Effect of Different Dumping Process on the Quality of Zhenjiang Vinegar
-
摘要: 本文对镇江香醋不同封醅时间(0、3、7、15、30 d)进行研究,以期更好地控制镇江香醋品质。以不同封醅时间的镇江香醋为研究对象,对总酸、还原糖、不挥发酸、氨基酸态氮、有机酸、氨基酸、挥发性物质等指标含量进行了差异性分析。结果表明:通过封醅工艺可显著(P<0.05)增加醋卤中总酸、不挥发酸和乳酸的含量,封醅15 d以上总酸达到7.30±0.06 g/100 mL,不挥发酸达到2.36±0.03 g/100 mL,乳酸达到1133.57±1.47 mg/100 mL;游离氨基酸含量也随着封醅处理而增加,封醅30 d后增加了101.16 mg/L;成品醋中挥发性风味物质的含量和种类也随着封醅时间的延长而增加,封醅15 d以上的醋醅所酿造的香醋具有较佳的品质。说明采用封醅工艺对镇江香醋风味物质的形成至关重要,通过封醅工艺的镇江香醋品质优于不封醅镇江香醋。Abstract: In this paper, the different dumping process (0, 3, 7, 15, 30 d) of Zhenjiang vinegar was studied in order to better control the quality. The contents of total acid, reducing sugar, nonvolatile acid, amino acid nitrogen, organic acid, amino acid and volatile substances in different dumping processes were analyzed. The results showed that the contents of total acid, nonvolatile acid and lactic acid in vinegar were significantly (P<0.05) increased by dumping process, the total acid, nonvolatile acid and lactic acid had reached 7.30±0.06 g/100 mL, 2.36±0.03 g/100 mL and 1133.57±1.47 mg/100 mL respectively after dumping more than 15 days. The content of free amino acids also increased with the treatment of dumping processes. After 30 days, the content of free amino acids was increased 101.16 mg/L. The contents and types of volatile flavor substances in the vinegar also increased with the time of dumping processes, the vinegar had better flavor after dumping more than 15 days. It showed that dumping process was very important to generate flavor substances in Zhenjiang vinegar. The quality of Zhenjiang vinegar through dumping process was better than that of Zhenjiang vinegar without dumping process.
-
Keywords:
- Zhenjiang vinegar /
- dumping /
- physicochemical index /
- quality
-
食醋在我国具有悠久的历史,是生活中不可或缺的酸性调味品,其酿造原料以谷物为主[1]。食醋由于酿造工艺的不同,又可以将其分为欧美国家采用的液态深层发酵[2-4]和亚洲地区采用的固态发酵[5-6]两种工艺。镇江香醋是我国四大名醋之一,属于典型的传统固态发酵工艺调味品[7]。镇江香醋因其具有“酸而不涩,香而微甜,色浓味鲜”的特点,深受消费者喜爱,更是驰名于海内外[8]。“恒顺镇江香醋酿制技艺”也已被列入首批国家级非物质文化遗产名录,是我国的酿造国宝[9],其酿造工艺要求复杂,需以精选优质江南糯米为主要原料,先后经过酒精发酵、醋酸发酵、封醅和煎煮等40多道工序[10],其主要的酿造工艺流程如图1所示。
镇江香醋也因其工艺的复杂性和特殊性,导致其品质受到较多因素的影响[11]。目前已有较多研究针对酒精发酵[12]、大米原料[13]、醋酸发酵[14-15]、米色添加[16]、陈酿[17-18]等环节进行了探究,表明这些因素会影响香醋中的微生物菌落组成及其活性、挥发性风味物质种类及含量,从而影响到香醋的品质。封醅工艺则是镇江香醋酿造过程中所采用的一种特色工艺,指的是在醋酸发酵结束后将醋醅压实,用塑料薄膜盖实,四周用食盐封实,隔绝空气的过程。其目的是通过厌氧处理杀死醋酸菌等微生物,从而避免醋醅的过氧化,才能赋予其独特的风味和功能[19]。Xu等[20]通过对发酵结束后的醋醅和封醅后的醋醅进行基础理化指标检测,发现醅酸从13.41 g/100 g上升至17.31 g/100 g,乳酸、乙酸、琥珀酸和柠檬酸也有上升。
目前,对镇江香醋的研究主要集中在醋酸发酵和陈酿阶段,但封醅阶段通过盐封营造了一个厌氧环境,对醋醅的风味物质变化起到重要的作用,通过对封醅工艺进行深入研究,将对镇江香醋品质的提升具有重要的指导意义。目前仅较少研究对封醅前后的醋卤指标进行了分析,但未对不同封醅时间香醋品质进行整体研究,因此,本文将分析不同封醅时间香醋的基础理化指标、有机酸、氨基酸、挥发性物质等指标的差异,探究封醅时间对镇江香醋品质的影响,为镇江香醋生产中的过程控制和产品品质提升提供更多参考依据。
1. 材料与方法
1.1 材料与仪器
糯米 镇江恒顺米业有限公司提供,产地江苏镇江;酒药、麦曲、麦麸、大糠、种子醅 江苏恒顺醋业股份有限公司提供;酒石酸、乳酸、乙酸、柠檬酸、丙酮酸、琥珀酸、焦谷氨酸、2-辛醇、4-甲基-2-戊醇 色谱纯,Sigma公司;氨基酸混合标准液(35种) 北京捷盛依科科技发展有限公司;乙醛、苯乙醛、异戊醛、异丁醛、2,3-丁二醇、棕榈酸乙酯、十五酸乙酯、辛酸乙酯、γ-壬内酯、2,4-二叔丁基苯酚、愈创木酚、4-乙烯基愈创木酚 色谱纯,上海安谱实验科技股份有限公司;异戊醇、异丁醇、正己醇、苯乙醇、正辛醇、丁二酸二乙酯、乙酸乙酯、乳酸乙酯、正己酸乙酯、苯甲醛、丁酸、辛酸、壬酸 色谱纯,国药集团化学试剂有限公司;磺基水杨酸 国药集团化学试剂有限公司。
LC1260型高相液相色谱仪、US1541L442气相色谱-质谱联用仪 美国安捷伦公司;50/30 μm DVB/CAR/PDMS 萃取头 美国思必可公司;S-433D氨基酸分析仪 德国塞卡姆公司;88880018漩涡混合仪 赛默飞世尔(中国)有限公司;BSA822 电子天平 赛多利斯科学仪器(北京)有限公司;FE28精密pH计 梅特勒-托利多仪器(上海)有限公司;5424R高速冷冻离心机 德国艾本德公司。
1.2 实验方法
1.2.1 镇江香醋醋醅的发酵
酒精发酵:将糯米浸水24 h后沥干蒸煮,待蒸熟的糯米冷却至35 ℃时加入0.3%(w/w)酒药搅拌均匀,常温下发酵至第3 d加入1%(w/w)麦曲和适量水进行搅拌,发酵至第7 d形成酒醪。
醋醅发酵:将酒醪、麦麸、大糠放入大缸中搅拌均匀形成醋醅,取种子醅放于拌好的醋醅上,用大糠覆盖。从第2 d开始,逐层将上层发热的醋醅与下一层未发热的醋醅充分拌匀,一般10 d可将醋醅翻至露底,露底后每日对醋醅进行露底翻醅,直至第21 d发酵结束形成成熟醋醅。
1.2.2 不同封醅时间镇江香醋的制作
镇江香醋醋醅发酵成熟时:设计5组封醅池,将成熟醋醅分别封醅0、3、7、15、30 d,每组平行三次,封醅结束后即进行淋醋操作。
1.2.3 基本理化指标测定
封醅结束后,从醋醅中取出醋卤,经8000 r/min 离心10 min 后,取上清液使用。总酸和不挥发酸参照《GB 18187 -2000》方法进行测定,氨基酸态氮参照《GB 18186-2000》方法进行测定,还原糖参照《GB5009.7-2016》中直接滴定法进行测定。
1.2.4 有机酸测定
采用高效液相色谱测定,参照《GB/T 18623-2011》方法,以保留时间和样品加标定性,采用峰面积外标法定量。
1.2.5 游离氨基酸测定
采用全自动氨基酸分析仪测定,前期处理:取1 mL样品,加入9倍体积的1%磺基水杨酸,10000 r/min离心15 min,取上清液用0.22 μm膜过滤后供上机测定使用,进样体积为 50 μL;检测波长为570、440 nm;茚三酮流速为0.25 mL/min,流动相流速为0.45 mL/min;反应器温度为 130 ℃,具体条件见参照文献[21];以标品保留时间定性,采用峰面积外标法定量。
1.2.6 挥发性风味物质测定
采用顶空固相微萃取-气质联用测定,样品处理:将5 mL醋样置于10 mL样品瓶中加入1.5 g固体氯化钠,50 ℃条件下用SPME萃取头顶空吸附40 min,搅拌转速250 r/min;色谱条件:DB-1701色谱柱(30 m×0.25 mm×0.25 μm),载气He,流量1 mL/min,不分流,进样口温度250 ℃。柱温起始32 ℃,以3 ℃/min升温至120 ℃,再以10 ℃/min升温至250 ℃,保持10 min;质谱条件:接口温度250 ℃,离子源温度230 ℃,电离方式EI+,电子能量70 eV,扫描质量范围33~450 u,后续操作参照文献[22];定性分析:通过对挥发性成分采用质谱(谱库检索)方法和对应标准品保留指数对比进行鉴定;定量分析:以4-甲基-2-戊醇作为内标进行内标法定量。
1.3 数据处理
