UPLC-Q-Orbitrap HRMS Combined with Network Pharmacology to Analyze the Material Basis and Mechanism of Schisandrae chinensis in the Treatment of Non-alcoholic Fatty Liver
-
摘要: 目的:基于超高效液相色谱-四极杆-静电场轨道阱高分辨质谱法(UPLC-Q-Orbitrap HRMS)、网络药理学方法及分子对接技术探索五味子治疗非酒精脂肪肝的物质基础与作用机制。方法:利用UPLC-Q-Orbitrap HRMS技术鉴定五味子中的化学成分。利用中药系统药理学数据库和分析平台(TCMSP)和SwissTarget Prediction在线平台筛选并预测五味子化学成分的潜在作用靶点;利用GeneCards,CTD,OMIM,Dis-GeNET,GEO数据库收集非酒精脂肪肝疾病的潜在作用靶点。利用String数据库和Cytoscape 3.7.1软件构建蛋白质-蛋白质相互作用(PPI)网络模型;使用R对潜在靶点进行基因本体论(gene ontology,GO)和基因组百科全书通路(kyoto encyclopedia of genes and genomes,KEGG)富集分析,以预测其可能的信号通路,并通过Cytosca-pe3.7.1软件建立“药物-关键活性成分-靶点途径”网络。最后,进行分子对接,以初步验证五味子治疗非酒精性脂肪肝的作用机制。结果:共分析鉴定了五味子中的50种化学成分,并以此为基础筛选出246个五味子治疗非酒精脂肪肝的潜在靶点。通过网络拓扑进一步分析,筛选出23个核心成分和30个潜在核心靶点。GO和KEGG富集分析发现五味子通过作用于癌症中的蛋白聚糖、内分泌抵抗、Rap1信号通路、VEGF信号通路、糖尿病并发症中的AGE-RAGE信号通路和雌激素信号通路等信号通路发挥治疗作用。分子对接结果显示,筛选出的排名前5的活性成分槲皮素、山奈酚、五味子甲素、α-亚麻酸和五味子醇乙与排名前4的核心靶点AKT1、HSP90AA1、SRC、MAPK1均具有较好的结合活性,结合自由能均小于-5 kcal/mol,分子对接构象稳定。结论:五味子可能通过作用于脂质代谢、氧化应激、血管新生和炎症相关途径和靶点等改善非酒精脂肪肝的症状,从而发挥作用。Abstract: Objective: UPLC-Q-Orbitrap HRMS, network pharmacology and molecular docking technology were used to explore the material basis and mechanism of Schisandrae chinensis (SC) in treating non-alcoholic fatty liver disease(NAFLD). Method: UPLC-Q-Orbitrap HRMS was used to identify the chemical components in SC. The Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and Swiss Target Prediction online platform were used to screen and predict the potential targets of the chemical composition of SC; GeneCards, CTD, OMIM, Dis-GeNET, GEO database were used to collect non-alcoholic fatty liver disease potential targets. String database and Cytoscape 3.7.1 software were used to construct a protein-protein interaction (PPI) network model; R-based bioconductor data package for gene ontology (GO) and KEGG pathway were used to analyse potential targets; Cytoscape 3.7.1 software were used to establish a "drug-key active ingredient-target-pathway" network. Finally, molecular docking was carried out to preliminarily verify the mechanism of SC in the treatment of NAFLD. Results: 50 components of SC were analyzed and identified, and 246 potential targets of SC in treating NAFLD were screened out. Through further analysis of network topology, 23 core components and 30 potential core targets were screened out, and enrichment analysis was carried out based on them. SC played a therapeutic role through the proteoglycans in cancer, endocrine resistance, Rap1 signaling pathway, VEGF signaling pathway, AGE-RAGE signaling pathway in diabetic complications and Estrogen signaling pathway. Molecular bonding results showed that the top 5 active ingredients, quercetin, kaempferol, schisandrin a, α-linolenic acid and schisandrol B, had good binding activities with the top 4 core targets, AKT1, HSP90AA1, SRC and MAPK1, and their binding free energies were all less than −5 kcal/mol. The docking conformation of the molecule was stable. Conclusion: SC may improve the symptoms of NAFLD by acting on lipid metabolism, oxidative stress, angiogenesis and inflammation related pathways and targets.
