(14.60 μg/g)含量最高。结论:根据主成分分析得到的最优品种为园蓝;根据聚类分析将蓝莓分为三类,适宜鲜食品种为园蓝和莱格西;加工鲜食皆宜品种为绿宝石、布里吉塔和密斯梯,蓝雨品种加工优势突出。Abstract: Objective: To explore the comprehensive quality characteristics of blueberries. Methods: 20 indexes including sensory morphology, nutritional function, free amino acids and volatile flavor substance content of six varieties of blueberries in Sichuan were detected by automatic amino acid analyzer and gas chromatography-mass spectrometry and other instruments. Furthermore, its comprehensive quality was evaluated by the principal component analysis and cluster analysis. Results: There were differences among different blueberry varieties. The single fruit weight (2.06 g) and transverse diameter (14.39 mm) of Brigita were the highest, while the gumminess (151.96 N) and total phenol content (1.64 mg/g) were the lowest; Mistry had the highest free amino acid content (453.72 mg/100 g), and the proportion of umami and sweet amino acids was higher; Emerald had the lowest free amino acid content (122.93 mg/100 g) and the least variety; Gardenblue had moderate hardness, its sugar-acid ratio (28.23), anthocyanin content (2.09 mg/g), total phenol content (5.78 mg/g) and flavor substances content (14.60 μg/g) were the highest. Conclusions: According to principal component analysis, the optimal variety was Gardenblue. Cluster analysis divided blueberries into three categories, suitable for fresh-eating varieties including Gardenblue and Legacy; suitable for both processing and fresh-eating varieties were Emerald, Brigitta and Misty; while Bluerain had outstanding processing advantages.
-
Keywords:
- blueberry /
- variety /
- quality evaluation /
- principal component analysis /
- cluster analysis
-
蓝莓(Vaccinium spp.
)又名越橘,是杜鹃花科越橘属植物,已被全球公认为是一种能促进健康的重要饮食来源,近年来其产量和消费量均大幅增加[1]。蓝莓营养丰富,富含花青素、多酚、黄酮等天然抗氧化物,可用于对抗某些人类癌症、调节血糖水平、降低器官氧化应激、调节肠道菌群、调节炎症反应以及改善儿童认知表现等[2-4]。 随着蓝莓产量的增加,不同品种蓝莓的形态特征、质地组成和营养特性各不相同,导致种植者难以科学地选择栽培品种;同时消费者对蓝莓的要求更加具体,表现在外观品质(果实大小、色泽、质构)、香气滋味(糖、酸、挥发性风味物质)及营养功能(花青素、总酚)上。目前,国内外对蓝莓品质的评价研究多集中在营养指标、抗氧化能力分析上,对品种间差异及加工适应性的研究稍有不足。如刘笑宏等[5]对胶东地区4个品种蓝莓的11个理化指标及芳香物质进行分析,但缺少质构及色差等指标分析;温靖等[6-8]探讨了7个蓝莓品种的品质特性,充分分析了其感官品质、理化指标及抗氧化能力,但欠缺对蓝莓氨基酸组成的分析。
目前对山东、广东等地区的引种蓝莓研究较多,因此,本文测定了四川地区6个蓝莓品种的感官形态、色泽质构、营养功能指标、氨基酸组成及风味物质含量等指标,全面评价蓝莓的综合品质,同时利用主成分分析[9]和聚类分析[10]等方法进行比较分类,能客观有效的反映品种间差异,对品种选育、市场推广和采后加工具有生产指导意义。
1. 材料与方法
1.1 材料与仪器
供试6个蓝莓品种(莱格西、绿宝石、密斯梯、蓝雨、布里吉塔、园蓝) 四川省农业科学院经济作物育种栽培研究所。经原料验收,果实大小一致、无病、虫害,部分贮藏于4 ℃用于感官形态品质指标及水分含量测定,部分置于−20 ℃贮藏备用;DNS(二硝基水杨酸) 厦门海标科技有限公司;2-辛醇 上海麦克林生化科技有限公司;没食子酸、芦丁、福林酚、盐酸、硫酸、氯化钾 成都市科隆化学品有限公司;以上试剂均为分析纯。
CM-5型色度色差仪 日本柯尼卡美能达;TA-XT plus型质构仪 英国SMS;A300全自动氨基酸分析仪 德国曼默博尔;QP2010SE气相色谱质谱联用仪 日本岛津。
1.2 实验方法
1.2.1 不同品种蓝莓感官品质测定
单果重:每个品种随机选取30个果实,称重后计算单果重,重复测定3次[6];果形指数:每个品种随机选取20个果实用游标卡尺测量横径与纵径,重复测定3次,果形指数=纵径/横径[7];色度:采用色度色差仪测定不同品种蓝莓L*、a*、b*值,平行测12次;质构:采用TPA(全质构测试)分析,测定时样品果柄处向上,平行测定15次。使用直径75 mm(P36R)圆形探头,仪器参数设置为测前速度0.5 mm/s,测试速度1 mm/s,测后速度0.5 mm/s,压缩程度30%,2次压缩停顿时间为5 s,触发力5 g[11]。
1.2.2 不同品种蓝莓营养功能指标测定
水分含量:采用GB 5009.3-2016《食品中水分的测定》第一法直接干燥法测定;可溶性固形物(total soluble solid,TSS)含量:参照NY/T 2637-2014《水果和蔬菜可溶性固形物含量的测定 折射仪法》测定;总酸含量:采用GB 12456-2021《食品中总酸的测定》第二法pH计电位滴定法测定;还原糖含量:依照GB 5009.7-2016《食品中还原糖的测定》进行测定;可溶性糖含量:采用NY/T 2742-2015《水果及制品可溶性糖的测定3,5-二硝基水杨酸比色法》测定。
花青素含量:采用pH示差法[12-13]测定:即1 g蓝莓研磨后加入12 mL 80%甲醇振荡提取20 min后6000 r/min离心15 min得提取液。分别取1 mL提取液于2支25 mL具塞试管中,分别用pH为1.0和4.5的缓冲溶液定容至10 mL,在40 ℃水浴锅中平衡50 min后测定535、700 nm吸光度值计算花青素含量,以矢车菊素-3-O-葡萄糖苷计。
总酚含量:采用Folin-Ciocalteu法[14]测定,即1 g蓝莓加入4 mL 70%乙醇研磨后转入离心管中70 ℃水浴提取10 min,4200 r/min离心15 min后收集上清液至10 mL容量瓶,残渣反复提取至刻度。取1 mL提取液于10 mL棕色容量瓶中,分别加入1 mL福林酚试剂、3 mL 7.5% Na2CO3后定容,避光显色1 h后测定760 nm吸光度值,以没食子酸为标准品,结果以没食子酸当量表示(mg/g)。
黄酮含量:参考邵盈盈[15]的方法进行测定,以芦丁为标准品,结果以芦丁当量表示(mg/g)。
1.2.3 不同品种蓝莓游离氨基酸组成测定
采用氨基酸自动分析仪测定游离氨基酸含量,样品前处理依据GB 30987-2020《植物中游离氨基酸的测定》进行,分离柱为阳离子交换树脂2619(4.6 mm×60 mm,3 μm),柱温57 ℃,反应柱温度135 ℃,检测波长570、440 nm,缓冲溶液流速0.40 mL/min,茚三酮流速0.35 mL/min,进样量20 μL[16]。
1.2.4 不同品种蓝莓挥发性风味物质分析
采用顶空固相微萃取和气相色谱-质谱联用仪对6个品种蓝莓进行香气检测与分析。根据Ke等[17]的处理方法并加以改动:称取研磨后的蓝莓5 g于20 mL顶空瓶中,加入0.1 g NaCl与15 μL内标物质(40 mg/L 2-辛醇)后密封。样品先在40 ℃下平衡20 min,再将填充有65 μm PDMS/DVB材料的萃取头插入顶空瓶中萃取30 min,最后插入GC进样口,解析3 min,以2-辛醇为内标对风味物质进行定量分析。
GC条件:参照吴林等[18]的方法稍作修改,色谱柱DB-5MS(30 m×250 μm,0.25 μm),进样口温度250 ℃,色谱柱起始温度50 ℃,升温程序为以50 ℃保持2 min,以5 ℃/min升至100 ℃保持5 min;8 ℃/min 升至180 ℃保持4 min;15 ℃升至230 ℃保留2 min。载气为高纯He,流量1.0 mL/min。MS条件:离子源温度200 ℃,接口温度250 ℃;离子源:EI;电子能量:70 eV;扫描范围:35~625 amu。
1.3 数据处理
所有数据以平均值±标准差表示,采用SPSS 26软件对数据进行Duncan’s差异显著性分析,P<0.05时显著;通过SPSS 26软件进行主成分分析、聚类分析;采用Origin 2018软件作图。
2. 结果与分析
2.1 不同品种蓝莓感官形态指标比较
2.1.1 不同品种蓝莓单果质量、横径、纵径、果形指数比较
