Optimization of Extraction Technology of Taxifolin from Fruit of Vitis davidii by Response Surface Methodology
-
摘要: 目的:为充分利用刺葡萄资源,明确刺葡萄果实不同组织的花旗松素分布规律。方法:采用超声波辅助提取花旗松素,利用HPLC-MS/MS技术进行花旗松素检测,并通过单因素实验及响应面优化了刺葡萄果皮花旗松素提取工艺。结果:刺葡萄果皮中花旗松素含量为3.63±0.18 mg/kg,显著(P<0.05)高于种子的1.74±0.13 mg/kg和果肉的0.35±0.02 mg/kg。单因素实验表明,刺葡萄果皮中花旗松素提取量在乙醇浓度为50%、提取时间在4 h、提取温度50 ℃时达到最高值。响应面优化刺葡萄果皮花旗松素的最佳提取工艺为乙醇含量49%、浸泡温度30 ℃、浸泡时间1 h、超声功率100 W、超声时间0.5 h、提取时间4 h、提取温度51 ℃,花旗松素提取量为3.587 mg/kg。结论:中国野生刺葡萄中含有比较丰富的花旗松素,本研究结果为刺葡萄果皮的加工与利用提供理论依据。
-
关键词:
- 刺葡萄 /
- 花旗松素 /
- HPLC-MS/MS /
- 超声波 /
- 响应面
Abstract: Objective: To clarify the distribution patterns and make full use of Chinese wild resources Vitis davidii fruit in different tissues. Methods: Ultrasonic-assisted extraction and HPLC-MS/MS techniques were used for the determination of taxifolin. The response surface analysis was used to optimize the extraction process of taxifolin and the single factor test. Results: The taxifolin content in fruit peel was 3.63±0.18mg/kg, significantly (P<0.05) higher than that in seed (1.74±0.13mg/kg) and pulp (0.35±0.02mg/kg). The extraction efficiency was the highest when the ethanol concentration was 50%, and the extraction time was proportional to the extraction amount within 4 h. The dynamic equilibrium reached between extraction time and extraction amount after 4 h. The extraction amount reached the peak at 50 ℃. The optimal extraction conditions were finally determined with ethanol 49%, soaking temperature 30 ℃, soaking time 1 h, ultrasonic power 100 W, ultrasonic time 0.5 h, extraction time 4 h and extraction temperature 51 ℃. With the optimal conditions, the taxifolin extraction amount was up to 3.587 mg/kg. Conclusion: Chinese wild Vitis davidii fruit was rich in taxifolin, this study would provide a theoretical basis for the processing and utilization of Vitis davidii.-
Keywords:
- Vitis davidii /
- taxifolin /
- HPLC-MS/MS /
- ultrasound /
- response surface
-
花旗松素,又称二氢槲皮素,分子式为C15H12O7,其主要来源于紫衫、黄衫、落叶松等针叶植物根部[1-3]。花旗松素是一种天然抗氧化剂,能够保护人体免受黑色素、辐射等有毒害物质的侵害[4-7],是多种名贵中草药的主要药效成分,可作为生产医药保健品和食品的珍贵原料[8-9]。2017年,欧盟食品安全局(EFSA)已正式公布落叶松提取物(花旗松素)为新资源食品,评估认为其不会引发安全风险,也无遗传毒性风险[10]。然而提取花旗松素的材料主要在紫杉、黄杉、等珍稀树种及落叶松,目前还没有其他材料可替代,全球尚生产总量不足20 t[11-12]。
