Influence of Broccoli Stem Extract on the Storage Quality of Broccoli Heads
-
摘要: 为研究营养补偿对西兰花保鲜效果的影响,本试验将西兰花茎通过榨汁制成提取液,通过茎基部浸施方式模拟西兰花生长状态的营养供应,设计了提取液、蒸馏水浸施12 h两个处理,以自然放置为对照,研究了西兰花在10 ℃贮藏期间乙烯释放量、呼吸速率、含水量、失重率、相对电导率和丙二醛(Malondialdehyde,MDA)含量、叶绿素、抗坏血酸(Vitamin C,VC)、可溶性固形物(Total Soluble Solids,TSS)、可滴定酸(Titratable acid,TA)等指标变化。结果表明,与对照处理相比,提取液处理能够推迟乙烯的释放以及呼吸高峰的到来,降低呼吸强度,乙烯释放及呼吸强度的最大值分别为对照处理的60.29%、77.22%;保持西兰花的含水量,延缓失重,在贮藏末期提取液处理的西兰花含水量达83.64%,失重仅为7.01%;延缓MDA含量和电导率的增加,在贮藏末期提取液处理的MDA含量及相对电导率分别70.19%、49.93%;保持较高的叶绿素含量,达到了7.01 mg/kg;保持较高的VC含量和TSS含量,比对照处理高出60.99%、20.82%;TA最终含量为0.30%。表明西兰花茎提取液能够对西兰花产生较好的保鲜效果。Abstract: To verify the effect of nutritional compensation on the preservation of broccoli, the filtered squeeze juice of broccoli stalks was used as stem extract, and by dipping at the base of the stem to simulated the nutrient supply of broccoli growth state. In the experiment, broccoli heads were respectively drenched by stem-extract-solution and distilled-water for 12 h as treatments, and natural placement was designed as control. During storage at 10 ℃ ethylene release, respiration rate, water content, weight loss rate, relative conductivity, and malondialdehyde, chlorophyll, vitamin C content, total soluble solids, titratable acid were studied. The results showed that, compared with the control treatment, the extract treatment could postpone the release of ethylene and the arrival of the respiratory peak, and reduce the respiratory intensity, the maximum values of ethylene release and respiratory intensity were respectively 60.29% and 77.22% of the control treatment, and maintain the water content of broccoli and delay weight loss. The water content of broccoli treated with the extract solution reached 83.64%, and the weight loss was only 7.01% at the end of storage, and the increasing of MDA content and electrical conductivity were delayed at 70.19% and 49.93% respectively. The extract treatment could maintain a high chlorophyll content, reached 7.01 mg/kg. VC content and TSS content maintained a high level, 60.99%, 20.82% higher than the control treatment, and the final TA content was 0.30%. In summary, the broccoli stem extract could have a good fresh-keeping effect on broccoli heads.
-
西兰花(Brassica oleracea L. var. italica)因口感清爽、外形美观、营养价值高,被人们称作“蔬菜之冠”[1]。然而,采收后西兰花因与母体分离造成营养等供应中断,各种代谢十分加强,进而致使其迅速衰老,室温下2~3 d就会变黄,严重影响其市场价值[2-4]。因此,如何有效延长西兰花的贮藏期及货架期是当前研究的热点。
目前,利用天然植物提取液进行果蔬保鲜已广泛应用于果蔬的采后保鲜,在马铃薯[5]、葡萄[6]、猕猴桃[7]等方面都有了一定的研究。孙树杰等[8]通过研究发现金银花营养液能够抑制西兰花的呼吸强度,延缓VC和叶绿素含量的下降,对西兰花的贮藏效果有较好表现;赵冬艳等[9]研究发现大蒜提取液能够抑制秋葵MDA的产生,降低秋葵的腐烂率,提高秋葵的贮藏品质;杨英等[10]使用山丹百合鳞茎提取液对樱桃番茄进行保鲜效果的研究,发现山丹百合鳞茎提取液能够抑制使樱桃番茄腐烂的青霉菌的生长,使抗氧化物质保持较高的活性,具有良好的保鲜效果;吕静祎等[11]利用壳聚糖-山竹果皮提取液对蓝莓进行复合涂膜保鲜,发现壳聚糖-山竹果皮提取液能够抑制蓝莓硬度和含水量的下降,降低蓝莓的呼吸强度,推迟呼吸高峰的出现,保持蓝莓的营养水平,保鲜效果较好。但是,在以往的研究中,多为植物提取液对另一种果蔬的保鲜效果,并未有关于果蔬材料对果蔬本身保鲜效果的研究。
