Protective Effects of Armillaria mellea Polysaccharides on Nicotine-induced Lung Injury in Rats
-
摘要: 目的:研究榛蘑多糖(Armillaria mellea polysaccharides)对尼古丁诱导的大鼠肺损伤的保护作用及其作用机制。方法:将SD大鼠随机分为对照组,模型组,榛蘑多糖低、高剂量组。造模时,除对照组,其余各组腹腔注射尼古丁2 mg/kg体质量,榛蘑多糖低、高剂量组分别以200、400 mg/kg体质量灌胃榛蘑多糖。苏木精-伊红染色(Hematoxylin and Eeosin staining,HE)观察肺组织形态学变化;酶联免疫吸附方法检测肿瘤坏死因子-α(Tumor necrosis factor-α,TNF-α)、白介素-6(interleukin-6,IL-6)、白细胞介素-1β(Interleukin 1β,IL-1β)水平,TBA法检测丙二醛(malonaldehyde,MDA)水平,WST-1法检测超氧化物歧化酶(superoxide dismutase,SOD)活力;蛋白免疫印迹方法观察肺组织核因子相关因子2(nuclear factor erythroid 2-relted factor,Nrf2)、血红素加氧酶(heme oxygenase 1,HO-1)蛋白表达情况以及核因子-κB(nuclear fator-kappa B,NF-κB)蛋白的磷酸化水平。结果:与对照组相比,尼古丁诱导后血浆TNF-α、IL-6、IL-1β、MDA水平升高,SOD活力降低,肺组织NF-κB蛋白磷酸化表达水平升高,Nrf2、HO-1蛋白表达水平下降;与模型组相比,榛蘑多糖干预后减轻肺组织损伤程度,明显降低血浆TNF-α、IL-6、IL-1β、MDA水平,提高SOD活力,明显下调肺组织NF-κB蛋白磷酸化表达水平,提高Nrf2、HO-1蛋白表达水平。结论:榛蘑多糖对尼古丁诱导的肺损伤有抑制作用,其作用机制可能与NF-κB、Nrf2/HO-1信号通路的调控有关。Abstract: Objective: To investigate the protective effects of Armillaria mellea polysaccharides on lung injury induced by nicotine in rats. Methods: SD rats were randomly divided into control group, model group and Armillaria mellea polysaccharides low and high dose groups. During modeling, except for the normal group, the other groups were intraperitoneally injected with nicotine 2 mg/kg body weight, and the low and high dose groups were gavaged with Armillaria mellea polysaccharides 200 and 400 mg/kg body weight, respectively. The morphologic changes of lung tissue were observed by HE staining. The levels of TNF-α, IL-6 and IL-1β were detected by ELISA, MDA level was detected by TBA method, SOD activity was detected by WST-1 method. The protein expression levels of Nrf2, HO-1 and p-NF-κB in lung tissues were detected by Western blot assay. Results: Compared with the control group, after intervention of nicotine, the levels of TNF-α, IL-6, IL-1β and MDA were increased, the activity of SOD was decreased in plasma, the phosphorylation expression of NF-κB protein was increased, Nrf2 and HO-1 protein expression were decreased in lung tissue. Compared with the model group, after intervention of Armillaria mellea polysaccharides, the degree of lung tissue injury was alleviated, the levels of TNF-α, IL-6, IL-1β and MDA were significantly decreased, the activity of SOD was increased in plasma, the phosphorylation expression of NF-κB protein was significantly decreased, Nrf2 and HO-1 protein expression were significantly increased in lung tissue. Conclusion: Armillaria mellea polysaccharides could inhibit the lung tissue injury by nicotine induced. The mechanism of action may be related to its regulation of NF-κB and Nrf2/HO-1 signaling pathway.