刺葡萄(Vitis davidii. Foex.)又名千斤藤、山葡萄,属于东亚特有的变种葡萄,因其具有果实大、抗性强、富含花色苷等酚类物质的特点,广泛应用于酿酒产业中[12]。刺葡萄主要分布于湘西地区,生长于高温高湿的阴湿地带,具有育种、入药、酿酒、生食等多种用途,极具开发利用价值[13-14]。近年来,研究发现葡萄中含有丰富的花旗松素[15],而刺葡萄是原产我国的野生葡萄资源,目前还未见有从刺葡萄提取花旗松素的报道,从刺葡萄中提取花旗松素将为刺葡萄开发利用增加新的途径。
有关花旗松素的提取已有较多的方法,如沸水热提取法、利用微波辅助提取、利用复合酶法提取分离等[16-20]。但这些方法存在或多或少的问题,如微波辅助提取和沸水热提取法提取率低且容易造成花旗松素损失,复合酶法操作复杂且成本较高。超声辅助提取因其操作简单,成本低廉,绿色环保等优点,被广泛应用于酚类物质的提取[21-25]。本研究通过HPLC-MS/MS分析技术对刺葡萄果实不同部位花旗松素的含量进行测定,并对其超声辅助的提取工艺进行优化,以期为刺葡萄的开发及其深加工提供理论依据。
1. 材料与方法
1.1 材料与仪器
刺葡萄 采于中国农业科学院郑州果树研究所国家种质葡萄资源圃。根据往年调查采收期,在葡萄果实采收期内监测果实可溶性固形物的变化,直至其稳定,种子颜色完全变褐时开始进行果实采样[15]。每个品种选取长势相似,产量相当的3株树,从3棵树上各选择位置一致的一个果穗,随机取30粒果粒,为一个重复,共3组重复。花旗松素标准品(纯度≥98%,色谱纯)、甲醇、无水乙醇、甲基腈、甲酸等均为色谱纯 美国Sigma公司。
LC-MS1000高效液相色谱—串联质谱仪 惠州蓝超科技有限公司;AR1140分析天平 深圳市时代之峰科技有限公司;H2100R高速冷冻离心机 长沙湘仪离心机有限公司;E-52AA旋转蒸发仪 上海亚荣生化仪器厂;BZM-160中草药粉碎机 河北本辰科技有限公司;超声波振荡仪 深圳市科工达超声设备有限公司;UV-1800G紫外可见分光光度计 上海美谱达公司。
1.2 实验方法
1.2.1 刺葡萄果实不同组织中花旗松素的含量测定
1.2.1.1 刺葡萄果实花旗松素提取
提取方法参考文献[26]进行实验。采集成熟期刺葡萄,用蒸馏水清洗后分离果皮、果肉、种子三个部分,加液氮粉碎后,分别称取各部分样品5.00 g,加10倍体积的50%乙醇溶液于30 ℃浸泡1 h,之后在100 W的超声波作用下处理0.5 h,然后在50 ℃下回流提取2 h,用乙醇溶液多次洗涤过滤后稀释至20倍定容在容量瓶中,过0.22 μm滤膜后进行质谱检测。
1.2.1.2 刺葡萄果实花旗松素色谱检测分析
刺葡萄果实不同部位花旗松素含量检测采用HPLC-MS/MS技术[15]。检测电位设为正0.7 V,充装气体为高纯氮气。流动相A、B、C分别设定为甲基腈、甲醇、1%甲酸溶液。色谱柱为ZORBAX SB-C18小柱(2.1 mm×100 mm×1.8 µm)。雾化气体压力40 psi,气体环境温度350 ℃,使用之前必须用孔径为0.4 μm的纤维混合微孔膜过滤流动相,梯度洗脱条件为0 min,10% A,90% B;30 min,15% A,85% B;100 min,30% A,70% B。在280 nm的紫外检测波长条件下检测流动相B、C(即甲醇、1%甲酸溶液),实验样品以最后一次抽滤所得液体为主[26-27]。色谱柱的电位温度30 ℃、样品进样量10 μL、样品流速0.7 mL/min,改变甲醇、1%甲酸溶液的体积分数并进行梯度洗脱。检测方式采用电喷雾电离(electrospray ionization,ESI)正离子模式。定量检测为多反应检测(multi reaction montior,MRM),数据收集为MassHunter工作平台(Agilent,USA)。
1.2.2 花旗松素提取工艺优化
1.2.2.1 单因素实验设计
根据质谱检测结果,取刺葡萄果实中花旗松素含量最高的部位进行花旗松素提取。提取条件为固定浸泡时间1 h、超声功率100 W、液料比20:1、超声时间0.5 h、回流提取时间2 h,分别考察液料比(5:1、10:1、15:1、20:1、25:1、30:1 mL/g),乙醇浓度(30%、40%、50%、60%、70%),提取时间(1、2、3、4、5 h),提取温度(30、40、50、60、70 ℃)4个单因素对花旗松素提取量的影响[19-20]。
1.2.2.2 响应面试验设计
根据单因素实验,主要考察乙醇溶液浓度、提取时间、提取温度(表1)在花旗松素含量提取过程中三者之间的相互关系[22]。设定响应面为花旗松素提取量,选取乙醇浓度、提取温度、提取时间为自变量。用乙醇浓度、温度和提取时间三因素做花旗松素的函数。最后,回归分析试验结果的二次响应面。三个影响因素与花旗松素提取量之间以及不同影响因素之间的关系用多元线性回归方程表示,结果用图表直观显示。