实验采用SPSS17.0软件进行数据分析,P<0.05表示影响显著,实验数据为三次平行实验的均值。
2. 结果与分析
2.1 不同封醅时间对底部醋卤基本理化指标的影响
封醅后醋卤的基本理化指标是反映成品醋产量和品质的重要指标之一。因此,本研究对不同封醅时间醋卤的主要理化指标总酸、还原糖、不挥发酸和氨基酸态氮进行了测定,结果如表1所示。
表 1 不同封醅时间对醋卤的基本理化指标的影响Table 1. Effect of different dumping process on the physicochemical index of vinegar liquid从表1可以看出,封醅后醋卤的总酸和不挥发酸随着封醅时间的增加而增加,封醅至30 d时总酸与不挥发酸分别达到最高值7.35±0.05 g/100 mL和2.39±0.01 g/100 mL,与不封醅相比较有显著性增加(P<0.05),但封醅15 d与封醅30 d总酸和不挥发酸无显著性(P>0.05)增加。通过封醅处理,还原糖含量则显著性降低(P<0.05),这主要是因为封醅阶段的厌氧环境较适宜耐酸性的乳酸菌生长[23-24],乳酸菌在厌氧环境中消耗部分还原糖生成乳酸和其他风味物质。氨基酸态氮在整个封醅阶段无显著性变化(P>0.05),这可能由于在醋酸发酵阶段蛋白质已较充分利用,因而在封醅阶段没有明显变化[25]。因此,通过对封醅处理15 d以上醋醅的总酸、还原糖、不挥发酸、氨基酸态氮等指标分析,表明封醅有助于总酸和不挥发酸含量的提高,丰富香醋的风味。
2.2 不同封醅时间对底部醋卤的有机酸含量的影响
粮食发酵食醋中富含多种有机酸,其结构组成和含量会影响产品的风味特色,是衡量酿造食醋品质的重要指标之一。镇江香醋的有机酸种类丰富,其中乙酸、乳酸、焦谷氨酸、琥珀酸和柠檬酸等是影响镇江香醋口感的重要有机酸[26-27]。因此,本研究对不同封醅时间底部醋卤有机酸进行了检测分析,其结果如表2所示。
表 2 不同封醅时间对醋卤中有机酸含量的影响Table 2. Effect of different dumping process on the content of organic acid of vinegar liquid有机酸
(mg/100 mL)不封醅 封醅3 d 封醅7 d 封醅15 d 封醅30 d 酒石酸 169.61±0.64a 169.59±0.78a 170.85±0.58a 171.72±0.89a 171.41±1.37a 丙酮酸 41.23±1.04a 41.21±0.58a 41.34±1.21a 41.29±1.00a 41.36±0.72a 酮戊二酸 7.59±0.80a 7.62±1.14a 7.68±0.57a 7.74±1.62a 7.66±0.31a 乳酸 1105.78±0.76a 1125.21±1.06b 1126.24±0.23b 1133.57±1.47bc 1135.87±1.07bc 乙酸 5044.14±1.32a 5043.16±2.05a 5041.51±1.47a 5032±0.68a 5033.04±0.74a 柠檬酸 53.64±1.06a 52.68±0.59a 53.51±1.76a 52.95±1.32a 54.05±0.26a 焦谷氨酸 103.25±0.96a 104.27±1.05a 104.56±1.08a 104.67±0.52a 104.64±0.26a 琥珀酸 90.21±0.54a 90.54±0.78a 90.88±1.05a 91.20±1.89a 91.43±2.08a 由表2可知,在不同封醅天数的醋卤中共检测出8种有机酸,含量从高到低依次为乙酸、乳酸、酒石酸、焦谷氨酸、琥珀酸、柠檬酸、丙酮酸、酮戊二酸。醋卤中含量最高有机酸为乙酸5044.14±1.32 mg/100 mL(不封醅),其次是乳酸达到1135.87±1.07 mg/100 mL(封醅30 d),这与镇江香醋酿造过程的核心功能微生物醋酸菌和乳酸菌有关[19]。通过封醅工艺处理,乙酸含量没有显著性变化(P>0.05),乙酸可与醇等物质生成乙酸乙酯等其他风味物质[28]。乳酸含量从1105.78±0.76 mg/100 mL(不封醅)增长至1135.87±1.07 mg/100 mL(封醅30 d),这是由于封醅阶段创造的厌氧环境,使得乳酸菌继续其代谢生成乳酸,与许伟[23]对封醅醅酸检测结果相似。其余含量较高的有机酸为酒石酸、焦谷氨酸、琥珀酸、柠檬酸、丙酮酸和酮戊二酸,可为镇江香醋提供酸、咸、苦等复合风味,其含量在封醅阶段没有显著性变化(P>0.05)。食醋中又可将有机酸分为挥发性酸(乙酸)和不挥发性酸(乳酸、酒石酸、焦谷氨酸、琥珀酸等),不挥发性酸越高,更加能够赋予食醋轻柔的口感[29]。因此,通过7 d以上封醅处理后,在有机酸中乳酸含量显著性增加(P<0.05),有利于香醋柔和感的提高。
2.3 不同封醅时间对底部醋卤的氨基酸含量的影响
氨基酸作为镇江香醋重要的呈味物质,使得香醋富含营养,味道醇厚柔和,是镇江香醋重要的风味成分之一。因此,本研究对不同封醅天数的醋卤的多种氨基酸进行了测定,其结果如表3所示。
表 3 不同封醅时间对醋卤中游离氨基酸含量的影响Table 3. Effect of different dumping process on the content of free amino acid in vinegar liquid氨基酸种类(mg/L) 不封醅 封醅3 d 封醅7 d 封醅15 d 封醅30 d 磷酸丝氨酸 149.66±0.06b 149.75±0.60b 148.65±0.15a 149.66±0.42b 149.82±0.06b 牛磺酸 26.54±0.12a 26.54±0.03a 26.55±0.04a 26.64±0.03a 26.66±0.09a 天冬氨酸 1050.65±0.05a 1051.23±0.19b 1051.55±0.32c 1051.65±0.05cd 1051.82±0.08cd 苏氨酸 715.52±0.04a 715.55±0.03a 715.56±0.01a 715.6±0.28a 715.62±0.04a 丝氨酸 95.71±0.00a 95.72±0.01a 95.73±0.05a 95.73±0.03a 95.74±0.03a 天冬酰胺 539.83±0.13a 539.95±0.03ab 540.01±0.10 ab 540.10±0.14b 540.11±0.09b 谷氨酸 586.85±0.05a 587.62±0.04b 587.62±0.04b 587.65±0.16b 587.89±0.18c 甘氨酸 804.53±0.30a 804.55±0.04a 804.56±0.15a 804.62±0.15a 804.63±0.04a 丙氨酸 1315.91±0.06a 1315.92±0.05a 1315.99±0.12a 1316.52±0.06b 1316.66±0.08b 瓜氨酸 ND ND ND ND ND 缬氨酸 209.65±0.12a 209.99±0.18a 210.50±0.44b 211.50±0.08c 215.60±0.10d 胱氨酸 101.01±0.34a 102.28±0.08ab 103.50±0.51b 104.20±0.60bc 106.80±0.45d 蛋氨酸 325.78±0.08a 325.98±0.22a 365.85±0.03b 384.21±0.64c 392.10±0.60d 异亮氨酸 652.01±0.14a 652.32±0.48a 653.21±0.14b 654.01±0.02c 654.02±0.12c 亮氨酸 1352.72±0.30a 1352.95±0.15a 1353.01±0.10a 1353.89±0.10b 1354.25±0.09c 酪氨酸 519.52±0.38a 520.52±0.30a 521.58±0.14b 521.95±0.09b 521.99±0.02b 苯丙氨酸 505.20±0.21a 505.55±0.20a 506.21±0.06b 506.31±0.53b 506.98±0.31c γ-氨基丁酸 14.59±0.16a 15.21±0.19a 15.22±0.51a 16.86±0.56b 16.85±0.02b 组氨酸 452.35±0.10a 452.55±0.25a 452.55±0.23a 452.56±0.01a 452.56±0.12a 肌肽 9.88±0.24a 10.88±0.01b 10.88±0.00b 10.89±0.00b 10.89±0.01b 鸟氨酸 102.56±0.04a 102.57±0.06a 102.57±0.04a 102.98±0.07b 103.2±0.08c 赖氨酸 715.02±0.10a 715.25±0.04ab 715.29±0.02b 716.21±0.03c 716.21±0.27c 精氨酸 625.32±0.16a 625.69±0.14ab 625.98±0.08bc 626.35±0.49c 627.81±0.04d 羟脯氨酸 6.25±0.09a 6.52±0.12b 6.98±0.10c 7.21±0.08d 7.32±0.04d 脯氨酸 188.99±0.04a 189.95±0.13b 191.21±0.04c 191.32±0.17c 191.68±0.11d ∑总计 11066.05±0.88 a 11075.04±0.32b 11120.76±2.17c 11148.62±1.36d 11167.21±0.20e 注:“ND”表示未测出;表4同。 由表3可知,在封醅后的醋卤中共检测到24种不同的氨基酸,氨基酸总量从不封醅的11066.05±0.88 mg/L显著增长(P<0.05)至封醅后的11167.21±0.20 mg/L(封醅30 d),提高了101.16 mg/L。从游离氨基酸种类及其含量上来看,封醅后的醋卤中含量较高的6种氨基酸与未封醅醋卤的相同,分别为亮氨酸、丙氨酸、天冬氨酸、甘氨酸、赖氨酸和苏氨酸,含量均达到700 mg/L以上。余宁华[30]通过对我国固态酿造食醋进行氨基酸分析,得出3种特征性氨基酸为丙氨酸、缬氨酸和亮氨酸,本研究测出亮氨酸和丙氨酸在醋卤中的含量都达到了1315 mg/L以上。通过表3的数据分析,整个封醅阶段游离氨基酸的种类均为24种,但随着封醅时间增长游离氨基酸总量增多。与未封醅组相比,封醅3 d天冬氨酸、羟脯氨酸、脯氨酸分别显著(P<0.05)增长至1051.23±0.19、6.52±0.12、189.95±0.13 mg/L;封醅7 d缬氨酸、胱氨酸、蛋氨酸、异亮氨酸、酪氨酸、苯丙氨酸、赖氨酸、精氨酸分别显著(P<0.05)增长至210.50±0.44、103.50±0.51、365.85±0.03、653.21±0.14、521.58±0.14、506.21±0.06、715.29±0.02、625.98±0.08 mg/L;封醅15 d异亮氨酸、γ-氨基丁酸、鸟氨酸分别显著(P<0.05)增长至654.01±0.02、16.86±0.56、102.98±0.07 mg/L。经过15 d以上的封醅处理,醋卤中18种氨基酸的含量均显著增加(P<0.05),可为香醋后期陈酿提供更多的风味基础物质[11] 。