与通过果蒂连接的果蔬如苹果、梨、西红柿等不同,西兰花采收时需要对茎进行切割采收,因而会造成较大的采收切割面,这样的采收操作必然会切断营养、激素等的供应,进而影响西兰花花球的代谢活动[12-14]。同时西兰花茎属于废弃物,遗留于田地中,利用率不高。能否模拟西兰花生长状态的营养供应,进而延长西兰花花球的保鲜期,同时对西兰花茎进行废物利用,是一个值得研究的课题。
据美国农业部(U.S. Department of Agriculture,USDA)数据库[15]所示,西兰花茎的成分几乎与西兰花花球相当,西兰花茎制作的茎提取液能够最大限度地补充西兰花生长所需要的物质。为此,本文利用西兰花茎提取液,通过茎基部浸施方式模拟西兰花生长状态的营养供应,探讨西兰花茎提取液对西兰花贮藏期间保鲜效果的影响,为西兰花乃至切割采后果蔬的补偿性保鲜提供理论依据。
1. 材料与方法
1.1 材料与仪器
西兰花 品种为‘优秀’,采自山东省寿光市刘家茅坨村种植基地,选择直径为14~17 cm左右的西兰花,确保西兰花大小均一,花球紧实不脱落,去除茎部叶片,并保留花茎6 cm[16],迅速运送到山东理工大学实验室冷库,于2 ℃下预冷4 h;三氯乙酸、2,6-二氯酚靛酚钠 北京索莱宝科技有限公司;硫代巴比妥酸、2,4-二硝基苯肼 上海麦克林生物科技有限公司;偏磷酸 上海展云化工有限公司;硫酸、丙酮 国药集团化学试剂有限公司;硫脲 天津巴斯夫化工有限公司;所有试剂 均为国产分析纯。
HP-2132色差仪 上海汉谱光电科技有限公司;DDS-307A电导率仪 上海仪电科学仪器股份有限公司;Vari-anCP-3800气相色谱-质谱联用仪 美国安捷伦科技公司;MapScan果蔬呼吸强度测定仪 上海锦川机电技术有限公司;UV-1750紫外可见分光光度计 岛津国际贸易有限公司;405286手持阿贝折射计 成都泰华光学有限公司。
1.2 实验方法
1.2.1 西兰花处理与贮藏
基于预实验实验结果,发现12 h的浸施效果最好且不会腐烂,因此在本实验选择浸施12 h;在20 ℃下,西兰花仅能贮藏3 d左右,贮藏时间过短,不利于测定不同处理下的品质变化。在10 ℃下,西兰花可以贮藏8~10 d,方便观察及取样,因此选择在10 ℃环境下进行实验。
提取液制备:收集采收后剩余在田地里的西兰花茎,去除外皮后切块,使用破壁机打碎,用多层纱布过滤后5000 r/min低温离心20 min,上清液即为提取液;提取液具体成分来自于美国农业部数据库[15]。
实验用西兰花分为三组,在10 ℃环境下,一组西兰花使用提取液茎部浸施处理12 h(提取液),一组使用蒸馏水茎部浸施处理12 h(蒸馏水),最后一组不作任何处理(对照)。每组40个西兰花,3次重复。浸施过程如下:准备具有一定深度的托盘,将营养液倒入托盘中,然后将西兰花立着放入托盘并确保提取液浸没西兰花茎部,每个托盘放5个西兰花。浸施后西兰花贮藏在10 ℃冷库中,每2 d取样并进行相关指标测定。取样后鲜样用于乙烯释放量、呼吸速率、含水量、TSS、TA、MDA和相对电导率的测定,另一部分使用液氮迅速冷冻,保存在−80 ℃冰箱中,用于叶绿素和VC含量的测定。
1.2.2 乙烯释放量测定
根据李玲等[17]的方法进行乙烯释放量的测定。采用气相色谱测定,具体测定如下:每处理取4个西兰花花球,在15 ℃的空气中放置20~30 min以利于处理气体的挥发,然后分别将单个花球放入1.8 L的塑料桶内封口,在15 ℃下放置40~60 min后进行乙烯含量的测定;测定时,柱温、热导检测器和氢火焰检测器分别设置为50、100 和150 ℃;每个处理重复3次。
1.2.3 呼吸速率测定
按照Cuo等[18]的方法进行,略有改动。每组随机取3个西兰花,称重后分别密封在容器中,在10 ℃下恒温密封1 h,利用果蔬呼吸强度测定仪测量CO2生成量并计算呼吸强度。
1.2.4 叶绿素含量测定
根据邹琦[19]的方法进行叶绿素的测定。准确称取0.2 g西兰花花球,用6 mL丙酮冰浴研磨,暗处放置过夜。之后5000 r/min低温离心10 min,将上清液在50 mL量筒中用95%乙醇定容至20 mL,充分混匀后在665、649和447 nm下读取吸光值。
叶绿素含量(mg/gFW)=17.90×A649+8.08×A665 1.2.5 含水量测定
准确称取10 g西兰花花球于培养皿中,70 ℃烘干至恒重,称取重量。
含水量(%)=(花球鲜样质量−烘干后质量)/花球鲜样质量×100 1.2.6 失重率测定
根据Giulia等[20]的方法进行。实验前每组标记3个西兰花并称重,贮藏期间每隔2 d称取其质量。失重率即前后两次测量的差值与最初质量的比值。
1.2.7 MDA含量测定
MDA的测定依据林本芳[21]的方法。准确称取0.5 g花球,用5 mL 10% (w/v)三氯乙酸分三次研磨,5000 r/min低温离心15 min。取2 mL上清液加入2 mL 0.67%硫代巴比妥酸后,沸水浴15 min后冰上降温,然后5000 r/min低温离心10 min。在450、532和600 nm下比色。
MDA(μmoL/gFW)=[6.45×(A532−A600)−0.56×A450]×10−6 1.2.8 相对电导率测定
相对电导率的测定参照Liu等[22]的方法,略有改动。准确称取花球0.5 g,置于100 mL的锥形瓶中,加入25 mL蒸馏水,25 ℃水浴30 min后测定电导率P1。利用封口膜将上述溶液封口,沸水浴20 min,冷却至室温后,加水至原刻度线测定电导率P2。
相对电导率(%)=P1/P2×100 1.2.9 VC含量测定