-
非酒精脂肪肝(Nonalcoholic fatty liver disease, NAFLD)是指除酒精和其他明确的损肝因素外所致的肝细胞内脂肪过度沉积为主要特征的慢性肝病,世界范围内非酒精脂肪肝的发病率和流行率正在迅速上升。非酒精脂肪肝全球患病率约为25%,影响着全球四分之一的成年人[1-2]。非酒精脂肪肝包括一系列疾病,包括单纯性脂肪肝(NAFL)或单纯性脂肪变性(其病程为良性)和非酒精性脂肪性肝炎(NASH),可进展为肝细胞癌(HCC)和肝硬化[3-6]。非酒精脂肪肝既可以导致肝病残疾和死亡,还与代谢综合征、肥胖、Ⅱ型糖尿病(Type 2 diabetes, T2DM)、心血管疾病及结直肠肿瘤等的高发密切相关[7-8]。药食同源具有综合保健治疗作用,副作用小,可以调节人体生理活动、预防疾病、长期服用,在医疗保健和食品行业广泛应用[9]。因此,探索来源于食品或药食同源具有预防或治疗非酒精性脂肪肝病作用的原辅料十分重要。
五味子为木兰科植物五味子Schisandra chinensis(Turcz.)Baill.的干燥成熟果实,具有收敛固涩、益气生津、补肾宁心的功效。现代药理研究表明,五味子具有抗炎、抗氧化、抗癌、增强免疫力及保护肝脏等作用[10-14],主要包含木脂素类、三萜类、黄酮类等物质[15-16]。五味子是一种药食兼用型原料,营养丰富,对人体有较好的保健作用,可用于多种产品的开发,具有广阔的市场应用前景。如将五味子保护肝肾的功效与果醋具有的降脂减肥、促进新陈代谢、抗菌、抗疲劳等功能结合生产出的具有保健作用的五味子果醋[17],具有提高免疫力、改善睡眠等功能的五味子酒[14],有较强的抗氧化活性石榴五味子复合保健酒[18],此外还有五味子饮料产品、五味子酸奶产品及五味子果酱产品等[19-21]。研究表明,五味子保肝护肝作用明显[22],由此,五味子治疗非酒精脂肪肝的相关产品的开发和研究具有重要意义。但是,目前对五味子治疗非酒精脂肪肝的研究较少,尤其在物质基础和作用机制研究方面。因此,研究五味子活性成分治疗非酒精性脂肪肝的物质基础和作用机制具十分必要。本研究基于UHPLC-Q-Orbitrap HRMS法结合网络药理学筛选出五味子治疗非酒精性脂肪肝的核心成分与关键靶点,并应用分子对接验证分析,系统的分析了五味子治疗非酒精性脂肪肝的物质基础和作用机制,以期为寻找治疗非酒精性脂肪肝的植物来源的天然化合物的保健食品开发提供高效筛选的方法。
1. 材料与方法
1.1 材料与仪器
五味子甲素(批号:MUST-19092908,纯度为99.35%)、五味子乙素(批号:MUST-19041810,纯度为99.11%)、五味子酯甲(批号:MUST-19062302,纯度为99.38)、五味子醇甲(批号:MUST-19031905,纯度为99.46%) 成都曼思特生物科技有限公司;五味子酯乙(批号:DST201218-011,纯度≥98%)、五味子醇乙(批号:DST201129-013,纯度≥98%)、五味子酚(批号:DST200825-015,纯度≥98%) 成都德思特生物科技有限公司;乙腈、甲酸 色谱级,Thermo Fisher Scientific;采用屈臣氏蒸馏水制备样品和流动相,其他所有试剂均为分析纯;五味子饮片 吉林省北域红药业有限公司,批号20201206,经成都中医药大学黄勤挽教授鉴定为木兰科植物五味子Schisandra chinensis(Turcz.) Baill.的干燥成熟果实。
Vanquish型超高效液相色谱-Q-Exactive型四极杆-静电场轨道阱高分辨质谱联用仪 美国Thermo Fisher Scientific公司;UPH-I-10T型超纯水器 四川优普超纯科技有限公司;FA1204C型1/1万电子分析天平 上海越平科学仪器有限公司;AUW220D型1/10万电子分析天平 日本岛津公司;KS-500DE型液晶超声波清洗器 昆山洁力美超声仪器有限公司。
1.2 实验方法
1.2.1 对照品溶液的制备
分别精密称取五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子酚、五味子酯甲、五味子酯乙对照品适量,用甲醇配制成质量浓度分别为702、376、970、652、516、402、632 mg/L的单一对照品储备液。分别取上述储备液适量,加甲醇混匀,即得混合对照品溶液。
1.2.2 供试品溶液的制备
精密称取五味子样品(粉碎,过三号筛)0.5 g,置25 mL容量瓶中,甲醇定容,超声波水浴30 min(频率40 kHz,功率100 W),冷却至室温,加甲醇补足体积,混匀,过滤,经0.22 μm 微孔滤膜过滤,取续滤液,即得。
1.3 UPLC-Q-Orbitrap HRMS数据采集
1.3.1 色谱条件
ACQUITY UPLC BEH C18色谱柱(2.1 mm×50 mm,1.7 μm),流动相由0.1%甲酸水溶液(A)和乙腈(B)组成,梯度洗脱:0~15 min,5%~30% B;15~30 min,30%~65% B;30~45 min,65%~95% B,流速0.2 mL/min,进样量2 μL,柱温30 ℃。
1.3.2 质谱条件