表 1 响应面试验设计Table 1. Response surface experimental design水平 影响因素 A乙醇浓度(%) B提取时间(h) C提取温度(℃) −1 30 3.5 30 0 50 4.0 50 1 70 4.5 70 1.2.2.3 花旗松素提取量的测定
确定用于优化提取工艺的刺葡萄果实部位后,利用前述方法将花旗松素提取物用甲醇稀释10倍,用紫外可见分光光度计在288 nm 处测定其吸光值,并用花旗松素标样做标准曲线,然后依据公式(1)进行花旗松素提取量计算[18]:
W=c×D×Vm (1) 式中:W表示花旗松素提取量,mg/g;c表示根据吸光度值计算出的溶液质量浓度,μg/mL;D表示溶液稀释倍数;V表示供试品溶液体积,mL;m表示取样量,g。
1.3 数据处理
所有试验均进行三次重复试验。数据采用Design-expert8.06统计软件进行分析。不同处理间的数据采用SPSS17.0软件中多重比较方法。
2. 结果与分析
2.1 刺葡萄果实不同组织中花旗松素含量测定
根据花旗松素标样质谱条件,将刺葡萄果皮、种子及果肉中花旗松素提取物经过HPLC-MS/MS检测(图1),结果表明刺葡萄果皮中的花旗松素含量为3.63±0.18 mg/kg,显著高于果肉(0.35±0.02 mg/kg)、种子(1.74±0.13 mg/kg)中的花旗松素含量(图2)(P<0.05),说明刺葡萄果实中的花旗松素主要存在于果皮中,这是因为果肉中营养物质多以水分及糖酸组分为主,这从图2色谱图中果肉(C)出峰明显果皮(B)和种子(D)少也能看出,而酚类物质多存在于果皮及种子中,与其他酚类物质在葡萄果实中的分布规律一致 [23]。由于刺葡萄果皮中花旗松素含量最高,后续取刺葡萄果皮进行花旗松素提取工艺优化。由于考虑到质谱检测不仅成本高,而且耗时长,同时对比发现用分光光度计测量的刺葡萄果实提取物花旗松素含量与HPLC-MS/MS检测结果并无明显差异,因此选用分光光度法进行优化提取工艺时花旗松素含量的测定。
2.2 花旗松素提取工艺优化
2.2.1 单因素结果
2.2.1.1 花旗松素提取过程中液料比的影响
当其他的试验条件不变的情况下,增加刺葡萄果皮提取物用量能保证花旗松素的浓度处于高值,增加其提取量。如图3所示,花旗松素提取量随着液料比增大而显著增加(P<0.05)。提取量在液料比为20:1 mL/g时,花旗松素提取量的相对浓度达到峰值时,之后继续提升液料比的提取量也几乎不会再有增加。由此可以得到提取刺葡萄中花旗松素的最佳液料比是20:1 mL/g。另外,根据文献结果,在提取工艺优化时,液料比基本都是20:1 mL/g,因此对液料比不再进行响应面优化[16,28-30]。
2.2.1.2 花旗松素提取过程中时间的影响
随着提取时间增加花旗松素提取量也随之增大,尤其是在1~2 h之间,随提取时间的延长,刺葡萄中花旗松素提取量增幅明显增大(图4);而超过4 h之后,花旗松素的提取量基本不变,说明此时乙醇溶解花旗松素的量到达饱和,因此选取花旗松素的提取时间为4 h。
2.2.1.3 花旗松素提取过程中温度的影响
从图5可知,在其他的试验条件不变的情况下,花旗松素的提取量随温度升高而增大,而在50 ℃之后,温度的升高花旗松素的提取量并无显著影响,说明此时乙醇溶解花旗松素的能力达到最大,而且过高的温度也会使得花旗松素稳定性降低[15,27-28],由此确定最佳提取温度是50 ℃。
2.2.1.4 花旗松素提取过程中乙醇浓度的影响
由图6可知,花旗松素的提取量随乙醇浓度的增加而增大,当乙醇浓度达到50%时,对刺葡萄果皮中花旗松素的提取效率最好,此时花旗松素的提取量为3.47 mg/kg;当乙醇浓度超过50%后,花旗松素提取量随着乙醇浓度增加而呈现缓慢增加的趋势。这是因为花旗松素是多羟基化合物,其极性比无水乙醇强比水,由于相似相溶原理,随着乙醇浓度的增加,对花旗松素的溶解能力也增加,而花旗松素的极性与50%的乙醇溶液的极性相似,因此使用50%的乙醇溶液能最大限度提取葡萄皮渣中的花旗松素[18],因此花旗松素提取时的乙醇浓度为50%。
2.2.2 响应面试验结果
2.2.2.1 模型建立
采用BBD设计方法,以乙醇浓度(A)、提取时间(B)、提取温度(C)三个因素为自变量,花旗松素提取量为响应值R,进行响应面分析,试验结果见表2。结果经Design Expert 8.0.6软件进行多元回归拟合分析,得到花旗松素提取量为响应值的函数二次回归方程:
表 2 响应面试验设计结果Table 2. Response surface test design results实验号 A乙醇浓度 B提取时间 C提取温度 花旗松素提取量(mg/kg) 1 −1 0 1 2.56 2 0 0 0 3.57 3 1 −1 0 2.38 4 1 0 1 2.57 5 0 1 1 2.57 6 0 0 0 3.64 7 0 0 0 3.69 8 0 0 0 3.63 9 0 1 −1 2.55 10 −1 1 0 2.68 11 1 0 −1 2.46 12 0 −1 1 2.61 13 −1 −1 0 2.52 14 −1 0 −1 2.58 15 1 1 0 2.47 16 0 0 0 3.61 17 0 −1 −1 2.49 R=3.63−0.058A+0.0341B+0.029C−0.017AB+0.032AC−0.025BC−0.56A2−0.55B2−0.52C2 (2) 2.2.2.2 方差分析
方差分析表明(表3)所得模型极显著(F=151.86,P<0.0001),且方程的失拟误差不显著(F=2.45,P>0.5),表明该模型回归极为显著,说明响应面所得的结果是可靠的。比较各个因素F值可以看出,其对于花旗松素提取量的影响顺序为A>B>C。提取时间(B)与乙醇浓度(A)对花旗松素提取量影响显著(P<0.05),提取温度(C)对花旗松素提取量影响不显著;提取时间、乙醇浓度与提取温度之间相互作用对花旗松素提取量影响均不显著,但平方项均达到极显著水平(P<0.01)。
表 3 回归模型方差分析Table 3. Regression model analysis of variance方差来源 平方和 自由度 平均方差 F值 P 显著性 模型 4.26 9 0.47 151.86 <0.0001 ** A 0.026 1 0.026 8.49 0.0022 * B 9.11E-03 1 9.11E-03 2.93 0.0130 * C 6.61E-03 1 6.61E-03 2.12 0.1885 AB 1.23E-03 1 1.23E-03 0.39 0.5505 AC 4.23E-03 1 4.23E-03 1.36 0.2823 BC 2.50E-03 1 2.50E-03 0.8 0.4001 A2 1.34 1 1.34 429.97 <0.0001 ** B2 1.28 1 1.28 411.12 <0.0001 ** C2 1.15 1 1.15 367.61 <0.0001 ** 残差 0.022 7 3.12E-03 失拟项 0.014 3 4.71E-03 2.45 0.2032 误差 7.68E-03 4 1.92E-03 总和 4.28 16 注:*表示具有显著性,P<0.05;**表示具有极显著,P<0.01。 2.2.2.3 响应面分析
响应面的坡度越陡峭则响应值对因素的改变越敏感。等高线是表示两个因素的交互规律,等高线密集的地方表示二者主要共同作用的方向[29-30]。应用Design-Expert.8.0.6软件对试验结果进行分析,得到花旗松素提取量与提取温度、提取时间、乙醇浓度等之间交互作用的三维效应曲面图。由图7所示,乙醇浓度和提取时间、乙醇浓度和提取温度、提取时间和提取温度表现为响应面曲线陡峭,说明二者相互作用对花旗松素的提取量均有一定影响。
2.2.3 优化提取参数与试验验证
通过建立的数学模型分析,可预测得到葡萄果皮花旗松素提取量的最佳提取条件为:乙醇含量48.97%、浸泡温度30 ℃、浸泡时间1 h、超声功率100 W、超声时间0.5 h、提取时间4.02 h、提取温度50.51℃,在此条件下花旗松素理论提取量为3.630 mg/kg。考虑实际操作因素,因此对花旗松素提取工艺的最佳条件进行简化;即简化工艺条件为:乙醇含量49%、浸泡温度30 ℃、浸泡时间1 h、超声功率100 W、超声时间0.5 h、提取时间4 h、提取温度51 ℃,重复三次实验,此时花旗松素的提取量为(3.587±0.021)mg/kg,与理论值误差为1.18%,这与已有研究结果类似[15,26],说明该模型真实可靠,可以较准确的优化花旗松素提取工艺。
3. 结论
本研究在前期研究的基础上,以刺葡萄果实为原料,通过HPLC-MS/MS检测其不同组织中花旗松素含量,结果表明刺葡萄果皮中的花旗松素含量为3.63 mg/kg,显著高于种子(1.74 mg/kg)及果肉(0.35 mg/kg)(P<0.05),因此选用刺葡萄果皮作为优化花旗松素提取工艺的原料。利用超声波辅助提取刺葡萄果皮花旗松素,并通过单因素实验和响应面试验进行的提取工艺优化,结果表明在固定浸泡温度30 ℃、浸泡时间1 h、液料比20:1 mg/L的条件下,通过优化乙醇含量49%、提取时间4 h、提取温度51 ℃时花旗松素的提取量达到3.587 mg/kg,说明花旗松素提取可以在常规条件下进行,为花旗松素的工业化制备提供了依据。
-
表 1 响应面试验设计
Table 1 Response surface experimental design
水平 影响因素 A乙醇浓度(%) B提取时间(h) C提取温度(℃) −1 30 3.5 30 0 50 4.0 50 1 70 4.5 70 表 2 响应面试验设计结果
Table 2 Response surface test design results