2.4 不同封醅时间对香醋中挥发性物质含量的影响
镇江香醋的灵魂就在于香气,即挥发性风味物质,可直接影响消费者对食醋的感官。镇江香醋含有的挥发性物质种类多样且复杂。因此,本研究对不同封醅时间的香醋成品中挥发性风味物质进行了定量分析。
2.4.1 封醅过程中香醋挥发性物质变化
不同封醅时间处理的香醋挥发性物质变化结果如表4所示,不同类别挥发性物质种类及含量变化如图2所示。
表 4 不同封醅时间对香醋中挥发性风味物质含量的影响Table 4. Effect of different dumping process on the content of volatile flavor substance in vinegar序号 风味物质
种类(mg/L)不封醅香醋 封醅3 d香醋 封醅7 d香醋 封醅15 d香醋 封醅30 d香醋 A1 丁酸 0.021±0.005 0.016±0.003 0.008±0.003 ND ND A2 异戊酸 1.908±0.083 1.871±0.082 1.805±0.087 1.713±0.087 1.622±0.092 A3 正戊酸 0.034±0.002 0.021±0.001 0.010±0.003 ND ND A4 4-甲基戊酸 0.035±0.004 0.032±0.005 0.032±0.007 0.031±0.004 0.03±0.004 A5 己酸 0.592±0.045 0.549±0.062 0.536±0.057 0.525±0.070 0.523±0.038 A6 辛酸 0.402±0.012 0.402±0.014 0.400±0.027 0.411±0.017 0.413±0.008 A7 壬酸 0.068±0.017 0.069±0.010 0.071±0.007 0.072±0.009 0.073±0.011 A8 2-辛烯酸 ND 0.010±0.001 0.016±0.002 0.021±0.002 0.042±0.001 A9 苯甲酸 0.382±0.042 0.312±0.045 0.287±0.039 0.245±0.021 ND A10 苯乙酸 0.273±0.027 0.218±0.018 0.189±0.014 0.124±0.009 0.098±0.010 A11 棕榈酸 0.032±0.005 0.055±0.008 0.084±0.009 0.102±0.007 0.189±0.012 ∑酸类合计 3.747±0.054 3.555±0.061 3.438±0.052 3.244±0.054 2.990±0.071 B1 乙醇 5.120±0.241 4.970±0.343 4.580±0.573 3.570±0.407 2.040±0.291 B2 异丁醇 0.052±0.009 ND ND ND ND B3 异戊醇 0.605±0.028 0.585±0.037 0.571±0.054 0.501±0.047 0.489±0.033 B4 正己醇 0.017±0.005 0.008±0.001 ND ND ND B5 2-乙基己醇 0.728±0.057 0.699±0.028 0.601±0.043 0.523±0.034 0.418±0.042 B6 正辛醇 0.022±0.003 ND ND ND ND B7 2,3-丁二醇 0.258±0.019 0.207±0.010 0.184±0.008 0.154±0.008 0.101±0.007 B8 2-呋喃甲醇 0.851±0.071 0.714±0.057 0.623±0.064 0.511±0.047 0.401±0.031 B9 糠醇 0.598±0.024 0.507±0.034 0.464±0.036 0.411±0.032 0.308±0.018 B10 苯乙醇 15.254±0.652 15.012±0.742 14.894±0.842 14.712±0.924 14.622±0.708 ∑醇类合计 23.505±0.812 22.702±0.904 21.917±1.012 20.382±1.084 18.379±0.884 C1 乙酸甲酯 ND 0.090±0. 070 0.090±0.003 0.100±0.002 0.110±0.003 C2 乙酸乙酯 0.850±0.035 0.920±0.047 1.050±0.051 1.202±0.073 1.380±0.067 C3 乙酸丁酯 ND ND 0.020±0.003 0.030±0.003 0.030±0.004 C4 乙酸异戊酯 0.042±0.003 0.069±0.005 0.125±0.007 0.187±0.011 0.203±0.008 C5 己酸乙酯 0.016±0.003 0.033±0.004 0.054±0.006 0.089±0.005 0.12±0.007 C6 乳酸乙酯 0.089±0.051 0.124±0.062 0.148±0.074 0.227±0.061 0.299±0.91 C7 丁二酸单乙酯 0.128±0.008 0.129±0.010 0.130±0.008 0.140±0.009 0.148±0.012 C8 丁二酸二乙酯 0.681±0.053 0.685±0.043 0.752±0.065 0.763±0.045 0.778±0.042 C9 乙酸呋喃甲酯 0.201±0.008 0.212±0.015 0.224±0.012 0.231±0.015 0.244±0.015 C10 乙酸苯乙酯 0.025±0.004 0.057±0.003 0.092±0.004 1.142±0.002 1.423±0.008 C11 苯乙酸乙酯 ND 0.009±0.001 0.012±0.003 0.03±0.001 0.039±0.002 C12 甲酸-2-苯乙酯 ND ND 0.058±0.014 0.112±0.009 0.135±0.024 C13 DL-2-羟基-4-甲基戊酸乙酯 ND 0.011±0.003 0.021±0.005 0.025±0.002 0.032±0.001 C14 γ-壬内酯 0.214±0.005 0.359±0.018 0.487±0.024 0.892±0.037 1.008±0.047 C15 棕榈酸乙酯 0.104±0.009 0.187±0.011 0.247±0.014 0.387±0.015 0.455±0.021 C16 十五酸乙酯 ND 0.008±0.000 0.012±0.002 0.019±0.001 0.024±0.001 C17 反油酸乙酯 ND 0.062±0.007 0.097±0.005 0.112±0.004 0.136±0.006 C18 邻苯二甲酸二丁酯 ND ND ND 0.014±0.002 0.021±0.003 C19 香草酸乙酯 ND ND 0.011±0.001 0.026±0.002 0.034±0.004 C20 4-羟基-3-甲氧基-苯丙酸乙酯 ND ND ND 0.099±0.005 0.160±0.009 ∑酯类合计 2.350±0.070 2.955±0.084 3.63±0.081 5.845±0.121 6.779±0.118 D1 乙醛 ND 0.009±0.002 0.015±0.004 0.019±0.008 0.025±0.007 D2 异丁醛 0.052±0.011 0.053±0.021 0.054±0.017 0.056±0.014 0.055±0.021 D3 异戊醛 0.287±0.014 0.294±0.020 0.301±0.021 0.305±0.0197 0.31±0.0207 D4 正己醛 0.005±0.001 ND ND ND ND D5 正辛醛 ND 0.010±0.001 0.011±0.002 0.015±0.003 0.019±0.002 D6 壬醛 0.002±0.000 ND ND 0.015±0.001 0.016±0.002 D7 糠醛 4.015±0.224 3.994±0.245 3.982±0.279 4.011±0.304 4.023±0.249 D8 苯甲醛 1.021±0.069 1.067±0.084 1.076±0.071 1.092±0.091 1.177±0.086 D9 苯乙醛 0.145±0.020 0.185±0.017 0.207±0.024 0.223±0.015 0.248±0.021 D10 5-甲基呋喃醛 0.042±0.003 0.043±0.002 0.045±0.002 0.047±0.003 0.046±0.004 D11 5-羟甲基糠醛 ND 0.013±0.001 0.018±0.002 0.021±0.001 0.028±0.001 D12 3-(2-呋喃基)-2-苯基丙烯醛 0.021±0.002 0.023±0.002 0.020±0.001 0.022±0.002 0.022±0.003 ∑醛类合计 5.590±0.345 5.691±0.421 5.730±0.378 5.826±0.317 5.969±0.352 E1 丙酮 0.212±0.012 