根据金邦荃[23]的方法测定VC,略有改动。称取0.2 g西兰花花球,用8 mL混合酸(6%偏磷酸+2 moL/L醋酸)冰浴研磨,然后10000 r/min低温离心20 min。室温下放置15 min,取1 mL上清液,各加入50 μL 0.2% 2,6-二氯酚靛酚溶液,室温下放置1 h。之后加入1 mL硫脲,除空白管外各管均加入0.5 mL 2% 2,4-二硝基苯肼(2,4-Dinitrophenylhydrazine,DNPH)。空白管于25 ℃下放置3 h,其余各管置于水浴锅60 ℃水浴3 h。冰上降温。各管均加入2.5 mL预冷90% H2SO4,空白管补加0.5 mL 2% DNPH,540 nm下比色。
1.2.10 TSS测定
称取花球5 g,加入10 mL水研磨后拿纱布滤出汁液,采用阿贝折光仪进行TSS含量测定。
1.2.11 TA测定
采用酸碱滴定法进行TA的测定。
1.3 数据处理
每组试验进行三次重复,使用Excel 2021软件进行数据统计与分析,并用Origin Pro 9软件作图,利用 IBM SPSS Statistics 26.0 软件对数据进行差异显著性检验(P<0.05)。
2. 结果与分析
2.1 茎提取液对西兰花乙烯释放及呼吸速率的影响
乙烯的释放量反映果蔬采后的生理变化,在果蔬的成熟过程中起着重要的作用[24]。由图1A可知,整个贮藏期间乙烯释放量呈现先增高后下降的趋势。其中,对照处理最先出现乙烯释放高峰,并且释放量最大,在4 d时达到115.52 μL/(kg·h),随后迅速下降;蒸馏水和提取液处理在6 d时达到峰值,分别为93.47、69.65 μL/(kg·h);贮藏末期,提取液处理的西兰花保持着较低的乙烯释放量,仅为对照处理和蒸馏水处理的64.19%、76.69%,这可能是提取液处理在一定程度上模拟了西兰花在母体上的状态,从而抑制西兰花的乙烯释放,延缓西兰花的成熟衰老。
西兰花属于跃变型果蔬,采后呼吸加快,因此呼吸速率是衡量西兰花品质的重要依据。如图1B所示,西兰花各处理的呼吸速率基本呈现出标准的跃变型变化趋势,与乙烯释放量相对应,但呼吸高峰出现的时间存在差异,对照处理的呼吸高峰出现在第6 d,而提取液处理和蒸馏水处理的呼吸高峰则出现在第8 d,表明提取液处理可延缓呼吸高峰的到来。同时,就呼吸强度而言,提取液处理的呼吸强度显著低于蒸馏水和对照处理(P<0.05),其平均呼吸速率仅为蒸馏水和对照处理的85.52%、83.19%,这可能是由于提取液处理抑制了西兰花采后生理活动的剧烈变化,使得呼吸强度降低,并且推迟呼吸高峰的出现[25]。表明提取液处理可显著降低西兰花的呼吸速率。
2.2 茎提取液对西兰花外观和叶绿素含量的影响
叶绿素的降解和黄化是西兰花品质劣变的直观表现[26]。如图2所示,明显看出蒸馏水处理和对照处理在贮藏第8 d已呈现黄化现象,而提取液处理在第10 d仍未完全黄化。在贮藏期间,叶绿素含量总体均呈下降趋势(图2),提取液处理下降最慢,蒸馏水处理次之,对照处理下降最快。整个贮藏期间,三个处理叶绿素含量分别下降了53.31%、71.72%和77.70%;贮藏末期,提取液处理的叶绿素含量分别比蒸馏水和对照处理高65.08%和109.36%。在贮藏初期能够减缓叶绿素的下降,可能是由于提取液浸施使得西兰花短暂模拟了母体上的状态,缓解了叶绿素的分解,使得西兰花保持较好的贮藏品质。
2.3 茎提取液对西兰花含水量及失重率的影响
西兰花含水量的变化能够反映西兰花品质的优劣。如图3A 所示,在整个贮藏期间,所有处理的西兰花含水量均呈下降趋势,但提取液处理明显延缓了西兰花含水量的下降。整个贮藏期间,提取液、蒸馏水和处理的西兰花含水量分别下降了1.68%、2.95%和3.28%。可能是提取液浸施过程中西兰花补充了水分,同时保持原有的营养与激素平衡,使得西兰花在贮藏期间保持水分,抑制水分的散失。
蒸腾失水和呼吸作用消耗营养物质是导致西兰花质量减少的主要原因,如图3B所示,在整个贮藏期间,各处理西兰花的失重率均呈上升趋势,但提取液处理明显延缓了上升速率。整个贮藏期间,提取液、蒸馏水和对照处理的西兰花日平均失重率分别为0.71%、0.99%和1.10%;贮藏末期,提取液处理的西兰花失重率仅为蒸馏水和对照处理的70.38%和63.23%。这可能是由于提取液调节了水分的补充,抑制重量的下降。同时提取液抑制了微生物的生长繁殖,保证了西兰花的贮藏品质[27]。另外,保持较高的含水量也是西兰花失重率上升缓慢的另一个原因。
2.4 茎提取液对西兰花MDA及相对电导率的影响
MDA含量和相对电导率可以反映西兰花氧化胁迫和膜脂过氧化损伤的程度,以及植物体细胞膜的完整性和通透性[28]。如图4所示,在整个贮藏期间,各处理的西兰花MDA含量和相对电导率均呈上升趋势,但提取液处理明显减缓了上升速率,贮藏末期提取液处理的MDA含量、相对电导率仅为蒸馏水和对照处理的81.85%、70.19%和62.28%、49.93%。说明提取液处理能够在一定程度上减少西兰花的细胞损伤,延缓了伤口处的氧化作用。Cun等[29]证明大蒜提取物能够保持植物细胞膜的通透性,与本文结果有一定的相似性。
2.5 茎提取液对西兰花VC含量和TSS的影响
西兰花VC含量丰富,也是衡量贮藏条件优劣的重要指标[30]。如图5所示,各处理西兰花的VC含量整体上呈下降趋势,但提取液处理明显延缓了下降速率。提取液、蒸馏水和对照处理的西兰花的VC日平均下降速率分别为4.74%、5.69%和6.73%;贮藏末期,提取液处理的西兰花的VC含量分别比蒸馏水和对照处理高22.04%和60.99%。曾维丽等[31]选用了白菜花提取物对西兰花进行浸泡,也证明提取物处理能够抑制VC含量的下降,与本文研究结果一致。
在整个贮藏过程注对照处理和蒸馏水处理的TSS含量呈现先上升后下降的趋势,而提取液处理保持了较为稳定的状态。三种处理都在6 d时出现峰值,其中对照处理最高,达到了13.5%,提取液处理最低,仅为12.7%。随后,对照处理和蒸馏水处理的TSS含量迅速降低,这可能是由于贮藏后期微生物生长繁殖导致西兰花营养物质含量下降[32],而营养液处理能够在一定程度上抑制微生物的生长繁殖[33]。
2.6 茎提取液对西兰花TA的影响