实验号 A乙醇浓度 B提取时间 C提取温度 花旗松素提取量(mg/kg) 1 −1 0 1 2.56 2 0 0 0 3.57 3 1 −1 0 2.38 4 1 0 1 2.57 5 0 1 1 2.57 6 0 0 0 3.64 7 0 0 0 3.69 8 0 0 0 3.63 9 0 1 −1 2.55 10 −1 1 0 2.68 11 1 0 −1 2.46 12 0 −1 1 2.61 13 −1 −1 0 2.52 14 −1 0 −1 2.58 15 1 1 0 2.47 16 0 0 0 3.61 17 0 −1 −1 2.49 表 3 回归模型方差分析
Table 3 Regression model analysis of variance
方差来源 平方和 自由度 平均方差 F值 P 显著性 模型 4.26 9 0.47 151.86 <0.0001 ** A 0.026 1 0.026 8.49 0.0022 * B 9.11E-03 1 9.11E-03 2.93 0.0130 * C 6.61E-03 1 6.61E-03 2.12 0.1885 AB 1.23E-03 1 1.23E-03 0.39 0.5505 AC 4.23E-03 1 4.23E-03 1.36 0.2823 BC 2.50E-03 1 2.50E-03 0.8 0.4001 A2 1.34 1 1.34 429.97 <0.0001 ** B2 1.28 1 1.28 411.12 <0.0001 ** C2 1.15 1 1.15 367.61 <0.0001 ** 残差 0.022 7 3.12E-03 失拟项 0.014 3 4.71E-03 2.45 0.2032 误差 7.68E-03 4 1.92E-03 总和 4.28 16 注:*表示具有显著性,P<0.05;**表示具有极显著,P<0.01。 -
[1] 盘振杰, 杨敏芬, 韦龙山. 花旗松素包合物制备工艺及水溶性的研究[J]. 广州化工,2019,47(22):73−75. [PAN Zhenjie, YANG Minfen, WEI Longshan. Study on preparation and water solubility of inclusion complex of taxifolin[J]. Guangzhou Chemical Industry,2019,47(22):73−75. doi: 10.3969/j.issn.1001-9677.2019.22.029 PAN Zhenjie, YANG Minfen, WEI Longshan. Study on preparation and water solubility of inclusion complex of taxifolin[J]. Guangzhou Chemical Industry, 2019, 47(22): 73-75. doi: 10.3969/j.issn.1001-9677.2019.22.029
[2] 杨松霖, 杜姣姣, 赵丽娟, 等. 花旗松素的研究进展及展望[J]. 化工管理,2018(22):54−55,59. [YANG Songlin, DU Jiaojiao, ZHAO Lijuan, et al. Research progress and prospect of taxifolin[J]. Chemical Enterprise Management,2018(22):54−55,59. doi: 10.3969/j.issn.1008-4800.2018.22.034 YANG Songlin, DU Jiaojiao, ZHAO Lijuan, et al. Research progress and prospect of taxifolin[J]. Chemical Enterprise Management, 2018(22): 54-55, 59. doi: 10.3969/j.issn.1008-4800.2018.22.034
[3] FUKUI Y, NAKADOME K, ARIYOSHI H. Isolation of a new taxifolin glucoside from the leaves of chamaecyparis obtuse[J]. Endlicher Yakugaku Zasshi,1966,86(3):184−187. doi: 10.1248/yakushi1947.86.3_184
[4] BIZIAGOS E, CRUNCE J M, PASSAGOT J. Effect of antiviral substances on hepatitis a virus replication in vitro[J]. Jurnal MedVirol,1987,22(1):57−66.