由表1可知,蓝莓果实单果重为0.85~2.06 g,高于2.00 g的有莱格西和布里吉塔,果实较重;单果质量最轻的为蓝雨,仅为0.85 g,且各品种间差异显著(P<0.05)。判定果实形状的直观标准是果形指数,通常果形指数在0.6~0.8为扁圆形,0.8~0.9为圆形,0.9~1.0为椭圆形或圆锥形,1.0以上为长圆形[19]。蓝雨果实小且呈椭圆形,园蓝则为圆形代表,其余品种皆为扁圆形,这主要受蓝莓遗传基因的影响。由单果质量和横、纵径可判断出布里吉塔和莱格西属于大果型蓝莓,密斯梯、蓝雨和园蓝为中小果形蓝莓。
表 1 不同品种蓝莓形态指标比较Table 1. Comparison of morphological indexes of different varieties of blueberries品种 单果质量(g) 横径(mm) 纵径(mm) 果形指数 果实形状 莱格西 2.01±0.03a 13.44±0.77b 10.25±0.59b 0.76±0.04c 扁圆形 绿宝石 1.86±0.09b 13.00±0.86c 9.86±0.75b 0.76±0.05c 扁圆形 密斯梯 1.35±0.06c 11.21±0.77d 8.13±0.60d 0.72±0.03d 扁圆形 蓝雨 0.85±0.02e 9.69±0.52e 8.90±0.44c 0.92±0.04a 椭圆形 布里吉塔 2.06±0.07a 14.39±0.50a 11.32±0.90a 0.79±0.05c 扁圆形 园蓝 1.09±0.08d 10.85±0.51d 8.99±0.63c 0.83±0.05b 圆形 注:同列不同字母表示差异显著(P<0.05),表2~表5同。 2.1.2 不同品种蓝莓色度比较
颜色是食品重要的外观指标之一,色差仪中L*值表示样品的明暗度,a*值表示红绿度,b*值表示黄蓝度[20]。不同品种蓝莓色度参数见表2,莱格西、绿宝石L*值较高,说明这两个品种果皮明亮度高,与其余品种差异显著(P<0.05)。a*值密斯梯最大(1.74),b*值绿宝石最小(−6.10)。所有品种蓝莓a*值均大于0,说明果皮颜色偏红,b*值均小于0,表明蓝莓颜色偏蓝,整体呈现明亮的蓝紫色。
表 2 不同品种蓝莓色度比较Table 2. Comparison of chroma of different blueberries品种 L* a* b* 莱格西 41.74±4.6a 1.18±0.11bc -6.09±1.42b 绿宝石 42.86±3.46a 1.49±0.51ab -6.10±1.17b 密斯梯 37.07±4.03b 1.74±0.10a -5.99±0.95b 蓝雨 28.75±2.52c 1.02±0.25c -4.84±0.75a 布里吉塔 25.30±1.98d 1.43±0.95ab -4.63±1.36a 园蓝 35.13±2.79b 0.65±0.06d -5.19±0.84ab 表 4 不同品种蓝莓的水分含量、TSS、还原糖、可溶性糖、总酸及糖酸比Table 4. Water content, TSS, reducing sugar, soluble sugar, total acid and sugar-acid ratio of different blueberries品种 水分含量(%) TSS(%) 还原糖(%) 可溶性糖(%) 总酸(%) 糖酸比 莱格西 85.96±0.16bc 10.7±0.12d 9.66±1.49ab 10.63±0.77b 1.02±0.1b 10.48±1.38bc 绿宝石 88.11±0.83a 11.3±0.23c 7.81±0.45cd 11.04±1.26ab 1.14±0.01a 9.66±2.87c 密斯梯 86.53±0.51b 11.9±0.12b 9.99±0.07a 11.70±1.84ab 1.00±0.10b 11.74±1.89b 蓝雨 85.28±0.15c 10.5±0.12e 7.37±0.32d 8.93±0.07c 1.18±0.03a 7.59±0.18d 布里吉塔 87.72±0.35a 11.1±0.12c 8.38±0.87bcd 10.51±0.40bc 1.07±0.01ab 9.86±0.41bc 园蓝 80.83±0.53d 14.9±0.12a 8.99±0.42abc 12.61±0.48a 0.45±0.02c 28.23±0.46a 2.1.3 不同品种蓝莓质构比较
由表3可知,不同品种蓝莓硬度在408.37~805.67 g范围内,莱格西与绿宝石硬度相当,与其余品种间差异显著(P<0.05)。弹性代表蓝莓受到挤压后在一段时间内恢复原形的能力[21],可以理解为蓝莓在第一次咬合后与第二次咬合间恢复的高度。蓝莓的弹性除绿宝石外,其余品种差异不大;蓝雨和莱格西的胶粘性最大,分别为296.48 N和280.33 N,最小的为布里吉塔(151.96 N);咀嚼性反映蓝莓果实对咀嚼的持续抵抗力,蓝雨的咀嚼性最大,咀嚼韧性好,脆而不烂,其次为莱格西,最小为布里吉塔。
表 3 不同品种蓝莓质构比较Table 3. Texture comparison of different blueberry varieties品种 硬度(g) 弹性(mm) 胶粘性(N) 咀嚼性(mJ) 莱格西 715.31±90.61b 0.69±0.03a 280.33±41.8a 183.67±26.75a 绿宝石 741.75±120.21b 0.63±0.07b 246.59±36.6b 162.55±24.19b 密斯梯 439.41±80.36d 0.69±0.03a 170.33±15.88d 114.44±12.06c 蓝雨 805.67±68.21a 0.65±0.02ab 296.48±24.82a 193.86±19.31a 布里吉塔 408.37±58.17d 0.66±0.06ab 151.96±20.40d 102.58±13.49c 园蓝 510.65±55.66c 0.69±0.09a 225.74±20.53c 155.33±19.93b 2.2 不同品种蓝莓营养功能指标比较
2.2.1 水分、可溶性固形物(TSS)、还原糖、可溶性糖及总酸含量比较
由表4可知,6个品种蓝莓水分含量为80.83%~88.11%。园蓝的TSS、可溶性糖含量最高;最低的为蓝雨,其TSS和可溶性糖含量仅有园蓝的70%和71%。园蓝的总酸含量最低(0.45%),布里吉塔、密斯梯、莱格西之间差异不显著(P>0.05)。园蓝的糖酸比最高(28.23),莱格西、绿宝石、布里吉塔糖酸比接近,蓝雨果实糖酸比最低。从水分含量、可溶性糖和总酸含量来看,初步认为除蓝雨外其余品种高糖低酸、高水分含量[22],都可以作为鲜食品种销售。
2.2.2 花青素、总酚及黄酮含量比较
从表5可知,园蓝和蓝雨的花青素含量较高,分别为2.09 mg/g、1.36 mg/g,与其余品种蓝莓差异显著(P<0.05),这与园蓝和蓝雨相对较厚的果皮有关,果皮中含有大量的花青素。园蓝的总酚和黄酮含量最高;总酚最低的为布里吉塔,仅有园蓝的28%,黄酮含量最少的为蓝雨仅有0.33 mg/g。蓝雨果实较小,糖酸比较低,鲜食销售优势不大,但功能成分花青素、总酚含量可观,更适宜加工。
表 5 不同品种蓝莓花青素、总酚、黄酮含量比较Table 5. Comparison of anthocyanins, total phenols and flavonoids contents in different blueberries品种 花青素(mg/g) 总酚(mg/g) 黄酮(mg/g) 莱格西 0.84±0.23c 2.35±0.2c 0.68±0.06b 绿宝石 0.97±0.18c 2.54±0.25c 0.58±0.02b 密斯梯 1.05±0.17c 3.07±0.13b 0.65±0.01b 蓝雨 1.36±0.11b 3.01±0.07b 0.33±0.03d 布里吉塔 0.92±0.14c 1.64±0.04d 0.45±0.04c 园蓝 2.09±0.10a 5.78±0.39a 0.99±0.13a 2.3 不同品种蓝莓游离氨基酸组成分析
不同品种蓝莓游离氨基酸组成及含量见表6。6个品种蓝莓共检测出18种游离氨基酸,其中,包含苏氨酸、缬氨酸、异亮氨酸、苯丙氨酸、亮氨酸、赖氨酸6种人体必需氨基酸,缺乏甲硫氨酸与色氨酸。不同蓝莓品种氨基酸组成相似,但含量差异较大,这与严红光等[23]的研究结果相似。游离氨基酸总量含量最多的为密斯梯(435.720 mg/100 g),布里吉塔和绿宝石游离氨基酸总量低于200 mg/100 g,仅有密斯梯的46%和28%。检测出的18种氨基酸中含量比较高的有Glu、Ala、GABA、Lys、Arg、Pro,含量较低的为Gly、Ile、Phe、Leu。有研究指出氨基酸的生物合成途径在果蔬和食用菌中完全不同,且其代谢途径的转录表达调控水平导致了代谢系统的稳定差异[24],不同蓝莓品种氨基酸含量差异可能与其遗传差异、氨基酸代谢途径中酶活力差异相关。
表 6 不同品种蓝莓游离氨基酸组成Table 6. Free amino acid composition of different blueberries游离氨基酸