0.215±0.015 0.213±0.018 0.216±0.020 0.218±0.017 E2 2,3-丁二酮 0.119±0.010 0.317±0.021 0.389±0.019 0.454±0.025 0.688±0.024 E3 3-羟基-2-丁酮 0.526±0.034 0.628±0.041 0.787±0.038 0.815±0.047 0.923±0.053 E4 甲基庚烯酮 ND ND ND 0.011±0.001 0.021±0.001 E5 3-乙酰氧基-2-丁酮 ND 0.015±0.001 0.029±0.002 0.034±0.002 0.044±0.003 E6 二氢-5-戊基-2(3H)-呋喃酮 ND 0.012±0.001 0.023±0.002 0.035±0.001 0.096±0.004 E7 2,6-二甲基-4-庚酮 ND 0.065±0.003 0.097±0.004 0.121±0.007 0.157±0.007 ∑酮类合计 0.857±0.028 1.252±0.048 1.538±0.041 1.686±0.057 2.147±0.061 F1 2,4-二甲基吡嗪 ND 0.028±0.003 0.036±0.003 0.087±0.005 0.097±0.005 F2 2,6-二甲基吡嗪 0.13±0.009 0.141±0.007 0.151±0.007 0.195±0.009 0.203±0.008 F3 6-甲基-2-乙基吡嗪 ND 0.012±0.001 0.024±0.002 0.037±0.001 0.048±0.003 F4 2,3,5-三甲基吡嗪 0.124±0.009 0.197±0.009 0.268±0.013 0.412±0.018 0.478±0.021 F5 2,3,5,6-四甲基吡嗪 0.509±0.024 0.688±0.031 0.812±0.043 1.332±0.059 1.423±0.064 ∑吡嗪类合计 0.763±0.021 1.066±0.045 1.291±0.064 2.063±0.087 2.249±0.081 G1 对乙基苯酚 ND 0.009±0.000 0.012±0.002 0.024±0.001 0.036±0.002 G2 4-甲氧基-2-甲氧基苯酚 0.089±0.004 0.091±0.005 0.104±0.005 0.124±0.004 0.147±0.009 G3 2,4-二叔丁基苯酚 0.065±0.006 0.094±0.005 0.124±0.007 0.164±0.010 0.191±0.011 G4 2-乙酰吡咯 ND ND ND 0.008±0.001 0.012±0.001 G5 二甲基硫醚 ND ND 0.013±0.002 0.024±0.001 0.042±0.003 ∑其他合计 0.154±0.006 0.194±0.004 0.253±0.010 0.344±0.012 0.428±0.014 总计 36.966 37.415 37.797 39.390 38.941 从表4中可以看出,酸类、醇类、酯类、醛类、酮类、吡嗪类和其他杂环化合物的组合,形成了镇江香醋特有的香气。不同封醅时间制备的成品香醋中挥发性风味物质具有较明显的差异。在不封醅的香醋中,共检出47种挥发性风味物质,总含量为36.966 mg/L。不同封醅时间后的香醋中,共检出58~63种挥发性风味物质,总含量为37.415~39.390 mg/L,其中封醅15 d后香气物质种类达到63种,总含量达到最高值39.390 mg/L。通过封醅处理,挥发性物质在种类和含量上均有所增加。
2.4.1.1 酸类
酸类物质是食醋酸味的主要呈味物质,从表4中可以看出,主要酸类物质为异戊酸和己酸。图2(a)结果表示随着封醅时间的加长,酸类物质种类在封醅3 d增至11种,封醅15 d则降低至9种,封醅30 d降低至8种;酸类物质总含量随着时间加长而不断降低,封醅30 d降低至2.990±0.071 mg/L,这可能是由于经过封醅处理,大量的好氧菌死亡,导致酸类物质种类和数量的下降。因此,封醅处理15 d后会降低醋中挥发性酸类物质种类及含量。
2.4.1.2 醇类
在食醋酿造过程中,乙醇、苯乙醇是镇江香醋醋酸发酵的主要底物,从表4中可以看出封醅30 d后乙醇、苯乙醇含量分别为2.040±0.291、14.622±0.708 mg/L,处于下降趋势,乙醇主要由酿酒酵母发酵产生,苯乙醇是苯丙氨酸在酵母菌降解产生醛后进一步还原生产[31-32]。图2(b)结果表示未封醅醋卤中检测出醇类物质有10种,总含量为23.505±0.812 mg/L,经过封醅处理15 d后以后,醇类种类下降至7种,总含量降为20.382 mg/L,而且异丁醇、正己醇、正辛醇没有检测出,究其原因,可能是因为参与酯化反应和氧化反应造成消耗。通过封醅处理15 d以上,醇类种类和含量均产生下降,有助于酯类物质的生产。
2.4.1.3 酯类
酯类物质是镇江香醋香味的主要物质也是挥发性成分中最多的一类物质。从图2(c)中可以看出,在不封醅的香醋中仅检出10种,而封醅3 d后的香醋中检出15种,且含量增高,其中封醅30 d后总含量达到最高值6.779±0.118 mg/L,种类达到20种。通过封醅处理,与未封醅组相比新增了乙酸甲酯、乙酸丁酯、苯乙酸乙酯、甲酸-2-苯乙酯、DL-2-羟基-4-甲基戊酯、十五酸乙酯、反油酸乙酯、邻苯二甲酸二丁酯、香草酸乙酯、4-羟基-3-甲氧基-苯丙酸乙酯10种酯类物质。从表4结果得知,乙酸乙酯从未封醅的0.850±0.035 mg/L增长至封醅30 d的1.380±0.067 mg/L;乙酸苯乙酯从未封醅的0.025±0.004 mg/L增长至封醅30 d的1.423±0.008 mg/L,这与醇类物质中乙醇和苯乙醇含量降低相对应,醇与酸反应形成了酯。通过酯类指标的变化分析,封醅处理有助于酯类物质种类和含量的增加,封醅时间越长,酯类物质总含量越高,香醋成品的风味可能越好。
2.4.1.4 醛类
图2(d)中表明封醅15 d后的香醋中醛类物质种类比封醅前多2种,但正几醛则随着封醅处理后未检出,醛类总含量由5.590±0.345 mg/L增长至5.826±0.317 mg/L。从表4可以看出镇江香醋中的醛类物质主要为糠醛、苯甲醛、异戊醛、苯乙醛,其中糠醛含量最多,在封醅30 d时为4.023±0.249 mg/L,镇江香醋含糖分较多,糖类和含氮化合物发生美拉德反应易生产糠醛[33]。封醅处理可以提高香醋中醛类物质种类及含量。
2.4.1.5 酮类
从图2(e)中可以看出封醅15 d后的香醋中酮类物质比封醅前多4种,含量也从0.857±0.028 mg/L增长至1.686±0.057 mg/L。经过封醅处理30 d后3-羟基-2-丁酮和2,3-丁二酮分别达到最高值0.923±0.053、0.688±0.024 mg/L,这两种物质对镇江香醋的特征风味作用突出且含量随着封醅天数的增加而增加,3-羟基-2-丁酮可由乳酸脱氢酶作用乳酸变为丙酮酸,丙酮酸继续酶化生成[34],封醅环节为乳酸菌代谢提供了条件从而使得3-羟基-2-丁酮含量增加;2,3-丁二酮通常被认为是四甲基吡嗪的前体物质[35]。封醅处理15 d后可使香醋中的酮类种类达到最高值7种,总含量也增长至1.686±0.057 mg/L,封醅处理可以提高香醋中酮类物质种类及含量。
2.4.1.6 吡嗪类
图2(f)表明吡嗪类物质种类通过封醅处理从3种变为5种(封醅3 d以上),表4表明封醅时间越长吡嗪类总含量越高,从未封醅的0.763±0.021 mg/L持续增长至封醅30 d后的2.249±0.081 mg/L,是未封醅组的2.9倍。主要的吡嗪类物质为四甲基吡嗪,四甲基吡嗪具有强烈的坚果和花生味,也是贡献镇江香醋风味的重要物质之一[36]。通过对吡嗪类的指标分析,封醅处理3 d后吡嗪类种类达到5种,吡嗪类物质总含量也随着封醅时间延长而增加,封醅处理丰富了吡嗪类物质种类及总含量,可对香醋品质产生影响。
2.4.1.7 其他类
图2(g)表明其他类物质种类通过封醅处理从2种增加至5种,新增的种类为对乙基苯酚、2-乙酰吡咯、二甲基硫醚,封醅30 d后其他类物质总含量由0.154±0.006 mg/L增加至最高值0.428±0.014 mg/L,主要成分为4-甲氧基-2-甲氧基苯酚和2,4-二叔丁基苯酚。通过其他类指标的变化分析,封醅处理有助于其他类物质种类和含量的增加,香醋成品的风味可能越好。
2.4.2 不同封醅时间镇江香醋挥发性物质主成分分析
采用SIMC 14.1 软件对不同封醅时间镇江香醋GC-MS数据进行主成分分析,结果如图3所示:在主成分为2时,R2X为0.95,Q2为0.852(大于0.5),表明该模型的预测能力良好,所建模型稳定可靠。5种不同封醅天数的样品在主成分空间中相对独立分布,得到明显区分,说明不同封醅时间的镇江香醋挥发性物质种类和含量存在差异。酸类和醇类的位置与不封醅镇江香醋的位置相近,说明酸类和醇类是不封醅香醋主要挥发性物质;酯类、酮类和其他物质位置与封醅15 d和封醅30 d镇江香醋位置相近,说明酯类、酮类等其他物质是封醅香醋的主要挥发性物质,品质更好。因此,封醅处理15 d以上时对香醋成品中挥发性风味物质的形成具有较大的影响,封醅后的香醋成品中酯类、酮类、醛类等挥发性风味物质种类更多丰富,含量更高,风味更加浓郁。
3. 结论
与不封醅工艺相比较,镇江香醋通过封醅15 d后总酸和不挥发酸分别显著(P<0.05)增加至7.30±0.06 g/100 mL和2.36±0.03 g/100 mL,还原糖显著(P<0.05)降低至2.25±0.02 g/100 mL,醋卤有机酸中乳酸含量显著性增加(P<0.05)至1133.57±1.47 mg/100 mL,这些指标的提高有助于香醋柔和度的提高;通过氨基酸分析得出经过15 d以上的封醅处理,醋卤中18种氨基酸的含量均显著增加(P<0.05),可为香醋后期陈酿提供更多的风味基础物质;通过对挥发性物质含量进行分析,得出封醅15 d后香气物质种类达到最高的63种,总含量也达到最高值39.390 mg/L,酯类和醇类是封醅香醋的主要挥发性物质。综合各项指标和风味物质差异,封醅工艺对香醋风味品质的形成有重要的影响,通过封醅处理15 d以上的香醋品质优于不封醅的香醋,但其风味物质的差异形成的机理有待后续进一步地探究。