电喷雾离子源(ESI),正负离子模式检测,全扫描的主分辨率为70000,扫描范围为m/z=100~1500。喷涂电压的正模式和负模式分别设定为3500 V与3000 V,正模式和负模式的探针加热器温度都设置为350 ℃,正模式和负模式的毛细管温度均设置在300 ℃,正模式和负模式的鞘气均设定在35 arb,正模式和负模式的辅助气体都设定在10 arb。S-Lens射频电平设置为50。全扫描/数据依赖二级扫描(Full MS/dd MS2),一级分辨率35000,二次分辨率为17500,碰撞能量梯度设定为20、40和60 eV。
1.3.3 数据处理
利用Compound Discoverer3.0软件对原始数据进行需求和处理[23]。软件对原始数据进行峰对齐和峰提取,得到分子离子峰,及同位素拟合的可能分子式。并将测得的二级光谱片段分别与mzCloud数据库和mzVault本地中药成分数据库进行匹配。保留化学成分符合峰面积阈值大于80000,质量偏差小于5 ppm,匹配得分大于80。最后,参考对照品和相关文献进一步确证该化合物[24]。
1.4 构建和分析五味子“药物-关键活性成分-靶点途径”交互网络
1.4.1 潜在靶点的收集
成分相关靶点:以UPLC-Q-Orbitrap HRMS鉴定出的化学成分为研究对象,导入PubChem (https://pubchem.ncbi.nlm.nih.gov/),获得Canonical SMILES。在TCMSP ( http://tcmspw.com/tcmsp.php)与SwissTarget Prediction(http://www.swisstargetprediction.ch/)在线平台中查找各个成分对应的靶点蛋白,得到成分相关靶点[25]。
疾病相关靶点:在包括GeneCards (https://www.genecards.org/),CTD (http://ctdbase.org/),OMIM (https://www.omim.org/),Dis-GeNET (https://www.disgenet.org/),GEO (https://www.ncbi.nlm.nih.gov/)在内的五个数据库中,以“non-alcoholic fatty liver disease”为关键词进行检索,收集相关的目标,得到疾病相关靶点[26]。
利用交互式韦恩图制作平台(http://jvenn.toulouse.inra.fr/app/example.html)进行韦恩分析,绘制成分靶点和疾病靶点的Venn图。重叠的共同靶点可能是五味子治疗非酒精脂肪肝的关键靶点。
所有靶点,无论是成分靶点还是疾病靶点,都删除了重复值和无效值,然后全部进入Uniprot数据库(https://www.uniprot.org/)校准靶蛋白和基因信息,它们都是被核对的人类基因名称。
1.4.2 活性成分和潜在靶点的筛选
将成分和非酒精性脂肪肝相互作用网络导入Cytoscape 3.7.1软件进行可视化分析。使用“Network Analyzer”插件计算网络拓扑属性,按度值(degree)进行网络排序,并将高于中值(median)的成分作为核心成分。利用String数据库(https://string-db.org/)分析成分和非酒精性脂肪肝相关靶点的蛋白质-蛋白质相互作用(PPI)网络[27],并将物种定义为“Homo sapiens”,选择0.9的高置信度以保证数据的可靠性,隐藏网络中断开连接的节点,然后导出结果。将所得结果导入Cytoscape软件对所建PPI网络进行可视化,使用“Network Analyzer”插件计算网络的拓扑属性,取高于中值的靶点为核心靶点[28]。
1.4.3 富集分析和通路分析
利用R 4.3.0对选择的核心靶点进行GO和KEGG富集分析。选取P<0.05的相关结果,对前20个结果进行可视化。
1.4.4 “药物-关键活性成分-靶点途径”网络模构建
基于核心成分与蛋白靶点的关系及蛋白靶点与信号通路之间的相互关系,利用Cystocape软件进行可视化,得到五味子治疗非酒精脂肪肝的“药物-核心活性成分-靶点-部分通路”网络模型图。
1.5 分子对接
为了验证筛选出的化合物和靶标的有效性,对前5个活性化合物和前4个核心靶点进行了分子对接。临床上疗效肯定的降脂药非诺贝特作为阳性对照。通过PubChem ( https://pubchem.ncbi.nlm.nih.gov/)数据库下载活性成分的2D结构,利用Chem3D 19.0软件将其转化为3D结构,并进行能量最小化操作,以mol2格式保存。4个核心靶点对应的蛋白均取自RCSB PDB(https://www1.rcsb.org/)数据库中,来源设置为人类,晶体选择信息(Resolution、PDB ID)详见表 3,以此获得靶点蛋白的3D结构,以pdb格式保存。利用PyMOL 4.6.0软件对蛋白进行去除水分子、去残基等操作,使用spdbv 4.1.0软件使蛋白能量最小化。然后使用AutoDock Tools 1.5.6软件对蛋白(受体)和成分(配体)进行加氢和加电荷处理,并转换为pdbqt格式。接着在AutoDock Tools中设置对接的网格点和尺寸,使对接盒子(grid box)包裹整个蛋白。再利用AutoDock Tools中AutoDock Vina进行半柔性分子对接,分别预测了化合物的9种不同的模式(modes)并以pdbqt格式保存。具有最高结合亲和力并与受体具有相应相互作用的模式被保存并在PyMOL中可视化[29]。