(mg/100 g)莱格西 绿宝石 密斯梯 蓝雨 布里吉塔 园蓝 天冬氨酸Asp 8.128±0.78b 8.319±0.63b 10.989±0.71a 8.767±1.34ab 7.240±0.84b 9.128±0.77ab 苏氨酸Thr 1.690±0.62b 1.971±0.78ab 3.103±0.70a 2.108±0.71ab 1.84±0.57b 2.688±0.65a 丝氨酸Ser 5.019±0.72a 6.735±1.40a 5.882±1.41a 6.025±1.40a 6.1±1.48a 5.382±0.64a 天冬酰胺Asn 1.752±0.70c 4.115±0.74b 29.074±1.40a 4.843±1.39b 4.135±1.40b 4.681±2.14b 谷氨酸Glu 10.556±0.70c 16.072±1.41b 28.187±0.71a 14.889±2.11b 14.339±1.42b 30.914±1.35a 甘氨酸Gly 0.443±0.44b − − 0.353±0.21c − 0.576±0.35a 丙氨酸Ala 12.722±1.41a 12.560±2.11a 11.155±0.08a 11.797±1.41a 12.566±1.34a 7.364±0.91b 缬氨酸Val 3.710±1.41b 3.071±0.64c 4.058±1.49a − 2.825±0.85d − 异亮氨酸Ile 0.730±0.27a − − − − 0.717±0.33a 亮氨酸Leu 0.772±0.28a − − − − 0.760±0.26a γ-氨基丁酸GABA 27.944±0.28a 28.626±2.12a 17.028±2.11d 24.561±1.38ab 19.897±1.56cd 22.158±0.77bc 组氨酸His 1.761±0.82b 2.675±2.12ab 5.030±1.43a 1.549±0.76b 0.929±0.05b 0.639±0.50b 赖氨酸Lys 36.874±1.41b 38.052±1.41a 42.145±2.05a 30.590±1.40c 19.015±0.64d 5.970±1.45e 精氨酸Arg 60.693±0.79c − 212.721±3.54a 51.791±2.13d 24.516±1.34e 89.471±1.28b 脯氨酸Pro 73.090±1.41b − 66.349±1.42c 66.575±1.43c 83.612±1.40a 45.865±2.22d 苯丙氨酸Phe − 0.737±0.27 − − − − 胱氨酸(Cys)2 − − − 3.810±1.40a 1.995±0.84c 3.450±0.73b 酪氨酸Tyr − − − − − 7.876±1.41 必需氨基酸占比(%) 17.800±0.21b 35.650±0.40a 11.320±0.33d 14.360±0.30c 11.900±0.20d 4.260±0.03e 游离氨基酸总量 245.880±4.13b 122.930±3.21f 435.720±4.33a 227.660±5.16d 199.010±2.18e 237.640±3.25c 注:同行不同小写字母表示差异显著(P<0.05),表7同。 根据游离氨基酸呈味的特点,参考侯娜等[25]和刘伟等[26]的分类并稍作修改,将所检测出的氨基酸分为5类:鲜味氨基酸(Asp、Glu、Gly、Ala、Lys)、甜味氨基酸(Ser、Thr、His、Pro)、芳香族氨基酸(Tyr、Phe)、苦味氨基酸(Arg、Val、Leu、Ile)和其他(Asn、GABA、(Cys)2)。由图1可知,不同品种蓝莓呈味氨基酸差异较大:相较于其他呈味氨基酸,蓝雨和园蓝的苦味氨基酸含量丰富;绿宝石和密斯梯的甜味氨基酸含量较多;布里吉塔所含鲜味、甜味、苦味氨基酸含量基本持平;莱格西则含有较多的鲜味氨基酸。
2.4 不同品种蓝莓挥发性风味分析
不同品种蓝莓的挥发性风味成分见表7。6个品种蓝莓共检测73种挥发性风味成分,其中,园蓝、绿宝石分别检测出36、35种香气成分,莱格西和蓝雨检测出31种香气成分,布里吉塔和密斯梯分别检测出23、26种香气成分,不同品种蓝莓香气成分的类别和含量差异较大。挥发性风味成分总量及种类最多的为园蓝(14604.72 ng/g),其次为绿宝石(7052.68 ng/g),莱格西香气成分总量最低,仅有园蓝的11%。
表 7 不同品种蓝莓挥发性风味物质组成(ng/g)Table 7. Composition of volatile flavor compounds in different varieties of blueberries (ng/g)类别 CAS号 化合物 品种 布里
吉塔莱格西 蓝雨 绿宝石 密斯梯 园蓝 醇类 470-82-6 桉叶油醇 593.93±9.59 − − − − − 78-70-6 芳樟醇 1123.29±10.13c 124.92±4.10f 629.74±7.81e 1454.75±12.10b 949.27±9.12d 6621.32±15.21a 98-55-5 alpha-松油醇 31.58±1.02d − − 278.88±3.34b 201.95±1.23c 581.89±4.66a 7341-17-5 2-乙基己基硫醇 − 159.65±1.02b 203.29±3.41a 52.56±0.46d − 61.77±0.82c 97-99-4 四氢糠醇 − − 34.27±0.11 − − − 18409-18-2 反式-2-癸烯醇 − − − 52.04±0.13 − − 536-59-4 紫苏醇 − − − 26.17±0.09 − − 7786-44-9 2,6-壬二烯醇 − − − − 666.71±10.21b 1329.42±13.20a 5921-73-3 2-壬炔-1-醇 − − − − − 1257.75±16.21 34995-77-2 三甲基-5-乙烯基四氢化-2-呋喃甲醇 − − − − − 210.22±2.46 74962-98-4 反-2-十三烯醇 − − − − − 32.22±0.21 112-53-8 十二醇 − − − − − 22.85±0.34 醛类 100-52-7 苯甲醛 179.07±1.23b 63.25±0.43c 172.37±1.66b 280.74±3.25a − − 2548-87-0 反-2-辛烯醛 52.37±0.45 − − − − − 124-19-6 壬醛 216.30±2.71a 205.13±1.96b − 206.29±3.77b − − 557-48-2 反,顺-2,6-壬二烯醛 21.73±0.70 − − − − − 18829-56-6 反式-2-壬烯醛 56.55±0.45c − − 116.21±1.21a − 73.58±0.48b 112-31-2 癸醛 90.85±1.02f 150.79±2.70d 119.19±0.98e 223.01±4.21b 169.68±2.33c 269.42±3.22a 60784-31-8 反-2-壬烯醛 − 44.79±0.22c 94.67±1.09a 78.86±0.37b 42.15±0.34c − 124-13-0 正辛醛 − − 101.10±0.77 − − − 112-54-9 十二醛 − − 44.64±0.34 − − − 141-27-5 顺-3,7-二甲基-2,6-辛二烯醛 − − 49.70±0.36b 80.60±0.93a − − 萜烯类 123-35-3 月桂烯 476.75±10.30d 521.18±9.89b 493.36±12.30c 570.75±10.99a − − 13877-91-3 罗勒烯 94.17±0.46e 264.15±6.44c 214.21±4.81d 277.84±3.77b 279.19±2.35b 558.63±6.70a 4316-65-8 3,5,5-三甲基-1-己烯 58.74±0.53 − − − − − 7785-26-4 左旋-alpha-蒎烯 − 218.58±2.21a 168.00±1.70b − − − 586-62-9 萜品油烯 − 61.54±0.22b 61.26±0.19b 55.37±0.09c 61.63±0.16b 144.04±1.33a 5392-40-5 柠檬醛 − 147.88±1.33 − − − − 87-44-5 1-石竹烯 − 382.21±3.66a 39.75±1.22c 50.23±0.44b − − 6753-98-6 α-石竹烯 − 78.78±0.78 − − − − 3338-55-4 反-3,7-二甲基-1,3,6-十八烷三烯 − 47.88±1.02 − − − − 1139-30-6 氧化石竹烯 − 27.75±0.50a − − − 13.41±0.06b 5989-54-8 (-)-柠檬烯 − − 48.98±0.80b − 1005.06±17.99a − 11028-42-5 雪松烯 − − 77.59±1.55b − − 160.00±2.52a 489-39-4 (+)-香橙烯 − − 26.74±0.39b 92.31±0.81a − 25.34±0.08b 5989-27-5 右旋萜二烯 − − − 874.75±10.02 − − 138-86-3 双戊烯 − − − 413.40±5.11 − − 29548-02-5 黏蒿三烯 − − − − 197.79±1.44 − 1195-92-2 (R)-氧化柠檬烯 − − − − 58.25±0.62 − 6931-54-0 beta-环氧蒎烷 − − − − − 41.04±0.09 77-53-2 柏木脑 − − − − − 33.44±0.07 2437-56-1 1-十三烯 − − − − − 9.16±0.41 酯类 13361-34-7 氰乙酸异辛酯 29.56±0.11b − − 42.56±0.41a − − 103-11-7 丙烯酸2-乙基己酯 59.52±0.72e 195.99±1.01c 258.17±3.07b 208.77±2.27c 122.60±1.44d 288.69±2.93a 6846-50-0 2,2,4-三甲基-1,3-戊二醇二异丁酸酯 61.89±0.60f 123.61±1.02d 262.23±2.33a 179.46±0.88c 205.99±1.63b 109.15±1.00e 84-69-5 邻苯二甲酸二异丁酯 67.91±0.17a − − − 11.73±0.03b − 23853-33-0 硫代苯甲酸S-羟甲酯 − 25.91±0.28b 57.79±0.51a − − − 25415-84-3 2-乙基己酸乙酯 − 85.05±0.72a 64.54±0.51c 71.76±0.40b 28.34±0.05e 56.80±0.34d 141-12-8 乙酸橙花酯 − 21.13±0.02 − − − − 2566-89-4 花生四烯酸甲酯 − 46.21±0.15a − 24.76±0.04b − 30.73±0.21c 1731-88-0 十三碳酸脂肪酸 − 43.34±0.11a 42.26±0.17a 34.10±0.12b − − 111-82-0 月桂酸甲酯 − 90.66±1.03b − − 43.71±0.18c 113.50±0.77a 110-42-9 癸酸甲酯 − − − 33.28±0.24b 16.57±0.04c 83.95±0.60a 110-38-3 癸酸乙酯 − − − − − 76.25±0.35 115-99-1 3,7-二甲基-1,6-辛二烯-3-醇甲酸酯 − − − − − 