-
表 1 不同封醅时间对醋卤的基本理化指标的影响
Table 1 Effect of different dumping process on the physicochemical index of vinegar liquid
表 2 不同封醅时间对醋卤中有机酸含量的影响
Table 2 Effect of different dumping process on the content of organic acid of vinegar liquid
有机酸
(mg/100 mL)不封醅 封醅3 d 封醅7 d 封醅15 d 封醅30 d 酒石酸 169.61±0.64a 169.59±0.78a 170.85±0.58a 171.72±0.89a 171.41±1.37a 丙酮酸 41.23±1.04a 41.21±0.58a 41.34±1.21a 41.29±1.00a 41.36±0.72a 酮戊二酸 7.59±0.80a 7.62±1.14a 7.68±0.57a 7.74±1.62a 7.66±0.31a 乳酸 1105.78±0.76a 1125.21±1.06b 1126.24±0.23b 1133.57±1.47bc 1135.87±1.07bc 乙酸 5044.14±1.32a 5043.16±2.05a 5041.51±1.47a 5032±0.68a 5033.04±0.74a 柠檬酸 53.64±1.06a 52.68±0.59a 53.51±1.76a 52.95±1.32a 54.05±0.26a 焦谷氨酸 103.25±0.96a 104.27±1.05a 104.56±1.08a 104.67±0.52a 104.64±0.26a 琥珀酸 90.21±0.54a 90.54±0.78a 90.88±1.05a 91.20±1.89a 91.43±2.08a 表 3 不同封醅时间对醋卤中游离氨基酸含量的影响
Table 3 Effect of different dumping process on the content of free amino acid in vinegar liquid
氨基酸种类(mg/L) 不封醅 封醅3 d 封醅7 d 封醅15 d 封醅30 d 磷酸丝氨酸 149.66±0.06b 149.75±0.60b 148.65±0.15a 149.66±0.42b 149.82±0.06b 牛磺酸 26.54±0.12a 26.54±0.03a 26.55±0.04a 26.64±0.03a 26.66±0.09a 天冬氨酸 1050.65±0.05a 1051.23±0.19b 1051.55±0.32c 1051.65±0.05cd 1051.82±0.08cd 苏氨酸 715.52±0.04a 715.55±0.03a 715.56±0.01a 715.6±0.28a 715.62±0.04a 丝氨酸 95.71±0.00a 95.72±0.01a 95.73±0.05a 95.73±0.03a 95.74±0.03a 天冬酰胺 539.83±0.13a 539.95±0.03ab 540.01±0.10 ab 540.10±0.14b 540.11±0.09b 谷氨酸 586.85±0.05a 587.62±0.04b 587.62±0.04b 587.65±0.16b 587.89±0.18c 甘氨酸 804.53±0.30a 804.55±0.04a 804.56±0.15a 804.62±0.15a 804.63±0.04a 丙氨酸 1315.91±0.06a 1315.92±0.05a 1315.99±0.12a 1316.52±0.06b 1316.66±0.08b 瓜氨酸 ND ND ND ND ND 缬氨酸 209.65±0.12a 209.99±0.18a 210.50±0.44b 211.50±0.08c 215.60±0.10d 胱氨酸 101.01±0.34a 102.28±0.08ab 103.50±0.51b 104.20±0.60bc 106.80±0.45d 蛋氨酸 325.78±0.08a 325.98±0.22a 365.85±0.03b 384.21±0.64c 392.10±0.60d 异亮氨酸 652.01±0.14a 652.32±0.48a 653.21±0.14b 654.01±0.02c 654.02±0.12c 亮氨酸 1352.72±0.30a 1352.95±0.15a 1353.01±0.10a 1353.89±0.10b 1354.25±0.09c 酪氨酸 519.52±0.38a 520.52±0.30a 521.58±0.14b 521.95±0.09b 521.99±0.02b 苯丙氨酸 505.20±0.21a 505.55±0.20a 506.21±0.06b 506.31±0.53b 506.98±0.31c γ-氨基丁酸 14.59±0.16a 15.21±0.19a 15.22±0.51a 16.86±0.56b 16.85±0.02b 组氨酸 452.35±0.10a 452.55±0.25a 452.55±0.23a 452.56±0.01a 452.56±0.12a 肌肽 9.88±0.24a 10.88±0.01b 10.88±0.00b 10.89±0.00b 10.89±0.01b 鸟氨酸 102.56±0.04a 102.57±0.06a 102.57±0.04a 102.98±0.07b 103.2±0.08c 赖氨酸 715.02±0.10a 715.25±0.04ab 715.29±0.02b 716.21±0.03c 716.21±0.27c 精氨酸 625.32±0.16a 625.69±0.14ab 625.98±0.08bc 626.35±0.49c 627.81±0.04d 羟脯氨酸 6.25±0.09a 6.52±0.12b 6.98±0.10c 7.21±0.08d 7.32±0.04d 脯氨酸 188.99±0.04a 189.95±0.13b 191.21±0.04c 191.32±0.17c 191.68±0.11d ∑总计 11066.05±0.88 a 11075.04±0.32b 11120.76±2.17c 11148.62±1.36d 11167.21±0.20e 注:“ND”表示未测出;表4同。 表 4 不同封醅时间对香醋中挥发性风味物质含量的影响
Table 4 Effect of different dumping process on the content of volatile flavor substance in vinegar
序号 风味物质
种类(mg/L)不封醅香醋 封醅3 d香醋 封醅7 d香醋 封醅15 d香醋 封醅30 d香醋 A1 丁酸 0.021±0.005 0.016±0.003 0.008±0.003 ND ND A2 异戊酸 1.908±0.083 1.871±0.082 1.805±0.087 1.713±0.087 1.622±0.092 A3 正戊酸 0.034±0.002 0.021±0.001 0.010±0.003 ND ND A4 4-甲基戊酸 0.035±0.004 0.032±0.005 0.032±0.007 0.031±0.004 0.03±0.004 A5 己酸 0.592±0.045 0.549±0.062 0.536±0.057 0.525±0.070 0.523±0.038 A6 辛酸 0.402±0.012 0.402±0.014 0.400±0.027 0.411±0.017 0.413±0.008 A7 壬酸 0.068±0.017 0.069±0.010 0.071±0.007 0.072±0.009 0.073±0.011 A8 2-辛烯酸 ND 0.010±0.001 0.016±0.002 0.021±0.002 0.042±0.001 A9 苯甲酸 0.382±0.042 0.312±0.045 0.287±0.039 0.245±0.021 ND A10 苯乙酸 0.273±0.027 0.218±0.018 0.189±0.014 0.124±0.009 0.098±0.010 A11 棕榈酸 0.032±0.005 0.055±0.008 0.084±0.009 0.102±0.007 0.189±0.012 ∑酸类合计 3.747±0.054 3.555±0.061 3.438±0.052 3.244±0.054 2.990±0.071 B1 乙醇 5.120±0.241 4.970±0.343 4.580±0.573 3.570±0.407 2.040±0.291 B2 异丁醇 0.052±0.009 ND ND ND ND B3 异戊醇 0.605±0.028 0.585±0.037 0.571±0.054 0.501±0.047 0.489±0.033 B4 正己醇 0.017±0.005 0.008±0.001 ND ND ND B5 2-乙基己醇 0.728±0.057 0.699±0.028 0.601±0.043 0.523±0.034 0.418±0.042 B6 正辛醇 0.022±0.003 ND ND ND ND B7 2,3-丁二醇 0.258±0.019 0.207±0.010 0.184±0.008 0.154±0.008 0.101±0.007 B8 2-呋喃甲醇 0.851±0.071 0.714±0.057 0.623±0.064 0.511±0.047 0.401±0.031 B9 糠醇 0.598±0.024 0.507±0.034 0.464±0.036 0.411±0.032 0.308±0.018 B10 苯乙醇 15.254±0.652 15.012±0.742 14.894±0.842 14.712±0.924 14.622±0.708 ∑醇类合计 23.505±0.812 22.702±0.904 21.917±1.012 20.382±1.084 18.379±0.884 C1 乙酸甲酯 ND 0.090±0. 