[5] 张卫鹏, 刘伟, 付警辉, 等. 长白落叶松中花旗松素的结构鉴定与含量测定[J]. 食品科学,2013,34(16):293−296. [ZHANG Weipeng, LIU Wei, FU Jinhui, et al. Structural identification and quantitative analysis of taxifolin in larixolgensis henry Var. koreana Nakai[J]. Food Science,2013,34(16):293−296. doi: 10.7506/spkx1002-6630-201316060 ZHANG Weipeng, LIU Wei, FU Jinhui, et al. Structural identification and quantitative analysis of taxifolin in larixolgensis henry Var. koreana Nakai[J]. Food Science, 2013, 34(16): 293-296. doi: 10.7506/spkx1002-6630-201316060
[6] 吕瑾, 刘长召, 华晓芳, 等. 花旗松素在小鼠心肌肥厚及纤维化中的作用及机制研究[J]. 国际心血管病杂志,2020,47(6):360−365. [LÜ Jin, LIU Changzhao, HUA Xiaofang, et al. Effect and mechanism of taxifolin on cardiac hypertrophy and fibrosis in mice[J]. International Journal of Cardiovascular Disease,2020,47(6):360−365. doi: 10.3969/j.issn.1673-6583.2020.06.011 LÜ Jin, LIU Changzhao, HUA Xiaofang, et al. Effect and mechanism of taxifolin on cardiac hypertrophy and fibrosis in mice[J]. International Journal of Cardiovascular Disease, 2020, 47(6): 360-365. doi: 10.3969/j.issn.1673-6583.2020.06.011
[7] 迟绍明, 杨松霖, 晋文, 等. 花旗松素、槲皮素和桑色素与丙二胺桥联β-环糊精的包合作用及抗氧化活性[J]. 分析化学,2020,48(2):215−223. [CHI Shaoming, YANG Songlin, JIN Wen, et al. Inclsion and antioxidant properties of taxifolin, quercetin and morin hydrate with diaminopropane bridged bis(β-cyclodextrin)s[J]. Chinese Journal of Analytical Chemistry,2020,48(2):215−223. CHI Shaoming, YANG Songlin, JIN Wen, et al. Inclsion and antioxidant properties of taxifolin, quercetin and morin hydrate with diaminopropane bridged bis(β-cyclodextrin)s [J]. Chinese Journal of Analytical Chemistry, 2020, 48(2): 215-223.
[8] GURINOVICH S V, LISIN K V, POTIPAYEVA N N. Preparation for increasing storage life of meat products[J]. Myasnaya Industriya,2005,2:31−33.
[9] 谢健鸣, 陈浩桉, 隆颖. 水红花子配方颗粒中花旗松素的含量测定[J]. 今日药学,2016,26(9):636−638. [XIE Jianming, CHEN Haoan, LONG Ying. Determination of taxifolin in polygoni orientalis fructus formula granule by HPLC[J]. Pharmacy Today,2016,26(9):636−638. XIE Jianming, CHEN Haoan, LONG Ying. Determination of taxifolin in polygoni orientalis fructus formula granule by HPLC[J]. Pharmacy Today, 2016, 26(9): 636-638.
[10] EFSA (European Food Safety Authority). Use of the EFSA comprehensive uropean food consumption database in exposure assessment[J]. EFSA Journal,2016,13(12):4682,34.
[11] 刘婷婷, 袁其朋. 设计柱层析过程从兴安落叶松锯末中分离纯化花旗松素[J]. 天然产物研究与开发,2016,28(7):1093−1101. [LIU Tingting, YUAN Qipeng. Separation and purification of taxifolin from larix gmelini Sawdust using process planning of column chromatography[J]. Natural Product Research and Development,2016,28(7):1093−1101. LIU Tingting, YUAN Qipeng. Separation and purification of taxifolin from larix gmelini Sawdust using process planning of column chromatography[J]. Natural Product Research and Development, 2016, 28(7): 1093-1101.
[12] 魏艳, 陈晓青, 马志祥, 等. 红蓼不同提取部位花旗松素和总黄酮含量的测定[J]. 中成药,2008,30(12):1853−1855. [WEI Yan, CHEN Xiaoqing, MA Zhixiang, et al. Determination of the contents of different extracted parts of Polygonum officinale and total flavonoids[J]. Chinese Traditional Patent Medicine,2008,30(12):1853−1855. doi: 10.3969/j.issn.1001-1528.2008.12.045 WEI Yan, CHEN Xiaoqing, MA Zhixiang, et al. Determination of the contents of different extracted parts of Polygonum officinale and total flavonoids[J]. Chinese Traditional Patent Medicine, 2008, 30(12): 1853-1855. doi: 10.3969/j.issn.1001-1528.2008.12.045
[13] 石雪晖, 杨国顺, 雄兴曜, 等. 湖南省刺葡萄种质资源的研究与利用[J]. 湖南农业科学,2010,12(19):1−4. [SHI Xuehui, YANG Guoshun, XIONG XingYao, et al. Research and utilization of germplasm resources of thorn grapes in Hunan province[J]. Hunan Agricultural Science,2010,12(19):1−4. doi: 10.3969/j.issn.1006-060X.2010.19.001 SHI Xuehui, YANG Guoshun, XIONG XingYao, et al. Research and utilization of germplasm resources of thorn grapes in Hunan province [J]. Hunan Agricultural Science, 2010, 12(19): 1-4. doi: 10.3969/j.issn.1006-060X.2010.19.001
[14] 刘崇怀, 娄建福, 樊秀彩, 等. 中国野生葡萄资源在生产和育种中利用的概况[J]. 植物遗传资源学报,2014,15(4):720−727. [LIU Chonghuai, JIANG Jianfu, FAN Xiucai, et al. The utilization of Chinese wild grape species in production and breeding[J]. Journal of Plant Genetic Resources,2014,15(4):720−727. LIU Chonghuai, JIANG Jianfu, FAN Xiucai, et al. The utilization of Chinese wild grape species in production and breeding[J]. Journal of Plant Genetic Resources, 2014, 15(4): 720-727.