57.20±0.15 酮类 112-12-9 甲基壬基甲酮 127.08±1.22d 387.23±2.88b 231.92±1.55c 238.54±3.03c 475.42±3.50a 47.26±0.22e 3796-70-1 香叶基丙酮 160.82±1.33b 56.58±0.51d − 77.71±0.40c 175.14±0.91a 51.88±0.49e 821-55-6 2-壬酮 − 235.09±2.11a 80.24±0.71c 133.05±0.34b 53.72±0.23d − 464-48-2 左旋樟脑 − − 123.43±2.03 − − − 2345-27-9 2-十四酮 − − − 90.45±0.30 − − 6485-40-1 左旋香芹酮 − − − − 145.00±1.39 − 其他 95-47-6 邻二甲苯 198.51±1.08 − − − − − 629-20-9 环辛四烯 710.75±9.22c 647.15±4.70d 860.01±10.33b 332.56±4.12e 325.96±2.09f 1024.07±15.23a 629-50-5 正十三烷 17.92±0.03e 182.47±0.40b − 61.31±0.12c 40.51±0.06d 215.79±1.13a 544-76-3 十六烷 18.72±0.03d 19.97±0.01d 47.85±0.20b − 26.34±0.33c 116.96±0.73a 112-40-3 十二烷 18.39±0.02f 81.07±0.53c 113.16±0.77b 33.26±0.11e 43.38±0.21d 164.23±1.00a 1120-21-4 十一烷 − 39.11±0.06b 34.58±0.03b 74.61±0.12a 37.30±0.01b − 119-36-8 水杨酸甲酯 − − 142.91±1.02c 160.12±1.34b − 287.87±2.11a 15869-93-9 3,5-二甲基辛烷 − − 44.19±0.40 − − − 124-18-5 癸烷 − − − 71.63±0.40 − − 5333-84-6 3-甲基四氢苯酐 − − − − 416.90±6.11a 365.93±4.03b 1138-52-9 3,5-二叔丁基苯酚 − − − − − 28.89±0.02 629-59-4 十四烷 − − − − − 40.07±0.05 总量 4466.41±16.42e 1618.06±12.02f 4942.14±18.29d 7052.68±23.01b 5800.32±20.44c 14604.72±17.96a 结合表7和图2可见,6个品种蓝莓共检测出12种醇类物质,园蓝中醇类物质最为丰富,主要含有芳樟醇、2,6-壬二烯醇、alpha-松油醇等物质,赋予蓝莓果香气息的同时表现出玫瑰木香气又似甜瓜香气。布里吉塔果实独有桉叶油醇,具有清香的植物香气[27]。在检测出的10种醛类物质里,布里吉塔和绿宝石中醛类物质含量较高,主要含有苯甲醛、反-2-辛烯醛、壬醛、反,顺-2,6-壬二烯醛和癸醛等化合物,呈现苦杏仁气味及绿叶清香,6个品种蓝莓均含有癸醛,表现出柑橘清样香气。绿宝石、密斯梯中萜烯类化合物较多,主要含有罗勒烯、月桂烯、萜品油烯、1-石竹烯等。萜类化合物广泛存在于浆果果实中,由于其具有较高的沸点而表现出较稳定的香气[28]。莱格西和园蓝酯类物质种类较多(8种),园蓝、蓝雨和绿宝石的酯类含量较高,主要含有月桂酸甲酯、丙烯酸2-乙基己酯、2,2,4-三甲基-1,3-戊二醇二异丁酸酯和癸酸甲酯等香气成分,使得蓝莓具有典型的果香。除甲基壬基甲酮、香叶基丙酮外,莱格西、蓝雨、绿宝石和密斯梯还含有2-壬酮,在蓝莓果香和植物香的基础上增添了甜香和青香。
2.5 不同品种蓝莓感官营养品质指标、游离氨基酸、挥发性风味化合物主成分及聚类分析
2.5.1 不同品种蓝莓主成分分析
对6个品种蓝莓感官品质、游离氨基酸及挥发性风味化合物含量等20个指标进行主成分分析,结果如表8所示。提取出3个主成分,累计贡献率达89.223%,能解释绝大部分变量信息。主成分载荷矩阵可以表达出变量对相应主成分的影响程度[29]。由表9可知,对第一主成分产生正向影响的为糖酸比、TSS、花青素、总酚、黄酮含量,具有较高的载荷权数,产生负向影响的为总酸。第二主成分主要代表果形指数、游离氨基酸含量、胶粘性和咀嚼性,为正相关。第三主成分反映蓝莓色泽,与L*值呈正相关,b*值呈负相关。将三个主成分的得分记为F1、F2、F3,以3组主成分相应的特征值除以特征值总和作为权重数,建立主成分综合得分模型:F综=0.50×F1+0.31×F2+0.19×F3,得分情况见表10。6种蓝莓的综合评分由高到低依次为:园蓝、蓝雨、莱格西、绿宝石、密斯梯、布里吉塔。
表 8 主成分特征值及累计贡献率Table 8. Principal component characteristic values and cumulative contribution rate主成分 特征值 贡献率(%) 累计贡献率(%) 1 8.834 44.169 44.169 2 5.606 28.029 72.198 3 3.405 17.025 89.223 表 9 主成分载荷表Table 9. Principal component load table指标 成分 1 2 3 单果重(X1) −0.443 −0.653 0.122 果形指数(X2) 0.059 0.939 −0.292 L*(X3) 0.119 −0.277 0.910 a*(X4) −0.634 −0.633 −0.019 b*(X5) −0.209 −0.051 −0.887 硬度(X6) −0.348 0.692 0.620 弹性(X7) 0.583 −0.405 0.119 胶粘性(X8) −0.09 0.734 0.65 咀嚼性(X9) −0.025 0.743 0.644 水分含量(X10) −0.907 −0.35 −0.005 TSS(X11) 0.972 −0.072 −0.125 还原糖(X12) 0.361 −0.741 0.279 可溶性糖(X13) 0.781 −0.562 0.083 总酸(X14) −0.983 0.069 0.059 糖酸比(X15) 0.986 −0.012 −0.064 花青素(X16) 0.873 0.445 −0.181 总酚(X17) 0.948 0.271 0.055 黄酮(X18) 0.897 −0.305 0.287 游离氨基酸总量(X19) −0.167 0.833 −0.438 风味化合物总量(X20) 0.874 0.166 −0.190 表 10 不同品种蓝莓主成分评分和综合评分Table 10. Principal component score and comprehensive score of different blueberries品种 F1 F2 F3 F综 排名 园蓝 5.846 0.755 −0.371 3.060 1 蓝雨 −1.752 4.215 −0.483 0.365 2 莱格西 −0.863 −0.872 2.499 −0.224 3 绿宝石 −1.585 −0.009 1.325 −0.535 4 密斯梯 0.252 −2.580 −0.029 −0.692 5 布里吉塔 −1.898 −1.508 −2.941 −1.974 6 2.5.2 不同品种蓝莓聚类分析
采用聚类分析法对20个品质指标进行R型聚类,对蓝莓6个品种进行Q型聚类,结果见图3和图4。由图3可知,当距离为20时,可将蓝莓的品质指标分为三大类:第1类为氨基酸含量、果形指数、硬度、咀嚼性、胶粘性等指标;第2类指标为糖酸比、黄酮、花青素、总酚、TSS、风味化合物含量、弹性、还原糖、总糖、L*值;第3类指标为水分含量、总酸、a*、b*及单果重。结合主成分载荷表9可知,第2类指标对应第1主成分的正载荷量,即指标值与综合模型评分呈正相关。结合相关文献[30-31],确定蓝莓品质的核心指标包括糖酸比、黄酮、花青素、硬度、咀嚼性、胶粘性等。
图4为不同品种蓝莓Q型聚类谱系图,可以将蓝莓分为三类。第一聚类包括蓝雨、布里吉塔、密斯梯、绿宝石,这四个品种水分含量丰富,可溶性固形物含量较高,总酸含量中等,同时花青素、总酚含量较高,属于鲜食加工皆可的品种。其中,蓝雨果实较小,商品性差,但高花青素含量使其更适宜被作为提取色素的原料利用。第二聚类为莱格西,其果实为扁圆形,属于中大型果实;高糖酸比、高硬度,是适宜鲜食和贮藏的蓝莓品种。第三聚类为园蓝,果实呈圆形,硬度适中,高糖酸比,抗氧化物质含量最高,鲜食的优势突出。
3. 结论
科学的选择栽培品种对于果农来说至关重要,同时加工品种的选择影响产品深加工的品质;消费者也可以根据自身需求选择喜好的蓝莓品种。6个品种蓝莓在单果重、糖酸比、花青素和总酚含量方面差异显著,布里吉塔果实较大,但糖酸比较低,园蓝和蓝雨花青素、总酚含量较高。主成分分析综合得分排名前三的品种依次为园蓝、蓝雨、莱格西,结合聚类分析筛选出蓝莓品质核心指标为:糖酸比、黄酮、花青素、硬度、咀嚼性、胶粘性。根据Q型聚类分析可以将品种归为三类,第一聚类包括蓝雨、布里吉塔、密斯梯、绿宝石,属于鲜食加工皆可的品种,但蓝雨果实小且果皮厚,商品性差,但花青素含量高,可以作为提取色素原料利用或加工高花青素产品,更适合加工利用。第二聚类为莱格西,适宜鲜食。第三聚类为园蓝,适宜鲜食;其高糖酸比,高营养功能物质含量,更受消费者喜爱,可以进一步扩大其种植面积。本研究筛选出适宜加工的蓝莓品种,后续可以对蓝莓深加工及其花青素提取利用深入研究。
-
表 1 不同品种蓝莓形态指标比较
Table 1 Comparison of morphological indexes of different varieties of blueberries
品种 单果质量(g) 横径(mm) 纵径(mm) 果形指数 果实形状 莱格西 2.01±0.03a 13.44±0.77b 10.25±0.59b 0.76±0.04c 扁圆形 绿宝石 1.86±0.09b 13.00±0.86c 9.86±0.75b 0.76±0.05c 扁圆形 密斯梯 1.35±0.06c 11.21±0.77d 8.13±0.60d 0.72±0.03d 扁圆形 蓝雨 0.85±0.02e 9.69±0.52e 8.90±0.44c 0.92±0.04a 椭圆形 布里吉塔 2.06±0.07a 14.39±0.50a 11.32±0.90a 0.79±0.05c 扁圆形 园蓝 1.09±0.08d 10.85±0.51d 8.99±0.63c 0.83±0.05b 圆形 注:同列不同字母表示差异显著(P<0.05),表2~表5同。 表 2 不同品种蓝莓色度比较