TA对西兰花的风味起着重要的作用,因此贮藏过程中的TA含量是反应西兰花贮藏品质的重要指标[34]。如图6所示,各处理均呈现下降趋势。在2 d,各处理TA含量出现轻微上升,但无显著区别(P>0.05)。随后,各处理TA含量迅速下降,其中提取液处理保持较高的TA含量,而对照处理和蒸馏水处理在贮藏6~8 d时无显著差异(P>0.05)。表明提取液处理能够缓解TA含量的下降,孙树杰等[8]采用中草药提取液处理西兰花,也证明能够抑制TA含量的下降。
3. 讨论与结论
本实验主要是借鉴中医“以形补形,以脏补脏”理论[35],利用植物提取液进行果蔬保鲜的一种尝试[36-38]。西兰花采收时正处于快速的生长阶段,切割采收这一操作则打断了西兰花的生长状态,致使花球和茎部分离,从而导致了诸如根部营养供应的中断[39]、激素平衡紊乱[40]、切割造成机械伤害[41]等系列问题。西兰花采收后,能否模拟其生长状态继续供应营养,进而达到保鲜效果,是本文重点研究的目标。
西兰花花茎含有几乎等同花球一样的各种物质[42],其提取液可很好地模拟切割采收后西兰花花球的营养供应。西兰花属于呼吸跃变型果蔬,采后乙烯释放加速,呼吸旺盛,出现呼吸高峰,均呈现先上升后下降的趋势[43]。本实验研究表明,提取液处理能够显著降低乙烯释放速率,抑制呼吸强度,推迟呼吸高峰的出现。
叶绿素含量、失重率及含水量是最能直观表现西兰花质量的指标。通过提取液处理的西兰花叶绿素分解速度得到了明显缓解,也保持了较好的失重率和含水量。这可能是由于提取液使西兰花保持了营养与激素平衡,从而使得西兰花保持较好的贮藏品质。
MDA含量以及相对电导率的上升,反映出西兰花细胞膜透过率正在逐渐增大。而提取液处理能够维持西兰花细胞膜的透过性,保证西兰花细胞的完整性,从而抑制西兰花的衰老,这可能与提取液为西兰花补充类黄酮物质有关[44]。
而VC保持较高水平说明西兰花有着较高的抗氧化能力,能够抑制氧化衰老,另一方面,TSS保持较为稳定的水平也能够说明这一问题。在提取液浸施的作用下,TA含量的下降得到了缓解,亦能说明提取液对于西兰花的保鲜效果。何丽芳等[45]采用芒果皮提取液也能够对巨峰葡萄产生相同的效果。
李盼等[46]通过自制营养液浸施白芦笋的研究结果与本研究类似。但是,本研究中保鲜效果的体现,是提取液中的营养物质起主要作用,还是激素或者其他物质起重要作用,或者是综合作用的结果,需要进一步研究。
本文仅对营养液茎部浸施的保鲜效果进行了初步研究,后续研究中还需进行多方面的考虑,如采后果蔬对提取液的吸收能力[47]、如何防止补偿性保鲜产生的微生物污染[48]、操作的便利性[49]等。尽管如此,本研究提供了一种新的保鲜研究思路供广大研究者参考。总之,本实验证明了西兰花茎提取液能够对西兰花产生较好的保鲜效果,同时实现了西兰花茎的废物利用,充分利用资源的同时提高西兰花的贮藏品质,为西兰花的保鲜方法提供了新的思路和依据。
-
-
[1] 刘泽松, 史君彦, 左进华, 等. UV-C和LED红光复合处理对西兰花贮藏品质的影响[J]. 食品科学,2020,41(17):238−245. [LIU Z S, SHI J Y, ZUO J H, et al. Effect of combined UV-C and red light emitting diode irradiation on storage quality of broccoli[J]. Food Science,2020,41(17):238−245. doi: 10.7506/spkx1002-6630-20190805-052 LIU Z S, SHI J Y, ZUO J H, et al. Effect of combined UV-C and red light emitting diode irradiation on storage quality of broccoli[J]. Food Science, 2020, 41(17): 238-245. doi: 10.7506/spkx1002-6630-20190805-052
[2] MA G, WANG R, WANG C R, et al. Effect of 1-methylcyclopropene on expression of genes for ethylene biosynthesis enzymes and ethylene receptors in postharvest broccoli[J]. Plant Growth Regulation,2009,57(3):223−232. doi: 10.1007/s10725-008-9339-7
[3] SERRANO M, MARTINEZ-ROMERO D, GUILLEN F, et al. Maintenance of broccoli quality and functional properties during cold storage as affected by modified atmosphere packaging[J]. Postharvest Biology and Technology,2006,39(1):61−68. doi: 10.1016/j.postharvbio.2005.08.004
[4] 谢晓宇, 张飞, 石洁, 等. 预冷处理结合低温贮藏对西兰花贮藏品质的影响[J]. 食品工业科技,2021,42(7):302−310. [XIE X Y, ZHANG F, SHI J, et al. Effect of pre-cooling treatment and low temperature storage on storage quality of broccoli[J]. Science and Technology of Food Industry,2021,42(7):302−310. XIE X Y, ZHANG F, SHI J, et al. Effect of pre-cooling treatment and low temperature storage on storage quality of broccoli[J]. Science and Technology of Food Industry, 2021, 42(7): 302-310.