-
Keywords:
- Armillaria mellea polysaccharides /
- nicotine /
- lung injury /
- inflammation /
- oxidative stress
-
据世界卫生组织统计,目前全球约有11亿吸烟者,预计2025年将增加到13亿,每年约有600万人因吸烟而死亡[1],2017年包括二手烟在内的与吸烟有关的肺部疾病死亡人数为330万[2]。吸烟可以导致机体免疫力下降,是引发心脑血管以及呼吸系统等疾病的公认危险因素。尼古丁是传统香烟和电子烟中主要致瘾成分,是吸烟所致肺损伤的主要因素之一,研究表明它可以通过诱导炎症反应和氧化应激引起肺组织损伤[3-5]。在COVID-19疫情的研究过程中发现,吸烟是导致COVID-19病情恶化的危险因素之一,吸烟者COVID-19病情恶化几率是不吸烟者的1.91倍[6]。由此可见,吸烟对人体危害不容小觑。
榛蘑,学名蜜环菌(Armillariella mellea)是一种药食同源的真菌,属真菌界、真菌门、担子菌亚门、白蘑科、蜜环菌属,具有抗炎[7]、抗氧化[8]、免疫调节[9]等多种药理活性。据文献报道,假蜜环菌多糖可以减轻糖尿病肾病小鼠的炎症因子水平[10];吴军等[11]通过临床试验表明,蜜环菌多糖可通过提高肺癌患者抗氧化酶活力,减少脂质过氧化代谢产物的产生,起到抑制肿瘤作用。然而,尚未见到榛蘑多糖对尼古丁诱导肺损伤相关机制的报道。本课题组前期研究表明,榛蘑多糖可通过抗炎作用减轻脂多糖诱导的大鼠急性肺损伤[12],通过抗氧化作用减轻三氯化铁诱导的大鼠动脉内皮损伤[13]。研究表明,尼古丁的致病机制与炎症和氧化应激有关[5,14],尼古丁诱导后小鼠肺组织损伤程度及NF-κB蛋白表达水平明显高于正常小鼠[15]。榛蘑多糖具有抗炎和抗氧化作用,由此可推测榛蘑多糖可能对尼古丁所致肺损伤有保护作用。因此,本实验以尼古丁建立大鼠肺损伤模型,观察榛蘑多糖对尼古丁所致大鼠肺损伤的保护作用并初步探讨其作用机制。
1. 材料与方法
1.1 材料与仪器
SD大鼠(清洁级)32只,雌雄参半,体重(200±20)g,由延边大学动物实验中心提供。合格证号为SCXK(吉)2011~0007;榛蘑 延吉市西市场;尼古丁(N-008) Sigma-Aldrich;TNF-α ELISA(F04299)、IL-1β ELISA(F12783)、IL-6 ELISA(F03869) 上海研谨生物科技公司;MDA检测试剂盒(A003-1-2)、SOD检测试剂(A001-3-2) 南京建成有限公司;NF-κB抗体(8242S)、p-NF-κB抗体(13346S) Abcam;Nrf2抗体(sc-365949)、HO-1抗体(sc-390991) Santa Cruz;β-actin抗体(bs-0061R) 北京博奥森;Lamin B抗体(WL01775) 沈阳万类生物科技有限公司;核蛋白提取试剂盒(R0050) Solarbio。
冷冻离心机 德国Eppendorf;电泳仪、DYY-7C型电泳槽 北京六一生物科技有限公司;UVp凝胶成像分析仪(CA 91786) 美国ITVp公司;酶标分析仪(RT-6000) 深圳雷杜生命科学股份有限公司;紫外可见分光光度计(TU-1810) 北京普析通用仪器有限责任公司。
1.2 实验方法
1.2.1 榛蘑多糖制备
榛蘑烘干后加入15倍的蒸馏水,80 ℃水浴中浸提2 h后过滤并收集滤液。再向残渣中加入10倍量蒸馏水,重复上述操作,合并两次滤液并离心。将上清液进行加热浓缩后用80%的乙醇将其沉淀。用无水乙醇反复洗涤沉淀至不再黏稠的颗粒状。将洗液进行抽滤,所得沉淀干燥至恒质量。再将其配制成10%水溶液,用三氯醋酸沉淀蛋白质,收集上清。再次用80%的乙醇将多糖沉淀,收集沉淀用无水乙醇反复洗涤至不再黏稠的颗粒状,真空抽滤并加入丙酮清洗,所得沉淀干燥后即得到榛蘑多糖,产率为2.2%[16]。
1.2.2 动物分组及处理