Table 2 Comparison of chroma of different blueberries
品种 L* a* b* 莱格西 41.74±4.6a 1.18±0.11bc -6.09±1.42b 绿宝石 42.86±3.46a 1.49±0.51ab -6.10±1.17b 密斯梯 37.07±4.03b 1.74±0.10a -5.99±0.95b 蓝雨 28.75±2.52c 1.02±0.25c -4.84±0.75a 布里吉塔 25.30±1.98d 1.43±0.95ab -4.63±1.36a 园蓝 35.13±2.79b 0.65±0.06d -5.19±0.84ab 表 4 不同品种蓝莓的水分含量、TSS、还原糖、可溶性糖、总酸及糖酸比
Table 4 Water content, TSS, reducing sugar, soluble sugar, total acid and sugar-acid ratio of different blueberries
品种 水分含量(%) TSS(%) 还原糖(%) 可溶性糖(%) 总酸(%) 糖酸比 莱格西 85.96±0.16bc 10.7±0.12d 9.66±1.49ab 10.63±0.77b 1.02±0.1b 10.48±1.38bc 绿宝石 88.11±0.83a 11.3±0.23c 7.81±0.45cd 11.04±1.26ab 1.14±0.01a 9.66±2.87c 密斯梯 86.53±0.51b 11.9±0.12b 9.99±0.07a 11.70±1.84ab 1.00±0.10b 11.74±1.89b 蓝雨 85.28±0.15c 10.5±0.12e 7.37±0.32d 8.93±0.07c 1.18±0.03a 7.59±0.18d 布里吉塔 87.72±0.35a 11.1±0.12c 8.38±0.87bcd 10.51±0.40bc 1.07±0.01ab 9.86±0.41bc 园蓝 80.83±0.53d 14.9±0.12a 8.99±0.42abc 12.61±0.48a 0.45±0.02c 28.23±0.46a 表 3 不同品种蓝莓质构比较
Table 3 Texture comparison of different blueberry varieties
品种 硬度(g) 弹性(mm) 胶粘性(N) 咀嚼性(mJ) 莱格西 715.31±90.61b 0.69±0.03a 280.33±41.8a 183.67±26.75a 绿宝石 741.75±120.21b 0.63±0.07b 246.59±36.6b 162.55±24.19b 密斯梯 439.41±80.36d 0.69±0.03a 170.33±15.88d 114.44±12.06c 蓝雨 805.67±68.21a 0.65±0.02ab 296.48±24.82a 193.86±19.31a 布里吉塔 408.37±58.17d 0.66±0.06ab 151.96±20.40d 102.58±13.49c 园蓝 510.65±55.66c 0.69±0.09a 225.74±20.53c 155.33±19.93b 表 5 不同品种蓝莓花青素、总酚、黄酮含量比较
Table 5 Comparison of anthocyanins, total phenols and flavonoids contents in different blueberries
品种 花青素(mg/g) 总酚(mg/g) 黄酮(mg/g) 莱格西 0.84±0.23c 2.35±0.2c 0.68±0.06b 绿宝石 0.97±0.18c 2.54±0.25c 0.58±0.02b 密斯梯 1.05±0.17c 3.07±0.13b 0.65±0.01b 蓝雨 1.36±0.11b 3.01±0.07b 0.33±0.03d 布里吉塔 0.92±0.14c 1.64±0.04d 0.45±0.04c 园蓝 2.09±0.10a 5.78±0.39a 0.99±0.13a 表 6 不同品种蓝莓游离氨基酸组成
Table 6 Free amino acid composition of different blueberries
游离氨基酸
(mg/100 g)莱格西 绿宝石 密斯梯 蓝雨 布里吉塔 园蓝 天冬氨酸Asp 8.128±0.78b 8.319±0.63b 10.989±0.71a 8.767±1.34ab 7.240±0.84b 9.128±0.77ab 苏氨酸Thr 1.690±0.62b 1.971±0.78ab 3.103±0.70a 2.108±0.71ab 1.84±0.57b 2.688±0.65a 丝氨酸Ser 5.019±0.72a 6.735±1.40a 5.882±1.41a 6.025±1.40a 6.1±1.48a 5.382±0.64a 天冬酰胺Asn 1.752±0.70c 4.115±0.74b 29.074±1.40a 4.843±1.39b 4.135±1.40b 4.681±2.14b 谷氨酸Glu 10.556±0.70c 16.072±1.41b 28.187±0.71a 14.889±2.11b 14.339±1.42b 30.914±1.35a 甘氨酸Gly 0.443±0.44b − − 0.353±0.21c − 0.576±0.35a 丙氨酸Ala 12.722±1.41a 12.560±2.11a 11.155±0.08a 11.797±1.41a 12.566±1.34a 7.364±0.91b 缬氨酸Val 3.710±1.41b 3.071±0.64c 4.058±1.49a − 2.825±0.85d − 异亮氨酸Ile 0.730±0.27a − − − − 0.717±0.33a 亮氨酸Leu 0.772±0.28a − − − − 0.760±0.26a γ-氨基丁酸GABA 27.944±0.28a 28.626±2.12a 17.028±2.11d 24.561±1.38ab 19.897±1.56cd 22.158±0.77bc 组氨酸His 1.761±0.82b 2.675±2.12ab 5.030±1.43a 1.549±0.76b 0.929±0.05b 0.639±0.50b 赖氨酸Lys 36.874±1.41b 38.052±1.41a 42.145±2.05a 30.590±1.40c 19.015±0.64d 5.970±1.45e 精氨酸Arg 60.693±0.79c − 212.721±3.54a 51.791±2.13d 24.516±1.34e 89.471±1.28b 脯氨酸Pro 73.090±1.41b − 66.349±1.42c 66.575±1.43c 83.612±1.40a 45.865±2.22d 苯丙氨酸Phe − 0.737±0.27 − − − − 胱氨酸(Cys)2 − − − 3.810±1.40a 1.995±0.84c 3.450±0.73b 酪氨酸Tyr − − − − − 7.876±1.41 必需氨基酸占比(%) 17.800±0.21b 35.650±0.40a 11.320±0.33d 14.360±0.30c 11.900±0.20d 4.260±0.03e 游离氨基酸总量 245.880±4.13b 122.930±3.21f 435.720±4.33a 227.660±5.16d 199.010±2.18e 237.640±3.25c 注:同行不同小写字母表示差异显著(P<0.05),表7同。 表 7 不同品种蓝莓挥发性风味物质组成(ng/g)
Table 7 Composition of volatile flavor compounds in different varieties of blueberries (ng/g)
类别 CAS号 化合物 品种 布里
吉塔莱格西 蓝雨 绿宝石 密斯梯 园蓝 醇类 470-82-6 桉叶油醇 593.93±9.59 − − − − − 78-70-6 芳樟醇 1123.29±10.13c 124.92±4.10f 629.74±7.81e 1454.75±12.10b 949.27±9.12d 6621.32±15.21a 98-55-5 alpha-松油醇 31.58±1.02d − − 278.88±3.34b 201.95±1.23c 581.89±4.66a 7341-17-5 2-乙基己基硫醇 − 159.65±1.02b 203.29±3.41a 52.56±0.46d − 61.77±0.82c 97-99-4 四氢糠醇 − − 34.27±0.11 − − − 18409-18-2 反式-2-癸烯醇 − − − 52.04±0.13 − − 536-59-4 紫苏醇 − − − 26.17±0.09 − − 7786-44-9 2,6-壬二烯醇 − − − − 666.71±10.21b 1329.42±13.20a 5921-73-3 2-壬炔-1-醇 − − − − − 1257.75±16.21 34995-77-2 三甲基-5-乙烯基四氢化-2-呋喃甲醇 − − − − − 210.22±2.46 74962-98-4 反-2-十三烯醇 − − − − − 32.22±0.21 112-53-8 十二醇 − − − − − 22.85±0.34 醛类 100-52-7 苯甲醛 179.07±1.23b 63.25±0.43c 172.37±1.66b 280.74±3.25a − − 2548-87-0 反-2-辛烯醛 52.37±0.45 − − − − − 124-19-6 壬醛 216.30±2.71a 205.13±1.96b − 206.29±3.77b − − 557-48-2 反,顺-2,6-壬二烯醛 21.73±0.70 − − − − − 18829-56-6 反式-2-壬烯醛 56.55±0.45c − − 116.21±1.21a − 73.58±0.48b 112-31-2 癸醛 90.85±1.02f 150.79±2.70d 