070 0.090±0.003 0.100±0.002 0.110±0.003 C2 乙酸乙酯 0.850±0.035 0.920±0.047 1.050±0.051 1.202±0.073 1.380±0.067 C3 乙酸丁酯 ND ND 0.020±0.003 0.030±0.003 0.030±0.004 C4 乙酸异戊酯 0.042±0.003 0.069±0.005 0.125±0.007 0.187±0.011 0.203±0.008 C5 己酸乙酯 0.016±0.003 0.033±0.004 0.054±0.006 0.089±0.005 0.12±0.007 C6 乳酸乙酯 0.089±0.051 0.124±0.062 0.148±0.074 0.227±0.061 0.299±0.91 C7 丁二酸单乙酯 0.128±0.008 0.129±0.010 0.130±0.008 0.140±0.009 0.148±0.012 C8 丁二酸二乙酯 0.681±0.053 0.685±0.043 0.752±0.065 0.763±0.045 0.778±0.042 C9 乙酸呋喃甲酯 0.201±0.008 0.212±0.015 0.224±0.012 0.231±0.015 0.244±0.015 C10 乙酸苯乙酯 0.025±0.004 0.057±0.003 0.092±0.004 1.142±0.002 1.423±0.008 C11 苯乙酸乙酯 ND 0.009±0.001 0.012±0.003 0.03±0.001 0.039±0.002 C12 甲酸-2-苯乙酯 ND ND 0.058±0.014 0.112±0.009 0.135±0.024 C13 DL-2-羟基-4-甲基戊酸乙酯 ND 0.011±0.003 0.021±0.005 0.025±0.002 0.032±0.001 C14 γ-壬内酯 0.214±0.005 0.359±0.018 0.487±0.024 0.892±0.037 1.008±0.047 C15 棕榈酸乙酯 0.104±0.009 0.187±0.011 0.247±0.014 0.387±0.015 0.455±0.021 C16 十五酸乙酯 ND 0.008±0.000 0.012±0.002 0.019±0.001 0.024±0.001 C17 反油酸乙酯 ND 0.062±0.007 0.097±0.005 0.112±0.004 0.136±0.006 C18 邻苯二甲酸二丁酯 ND ND ND 0.014±0.002 0.021±0.003 C19 香草酸乙酯 ND ND 0.011±0.001 0.026±0.002 0.034±0.004 C20 4-羟基-3-甲氧基-苯丙酸乙酯 ND ND ND 0.099±0.005 0.160±0.009 ∑酯类合计 2.350±0.070 2.955±0.084 3.63±0.081 5.845±0.121 6.779±0.118 D1 乙醛 ND 0.009±0.002 0.015±0.004 0.019±0.008 0.025±0.007 D2 异丁醛 0.052±0.011 0.053±0.021 0.054±0.017 0.056±0.014 0.055±0.021 D3 异戊醛 0.287±0.014 0.294±0.020 0.301±0.021 0.305±0.0197 0.31±0.0207 D4 正己醛 0.005±0.001 ND ND ND ND D5 正辛醛 ND 0.010±0.001 0.011±0.002 0.015±0.003 0.019±0.002 D6 壬醛 0.002±0.000 ND ND 0.015±0.001 0.016±0.002 D7 糠醛 4.015±0.224 3.994±0.245 3.982±0.279 4.011±0.304 4.023±0.249 D8 苯甲醛 1.021±0.069 1.067±0.084 1.076±0.071 1.092±0.091 1.177±0.086 D9 苯乙醛 0.145±0.020 0.185±0.017 0.207±0.024 0.223±0.015 0.248±0.021 D10 5-甲基呋喃醛 0.042±0.003 0.043±0.002 0.045±0.002 0.047±0.003 0.046±0.004 D11 5-羟甲基糠醛 ND 0.013±0.001 0.018±0.002 0.021±0.001 0.028±0.001 D12 3-(2-呋喃基)-2-苯基丙烯醛 0.021±0.002 0.023±0.002 0.020±0.001 0.022±0.002 0.022±0.003 ∑醛类合计 5.590±0.345 5.691±0.421 5.730±0.378 5.826±0.317 5.969±0.352 E1 丙酮 0.212±0.012 0.215±0.015 0.213±0.018 0.216±0.020 0.218±0.017 E2 2,3-丁二酮 0.119±0.010 0.317±0.021 0.389±0.019 0.454±0.025 0.688±0.024 E3 3-羟基-2-丁酮 0.526±0.034 0.628±0.041 0.787±0.038 0.815±0.047 0.923±0.053 E4 甲基庚烯酮 ND ND ND 0.011±0.001 0.021±0.001 E5 3-乙酰氧基-2-丁酮 ND 0.015±0.001 0.029±0.002 0.034±0.002 0.044±0.003 E6 二氢-5-戊基-2(3H)-呋喃酮 ND 0.012±0.001 0.023±0.002 0.035±0.001 0.096±0.004 E7 2,6-二甲基-4-庚酮 ND 0.065±0.003 0.097±0.004 0.121±0.007 0.157±0.007 ∑酮类合计 0.857±0.028 1.252±0.048 1.538±0.041 1.686±0.057 2.147±0.061 F1 2,4-二甲基吡嗪 ND 0.028±0.003 0.036±0.003 0.087±0.005 0.097±0.005 F2 2,6-二甲基吡嗪 0.13±0.009 0.141±0.007 0.151±0.007 0.195±0.009 0.203±0.008 F3 6-甲基-2-乙基吡嗪 ND 0.012±0.001 0.024±0.002 0.037±0.001 0.048±0.003 F4 2,3,5-三甲基吡嗪 0.124±0.009 0.197±0.009 0.268±0.013 0.412±0.018 0.478±0.021 F5 2,3,5,6-四甲基吡嗪 0.509±0.024 0.688±0.031 0.812±0.043 1.332±0.059 1.423±0.064 ∑吡嗪类合计 0.763±0.021 1.066±0.045 1.291±0.064 2.063±0.087 2.249±0.081 G1 对乙基苯酚 ND 0.009±0.000 0.012±0.002 0.024±0.001 0.036±0.002 G2 4-甲氧基-2-甲氧基苯酚 0.089±0.004 0.091±0.005 0.104±0.005 0.124±0.004 0.147±0.009 G3 2,4-二叔丁基苯酚 0.065±0.006 0.094±0.005 0.124±0.007 0.164±0.010 0.191±0.011 G4 2-乙酰吡咯 ND ND ND 0.008±0.001 0.012±0.001 G5 二甲基硫醚 ND ND 0.013±0.002 0.024±0.001 0.042±0.003 ∑其他合计 0.154±0.006 0.194±0.004 0.253±0.010 0.344±0.012 0.428±0.014 总计 36.966 37.415 37.797 39.390 38.941 -
[1] 聂佳慧, 李艺, 秦雪梅, 等. 谷物酿造传统食醋化学成分研究进展[J]. 食品科学,2018,19:322−328. [NIE J H, LI Y, QIN X M, et al. Recent progress in chemical composition of grain-derived traditional vinegar[J]. Food Science,2018,19:322−328. doi: 10.7506/spkx1002-6630-201824048 NIE J H, LI Y, QIN X M, et al. Recent progress in chemical composition of grain-derived traditional vinegar[J]. Food Science, 2018, 19: 322-328 doi: 10.7506/spkx1002-6630-201824048
[2] HIDALGO C, VEGAS C, MATEO E, et al. Effect of barrel design and the inoculation of Acetobacter pasteurianus in wine vinegar production[J]. International Journal of Food Microbiology,2010,141(1−2):56−62. doi: 10.1016/j.ijfoodmicro.2010.04.018
[3] TERAHARA N, MAATSUI T, FUKUI K, et al. Caffeoylsophorose in a red vinegar produced through fermentation with purple sweetpotato[J]. Journal of Agricultural & Food Chemistry,2003,51(9):2539.