32只SD大鼠(清洁级),雌雄各半,体重在(200±20)g。适应性饲养一周后,将其随机分成四组,分别为对照组,模型组,榛蘑多糖低、高剂量组。每日9:00,除对照组外的其余各组腹腔注射尼古丁2 mg/kg体质量,对照组腹腔注射等量生理盐水。每日14:00,榛蘑多糖低、高剂量组分别灌胃榛蘑多糖200、400 mg/kg体质量,对照组、模型组灌胃等量生理盐水。连续四周,最后一次给药后禁食、禁水12 h。次日,乌拉坦麻醉大鼠,采集心脏血制备血浆,用于生化指标的检测。取大鼠肺组织进行蛋白免疫印迹实验及形态学观察。
1.2.3 肺组织形态学观察
取适当大小肺组织切块,于4%多聚甲醛中固定24 h后,经乙醇脱水、石蜡包埋、切片等操作后,进行HE染色。于光学电子显微镜下拍照观察。
1.2.4 血浆生化指标检测
将血液采集到枸橼酸钠抗凝管内,置于4 ℃冰箱沉降2 h,3000 r/min离心15 min,收集上层血浆。按试剂盒说明书检测血浆中TNF-α、IL-6、IL-1β、MDA含量以及SOD活力。
1.2.5 蛋白表达水平检测
称取肺组织,在冰上剪碎后收集到研磨器中,每50 mg组织加入500 μL PBS,在冰上研磨成细胞悬液,收集到1.5 mL离心管中,500 g离心3 min,弃掉上清液,加入胞浆蛋白抽提试剂,高速涡旋15 s,置于冰上裂解10 min,然后于4 ℃,12000×g离心10 min,上清液即为胞浆蛋白,沉淀为细胞核,向细胞核中加入核蛋白抽提试剂,高速涡旋15 s,置于冰上裂解10 min,然后于4 ℃,12000×g离心10 min,上清液即为核蛋白。蛋白提取后,按照BCA试剂盒说明书进行蛋白定量。蛋白变性后,取30 μg蛋白样品,经电泳、转膜、5%脱脂奶粉封闭(室温1 h)、一抗孵育(4 ℃过夜)、次日二抗孵育(室温2 h)后,通过凝胶成像仪获取图像并分析。通过胞浆蛋白观察Nrf2、HO-1、NF-κB蛋白水平,核蛋白观察p-NF-κB蛋白表达情况。
1.3 数据处理
实验数据均采用平均数±标准差(
±SD)表示,通过SPSS20.0统计学软件对数据进行单因素方差分析,P<0.05表示差异有统计学意义。2. 结果与分析
2.1 榛蘑多糖对大鼠肺组织形态的影响
图1所示,对照组肺泡组织结构完整,肺泡腔轮廓清晰。与对照组相比,模型组肺泡结构被破坏,肺泡间隔明显增宽,呈实质性病变,周围肺泡间隔断裂,肺泡间质水肿,有炎性渗出液,可见出血及微血栓形成。与模型组相比,榛蘑多糖低、高剂量组肺泡间隔增宽程度减轻,肺间质水肿不明显,有少量炎性渗出液,未见微血栓形成,肺组织结构有所改善。表明榛蘑多糖可以减轻尼古丁所致的大鼠肺组织损伤。
2.2 榛蘑多糖对血浆TNF-α、IL-1β和IL-6水平的影响
表1所示,与对照组相比,模型组TNF-α、IL-1β、IL-6水平极显著增高(P<0.01)。与模型组相比,榛蘑多糖低剂量组TNF-α、IL-1β水平显著降低(P<0.05,P<0.01),榛蘑多糖高剂量组TNF-α、IL-1β、IL-6水平极显著降低(P<0.01),这就提示榛蘑多糖抑制尼古丁诱导的炎症反应。据报道,尼古丁可诱导炎症反应,促使多种炎症介质(如TNF-α、IL-1β等)的合成和释放,并导致肺部疾病的发生[17-18]。TNF-α、IL-1β、IL-6作为促炎因子,TNF-α可破坏上皮屏障;IL-1β可引起组织损伤;IL-6参与招募和激活中性粒细胞的过程[19]。Qiu等[20]研究结果表明,桃叶珊瑚苷通过降低TNF-α、IL-1β等炎症因子水平来减轻肺组织损伤,这与本实验结果相符。
表 1 榛蘑多糖对血浆TNF-α、IL-1β和IL-6水平的影响Table 1. Effects of Armillaria mellea polysaccharides on plasma levels of TNF-α, IL-1β and IL-6组别 TNF-α (ng/L) IL-1β (ng/L) IL-6 (pg/L) 对照组 9.6±3.2## 5.8±1.0## 59.70±14.0## 模型组 47.4±6.8** 13.8±2.1** 94.33±14.8** 榛蘑多糖低剂量组 35.2±10.4#** 8.4±1.3##** 89.35±15.7* 榛蘑多糖高剂量组 16.4±5.3##* 6.4±0.8##* 55.04±18.4## 注:与对照组相比,*表示P<0.05,**表示P<0.01;与模型组相比,#表示P<0.05,##表示P<0.01;表2同。 2.3 榛蘑多糖对血浆MDA、SOD水平的影响