119.19±0.98e 223.01±4.21b 169.68±2.33c 269.42±3.22a 60784-31-8 反-2-壬烯醛 − 44.79±0.22c 94.67±1.09a 78.86±0.37b 42.15±0.34c − 124-13-0 正辛醛 − − 101.10±0.77 − − − 112-54-9 十二醛 − − 44.64±0.34 − − − 141-27-5 顺-3,7-二甲基-2,6-辛二烯醛 − − 49.70±0.36b 80.60±0.93a − − 萜烯类 123-35-3 月桂烯 476.75±10.30d 521.18±9.89b 493.36±12.30c 570.75±10.99a − − 13877-91-3 罗勒烯 94.17±0.46e 264.15±6.44c 214.21±4.81d 277.84±3.77b 279.19±2.35b 558.63±6.70a 4316-65-8 3,5,5-三甲基-1-己烯 58.74±0.53 − − − − − 7785-26-4 左旋-alpha-蒎烯 − 218.58±2.21a 168.00±1.70b − − − 586-62-9 萜品油烯 − 61.54±0.22b 61.26±0.19b 55.37±0.09c 61.63±0.16b 144.04±1.33a 5392-40-5 柠檬醛 − 147.88±1.33 − − − − 87-44-5 1-石竹烯 − 382.21±3.66a 39.75±1.22c 50.23±0.44b − − 6753-98-6 α-石竹烯 − 78.78±0.78 − − − − 3338-55-4 反-3,7-二甲基-1,3,6-十八烷三烯 − 47.88±1.02 − − − − 1139-30-6 氧化石竹烯 − 27.75±0.50a − − − 13.41±0.06b 5989-54-8 (-)-柠檬烯 − − 48.98±0.80b − 1005.06±17.99a − 11028-42-5 雪松烯 − − 77.59±1.55b − − 160.00±2.52a 489-39-4 (+)-香橙烯 − − 26.74±0.39b 92.31±0.81a − 25.34±0.08b 5989-27-5 右旋萜二烯 − − − 874.75±10.02 − − 138-86-3 双戊烯 − − − 413.40±5.11 − − 29548-02-5 黏蒿三烯 − − − − 197.79±1.44 − 1195-92-2 (R)-氧化柠檬烯 − − − − 58.25±0.62 − 6931-54-0 beta-环氧蒎烷 − − − − − 41.04±0.09 77-53-2 柏木脑 − − − − − 33.44±0.07 2437-56-1 1-十三烯 − − − − − 9.16±0.41 酯类 13361-34-7 氰乙酸异辛酯 29.56±0.11b − − 42.56±0.41a − − 103-11-7 丙烯酸2-乙基己酯 59.52±0.72e 195.99±1.01c 258.17±3.07b 208.77±2.27c 122.60±1.44d 288.69±2.93a 6846-50-0 2,2,4-三甲基-1,3-戊二醇二异丁酸酯 61.89±0.60f 123.61±1.02d 262.23±2.33a 179.46±0.88c 205.99±1.63b 109.15±1.00e 84-69-5 邻苯二甲酸二异丁酯 67.91±0.17a − − − 11.73±0.03b − 23853-33-0 硫代苯甲酸S-羟甲酯 − 25.91±0.28b 57.79±0.51a − − − 25415-84-3 2-乙基己酸乙酯 − 85.05±0.72a 64.54±0.51c 71.76±0.40b 28.34±0.05e 56.80±0.34d 141-12-8 乙酸橙花酯 − 21.13±0.02 − − − − 2566-89-4 花生四烯酸甲酯 − 46.21±0.15a − 24.76±0.04b − 30.73±0.21c 1731-88-0 十三碳酸脂肪酸 − 43.34±0.11a 42.26±0.17a 34.10±0.12b − − 111-82-0 月桂酸甲酯 − 90.66±1.03b − − 43.71±0.18c 113.50±0.77a 110-42-9 癸酸甲酯 − − − 33.28±0.24b 16.57±0.04c 83.95±0.60a 110-38-3 癸酸乙酯 − − − − − 76.25±0.35 115-99-1 3,7-二甲基-1,6-辛二烯-3-醇甲酸酯 − − − − − 57.20±0.15 酮类 112-12-9 甲基壬基甲酮 127.08±1.22d 387.23±2.88b 231.92±1.55c 238.54±3.03c 475.42±3.50a 47.26±0.22e 3796-70-1 香叶基丙酮 160.82±1.33b 56.58±0.51d − 77.71±0.40c 175.14±0.91a 51.88±0.49e 821-55-6 2-壬酮 − 235.09±2.11a 80.24±0.71c 133.05±0.34b 53.72±0.23d − 464-48-2 左旋樟脑 − − 123.43±2.03 − − − 2345-27-9 2-十四酮 − − − 90.45±0.30 − − 6485-40-1 左旋香芹酮 − − − − 145.00±1.39 − 其他 95-47-6 邻二甲苯 198.51±1.08 − − − − − 629-20-9 环辛四烯 710.75±9.22c 647.15±4.70d 860.01±10.33b 332.56±4.12e 325.96±2.09f 1024.07±15.23a 629-50-5 正十三烷 17.92±0.03e 182.47±0.40b − 61.31±0.12c 40.51±0.06d 215.79±1.13a 544-76-3 十六烷 18.72±0.03d 19.97±0.01d 47.85±0.20b − 26.34±0.33c 116.96±0.73a 112-40-3 十二烷 18.39±0.02f 81.07±0.53c 113.16±0.77b 33.26±0.11e 43.38±0.21d 164.23±1.00a 1120-21-4 十一烷 − 39.11±0.06b 34.58±0.03b 74.61±0.12a 37.30±0.01b − 119-36-8 水杨酸甲酯 − − 142.91±1.02c 160.12±1.34b − 287.87±2.11a 15869-93-9 3,5-二甲基辛烷 − − 44.19±0.40 − − − 124-18-5 癸烷 − − − 71.63±0.40 − − 5333-84-6 3-甲基四氢苯酐 − − − − 416.90±6.11a 365.93±4.03b 1138-52-9 3,5-二叔丁基苯酚 − − − − − 28.89±0.02 629-59-4 十四烷 − − − − − 40.07±0.05 总量 4466.41±16.42e 1618.06±12.02f 4942.14±18.29d 7052.68±23.01b 5800.32±20.44c 14604.72±17.96a 表 8 主成分特征值及累计贡献率
Table 8 Principal component characteristic values and cumulative contribution rate
主成分 特征值 贡献率(%) 累计贡献率(%) 1 8.834 44.169 44.169 2 5.606 28.029 72.198 3 3.405 17.025 89.223 表 9 主成分载荷表
Table 9 Principal component load table
指标 成分 1 2 3 单果重(X1) −0.443 −0.653 0.122 果形指数(X2) 0.059 0.939 −0.292 L*(X3) 0.119 −0.277 0.910 a*(X4) −0.634 −0.633 −0.019 b*(X5) −0.209 −0.051 −0.887 硬度(X6) −0.348 0.692 0.620 弹性(X7) 0.583 −0.405 0.119 胶粘性(X8) −0.09 0.734 0.65 咀嚼性(X9) −0.025 0.743 0.644 水分含量(X10) −0.907 −0.35 −0.005 TSS(X11) 0.972 −0.072 −0.125 还原糖(X12) 0.361 −0.741 0.279 可溶性糖(X13) 0.781 −0.562 0.083 总酸(X14) −0.983 0.069 0.059 糖酸比(X15) 0.986 −0.012 −0.064 花青素(X16) 0.873 0.445 −0.181 总酚(X17) 0.948 0.271 0.055 黄酮(X18) 0.897 −0.305 0.287 游离氨基酸总量(X19) −0.167 0.833 −0.438 风味化合物总量(X20) 0.874 0.166 −0.190 表 10 不同品种蓝莓主成分评分和综合评分
Table 10 Principal component score and comprehensive score of different blueberries
品种 F1 F2 F3 F综 排名 园蓝 5.846 0.755 −0.371 3.060 1 蓝雨 −1.752 4.215 −0.483 0.365 2 莱格西 −0.863 −0.872 2.499 −0.224 3 绿宝石 −1.585 −0.009 1.325 −0.535 4 密斯梯 0.252 −2.580 −0.029 −0.692 5 布里吉塔 −1.898 −1.508 −2.941 −1.974 6 -
[1] KALT W, CASSIDY A, HOWARD L R, et al. Recent research on the health benefits of blueberries and their anthocyanins[J]. Advances in Nutrition,2020,11(2):224−236.