[4] TESFAYE W, MORALES M, GARCIA M, et al. Wine vinegar: Technology, authenticity and quality evaluation[J]. Trends in Food Science and Technology,2002,13:12−21. doi: 10.1016/S0924-2244(02)00023-7
[5] HARUTA S, UENO S, EGAWA I, et al. Succession of bacterial and fungal communities during a traditional pot fermentation of ice vinegar assessed by PCR-mediated denaturing gradient gelelectrophoresis[J]. International Journal of Food Microbiology,2006,109:79−87. doi: 10.1016/j.ijfoodmicro.2006.01.015
[6] 许伟, 张晓君, 许泓瑜, 等. 镇江香醋醋酸发酵过程中细菌群落组成分析[J]. 微生物学通报,2007,34(4):646−649. [XU W, ZHANG X J, XU H Y, et al. Analysis of bacterial communities in aerobic solid-fermentation culture of Zhenjiang Hengshun vinergar[J]. Microbiology Bulletin,2007,34(4):646−649. doi: 10.3969/j.issn.0253-2654.2007.04.007 XU W, ZHANG X J, ZHANG H Y, et al. Analysis of bacterial communities in aerobic solid-fermentation culture of Zhenjiang Hengshun vinergar[J]. Microbiology Bulletin, 2007, 34(4): 646-649. doi: 10.3969/j.issn.0253-2654.2007.04.007
[7] 朱瑶迪, 邹小波, 石吉勇, 等. 镇江香醋固态发酵过程分析[J]. 中国食品学报,2014,14(8):256−261. [ZHU Y D, ZOU X B, SHI J Y, et al. Analysis of solid-fermentation process of Zhenjiang balsamic vinegar[J]. Journal of Chinese Institute of Food Science and Technology,2014,14(8):256−261. doi: 10.16429/j.1009-7848.2014.08.029 ZHU Y D, ZOU X B, SHI J Y et al. Analysis of solid-fermentation process of Zhenjiang balsamic vinegar[J]. Journal of Chinese Institute of Food Science and Technology, 2014, 14(8): 256-261. doi: 10.16429/j.1009-7848.2014.08.029
[8] 谢晓林. 中国传统食醋主要风味物质组成及其差异性分析[D]. 天津: 天津科技大学, 2017. XIE X L. Analysis of main flavor compounds composition and their differences in Chinese traditional vinegar[D]. Tianjin: Tianjin University of Science and Technology, 2017.
[9] 傅金泉. 国家级非物质文化遗产中的酿造国宝[J]. 酿酒,2008,35(3):111−112. [FU J Q. Brewing national treasures in national intangible cultural heritage[J]. Liquor Making,2008,35(3):111−112. doi: 10.3969/j.issn.1002-8110.2008.03.041 FU J Q. Brewing national treasures in national intangible cultural heritage[J]. Liquor Making, 2008, 35(3): 111-111. doi: 10.3969/j.issn.1002-8110.2008.03.041
[10] LIU D, YANG Z, BEEFTINK H H, et al. Chinese vinegar and its solid-state fermentation process[J]. Food Reviews International,2004,20(4):407−424. doi: 10.1081/FRI-200033460
[11] 沈志远. 酿造食醋苦味的成因分析及控制[J]. 食品科学,2003,8:16−18. [SHEN Z Y. Analysis and control of bitterness of manufacture vinegar[J]. Food Science,2003,8:16−18. doi: 10.3321/j.issn:1002-6630.2003.08.004 SHEN Z Y. Analysis and control of bitterness of manufacture vinegar[J]. Food science, 2003, 8: 16-18. doi: 10.3321/j.issn:1002-6630.2003.08.004
[12] 余永建. 高温季节食醋生产中影响酒精发酵的因素及改进措施[J]. 中国酿造,2003(1):39−40. [YU Y J. Influence factors of the alcohol fermentation and its improving methods during the production of vinegar in hot summer[J]. China Brewing,2003(1):39−40. doi: 10.3969/j.issn.0254-5071.2003.01.015 YU Y J. Influence factors of the alcohol fermentation and its improving methods during the production of vinegar in hot summer[J]. China Brewing, 2003(1): 39-40. doi: 10.3969/j.issn.0254-5071.2003.01.015
[13] 李信, 余永建, 陈雯, 等. 不同种类大米对酿造香醋品质的影响[J]. 食品与发酵工业,2020,404(8):171−176. [LI X, YU Y J, CHEN W, et al. Characteristics of aromatic vinegar in the fermentation with different varieties of rice[J]. Food and Fermentation Industries,2020,404(8):171−176. doi: 10.13995/j.cnki.11-1802/ts.022830 LI X, YU Y J, CHEN W, et al. Characteristics of aromatic vinegar in the fermentation with different varieties of rice[J]. Food and Fermentation Industries, 2020, 404(8): 171-176. doi: 10.13995/j.cnki.11-1802/ts.022830
[14] 李信, 余永建, 朱胜虎, 等. 镇江香醋酿造过程中种子醅的优化[J]. 食品与发酵工业,2017(3):115−119. [LI X, YU Y J, ZHU S H, et al. Optimization of starter solid-state vinegar culture acetic fermentation of Zhenjiang aromatic vinegar[J]. Food and Fermentation Industries,2017(3):115−119. doi: 10.13995/j.cnki.11-1802/ts.201703020 LI X, YU Y J, ZHU S H, et al. Optimization of starter solid-state vinegar culture acetic fermentation of Zhenjiang aromatic vinegar[J]. Food and Fermentation Industries, 2017(3): 115-119. doi: 10.13995/j.cnki.11-1802/ts.201703020
[15] 李国权, 刘小裕, 孙宗保, 等. 不同加工方式镇江香醋不同季节理化指标[J]. 食品工业,2020,41(4):323−327. [LI G Q, LIU X Y, SUN Z B, et al. Physical and chemical indicators of different processing methods of Zhenjiang vinegar in different seasons[J]. The Food Industry,2020,41(4):323−327. LI G Q, LIU X Y, SUN Z B, et al. Physical and chemical indicators of different processing methods of Zhenjiang vinegar in different seasons[J]. The Food Industry, 2020, 41(4): 323-327.