表2所示,与对照组相比,模型组MDA水平明显升高、SOD活力显著降低(P<0.05,P<0.01)。与模型组相比,榛蘑多糖高剂量组MDA水平降低、SOD活力增强(P<0.05)。据报道,尼古丁可引起机体抗氧化能力的下降,从而使脂质过氧化代谢产物MDA水平增加[14]。An等[21]研究表明蜜环菌多糖通过提高SOD等抗氧化酶活性,清除自由基。这与本实验结果相一致。
表 2 榛蘑多糖对血浆MDA、SOD水平的影响Table 2. Effects of Armillaria mellea polysaccharides on plasma levels of MDA and SOD组别 MDA (nmol/mL) SOD (U/mL) 对照组 7.95±2.4## 124.05±10.8# 模型组 20.10±2.9** 106.02±8.3* 榛蘑多糖低剂量组 19.69±4.6** 116.79±13.2 榛蘑多糖高剂量组 14.59±2.3#** 123.62±6.6# 2.4 榛蘑多糖对大鼠肺组织p-NF-κB水平的影响
图2所示,与对照组相比,尼古丁作用后p-NF-κB蛋白水平明显升高。与模型组相比,榛蘑多糖高剂量组p-NF-κB蛋白水平极显著降低(P<0.01)。提示榛蘑多糖可能通过抑制NF-κB信号通路的激活减轻尼古丁所致的大鼠肺组织损伤。
2.5 榛蘑多糖对肺组织Nrf2,HO-1蛋白表达的影响
图3、图4所示,与对照组相比,模型组Nrf2、HO-1水平极显著下降(P<0.01)。与模型组相比,榛蘑多糖低剂量组HO-1水平极显著升高(P<0.01),榛蘑多糖高剂量组Nrf2、HO-1水平极显著升高(P<0.01)。提示榛蘑多糖可能通过Nrf2、HO-1信号通路减轻尼古丁所致的大鼠肺损伤。
3. 讨论与结论
氧化应激是氧化与抗氧化作用失衡的状态,氧化应激发生时自由基的过量产生会导致组织损伤[22]。尼古丁是烟草中的一种精神活性生物碱,从一些可食用植物中提取,低剂量的尼古丁对多种疾病有保护作用,然而大剂量的尼古丁会引起氧化应激、炎症等反应[14]。本实验以2mg/kg尼古丁建立大鼠肺损伤模型,研究结果显示,榛蘑多糖干预后,减轻尼古丁所致的大鼠肺损伤;降低血浆TNF-α、IL-6、IL-1β以及MDA水平,提高SOD活力。这就提示,榛蘑多糖对尼古丁诱导的炎症反应、氧化应激有抵抗作用,可以改善肺组织损伤。由于NF-κB是调控炎症反应的关键转录因子[23],Nrf2/ARE信号通路是一种对氧化应激极为敏感的信号轴,参与调节细胞稳态、炎症因子释放等功能[24-25],所以为探讨榛蘑多糖对尼古丁所致肺组织损伤的保护机制,我们进一步观察了它对NF-κB信号通路和Nrf2/HO-1信号通路的调控作用。
NF-κB是细胞内重要的转录因子,调控炎症反应[23]。生理状态下,NF-κB与I-κB结合位于细胞质中;当炎症反应发生时,I-κB蛋白被磷酸化,随后被泛素连接酶识别并降解,促进NF-κB易位至细胞核,诱导参与炎症反应的细胞因子(如TNF-α、IL-1β和IL-6等)产生[26-27]。本研究结果表明,尼古丁作用后肺组织NF-κB蛋白磷酸化水平上调,炎症因子TNF-α、IL-6、IL-1β水平增高。榛蘑多糖干预后,逆转了NF-κB蛋白磷酸化水平的上调,以及TNF-α、IL-6、IL-1β水平的增高,从而抑制尼古丁诱导的炎症反应。提示榛蘑多糖可能通过调控NF-κB信号通路,减少炎症因子的释放,从而减轻大鼠肺组织损伤。刘雪等[28]研究表明榆干离褶伞溶栓酶可下调NF-κB蛋白水平,抑制炎症因子(TNF-α、IL-6、IL-1β)的释放,减轻大鼠炎性损伤,这与本实验结果相符。