[2] FALLAH A A, SARMAST E, JAFARI T. Effect of dietary anthocyanins on biomarkers of glycemic control and glucose metabolism: A systematic review and meta-analysis of randomized clinical trials[J]. Food Research International,2020,137:109379. doi: 10.1016/j.foodres.2020.109379
[3] SÓNIA N, SARA S, MANUELA M, et al. Blueberry anthocyanins in health promotion: A metabolic overview[J]. Journal of Functional Foods,2013,5(4):1518−1528. doi: 10.1016/j.jff.2013.08.015
[4] 韩鹏祥, 张蓓, 冯叙桥, 等. 蓝莓的营养保健功能及其开发利用[J]. 食品工业科技,2015,36(6):370−375. [HAN Pengxiang, ZHANG Pei, FENG Xuqiao, et al. Nutritional and health functions of blueberry and its development and utilization[J]. Science and Technology of Food Industry,2015,36(6):370−375. HAN Pengxiang, ZHANG Pei, FENG Xuqiao, et al. Nutritional and health functions of blueberry and its development and utilization[J]. Science and Technology of Food Industry, 2015, 36(6): 370-375.
[5] 刘笑宏, 王建萍, 顾亮, 等. 不同品种蓝莓果实品质及芳香物质成分分析[J]. 食品与发酵工业,2019,45(24):234−240. [LIU Xiaohong, WANG Jianping, GU Liang, et al. Analysis of fruit quality and aromatic components of different blueberry varieties[J]. Food and Fermentation Industries,2019,45(24):234−240. LIU Xiaohong, WANG Jianping, GU Liang, et al. Analysis of fruit quality and aromatic components of different blueberry varieties[J]. Food and Fermentation Industries, 2019, 45(24): 234-240.
[6] 温靖, 关小莺, 徐玉娟, 等. 不同蓝莓品种品质特性研究[J]. 热带作物学报,2018,39(9):1846−1855. [WEN Jing, GUAN Xiaoying, XU Yujuan, et al. Quality evaluation of different blueberry cultivars[J]. Chinese Journal of Tropical Crops,2018,39(9):1846−1855. doi: 10.3969/j.issn.1000-2561.2018.09.025 WEN Jing, GUAN Xiaoying, XU Yujuan, et al. Quality evaluation of different blueberry cultivars[J]. Chinese Journal of Tropical Crops, 2018, 39(9): 1846-1855. doi: 10.3969/j.issn.1000-2561.2018.09.025
[7] 周江伟, 孔悦, 孙锐, 等. 山东引种蓝莓品质指标综合评价[J]. 食品工业科技,2021,42(15):56−63. [ZHOU Jiangwei, SUN Yue, SUN Rui, et al. Comprehensive evaluation of quality index of introduced blueberry in Shandong Province[J]. Science and Technology of Food Industry,2021,42(15):56−63. ZHOU Jiangwei, SUN Yu, SUN Rui, et al. Comprehensive evaluation of quality index of introduced blueberry in Shandong Province[J]. Science and Technology of Food Industry, 2021, 42(15): 56-63.
[8] SATER H, FERRÃO L F V, OLMSTEAD J, et al. Exploring environmental and storage factors affecting sensory, physical and chemical attributes of six southern highbush blueberry cultivars[J]. Scientia Horticulturae,2021:289.
[9] 严鑫, 吴巨友, 贡鑫, 等. 不同产地圆黄梨果实品质差异分析[J]. 果树学报,2021,38(12):1−13. [YAN Xin, WU Juyou, GONG Xin, et al. Analysis on the difference of fruit quality of Wonhwang pear from different regions[J]. Journal of Fruit Science,2021,38(12):1−13. YAN Xin, WU Juyou, GONG Xin, et al. Analysis on the difference of fruit quality of Wonhwang pear from different regions[J]. Journal of Fruit Science, 2021: 1-13.
[10] 蔡晓洋, 张思荻, 曾俊, 等. 基于主成分分析和聚类分析的栀子种质资源评价[J]. 中国实验方剂学杂志,2017,23(14):30−37. [CAI Xiaoyang, ZHANG Sidi, ZENG Jun, et al. Evaluation of germplasm resources of Gardeniae fructus based on principal component and hierarchical cluster analysis[J]. Chinese Journal of Experimental Traditional Medical Formulae,2017,23(14):30−37. CAI Xiaoyang, ZHANG Sidi, ZENG Jun, et al. Evaluation of germplasm resources of Gardeniae fructus based on principal component and hierarchical cluster analysis[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2017, 23(14): 30-37.
[11] 刘萌, 张振富, 王美兰, 等. 不同包装方式对蓝莓物流及货架期质构品质的影响[J]. 食品工业科技,2013,34(23):323−327. [LIU Meng, ZHANG Zhenfu, WANG Meilan, et al. Influence of the different packing ways on texture quality of blueberry with logistics and shelf life[J]. Science and Technology of Food Industry,2013,34(23):323−327. LIU Meng, ZHANG Zhenfu, WANG Meilan, et al. Influence of the different packing ways on texture quality of blueberry with logistics and shelf life[J]. Science and Technology of Food Industry, 2013, 34(23): 323-327.
[12] YUMI F, MIYA K, AIRI I, et al. Anthocyanins in perilla plants and dried leaves[J]. Phytochemistry,2018,147:158−166. doi: 10.1016/j.phytochem.2018.01.003
[13] ZIA M P, ALIBAS I. Influence of the drying methods on color, vitamin C, anthocyanin, phenolic compounds, antioxidant activity, and in vitro bioaccessibility of blueberry fruits[J]. Food Bioscience,2021,42:101179. doi: 10.1016/j.fbio.2021.101179
[14] WU Y, XU L, LIU X, et al. Effect of thermosonication treatment on blueberry juice quality: Total phenolics, flavonoids, anthocyanin, and antioxidant activity[J]. LWT-Food Science and Technology,2021,150:112021. doi: 10.1016/j.lwt.2021.112021
[15] 邵盈盈. 蓝莓总黄酮的提取纯化及紫心甘薯总黄酮的抗衰老作用评价[D]. 杭州: 浙江大学, 2013 SHAO Yingying. Extraction and purification of the flavonoids from blueberry and the anti-aging effects of the flavonoids from purple sweet potato[D]. Hangzhou: Zhejiang University, 2013.