表 1 五味子化学成分的UPLC-Q-Orbitrap HRMS鉴定Table 1. Identified compounds of SC by UHPLC-Q-Orbitrap HRMS化合物 中文名称 英文名称 分子式 保留时间
(min)实际值
(m/z)理论值
(m/z)质量偏差
(ppm)加荷 二级碎片离子
(m/z)归属 1 精氨酸 Arginine C6H14N4O2 5.98 175.1188 175.1190 −1.14 [M+H]+ 158.0923, 116.0707, 130.0973, 70.0657 a 2 天冬酰胺 Asparagine C4H8N2O3 6.22 133.0607 133.0608 −0.75 [M+H]+ 116.0344, 88.0398, 87.0557, 74.0242 a 3 谷氨酰胺 D-(-)-Glutamine C5H10N2O3 6.24 147.0764 147.0764 0.00 [M+H]+ 130.0499, 101.0713, 84.0449 a 4 天冬氨酸 Aspartic acid C4H7NO4 6.26 134.0447 134.0448 −0.75 [M+H]+ 116.0344, 88.0398, 74.0242 a 5 谷氨酸 Glutamic acid C5H9NO4 6.32 148.0603 148.0604 −0.68 [M+H]+ 130.0499, 102.0553, 84.0449 a 6 半乳糖醛酸 Galacturonic acid C6H10O7 6.34 193.0348 193.0354 −3.11 [M-H]- 113.0235, 103.0027, 101.0234, 72.9920 b 7 脯氨酸 Proline C5H9NO2 6.46 116.0708 116.0706 1.72 [M+H]+ 98.0603, 70.0657 a 8 奎宁酸 Quinic acid C7H12O6 6.51 193.0706 193.0707 −0.52 [M+H]+ 157.0497, 147.0561, 139.0389, 129.0547, 111.0443 b 9 腺嘌呤 Adenine C5H5N5 6.55 136.0618 136.0618 0.00 [M+H]+ 119.0353, 109.0510, 94.0404 c 10 鸟嘌呤 Guanine C5H5N5O 6.62 152.0566 152.0567 −0.66 [M+H]+ 135.0299, 110.0351 c 11 富马酸 Fumaric acid C4H4O4 6.75 115.0032 115.0037 −4.35 [M-H]- 71.0128, 53.1018 b 12 5-羟甲基糠醛 5-Hydroxymethyl
furfuralC6H6O3 6.76 127.0391 127.0390 0.79 [M+H]+ 109.0286, 99.0444, 97.0288, 81.0340 g 13 缬氨酸 Valine C5H11NO2 6.88 118.0865 118.0863 1.69 [M+H]+ 101.0510, 85.1967, 72.0814 a 14 对香豆酸 4-Coumaric acid C9H8O3 7.12 165.0546 165.0546 0.00 [M+H]+ 147.043, 123.0441, 119.0493 d 15 苯甲酸 Benzoic acid C7H6O2 7.12 123.0442 123.0441 0.81 [M+H]+ 105.0448, 80.0500, 67.0548 b 16 柠檬酸 Citric acid C6H8O7 8.27 191.0193 191.0197 −2.09 [M-H]- 173.0082, 129.0184, 111.0078, 87.0078, 67.0178 b 17 腺苷 Adenosine C10H13N5O4 8.29 268.1038 268.1040 −0.75 [M+H]+ 233.0293, 179.6329, 165.1536, 136.0617 c 18 莽草酸 Shikimic acid C7H10O5 8.45 173.045 173.0455 −2.89 [M-H]- 137.0236, 129.0183, 111.0078, 93.0336 b 19 异亮氨酸 Isoleucine C6H13NO2 9.3 132.102 132.1019 0.76 [M+H]+ 113.9639, 86.0969, 72.9377 a 20 没食子酸 Gallic acid C7H6O5 10.19 169.0138 169.0142 −2.37 [M-H]- 140.0215, 125.0 236 124.0155 d 21 苯丙氨酸 Phenylalanine C9H11NO2 11.33 164.0711 164.0717 −3.66 [M-H]- 147.0444, 135.2626, 123.9453, 103.9192 a 22 新绿原酸 Neochlorogenic acid C16H18O9 13.27 353.0886 353.0878 2.27 [M-H]- 191.0555, 179.0343, 173.0083, 135.0443 d 23 原儿茶酸 Protocatechuic acid C7H6O4 13.73 153.0186 153.0193 −4.57 [M-H]- 109.0286, 108.0274, 91.0179 d 24 原花青素B2 Procyanidin B2 C30H26O12 14.58 577.1357 577.1351 1.04 [M-H]- 425.0890, 407.0770, 289.0719, 109.0286 e 25 原花青素B1 Procyanidin B1 C30H26O12 14.87 577.1355 577.1351 0.69 [M-H]- 407.0773, 289.0718, 109.0266 e 26 绿原酸 Chlorogenic acid C16H18O9 15.21 353.0886 353.0878 2.27 [M-H]- 191.0556, 173.0082, 135.0445 d 27 表儿茶素 Epicatechin C15H14O6 15.65 289.0718 289.0718 0.00 [M-H]- 245.0817, 203.0711, 123.0442, 109.0286 e 28 对羟基苯甲酸 4-Hydroxybenzoic acid C7H6O3 16.66 137.0238 137.0244 −4.38 [M-H]- 108.0207, 93.0336 d 29 芦丁 Rutin C27H30O16 18.87 609.1464 609.1461 0.49 [M-H]- 301.0356, 300.0227, 271.0249 e 30 槲皮素 Quercetin C15H10O7 19.71 303.0498 303.0499 −0.33 [M+H]+ 285.0407, 257.0437, 201.0544, 165.0178 e 31 金丝桃苷 Hyperoside C21H20O12 19.71 465.1027 465.1028 −0.22 [M+H]+ 303.0496, 285.0378, 153.0181 e 32 异槲皮苷 Isoquercitrin C21H20O12 19.86 463.0886 463.0882 0.86 [M-H]- 301.0356, 300.0277 e 33 山奈酚-3-O-葡萄糖苷 Kaempferol-3-O-glucoside C21H20O11 21.26 447.0933 447.0936 −0.67 [M-H]- 255.0297, 227.0348 e 34 3,5-二咖啡酰奎宁酸 3,5-Dicaffeoylquininic acid C25H24O12 21.69 515.1198 515.1195 0.58 [M-H]- 191.0556, 179.0343, 93.0332 d 35 小檗碱 Berberine C20H17NO4 24.55 336.1229 336.1230 −0.30 [M+H]+ 321.0998, 320.0916, 306.0757, 292.0996 g 36 山柰酚 Kaempferol C15H10O6 29.32 285.0406 285.0405 0.35 [M-H]+ 239.0364, 213.0545 e 37 戈米辛D Gomisin D C28H34O10 34.02 531.2224 531.2225 −0.19 [M+H]+ 485.2157, 401.1588, 382.1485, 352.1304, 341.1016 f 38 苯乙醛 Phenylacetaldehyde C8H8O 34.7 121.0649 121.0648 0.83 [M+H]+ 105.0451, 103.0546, 95.0460 g 39 五味子醇甲 Schisandrol A* C24H32O7 35.54 433.2213 433.2221 −1.85 [M+H]+ 415.2110, 400.1871, 384.1927, 369.1695, 346.1413 f 40 吉马酮 Germacrone C15H22O 36.65 219.1743 219.1743 0.00 [M+H]+ 191.1793, 177.1641, 159.1167, 135.1168 g 41 五味子醇乙 Schisandrol B* C23H28O7 36.93 417.1903 417.1908 −1.20 [M+H]+ 399.1805, 