Nrf2是调节细胞氧化应激反应的重要转录因子,生理状态下,Nrf2与其抑制因子Keap1(Kelchlike ECH-associated protein-1)结合成非活性复合物,被固定在胞质肌动蛋白细胞骨架上,在Keap1功能结构域BTB和IVR区共同参与下经Cullin3/Rbx1 E3泛素化降解,从而维持其浓度的稳定;当氧化应激发生时,Keap1中的SH-1基团构象改变,使两者解偶联,Nrf2进入细胞核内与Maf蛋白形成异二聚体后,结合抗氧化反应元件ARE,调节过氧化氢酶及II相解毒酶(如,HO-1)等靶基因的表达,从而清除ROS等有害物质[29-30]。本研究结果显示,榛蘑多糖可能通过上调Nrf2、HO-1蛋白水平,提高SOD活力,减少MDA的含量,从而降低氧化应激程度,减轻肺组织损伤。Nrf2除涉及氧化应激外,对炎症反应也具有调控作用[24-25]。谢璟仪[31]研究结果显示,健脾清花颗粒可以通过上调Nrf2的表达,抑制NF-κB信号通路改善脾虚湿热证大鼠食管粘膜屏障功能。Qiu等 [20]研究结果也表明,桃叶珊瑚苷可以通过上调Nrf2蛋白的表达,抑制NF-κB信号通路减少促炎细胞因子的释放。这与本实验结果一致,且进一步表明榛蘑多糖可能通过上调Nrf2蛋白的表达抑制NF-κB信号通路从而减轻大鼠肺组织损伤。
综上所述,榛蘑多糖具有良好的抗炎、抗氧化作用,可以保护尼古丁诱导的肺组织损伤,这种保护作用可能与它对NF-κB、Nrf2/HO-1信号通路的调控有关。榛蘑多糖对NF-κB和Nrf2/HO-1信号通路之间的相互作用有待进一步研究。
-
表 1 榛蘑多糖对血浆TNF-α、IL-1β和IL-6水平的影响
Table 1 Effects of Armillaria mellea polysaccharides on plasma levels of TNF-α, IL-1β and IL-6
组别 TNF-α (ng/L) IL-1β (ng/L) IL-6 (pg/L) 对照组 9.6±3.2## 5.8±1.0## 59.70±14.0## 模型组 47.4±6.8** 13.8±2.1** 94.33±14.8** 榛蘑多糖低剂量组 35.2±10.4#** 8.4±1.3##** 89.35±15.7* 榛蘑多糖高剂量组 16.4±5.3##* 6.4±0.8##* 55.04±18.4## 注:与对照组相比,*表示P<0.05,**表示P<0.01;与模型组相比,#表示P<0.05,##表示P<0.01;表2同。 表 2 榛蘑多糖对血浆MDA、SOD水平的影响
Table 2 Effects of Armillaria mellea polysaccharides on plasma levels of MDA and SOD
组别 MDA (nmol/mL) SOD (U/mL) 对照组 7.95±2.4## 124.05±10.8# 模型组 20.10±2.9** 106.02±8.3* 榛蘑多糖低剂量组 19.69±4.6** 116.79±13.2 榛蘑多糖高剂量组 14.59±2.3#** 123.62±6.6# -
[1] BILANO V, GILMOUR S, MOFFIET T, et al. Global trends and projections for tobacco use, 1990-2025: An analysis of smoking indicators from the WHO Comprehensive Information Systems for Tobacco Control[J]. Lancet,2015,385(9972):966−76. doi: 10.1016/S0140-6736(15)60264-1
[2] GARWOOD P. WHO highlights huge scale of tobacco-related lung disease deaths[N]. World Health Organization, 2019-05-29.