[5] 胡泳华, 孙铂雅, 石宝旋, 等. 生姜提取液对鲜切马铃薯贮藏品质的影响[J]. 食品工业科技,2020,41(1):247−251. [HU Y H, SUN B Y, SHI B X, et al. Effects of giner extracts on the storage quality of fresh-cut potatoes[J]. Science and Technology of Food Industry,2020,41(1):247−251. HU Y H, SUN B Y, SHI B X, et al. Effects of giner extracts on the storage quality of fresh-cut potatoes[J]. Science and Technology of Food Industry, 2020, 41(1): 247-251.
[6] 孙思胜, 张晓娟, 张岗, 等. 肉桂复合丁香处理对“夏黑”葡萄贮藏品质的影响[J]. 食品工业,2021,42(5):115−119. [SUN S S, ZHANG X J, ZHANG G, et al. Influence of compound Cinnamomum cassia Presl and Eugenia caryophylata Thunb. extraction on postharvest storage quality of “summer black” grape[J]. The Food Industry,2021,42(5):115−119. SUN S S, ZHANG X J, ZHANG G, et al. Influence of compound Cinnamomum cassia Presl and Eugenia caryophylata Thunb. extraction on postharvest storage quality of “summer black” grape[J]. The Food Industry, 2021, 42(5): 115-119.
[7] 张维, 黄余年, 张群, 等. 猕猴桃采后贮藏保鲜技术研究进展[J]. 保鲜与加工,2021,21(5):139−145. [ZHANG W, HUANG Y N, ZHANG Q, et al. Advances in postharvest storage and preservation techniques of kiwifruit[J]. Storage and Process,2021,21(5):139−145. doi: 10.3969/j.issn.1009-6221.2021.05.022 ZHANG W, HUANG Y N, ZHANG Q, et al. Advances in postharvest storage and preservation techniques of kiwifruit[J]. Storage and Process, 2021, 21(5): 139-145. doi: 10.3969/j.issn.1009-6221.2021.05.022
[8] 孙树杰, 王士奎, 李文香, 等. 中草药提取液对鲜切西兰花保鲜效果的影响[J]. 食品科学,2012,33(6):283−287. [SUN S J, WANG S K, LI W X, et al. Effect of chinese herbal extract on fresh-keeping of broccoli[J]. Food Science,2012,33(6):283−287. SUN S J, WANG S K, LI W X, et al. Effect of chinese herbal extract on fresh-keeping of broccoli[J]. Food Science, 2012, 33(6): 283-287.
[9] 赵冬艳, 陈军, 朱彦滨, 等. 大蒜提取液对秋葵保鲜效果的研究[J]. 食品科技,2021,46(6):215−221. [ZHAO D Y, CHEN J, ZHU Y B, et al. Effect of garlic extract on the preservation of okra[J]. Food Science and Technology,2021,46(6):215−221. ZHAO D Y, CHEN J, ZHU Y B, et al. Effect of garlic extract on the preservation of okra[J]. Food Science and Technology, 2021, 46(6): 215-221.
[10] 杨英, 张萍, 葛蓓蕾, 等. 山丹百合鳞茎提取液中活性物质及其对樱桃番茄的保鲜效果[J]. 西北植物学报,2021,41(5):795−807. [YANG Y, ZHANG P, GE B L, et al. Active substances in bulb extracts from Lilium pumilum and its preservation for cherry tomato[J]. Acta Botanica Boreali-Occidentalia Sinica,2021,41(5):795−807. YANG Y, ZHANG P, GE B L, et al. Active substances in bulb extracts from Lilium pumilum and its preservation for cherry tomato[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(5): 795-807.
[11] 吕静祎, 徐冬乐, 丁思杨, 等. 壳聚糖-山竹果皮提取液复合涂膜对蓝莓的保鲜效果[J]. 食品工业科技,2021,42(8):295−300. [LYU J W, XU D L, DING S Y, et al. Effect of chitosan-mangosteen peel composite coating on blueberry preservation[J]. Science and Technology of Food Industry,2021,42(8):295−300. LYU J W, XU D L, DING S Y, et al. Effect of chitosan-mangosteen peel composite coating on blueberry preservation[J]. Science and Technology of Food Industry, 2021, 42(8): 295-300.