373.1644, 357.1331, 353.1385 f 42 戈米辛J Gomisin J C22H28O6 37.98 389.1955 389.1959 −1.03 [M+H]+ 374.1741, 357.1695, 319.1187, 287.0912 f 43 当归酰戈米辛H Angeloyl gomisin H C28H36O8 38.75 501.2477 501.2483 −1.20 [M+H]+ 483.2369, 453.0873, 427.1727, 401.1952, f 44 戈米辛G Gomisin G C30H32O9 39.51 537.2093 537.2119 −4.84 [M+H]+ 437.1588, 371.1506, 340.1303, 325.1068, 299.0903 f 45 五味子酯甲 Schisantherin A* C30H32O9 40.46 559.1937 559.1939 −0.36 [M+Na]+ 437.1566, 371.1487, 325.1084, 299.0917 f 46 五味子酯乙 Schizantherin B* C28H34O9 40.87 537.2089 537.2095 −1.12 [M+Na]+ 437.1572, 415.1749, 385.1647, 371.1480 f 47 α-亚麻酸 α-Linolenic acid C18H30O2 41.43 279.2319 279.2319 0.00 [M+H]+ 209.1532, 191.1433, 123.1168, 09.1015 b 48 五味子酚 Schisanhenol* C23H30O6 41.88 403.2113 403.2115 −0.50 [M+H]+ 388.1882, 340.1663, 302.1149, 371.1844 f 49 五味子甲素 Schizandrin A* C24H32O6 44.59 417.2270 417.2272 −0.48 [M+H]+ 402.2033, 316.1304, 301.1068, 285.1111, 270.0889 f 50 五味子乙素 Schisandrin B* C23H28O6 44.61 401.1952 401.1958 −1.50 [M+H]+ 386.2180, 370.3476, 354.2842 f 注:*:参考标准品;a:氨基酸类化合物;b:有机酸类化合物;c:核苷类化合物;d:酚酸类化合物;e:黄酮类化合物;f:木脂素类化合物;g:其他类化合物。 2. 结果与分析
2.1 HPLC-Q-Orbitrap HRMS鉴定五味子的化学成分
利用Compound Discoverer 3.0软件计算出在5 ppm质量偏差范围内的分子式,然后结合现有数据库mzCloud和mzVault数据库,以及参考文献[30-37],对化合物的相对分子质量、保留时间(tR)和碎片离子信息进行识别,结果初步鉴定出了50个化学成分,其中包含11个木脂素类成分,9个黄酮类成分,9个氨基酸类成分,7个有机酸类成分,3个核苷类成分,7个酚酸类成分,和4个其它成分。其中,经对照品鉴定了7个木脂素类成分,分别为五味子醇甲、五味子醇乙、五味子甲素、五味子乙素、五味子酚、五味子酯甲及五味子酯乙,且在样品中相应峰的响应值较高。结果表明,样品中的所含的木脂素类成分的种类最多。总离子流图(Total ion chromatogram,TIC)见图1,鉴定的化合物的最终结果如表1所示。
2.2 五味子关键活性化合物及治疗非酒精性脂肪肝潜在靶点的预测
通过联合使用多个数据库,在删除重复和无效目标后,共获得747个成分靶点和2178个非酒精性脂肪肝相关靶点。Venn图发现有246个相交靶点(图2),说明五味子具有治疗非酒精性脂肪肝的作用。在成分-非酒精性脂肪肝相关靶点相互作用网络中(图3),有295个节点和880个边与五味子的49个化合物相关,246个靶点与非酒精性脂肪肝相关。度值(Degree)越大说明相连节点越多,在整个网络中的调控作用也就越大。通过网络的拓扑分析,将高于中值的化合物视为核心活性成分,共鉴定出23个化合物,按度值由大到小分别为:槲皮素、山柰酚、五味子甲素、α-亚麻酸、五味子醇乙、五味子酯乙、戈米辛J、当归酰戈米辛H、戈米辛G、五味子酯甲、五味子醇甲、小檗碱、原花青素B1、原花青素B2、奎尼酸、腺苷、芦丁、苯丙氨酸、天冬氨酸、富马酸、对香豆酸、表儿茶素和原儿茶酸。其中,槲皮素的度值最大,且中间中心性(Betweenness centrality)和接近中心性(Closeness centrality)也最大,平均最短路径长度(Average shortest path length)也很小,说明这个化合物在整个网络中非常重要。