[3] ATEYYA H, NADER M A, ATTIA G M, et al. Influence of alpha-lipoic acid on nicotine-induced lung and liver damage in experimental rats[J]. Can J Physiol Pharmacol,2017,95(5):492−500. doi: 10.1139/cjpp-2016-0366
[4] GLYNOS C, BIBLI S I, KATSAOUNOU P, et al. Comparison of the effects of e-cigarette vapor with cigarette smoke on lung function and inflammation in mice[J]. Am J Physiol Lung Cell Mol Physiol,2018,315(5):L662−L672. doi: 10.1152/ajplung.00389.2017
[5] 吴菲, 靳输梅, 李晓艳等. 尼古丁在诱导的肺泡巨噬细胞自噬及肺炎中的作用[J]. 生物技术通讯,2019,30(1):25−30. [WU F, JIN S M, LI X Y et al. Function evaluation of nicotine in induced alveolar macrophages autophagy and pneumonia[J]. Letters in Biotechnology,2019,30(1):25−30. doi: 10.3969/j.issn.1009-0002.2019.01.005 WU F, JIN S M, LI X Y et al. Function evaluation of nicotine in induced alveolar macrophages autophagy and pneumonia[J]. Letters in Biotechnology, 2019, 30(1): 25-30. doi: 10.3969/j.issn.1009-0002.2019.01.005
[6] PATANAVANICH R, GLANTZ S A. Smoking is associated with COVID-19 progression: A meta-analysis[J]. Nicotine Tob Res,2020,22(9):1653−1656. doi: 10.1093/ntr/ntaa082
[7] LEE S, LEE D, PARK J Y, et al. Antigastritis effects of Armillariella tabescens (Scop.) Sing. and the identification of its anti-inflammatory metabolites[J]. Pharm Pharmacol,2018,70(3):404−412. doi: 10.1111/jphp.12871
[8] NG L T, WU S J, TSAI J Y, et al. Antioxidant activities of cultured Armillariella mellea[J]. J Prikl Biokhim Mikrobiol,2007,43(3):495−500.