[15] 牛生洋, 莫海珍, 姜建福, 等. 中国野生刺葡萄(Vitis davidii Foex)及其单品种葡萄酒中花旗松素含量分析[J]. 食品科学,2016,37(18):107−112. [NIU Shengyang, MO Haizhen, JIANG Jianfu, et al. Taxifolin contents in grape berries and wines from different varieties of Vitis davidii foex[J]. Food Science,2016,37(18):107−112. doi: 10.7506/spkx1002-6630-201618018 NIU Shengyang, MO Haizhen, JIANG Jianfu, et al. Taxifolin contents in grape berries and wines from different varieties of Vitis davidii foex[J]. Food Science, 2016, 37(18): 107-112. doi: 10.7506/spkx1002-6630-201618018
[16] 徐璐, 汪涛, 郭巧生, 等. 响应面法优化超声辅助法提取昆仑雪菊色素的工艺研究[J]. 中国中药杂志,2014,39(24):4792−4797. [XU Lu, WANG Tao, GUO Qiaosheng, et al. Response surface optimization of ultrasonic-assisted pigment extraction from coreopsis tinctoria[J]. China Journal of Chinese Materia Medica,2014,39(24):4792−4797. XU Lu, WANG Tao, GUO Qiaosheng, et al. Response surface optimization of ultrasonic-assisted pigment extraction from coreopsis tinctoria[J]. China Journal of Chinese Materia Medica, 2014, 39(24): 4792-4797.
[17] PAN C H, ZHAO L J, ZHAO D Y. Microwave-assisted green extraction of antioxidant components from Osmanthus fragrans (Lour) flower using natural deep eutectic solvents[J]. Journal of Applied Research on Medicinal and Aromatic Plants,2021,20:100285. doi: 10.1016/j.jarmap.2020.100285
[18] 郑义静, 单淇, 周福军, 等. 黄杞叶总黄酮的提取纯化工艺优化及3种有效成分的含量测定[J]. 中国药房,2016,27(25):3545−3548. [ZHENG Yijing, SHAN Qi, ZHOU Fujun, et al. Optimization of extraction and purification technology of total flavonoids from Engelhardia roxburghiana and content determination of 3 kinds of effective components[J]. China Pharmacy,2016,27(25):3545−3548. doi: 10.6039/j.issn.1001-0408.2016.25.27 ZHENG Yijing, SHAN Qi, ZHOU Fujun, et al. Optimization of extraction and purification technology of total flavonoids from Engelhardia roxburghiana and content determination of 3 kinds of effective components[J]. China Pharmacy, 2016, 27(25): 3545-3548. doi: 10.6039/j.issn.1001-0408.2016.25.27
[19] 刘刚, 张雁南, 李正阳, 等. 荭草花旗松素提取工艺优化[J]. 长春师范学院学报,2013,32(12):58−63. [LIU Gang, ZHANG Yannan, LI Zhengyang, et al. Optimization of extraction process for taxifolin of polygonum Orientale L J]. Journal of Changchun Normal University,2013,32(12):58−63.