[12] 李长亮, 冯毓琴, 魏丽娟, 等. 1-甲基环丙烯在西兰花贮藏保鲜中的应用研究进展[J]. 食品与发酵工业,2021,47(4):299−304. [LI C L, FENG Y Q, WEI L J, et al. The application of 1-methylcyclopene in the storage and fresh-keeping of broccoli[J]. Food and Fermentation Industries,2021,47(4):299−304. LI C L, FENG Y Q, WEI L J, et al. The application of 1-methylcyclopene in the storage and fresh-keeping of broccoli[J]. Food and Fermentation Industries, 2021, 47(4): 299-304.
[13] 周倩, 张锐, 周鑫, 等. 物流过程加冰处理对西兰花黄化的调控作用[J]. 包装工程,2021,42(11):18−25. [ZHOU Q, ZHANG R, ZHOU X, et al. Regulation effect of lcing treatment on broccoli yellowing in logistics process[J]. Packaging Engineering,2021,42(11):18−25. ZHOU Q, ZHANG R, ZHOU X, et al. Regulation effect of lcing treatment on broccoli yellowing in logistics process[J]. Packaging Engineering, 2021, 42(11): 18-25.
[14] 王连伏, 王美霞, 刘斌, 等. LED红蓝光照射对西兰花保鲜效果的影响[J]. 保鲜与加工,2017,17(3):47−52. [WANG L F, WANG M X, LIU B, et al. Effects of red and blue led irradiation on postharvest preservation of broccoli[J]. Storage and Process,2017,17(3):47−52. doi: 10.3969/j.issn.1009-6221.2017.03.009 WANG L F, WANG M X, LIU B, et al. Effects of red and blue led irradiation on postharvest preservation of broccoli[J]. Storage and Process, 2017, 17(3): 47-52. doi: 10.3969/j.issn.1009-6221.2017.03.009
[15] USDA Database, 2021. National nutrient database for standard reference legacy release. available on 19 Dec[DB]. https://fdc.nal.usda.gov/fdc-app.html#/food-details/747447/nutrients
[16] GUO Y Y, WANG L, CHEN Y, et al. Stalk length affects the mineral distribution and floret quality of broccoli (Brassica oleracea L. var. italica) heads during storage[J]. Postharvest Biology and Technology,2018,145:166−171. doi: 10.1016/j.postharvbio.2018.07.003
[17] 李玲, 陈东, 郭衍银, 等. 10 ℃下O2联合CO2气调对西兰花生理生化及保鲜效果的影响[J]. 西北农业学报,2013,22(9):146−152. [LI L, CHEN D, GUO Y Y, et al. Effects of O2 combined CO2 controlled atmospheres on physio-biochemistry and storage quality of broccoli under 10 ℃[J]. Acta Agriculturae Boreali-occidentalis Sinica,2013,22(9):146−152. doi: 10.7606/j.issn.1004-1389.2013.09.024 LI L, CHEN D, GUO Y Y, et al. Effects of O2 combined CO2 controlled atmospheres on physio-biochemistry and storage quality of broccoli under 10 ℃[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2013, 22(9): 146-152. doi: 10.7606/j.issn.1004-1389.2013.09.024
[18] GUO Y Y, GAO Z Y, LI L, et al. Effect of controlled atmospheres with varying O2/CO2 levels on the postharvest senescence and quality of broccoli florets[J]. European Food Research and Technology,2013,237(6):943−950. doi: 10.1007/s00217-013-2064-0
[19] 邹琦. 植物生理生化实验指导[M]. 北京: 中国农业出版社, 1995: 33-36 ZOU Q. Plant physiology and biochemistry experiment guidance[M]. Beijing: China Agriculture Press, 1995: 33-36.
[20] CONVERSA G, LAZZIZERA C, BONASIA A, et al. Harvest season and genotype affect head quality and shelf-life of ready-to-use broccoli[J]. Agronomy,2020,10(4):527. doi: 10.3390/agronomy10040527
[21] 林本芳. 生物保鲜剂对西兰花贮藏生理及保鲜效果的研究[D]. 天津: 天津商业大学, 2013: 10 LIN B F. Effect of biological fresh-keeping agents on the storage physiology and quality of broccolis[D]. Tianjin: Tianjin University of Commerce, 2013: 10.
[22] LIU Z L, WANG X Y, ZHU J Y, et al. Effect of high oxygen modified atmosphere on postharvest physiology and sensorial qualities of mushroom[J]. International Journal of Food Science and Technology,2010,45(6):1097−1103. doi: 10.1111/j.1365-2621.2010.02199.x
[23] 金邦荃. 营养学实验与指导[M]. 重庆: 东南大学出版社, 2008: 9−11 JIN B Q. The experiments and instructions of nutriology[M]. Chongqing: Southeast University Press, 2008: 9−11.