[9] ChEN F, HUANG G. Preparation and immunological activity of polysaccharides and their derivatives[J]. Int J Biol Macromol,2018,112:211−216. doi: 10.1016/j.ijbiomac.2018.01.169
[10] YANG R, LI Y, MEHMOOD S, et al. Polysaccharides from Armillariella tabescens mycelia ameliorate renal damage in type 2 diabetic mice[J]. Int J Biol Macromol,2020,162:1682−1691. doi: 10.1016/j.ijbiomac.2020.08.006
[11] 吴军, 李君哲, 黄聪聪等. 蜜环菌多糖对肺癌患者SOD、GSH-Px、GSH和MDA水平的影响及原因分析[J]. 解放军预防医学杂志,2019,37(8):115−116,119. [WU J, LI J Z, HUANG C C, et al. Effects of Armillaria mellea polysaccharide on SOD, GSH-Px, GSH and MDA levels in lung cancer patients and analysis of the causes[J]. Journal of Preventive Medicine of Chinese People's Liberation Army,2019,37(8):115−116,119. doi: 10.13704/j.cnki.jyyx.2019.08.052 WU J, LI J Z, HUANG C C, et al. Effects of Armillaria mellea polysaccharide on SOD, GSH-Px, GSH and MDA levels in lung cancer patients and analysis of the causes[J]. Journal of Preventive Medicine of Chinese People's Liberation Army, 2019, 37(8): 115-116, 119. doi: 10.13704/j.cnki.jyyx.2019.08.052
[12] 卫莹, 魏红燕, 张蕊萌等. 榛蘑粗多糖对脂多糖诱导的大鼠急性肺损伤的保护作用[J]. 食品与发酵工业,2020,46(24):80−84. [WEI Y, WEI H Y, ZHANG R M, et al. Protective effects of Armillaria mellea polysaccharides on acute lung injury induced by lipopolysaccharide in rats[J]. Food and Fermentation Industries,2020,46(24):80−84. WEI Y, WEI H Y, ZHANG R M, et al. Protective effects of Armillaria mellea polysaccharides on acute lung injury induced by lipopolysaccharide in rats[J]. Food and Fermentation Industries, 2020, 46(24): 80-84.
[13] 董亚萍, 彭晓东, 张玉等. 榛蘑多糖对动脉血栓模型大鼠血管的保护作用[J]. 延边大学医学学报,2017,40(2):97−100. [DONG Y P, PENG X D, ZHANG Y, et al. Protective effect of Armillaria mellea polysaccharide on blood vessels in arterial thrombosis model rats[J]. Journal of Yanbian University,2017,40(2):97−100. DONG Y P, PENG X D, ZHANG Y, et al. Protective effect of Armillaria mellea polysaccharide on blood vessels in arterial thrombosis model rats[J]. Journal of Yanbian University, 2017, 40(2): 97-100.
[14] ELSONBATY S M, ISMAIL A F M. Nicotine encourages oxidative stress and impairment of rats’ brain mitigated by Spirulina platensis lipopolysaccharides and low-dose ionizing radiation[J]. Arch Biochem Biophys,2020,689:108382. doi: 10.1016/j.abb.2020.108382
[15] TSAI C Y, CHOU H C, CHEN C M. Perinatal nicotine exposure alters lung development and induces HMGB1-RAGE expression in neonatal mice[J]. Birth Defects Res,2021,113(7):570−578. doi: 10.1002/bdr2.1840
[16] 沈明花, 崔海丹, 王欣彤. 榛蘑多糖的抗氧化作用研究[J]. 食品科技,2010,35(5):77−79. [SHEN M H, CUI H D, WANG X T. Study on the antioxidant activity of Armillaria mellea polysaccharide[J]. Food Science and Technology,2010,35(5):77−79. SHEN M H, CUI H D, WANG X T. Study on the antioxidant activity of Armillaria mellea polysaccharide[J]. Food Science and Technology, 2010, 35(5): 77-79.
[17] 刘雪. 榆干离褶伞溶栓酶对尼古丁诱导大鼠血管内皮细胞损伤的保护作用及抗血小板作用[D]. 延吉: 延边大学, 2018. LIU X. Protective effect of fibrinolytic enzyme from Lyophyllum ulmarium on nicotine induced endothelial dysfunction in rats and its antiplatelet effect[D]. Yanji: Yanbian University, 2018.