将246个相交靶点导入String数据库进行分析。选择物种为智人(Homo sapiens),设置目标之间所需的最低连接分数为0.9,隐藏网络中断开的节点, 构建一个PPI网络,将数据导入Cytoscape进行可视化分析,显示217个靶点,同时进行网络拓扑分析,最终的分析结果显示,22个靶点的度值高于中值14(图4)。此外,根据度值由大到小,发现前12个靶点之间存在相对复杂的关系。除了SRC、PI3KR1、EGFR、VEGFA、TP53和ESR1外,其他目标AKT1、HSP90AA1、PIK3CA、MAPK1、MAPK3和JUN的中介中心度(Betweenness centrality)和接近中心度(Closeness centrality)都排名靠前,表明这些靶点发挥了至关重要的作用。将成分-非酒精性脂肪肝靶点网络分析度值前10的靶点与PPI靶点网络分析筛选的前10个靶点相交,得到2个靶标,即为SRC和EGFR,这意味着这2个靶点可能起着非常关键的作用。
2.3 关键靶点GO和KEGG富集分析
将化合物和非酒精性脂肪肝相交靶点相互作用网络中度值前10的靶点和PPI网络中度值高于中值的22个靶点,共30个靶点(表2)作为核心靶点进行GO和KEGG富集分析分析。通过GO富集分析,共获得935个生物过程(Biological process,BP)条目,主要涉及蛋白激酶B信号的调节、活性氧代谢过程的调节、血管内皮生长因子受体信号通路和T细胞共刺激等方面;50个细胞组成(Cell composition,CC)条目,膜筏、膜微区、囊泡腔和膜区的占比较大;54个分子功能项(Molecular function,MF),其中磷酸酶结合、蛋白丝氨酸/苏氨酸激酶活性、蛋白丝氨酸/苏氨酸/酪氨酸激酶活性及磷蛋白结合等较为显著。KEGG通路富集分析共鉴定出119个结果,主要涉及癌症中的蛋白聚糖(Proteoglycans in cancer)、内分泌抵抗(Endocrine resistance)、Rap1信号通路(Rap1 signaling pathway)、VEGF信号通路(VEGF signaling pathway)、糖尿病并发症中的AGE-RAGE信号通路(AGE-RAGE signaling pathway in diabetic complications)和雌激素信号通路(Estrogen signaling pathway)等。研究组将前20个结果可视化,见图5。气泡越大,富含的基因越多。P调整值越小,气泡的颜色越红。
表 2 五味子治疗非酒精性脂肪肝的核心靶点Table 2. Key target of SC for the treatment of NAFLD编号 靶基因 靶点名称 1 AKT1 RAC-α丝氨酸/苏氨酸-蛋白激酶(RAC-alpha serine/threonine-protein kinase) 2 HSP90AA1 热休克蛋白90-α(Heat shock protein HSP 90-alpha) 3 SRC 原癌基因酪氨酸蛋白激酶SRC(Proto-oncogene tyrosine-protein kinase SRC) 4 MAPK1 丝裂原活化蛋白激酶1(Mitogen-activated protein kinase 1) 5 PIK3CA 磷脂酰肌醇-3-激酶亚基α(PI3-kinase subunit alpha) 6 MAPK3 丝裂原激活的蛋白激酶3(Mitogen-activated protein kinase 3) 7 PIK3R1 磷脂酰肌醇-3-激酶调节亚基α(PI3-kinase regulatory subunit alpha) 8 EGFR 表皮生长因子受体(Epidermal growth factor receptor) 9 VEGFA 血管内皮生长因子A(Vascular endothelial growth factor A) 10 JUN 转录因子AP-1 (Transcription factor AP-1) 11 TP53 细胞肿瘤抗原p53(Cellular tumor antigen p53) 12 ESR1 雌激素受体(Estrogen receptor) 13 FYN 酪氨酸蛋白激酶FYN(Tyrosine-protein kinase FYN) 14 RAC1 Ras相关的C3肉毒素底物1(Ras-related C3 botulinum toxin substrate 1) 15 EGF 前表皮生长因子(Pro-epidermal growth factor) 16 PTPN11 酪氨酸蛋白磷酸酶非受体11型(Tyrosine-protein phosphatase non-receptor type 11) 17 MAPK14 丝裂原激活的蛋白激酶14(Mitogen-activated protein kinase 14) 18 INS 胰岛素(Insulin) 19 RPS6KB1 核糖体蛋白S6激酶-β-1(Ribosomal protein S6 kinase beta-1) 20 CDC42 细胞分裂控制蛋白42(Cell division control protein 42 homolog) 21 NR3C1 糖皮质激素受体(Glucocorticoid receptor) 22 CREBBP CREB结合蛋白(CREB-binding protein) 23 PTGS2 前列腺素G/H合成酶2(Prostaglandin