[20] 廖雪晴, 陶凯丽, 刘琳, 等. 高效液相色谱-电化学检测法测定水红花子中花旗松素和槲皮素的含量[J]. 扬州大学学报(自然科学版),2016,19(2):18−22. [LIAO Xueqin, TAO Kaili, LIU Lin, et al. Determination of taxifolin and quercetin in polgonum orientable by high performace liquid chromatography with electrochemical detection[J]. Journal of Yangzhou University (Natural Science Edition),2016,19(2):18−22. doi: 10.19411/j.1007-824x.2016.02.005 LIAO Xueqin, TAO Kaili, LIU Lin, et al. Determination of taxifolin and quercetin in polgonum orientable by high performace liquid chromatography With electrochemical detection[J]. Journal of Yangzhou University (Natural Science Edition), 2016, 19(2): 18-22. doi: 10.19411/j.1007-824x.2016.02.005
[21] MENG J F, FANG Y L, QIN M Y, et al. Varietal differences among the phenolic profiles and antioxidant properties of four cultivars of spine grape (Vitis davidii foex) in Chongyi county (China)[J]. Food Chemistry,2012,134(4):2049−2056. doi: 10.1016/j.foodchem.2012.04.005
[22] ZHAO J, MENG Z R, ZHAO Z X, et al. Ultrasound-assisted deep eutectic solvent as green and efficient media combined with functionalized magnetic multi-walled carbon nanotubes as solid-phase extraction to determine pesticide residues in food products[J]. Food Chemistry,2020,310:125863. doi: 10.1016/j.foodchem.2019.125863
[23] 刘东, 林书玉, 梁戈亮. 分光光度法测水红花子中花旗松素含量[J]. 现代生物医学进展,2008(2):331−332. [LIU Dong, LIN Shuyu, LIANG Geliang. Determination of the content of taxifolin in princes-feather fruit by spectrophotometry[J]. Progress in Modern Biomedicine,2008(2):331−332. doi: 10.13241/j.cnki.pmb.2008.02.033 LIU Dong, LIN Shuyu, LIANG Geliang. Determination of the content of taxifolin in princes-feather fruit by spectrophotometry[J]. Progress in Modern Biomedicine, 2008(2): 331-332. doi: 10.13241/j.cnki.pmb.2008.02.033
[24] SAVIL K, CARPINÉ D, WASZCZYNSKYJ N, et al. Influence of temperature, water content and type of organic acid on the formation, stability and properties of functional natural deep eutectic solvents[J]. Fluid Phase Equilibria,2019,488:40−47. doi: 10.1016/j.fluid.2019.01.025
[25] PONTES P V, SHIWAKU I A, MAXIMO G J, et al. Choline chloride-based deep eutectic solvents as potential solvent for extraction of phenolic compounds from olive leaves: Extraction optimization and solvent characterization[J]. Food Chemistry,2021,352:129346. doi: 10.1016/j.foodchem.2021.129346
[26] NIU Shengyang, HAO Fengge, MO Haizhen, et al. Phenol profiles and antioxidant properties of white-skinned grapes and their colored genotypes during growth[J]. Biotechnology & Biotechnological Equipment,2017,31(1):58−67.
[27] IVANOVIĆ M, ALBREHT A, KRAJNC P, et al. Sustainable ultrasound-assisted extraction of valuable phenolics from inflore-scences of Helichrysum arenarium L. using natural deep eutectic solvents[J]. Industrial Crops and Products,2021,160:113102. doi: 10.1016/j.indcrop.2020.113102
[28] NASEEM Z, SHEHZAD R A, IHSAN A, et al. Theoretical investigation of supramolecular hydrogen-bonded choline chloride-based deep eutectic solvents using density functional theory[J]. Chemical Physics Letters,2021,769:138427. doi: 10.1016/j.cplett.2021.138427
[29] RAO A, SRIVASTAVA A. Supercritical carbon dioxide and eutectic solvent in conjunction: Novel method for in-situ solvent preparation-dissolution and uranium extraction from solid matr-ices[J]. Separation and Purification Technology,2021,257:117950. doi: 10.1016/j.seppur.2020.117950
[30] 黄培池. 响应面法优化白芷挥发油提取工艺及其抗氧化活性研究[J]. 中国食品添加剂,2021,32(9):31−38. [HUANG Peichi. Optimization of extraction process and antioxidant activity of volatile oil from angelica daturic by response surface methodology[J]. China Food Additives,2021,32(9):31−38. doi: 10.19804/j.issn1006-2513.2021.09.005 HUANG Peichi. Optimization of extraction process and antioxidant activity of volatile oil from angelica daturic by response surface methodology[J]. China Food Additives, 2021, 32(9): 31-38. doi: 10.19804/j.issn1006-2513.2021.09.005
-
期刊类型引用(3)
1. 乔常宏,陈翔宇,刘宝玲,罗琴,刘丁语,何振文,王晓虎,陈晶,张翩,黄元,白挨泉,王刚,蔡汝健. 多组学视角下中药抗菌机制研究进展. 中国畜牧兽医. 2025(01): 52-59 . 百度学术
2. 蓝蔚青,赵家欣,谢晶. 香芹酚纳米乳液制备及其对腐败希瓦氏菌的抑制作用. 广东海洋大学学报. 2024(03): 128-135 . 百度学术
3. 王亚哲,赵永强,王迪,陈胜军,于刚,冯阳,王悦齐,李春生. 多组学视角下植物精油抑菌机理的研究进展. 食品科学. 2024(17): 348-356 . 百度学术
其他类型引用(1)