[18] MALAVIYA R, LASKIN J D, LASKIN D L. Anti-TNFα therapy in inflammatory lung diseases[J]. Pharmacol Ther,2017,180:90−98. doi: 10.1016/j.pharmthera.2017.06.008
[19] ZIZZO M G, CALDARA G, BELLANCA A, et al. Preventive effects of guanosine on intestinal inflammation in 2, 4-dinitrobenzene sulfonic acid (DNBS)-induced colitis in rats[J]. Inflammopharmacology,2019,27(2):349−359. doi: 10.1007/s10787-018-0506-9
[20] QIU Y L, CHENG X N, BAI F, et al. Aucubin protects against lipopolysaccharide-induced acute pulmonary injury through regulating Nrf2 and AMPK pathways[J]. Biomed Pharmacother,2018,106:192−199. doi: 10.1016/j.biopha.2018.05.070
[21] AN S, LU W, ZHANG Y, et al. Pharmacological basis for use of Armillaria mellea polysaccharides in Alzheimer's disease: Antiapoptosis and antioxidation[J]. Oxid Med Cell Longev,2017,2017:4184562.
[22] ANNUK M, ZILMER M, FELLSTRÖM B. Endothelium-dependent vasodilation and oxidative stress in chronic renal failure: Impact on cardiovascular disease[J]. Kidney Int Suppl,2003(84):S50−S53.
[23] ZINATIZADEH M R, SCHOCK B, CHALBATANI G M, et al. The Nuclear Factor Kappa B (NF-κB) signaling in cancer development and immune diseases[J]. Genes Dis,2020,8(3):287−297.
[24] QIAN J, MA X, XUN Y, et al. Protective effect of forsythiaside A on OVA-induced asthma in mice[J]. Eur J Pharmacol,2017,812:250−255. doi: 10.1016/j.ejphar.2017.07.033
[25] LI H, SONG F, DUAN L, et al. Paeonol and danshensu combination attenuates apoptosis in myocardial infarcted rats by inhibiting oxidative stress: Roles of Nrf2/HO-1 and PI3K/Akt pathway[J]. SciRep,2016,6:23693.
[26] TANG J, XU L, ZENG Y, et al. Effect of gut microbiota on LPS-induced acute lung injury by regulating the TLR4/NF-kB signaling pathway[J]. Int Immunopharmacol,2021,91:107272. doi: 10.1016/j.intimp.2020.107272
[27] ILCHOVSKA D D, BARROW D M. An Overview of the NF-kB mechanism of pathophysiology in rheumatoid arthritis, investigation of the NF-kB ligand RANKL and related nutritional interventions[J]. Autoimmun Rev,2021,20(2):102741. doi: 10.1016/j.autrev.2020.102741
[28] 刘雪, 王玉娇, 沈明花. 榆干离褶伞溶栓酶对脂多糖诱导的大鼠炎性肝损伤的保护作用[J]. 食品工业科技,2018,39(20):293−297. [LIU X, WANG Y J, SHEN M H. Protective effects of fibrinolytic enzyme of Lyophyllum ulmarium on LPS-induced liver injury in rats[J]. Science and Technology of Food Industry,2018,39(20):293−297. LIU X, WANG Y J, SHEN M H. Protective effects of fibrinolytic enzyme of Lyophyllum ulmarium on LPS-induced liver injury in rats[J]. Science and Technology of Food Industry, 2018, 39(20): 293-297.
[29] KRAJLA-KUZNIAK V, PALUSZCZAK J, BAER-DUBOWSKA W. The Nrf2-ARE signaling pathway: An update on its regulation and possible role in cancer prevention and treatment[J]. Pharmacol Rep,2017,69(3):393−402. doi: 10.1016/j.pharep.2016.12.011
[30] BELLEZZA I, GIAMBANCO I, MINELLI A, et al. Nrf2-Keap1 signaling in oxidative and reductive stress[J]. Biochim Biophys Acta Mol Cell Res,2018,1865(5):721−733. doi: 10.1016/j.bbamcr.2018.02.010
[31] 谢璟仪. 基于Nrf2介导NF-κB通路探讨健脾清化颗粒调控食管黏膜炎症性损伤机制[D]. 北京: 北京中医药大学, 2020. XIE J Y. Role of Nrf2 in Mediating NF-κB pathway and the Mechanism of Jianpi Qinghua granule in regulating esophageal mucosal inflammatory impairment[D]. Beijing: Beijing University of Chinese Medicine, 2020.
-
期刊类型引用(0)
其他类型引用(2)