[24] 张鹏, 康丹丹, 贾晓昱, 等. 相温贮藏对西兰花采后品质和生理变化的影响[J/OL]. 食品科学技术学报, 1−12[2021-12-17]. http://kns.cnki.net/kcms/detail/10.1151.TS.20210812.1703.005.html ZHANG P, KANG D D, JIA X Y, et al. Effects of phase temperature storage on postharvest quality and physiological changes of broccoli[J]. Journal of Food Science and Technology, 1−12[2021-12-17]. http://kns.cnki.net/kcms/detail/10.1151.TS.20210812.1703.005.html
[25] DONG F, WANG X L. Guar gum and ginseng extract coatings maintain the quality of sweet cherry[J]. LWT - Food Science and Technology,2018,89:117−122. doi: 10.1016/j.lwt.2017.10.035
[26] 王亮, 陈勇, 郭衍银, 等. O2/CO2气调下西兰花能量代谢与贮藏品质的关系[J]. 食品科学,2019,40(11):195−200. [WANG L, CHEN Y, GUO Y Y, et al. Relationship of energy metabolism and storage quality of broccoli head under O2/CO2 controlled atmospheres[J]. Food Science,2019,40(11):195−200. doi: 10.7506/spkx1002-6630-20180604-030 WANG L, CHEN Y, GUO Y Y, et al. Relationship of energy metabolism and storage quality of broccoli head under O2/CO2 controlled atmospheres[J]. Food Science, 2019, 40(11): 195-200. doi: 10.7506/spkx1002-6630-20180604-030
[27] CAI X T, WANG X, CHEN Y C, et al. A natural biopreservative: Antibacterial action and mechanisms of Chinese Litsea mollis Hemsl. extract against Escherichia coli DH5α and Salmonella spp[J]. Journal of Dairy Science,2019,102(11):9663−9673. doi: 10.3168/jds.2019-16292
[28] 王顺玉, 黄小凤, 刘瑶, 等. 不同预冷方式对西兰花货架期品质的影响[J]. 食品工业科技,2020,41(20):266−272. [WANG S Y, HUANG X F, LIU Y, et al. Effect of different precooling methods on shelf life quality of broccoli[J]. Science and Technology of Food Industry,2020,41(20):266−272. WANG S Y, HUANG X F, LIU Y, et al. Effect of different precooling methods on shelf life quality of broccoli[J]. Science and Technology of Food Industry, 2020, 41(20): 266-272.
[29] CHEN C, LIU C H, CAI et al. Broad-spectrum antimicrobial activity, chemical composition and mechanism of action of garlic (Allium sativum) extracts[J]. Food Control,2018,86:117−125. doi: 10.1016/j.foodcont.2017.11.015
[30] 范新光, 肖璐, 张振富, 等. 减压冷藏和气调冷藏对鲜切西兰花保鲜效果的比较分析[J]. 食品科学,2014,35(2):277−281. [FAN X G, XIAO L, ZHANG Z F, et al. Comparative analysis between hypobaric storage and controlled atmosphere storage in the preservation of fresh-cut broccoli[J]. Food Science,2014,35(2):277−281. doi: 10.7506/spkx1002-6630-201402054 FAN X G, XIAO L, ZHANG Z F, et al. Comparative analysis between hypobaric storage and controlled atmosphere storage in the preservation of fresh-cut broccoli[J]. Food Science, 2014, 35(2): 277-281. doi: 10.7506/spkx1002-6630-201402054
[31] 曾维丽, 张臻, 刘少阳, 等. 白花菜提取物对花椰菜保鲜效果的研究[J]. 食品研究与开发,2015,36(10):129−131. [ZENG L W, ZHANG Z, LIU S Y, et al. Study of Cleome gynandra extract on broccoli preservation[J]. Food Research and Development,2015,36(10):129−131. doi: 10.3969/j.issn.1005-6521.2015.10.035 ZENG L W, ZHANG Z, LIU S Y, et al. Study of Cleome gynandra extract on broccoli preservation[J]. Food Research and Development, 2015, 36(10): 129-131. doi: 10.3969/j.issn.1005-6521.2015.10.035
[32] GYAWALI R, IBRAHIM S A. Natural products as antimicrobial agents[J]. Food Control,2014,46:412−429. doi: 10.1016/j.foodcont.2014.05.047
[33] 黄婵婵, 何业懿, 陈慧敏, 等. 七种植物精油对火龙果采后保鲜效果的初步研究[J]. 保鲜与加工,2014,46(3):412−429. [HUANG C C, HE Y Y, CHEN H M, et al. Preliminary study on the postharvest preservation effect of seven plant essential oils on pitaya[J]. Storage and Process,2014,46(3):412−429. HUANG C C, HE Y Y, CHEN H M, et al. Preliminary study on the postharvest preservation effect of seven plant essential oils on pitaya[J]. Storage and Process, 2014, 46: 412-429.
[34] 李文香, 樊铭聪, 孙亚男, 等. 微真空贮藏延缓西兰花采后衰老与黄化的机制[J]. 中国农学通报,2015,31(14):119−125. [LI W X, FAN M C, SUN Y N, et al. Mechanism of micro-vacuum on delaying broccoli fresh postharvest aging and yellowing[J]. Chinese Agricultural Science Bulletin,2015,31(14):119−125. doi: 10.11924/j.issn.1000-6850.casb15010016 LI W X, FAN M C, SUN Y N, et al. Mechanism of micro-vacuum on delaying broccoli fresh postharvest aging and yellowing[J]. Chinese Agricultural Science Bulletin, 2015, 31(14): 119-125. doi: 10.11924/j.issn.1000-6850.casb15010016
[35] 杜小莺, 黄恭梅. 浅谈中医的“以形补形, 以脏补脏”[J]. 祝您健康·新医药,2012,3(1):7−8. [DU X Y, HUANG G M. Talking about the TCM “complement the form with the shape, fill the viscera with the viscera”[J]. For Your Health,2012,3(1):7−8. DU X Y, HUANG G M. Talking about the TCM "complement the form with the shape, fill the viscera with the viscera"[J]. For Your Health, 2012, 3(1): 7-8.