[16] JUNJUN L, AIPING Z, DONGMEI L, et al. Comparative study of the free amino acid compositions and contents in three different botanical origins of Coptis herb[J]. Biochemical Systematics and Ecology,2019,83:117−120. doi: 10.1016/j.bse.2019.01.012
[17] KE C, BANGZHU P, FANG Y. Volatile composition of eight blueberry cultivars and their relationship with sensory attributes[J]. Flavour and Fragrance Journal,2020,35(4):443−453. doi: 10.1002/ffj.3583
[18] 吴林, 张强, 臧慧明, 等. 气味活度值法评价蓝莓果皮、果肉、果汁挥发性香气成分[J]. 食品工业科技,2020,41(1):195−200. [WU Lin, ZHANG Qiang, ZANG Huiming, et al. Evaluation of volatile aroma components in blueberry peel, pulp and juice by odor activity value[J]. Science and Technology of Food Industry,2020,41(1):195−200. WU Lin, ZHANG Qiang, ZANG Huiming, et al. Evaluation of volatile aroma components in blueberry peel, pulp and juice by odor activity value[J]. Science and Technology of Food Industry, 2020, 41(1): 195-200.
[19] 刘丙花, 孙锐, 王开芳, 等. 不同蓝莓品种果实品质比较与综合评价[J]. 食品科学,2019,40(1):70−76. [LIU Binghua, SUN Rui, WANG Kaifang, et al. Comparison and comprehensive evaluation of fruit quality of different blueberry (Vaccinium spp.) varieties[J]. Food Science,2019,40(1):70−76. doi: 10.7506/spkx1002-6630-20170829-338 LIU Binghua, SUN Rui, WANG Kaifang, et al. Comparison and comprehensive evaluation of fruit quality of different blueberry (Vaccinium spp. ) varieties[J]. Food Science, 2019, 40(1): 70-76. doi: 10.7506/spkx1002-6630-20170829-338
[20] 纪滨, 许正华, 胡学钢, 等. 基于颜色的食品品质检测技术现状及展望[J]. 食品与机械,2013,29(4):229−232. [JI Bin, XU Zhenghua, HU Xuegang, et al. Reviewing food quality detection technology based on color[J]. Food & Machinery,2013,29(4):229−232. doi: 10.3969/j.issn.1003-5788.2013.04.056 JI Bin, XU Zhenghua, HU Xuegang, et al. Reviewing food quality detection technology based on color[J]. Food & Machinery, 2013, 29(4): 229-232. doi: 10.3969/j.issn.1003-5788.2013.04.056
[21] VANDITA S, NEJIB G, AHMED A, et al. Instrumental texture profile analysis (TPA) of date fruits as a function of its physico-chemical properties[J]. Industrial Crops & Products,2013,50:866−873.
[22] 葛翠莲, 黄春辉, 夏思进, 等. 10个蓝莓品种主要营养成分与色素含量分析[J]. 中国南方果树,2012,41(4):33−35. [GE Cuilian, HUANG Chunhui, XIA Sijin, et al. Analysis of main nutritional components and pigments of ten blueberry cultivars[J]. South China Fruits,2012,41(4):33−35. GE Cuilian, HUANG Chunhui, XIA Sijin, et al. Analysis of main nutritional components and pigments of ten blueberry cultivars[J]. South China Fruits, 2012, 41(4): 33-35.
[23] 严红光, 杨卫, 鲜殊, 等. 中国南方适栽蓝莓品种果实氨基酸组成分析[J]. 食品科技,2015,40(2):352−356. [YAN Hongguang, YANG Wei, XIAN Shu, et al. Amino acid composition analysis of blueberry cultivaries from south China[J]. Food Science and Technology,2015,40(2):352−356. YAN Hongguang, YANG Wei, XIAN Shu, et al. Amino acid composition analysis of blueberry cultivaries from south China[J]. Food Science and Technology, 2015, 40(2): 352-356.
[24] 段静怡, 李自燕, 李建, 等. 基于游离氨基酸的组分及特征比较四种食用菌与四种果蔬的营养与风味特征[J]. 菌物学报,2020,39(6):1077−1089. [DUAN Jingyi, LI Ziyan, LI Jian, et al. Comparison of nutritional and flavor characteristics between four edible fungi and four fruits and vegetables based on components and characteristics of free amino acids[J]. Mycosystema,2020,39(6):1077−1089. DUAN Jingyi, LI Ziyan, LI Jian, et al. Comparison of nutritional and flavor characteristics between four edible fungi and four fruits and vegetables based on components and characteristics of free amino acids[J]. Mycosystema, 2020, 39(6): 1077-1089.
[25] 侯娜, 赵莉莉, 魏安智, 等. 不同种质花椒氨基酸组成及营养价值评价[J]. 食品科学,2017,38(18):113−118. [HOU Na, ZHAO Lili, WEI Anzhi, et al. Amino acid composition and nutritional quality evaluation of different germplasms of Chinese prickly ash (Zanthoxylum bungeanum Maxim)[J]. Food Science,2017,38(18):113−118. doi: 10.7506/spkx1002-6630-201718018 HOU Na, ZHAO Lili, WEI Anzhi, et al. Amino acid composition and nutritional quality evaluation of different germplasms of Chinese prickly ash (Zanthoxylum bungeanum Maxim)[J]. Food Science, 2017, 38(18): 113-118. doi: 10.7506/spkx1002-6630-201718018
[26] 刘伟, 张群, 李志坚, 等. 不同品种黄花菜游离氨基酸组成的主成分分析及聚类分析[J]. 食品科学,2019,40(10):243−250. [LIU Wei, ZHANG Qun, LI Zhijian, et al. Principal component analysis and cluster analysis for evaluating free amino acids of different cultivars of daylily buds[J]. Food Science,2019,40(10):243−250. doi: 10.7506/spkx1002-6630-20180523-336 LIU Wei, ZHANG Qun, LI Zhijian, et al. Principal component analysis and cluster analysis for evaluating free amino acids of different cultivars of daylily buds[J]. Food Science, 2019, 40(10): 243-250. doi: 10.7506/spkx1002-6630-20180523-336
[27] 周立华, 牟德华, 李艳. 7种小浆果香气物质的GC-MS检测与主成分分析[J]. 食品科学,2017,38(2):184−190. [ZHOU Lihua, MOU Dehua, LI Yan, et al. GC-MS detection combined with principal component analysis to study the aroma compounds of seven small berries[J]. Food Science,2017,38(2):184−190. doi: 10.7506/spkx1002-6630-201702030 ZHOU Lihua, MOU Dehua, LI Yan, et al. GC-MS detection combined with principal component analysis to study the aroma compounds of seven small berries[J]. Food Science, 2017, 38(2): 184-190. doi: 10.7506/spkx1002-6630-201702030
[28] 曹雪丹, 李二虎, 方修贵, 等. 蓝莓酒主发酵前后挥发性成分变化的GC-MS分析[J]. 食品与发酵工业,2015,41(3):179−184. [CAO Xuedan, LI Erhu, FANG Xiugui, et al. GC-MS analysis of volatiles variation in blueberry wine before and after primary fermentation[J]. Food and Fermentation Industries,2015,41(3):179−184. CAO Xuedan, LI Erhu, FANG Xiugui, et al. GC-MS analysis of volatiles variation in blueberry wine before and after primary fermentation[J]. Food and Fermentation Industries, 2015, 41(3): 179-184.
[29] 韩斯, 孟宪军, 汪艳群, 等. 不同品种蓝莓品质特性及聚类分析[J]. 食品科学,2015,36(6):140−144. [HAN Si, MENG Xianjun, WANG Yanqun, et al. Quality properties and cluster analysis of different blueberry cultivars[J]. Food Science,2015,36(6):140−144. doi: 10.7506/spkx1002-6630-201506026 HAN Si, MENG Xianjun, WANG Yanqun, et al. Quality properties and cluster analysis of different blueberry cultivars[J]. Food Science, 2015, 36(6): 140-144. doi: 10.7506/spkx1002-6630-201506026
[30] 张佳. 北高丛蓝莓内在品质评价研究[D]. 北京: 中国农业科学院, 2020 ZHANG Jia. Research on inner quality evaluation of northern highbush blueberry[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020
[31] 刘丙花, 王开芳, 王小芳, 等. 基于主成分分析的蓝莓果实质地品质评价[J]. 核农学报,2019,33(5):927−935. [LIU Binghua, WANG Kaifang, WANG Xiaofang et al. Evaluation of fruit texture quality of blueberry based on principal component analysis[J]. Journal of Nuclear Agricultural Sciences,2019,33(5):927−935. doi: 10.11869/j.issn.100-8551.2019.05.0927 LIU Binghua, WANG Kaifang, WANG Xiaofang et al. Evaluation of fruit texture quality of blueberry based on principal component analysis[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(5): 927-935. doi: 10.11869/j.issn.100-8551.2019.05.0927
-
期刊类型引用(0)
其他类型引用(2)