[16] 孙宗保, 赵杰文, 邹小波, 等. 镇江香醋特征香气成分加工过程中的变化和形成机理分析[J]. 中国食品学报,2010,10(3):120−126. [SUN Z B, ZHAO J W, ZOU X B et al. Changes of characteristic aroma component in Zhenjiang fragrance vinegar during processing and analysis of their formation mechanism[J]. Journal of Chinese Institute of Food Science and Technology,2010,10(3):120−126. doi: 10.3969/j.issn.1009-7848.2010.03.018 SUN Z B, ZHAO J W, ZOU X B et al. Changes of characteristic aroma component in Zhenjiang fragrance vinegar during processing and analysis of their formation mechanism[J]. Journal of Chinese Institute of Food Science and Technology, 2010, 10(3): 120-126. doi: 10.3969/j.issn.1009-7848.2010.03.018
[17] ZHOU Z, JIAN D, GONG M, et al. Characterization of the key aroma compounds in aged Zhenjiang aromatic vinegar by gas chromatography-olfactometry-mass spectrometry, quantitative measurements, aroma recombination and omission experiments[J]. Food Research International,2020,136:109434. doi: 10.1016/j.foodres.2020.109434
[18] WANG Z, LI T, LIU F, et al. Effects of ultrasonic treatment on the maturation of Zhenjiang vinegar[J]. Ultrasonics Sonochemistry,2017,39:272. doi: 10.1016/j.ultsonch.2017.04.020
[19] XU W, HUANG Z, ZHANG X, et al. Monitoring the microbial community during solid-state acetic acid fermentation of Zhenjiang aromatic vinegar[J]. Food Microbiology,2011,28(6):1175−1181. doi: 10.1016/j.fm.2011.03.011
[20] XU W, LU Z, CHEN J, et al. Ligustrazine formation in Zhenjiang aromatic vinegar: Changes during fermentation and storing process[J]. Journal of the Science of Food and Agriculture,2011,91(9):1612−1617. doi: 10.1002/jsfa.4356
[21] 苗雨田, 杨悠悠, 王浩, 等. 全自动氨基酸分析仪法测定不同年份黄酒中游离氨基酸的含量[J]. 食品安全质量检测学报,2015,6(4):1154−1161. [MIAO Y T, YANG Y Y, WANG H, et al. Determination of amino acids content in yellow rice wine of different years with automatic amino acid analyzer[J]. Journal of Food Safety and Quality,2015,6(4):1154−1161. doi: 10.19812/j.cnki.jfsq11-5956/ts.2015.04.012 MIAO Y T, YANG Y Y, WANG H, et al. Determination of amino acids content in yellow rice wine of different years with automatic amino acid analyzer[J]. Journal of Food Safety and Quality, 2015, 6(4): 1154-1161. doi: 10.19812/j.cnki.jfsq11-5956/ts.2015.04.012
[22] 孙宗保. 镇江香醋挥发性成分分析及醋龄的识别研究[D]. 镇江: 江苏大学, 2014. SUN Z B. Analysis of volatile components and study on age discrimination of Zhenjiang aromatic vinegar[D]. Zhenjiang: Jiangsu University, 2014.
[23] 许伟. 镇江香醋醋酸发酵过程微生物群落及其功能分析[D]. 无锡: 江南大学, 2011. XU W. Analysis of the microbial diversity and function during acetic acid fermentation process of Zhenjiang aromatic vinegar[D]. Wuxi: Jiangnan University, 2011.
[24] YU Y, LI X, ZHANG J. Lactobacillus jinshani sp. nov., isolated from solid-state vinegar culture of Zhenjiang aromatic vinegar[J]. Antonie van Leeuwenhoek,2020,113(1):43−54. doi: 10.1007/s10482-019-01316-1
[25] 强敏, 吕复强, 王韦岗. 地理标志产品镇江香醋主要理化指标影响因素分析[J]. 中国调味品,2018,43(7):4. [QIANG M, LÜ F J, WANG W G. Analysis of influencing factors for main physicochemical indexes of geographical indication product Zhenjiang vinegar[J]. China Condiment,2018,43(7):4. doi: 10.3969/j.issn.1000-9973.2018.07.034 QIANG M, LV F J, WANG W G. Analysis of influencing factors for main physicochemical indexes of geographical indication product Zhenjiang vinegar[J]. China Condiment, 2018, 43(7): 4. doi: 10.3969/j.issn.1000-9973.2018.07.034
[26] 李国权, 陆震鸣, 余永建, 等. 镇江香醋有机酸风味特征的分析[J]. 中国调味品,2013,11:67−69. [LI G Q, LU Z M, YU Y J, et al. Analysis of flavor characteristics of organic acids in Zhenjiang aromatic vinegar[J]. China Condiment,2013,11:67−69. doi: 10.3969/j.issn.1000-9973.2013.08.016 LI G Q, LU Z M, YU Y J, et al. Analysis of flavor characteristics of organic acids in Zhenjiang aromatic vinegar[J]. China Condiment, 2013, 11: 67-69. doi: 10.3969/j.issn.1000-9973.2013.08.016
[27] 郑战伟, 张宝善, 祁春燕. 醋品中成分检测方法的研究进展[J]. 食品工业科技,2012,33(2):446−450. [ZHENG Z W, ZHANG B S, QI C Y. Research of the progress of detection methods for ingredient in vinegar[J]. Food and Fermentation Industries,2012,33(2):446−450. doi: 10.13386/j.issn1002-0306.2012.02.092 ZHENG Z W, ZHANG B S, QI C Y. Research of the progress of detection methods for ingredient in vinegar[J]. Food and Fermentation Industries, 2012, 33(2) : 446-450. doi: 10.13386/j.issn1002-0306.2012.02.092
[28] YU Y, LU Z, YU N, et al. HS-SPME/GC-MS and chemometrics for volatile composition of Chinese traditional aromatic vinegar in the Zhenjiang region[J]. Journal of the Institute of Brewing,2012,118:133−141. doi: 10.1002/jib.20
[29] 张丽娟, 许伟, 许泓瑜, 等. 恒顺香醋固态发酵过程中有机酸的变化分析[J]. 中国调味品,2009,34(2):106−109. [ZHANG L J, XU W, XU H Y, et al. Analysis of organic acids in aerobic solid-fermentation culture of Hengshun vinegar[J]. China Condiment,2009,34(2):106−109. doi: 10.3969/j.issn.1000-9973.2009.02.025 ZHANG L J, XU W, XU H Y, et al. Analysis of organic acids in aerobic solid-fermentation culture of hengshun vinegar[J]. China Condiment, 2009, 34(2): 106-109. doi: 10.3969/j.issn.1000-9973.2009.02.025
[30] 余宁华. 中国不同地域食醋风味品质的差异性研究[D]. 无锡: 江南大学, 2011. YU N H. Study on the difference of vinegar flavor and quality in different regions of China[D]. Wuxi: Jiangnan University, 2011.
[31] CAMARA J, ALVES M, MARQUES J. Changes in volatile composition of Madeira wines during their oxidative ageing[J]. Analytica Chimica Acta,2006,563:188−197. doi: 10.1016/j.aca.2005.10.031
[32] CALLEJON R, TESFAYE W, WORIJA M, et al. Volatile compounds in red wine vinegars obtained by submerged and surface acetification in different woods[J]. Food Chemistry,2009,113:1252−1259. doi: 10.1016/j.foodchem.2008.08.027
[33] WANG L, HUANG X, WANG C, et al. Coupling electronic nose with GC-MS improves flavor recognition and grade differentiation of Zhenjiang aromatic vinegar[J]. Journal of Food Process Engineering,2021,7(44):E13806.
[34] 宋刚. 微生物代谢与香气成分[J]. 中国酿造,2006,2(155):64−68. [SONG G. Metabolism of microorganisms and flavor components[J]. China Brewing,2006,2(155):64−68. SONG G. Metabolism of microorganisms and flavor components[J]. China Brewing , 2006, 2(155): 64-68.
[35] 孙红, 柴丽娟, 陆震鸣, 等. 镇江香醋核心酿造微生物醋酸杆菌和乳酸杆菌共培养对生长代谢的影响[J]. 微生物学报,2021,61(7):2065−2076. [SUN H, CHAI L J, LU Z M, et al. Effect of co-culture of Acetobacter and Lactobacillus strains on growth and metabolism of the key functional microbes during Zhenjiang aromatic vinegar fermentation[J]. Acta Microbiologica Sinica,2021,61(7):2065−2076. doi: 10.13343/j.cnki.wsxb.20200537 SUN H, CHAI L J, LU Z M, et al. Effect of co-culture of Acetobacter and Lactobacillus strains on growth and metabolism of the key functional microbes during Zhenjiang aromatic vinegar fermentation[J]. Acta Microbiologica Sinica, 2021, 61(7): 2065-2076. doi: 10.13343/j.cnki.wsxb.20200537
[36] XIAO Z, ZHAO L, TIAN L, et al. GC-FID determination of tetramethylpyrazine and acetoin in vinegars and quantifying the dependence of tetramethylpyrazine on acetoin and ammonium[J]. Food Chemistry,2018,239(15):726.
-
期刊类型引用(1)
1. 王继岚,乔巨慧,刘颖,赵雨初,张思雨,王思明,刘美辰. 人参提取物延缓果蝇衰老的作用及机制研究. 食品工业科技. 2023(03): 406-413 . 本站查看
其他类型引用(0)