[36] YOUSSEF F S, EID S Y, ALSHAMMARI E, et al. Chrysanthemum indicum and chrysanthemum morifolium: Chemical composition of their essential oils and their potential use as natural preservatives with antimicrobial and antioxidant activities[J]. Foods,2020,9(10):1460−1460. doi: 10.3390/foods9101460
[37] 李元政, 胡文忠, 萨仁高娃, 等. 天然植物提取物的抑菌机理及其在果蔬保鲜中的应用[J]. 食品与发酵工业, 2019, 45(14): 239-244 LI Y Z, HU W Z, SAREN G W, et al. Antimicrobial mechanisms of natural plant extracts and applications in preserving fruits and vegetables[J]. Food and Fermentation Industries, 2019, 45(14): 239-244.
[38] 郁杰, 谢晶. 组合保鲜方式应用于叶菜保鲜的研究进展[J]. 食品安全质量检测学报,2019,10(9):2449−2455. [YU J, XIE J. Progress of application of combined preservation methods in the preservation of leafy vegetables[J]. Journal of Food Safety & Quality,2019,10(9):2449−2455. doi: 10.3969/j.issn.2095-0381.2019.09.002 YU J, XIE J. Progress of application of combined preservation methods in the preservation of leafy vegetables[J]. Journal of Food Safety & Quality, 2019, 10(9): 2449-2455. doi: 10.3969/j.issn.2095-0381.2019.09.002
[39] 于皎雪, 胡文忠, 赵曼如, 等. 鲜切西兰花保鲜技术研究进展[J]. 食品与发酵工业, 2019, 45(15): 288-293 YU J X, HU W Z, ZHAO M R, et al. Research progress on preservation technology for fresh-cut broccoli[J], Food and Fermentation Industries, 2019, 45(15): 288-293.
[40] KING G A. Early compositional changes during postharvest senescence of broccoli[J]. Journal of the American Society for Horticultural Science,1994,119(5):1000−1005. doi: 10.21273/JASHS.119.5.1000
[41] 李颖. 光照对鲜切蔬菜生理和品质的调控研究[D]. 郑州: 河南农业大学, 2016: 2-3 LI Y. Study of light on the physiological and quality of fresh-cut vegetables regulation[D]. Zhengzhou: Henan Agricultural University, 2016: 2-3.
[42] DOMINGUEZ-PERLES R, MORENO D A, CARVAJAL M, et all. Composition and antioxidant capacity of a novel beverage produced with green tea and minimally-processed byproducts of broccoli[J]. Innovative Food Science and Emerging Technologies,2011,12(3):361−368. doi: 10.1016/j.ifset.2011.04.005
[43] 洪伟荣, 王璇, 刘馨岚, 等. 1-MCP预处理对采后猕猴桃机械损伤导致品质变化的影响[J]. 保鲜与加工,2021,21(2):7−12. [HONG W R, WANG X, LIU X L, et al. Effect of 1-MCP pretreatment on kiwifruit quality changes caused by mechanical damage after harvest[J]. Storage and Process,2021,21(2):7−12. doi: 10.3969/j.issn.1009-6221.2021.02.002 HONG W R, WANG X, LIU X L, et al. Effect of 1-MCP pretreatment on kiwifruit quality changes caused by mechanical damage after harvest[J]. Storage and Process, 2021, 21(2): 7-12. doi: 10.3969/j.issn.1009-6221.2021.02.002
[44] PEREZ-VIZCAINO F, FRAGA C G. Research trends in flavonoids and health[J]. Archives of Biochemistry and Biophysics,2018,646:107−112. doi: 10.1016/j.abb.2018.03.022
[45] 何丽芳, 阳美, 刘最, 等. 芒果皮提取液与羧甲基壳聚糖复合涂膜对葡萄保鲜效果的影响[J]. 食品科技,2018,43(10):50−54. [HE L F, YANG M, LIU Z, et al. Effect of mango peel extract combined with carboxymethyl chitosan composite coating on grape preservation[J]. Food Science and Technology,2018,43(10):50−54. HE M F, YANG M, LIU Z, et al. Effect of mango peel extract combined with carboxymethyl chitosan composite coating on grape preservation[J]. Food Science and Technology, 2018, 43(10): 50-54.
[46] 李盼, 王亮, 郭衍银, 等. 茎基部营养液浸施对白芦笋保鲜效果的影响[J]. 山东理工大学学报(自然科学版), 2018, 32(1): 26-30 LI P, WANG L, GUO Y Y, et al. Effects of stem-end dipping with nutrient solution on the storage qualities of white asparagus[J]. Journal of Shandong University of Technology (Natural Science Edition) 2018, 32(1): 26-30.
[47] 包蕾. 营养液浓度与喷雾频率对雾培马铃薯生长及养分吸收的影响[D]. 宁夏: 宁夏大学, 2019: 11 BAO L. Effect of nutrient solution concentration and spray frenqueneyon the growth and nutrient uptake of potato cultivated by the aeroponic system[D]. Ningxia: Ningxia University, 2019: 11.
[48] 张勇, 张志伟, 程晨霞, 等. 低温等离子体处理提高鲜切西兰花贮藏品质[J]. 现代食品科技,2021,37(2):164−170. [ZHANG Y, ZHANG Z W, CHENG C X, et al. Storage quality improvement of fresh-cut broccoli by cold plasma treatment[J]. Modern Food Science and Technology,2021,37(2):164−170. ZHANG Y, ZHANG Z W, CHENG C X, et al. Storage quality improvement of fresh-cut broccoli by cold plasma treatment[J]. Modern Food Science and Technology, 2021, 37(2): 164-170.
[49] MARIEL T, VIMAL N, LUIS C Z, et al. Stability of bioactive compounds in broccoli as affected by cutting styles and storage time[J]. Molecules,2017,22(4):636. doi: 10.3390/molecules22040636
-
期刊类型引用(0)
其他类型引用(2)