G/H synthase 2) 24 CA2 碳酸酐酶2(Carbonic anhydrase 2) 25 F2 凝血酶原,第二因子(Prothrombin) 26 NOS2 一氧化氮合酶(Nitric oxide synthase) 27 CTSD 组织蛋白酶D(Cathepsin D) 28 HSD11B1 皮质类固醇11-β-脱氢酶同工酶1(Corticosteroid 11-beta-dehydrogenase isozyme 1) 29 MMP2 基质金属蛋白酶2(72 kDa type IV collagenase) 30 TNF 肿瘤坏死因子(Tumor necrosis factor) 表 3 分子对接结果Table 3. Molecular docking results编号 中文名称 英文名称 靶点 PDB-ID 分辨率(A) 结合能(kcal/mol) 氢键数目 氨基酸残基名称 1 槲皮素 Quercetin AKT1 6CCY 2.18 −7.2 4 PHE161, GLY162 2 槲皮素 Quercetin HSP90AA1 7LT0 1.70 −9.4 5 TRP162, TYR139, LEU103, GLN23 3 槲皮素 Quercetin SRC 6ATE 2.40 −10.1 6 MET344, GLU342, ASP407, LYS298, GLU313 5 槲皮素 Quercetin MAPK1 6RQ4 1.96 −9.2 5 MET108, LYS54, GLU71, ASP167 6 山奈酚 Kaempferol AKT1 6CCY 2.18 −7.2 2 LEU156, GLU198 7 山奈酚 Kaempferol HSP90AA1 7LT0 1.70 −9.4 3 LEU103, TRP162, GLN23 8 山奈酚 Kaempferol SRC 6ATE 2.40 −10.0 2 GLU342, MET344 10 山奈酚 Kaempferol MAPK1 6RQ4 1.96 −8.8 3 GLU71, MET108, LYS54 11 五味子甲素 Schizandrin A AKT1 6CCY 2.18 −5.5 1 LYS276 12 五味子甲素 Schizandrin A HSP90AA1 7LT0 1.70 −7.2 1 LYS58 13 五味子甲素 Schizandrin A SRC 6ATE 2.40 −5.1 3 GLN516, SER375, LYS324 15 五味子甲素 Schizandrin A MAPK1 6RQ4 1.96 −5.4 2 ARG50, ASN158 16 α-亚麻酸 α-Linolenic acid AKT1 6CCY 2.18 −5.2 1 LYS276 17 α-亚麻酸 α-Linolenic acid HSP90AA1 7LT0 1.70 −7.4 3 GLY135, PHE138, ASN51 18 α-亚麻酸 α-Linolenic acid SRC 6ATE 2.40 −6.3 2 ASP407, LYS298 20 α-亚麻酸 α-Linolenic acid MAPK1 6RQ4 1.96 −5.0 2 VAL173 21 五味子醇乙 Schisandrol B AKT1 6CCY 2.18 −6.7 2 THR160, GLY162 22 五味子醇乙 Schisandrol B HSP90AA1 7LT0 1.70 −7.3 1 GLY135 23 五味子醇乙 Schisandrol B SRC 6ATE 2.40 −5.2 1 GLU399 25 五味子醇乙 Schisandrol B MAPK1 6RQ4 1.96 −6.5 4 LYS151, THR190, TYR36 26 非诺贝特 Fenofibrate AKT1 6CCY 2.18 −7.1 3 LYS284, LYS419, LYS289 27 非诺贝特 Fenofibrate HSP90AA1 7LT0 1.70 −8.7 2 TRP162, ASN51 28 非诺贝特 Fenofibrate SRC 6ATE 2.40 −8.6 1 SER348 29 非诺贝特 Fenofibrate MAPK1 6RQ4 1.96 −7.7 1 LYS54 为了更好地展示药材、活性成分、靶点和途径之间的关系,根据药物、成分、潜在靶点及信号通路之间的相互关系,选取鉴定出的23个核心活性成分与五味子治疗非酒精性脂肪肝潜在靶点进行匹配,将核心靶点的前4名AKT1、HSP90AA1、SRC和MAPK1与关键信号通路的前20条进行匹配,共匹配得到14条信号通路。使用Cytoscape构建“药物-关键活性成分-靶点-部分途径”网络图,见图6。
2.4 分子对接
为了表征非酒精性脂肪肝相关蛋白与五味子活性成分的分子相互作用和结合亲和力,本文使用AutoDock Tools中的AutoDock Vina将筛选出的前5个活性成分及非诺贝特分别与PPI网络中前4的靶点进行分子对接(图7,表3)。一般认为若结合能<0,表明配体分子能和受体蛋白自发地结合,若结合能≤−5.0 kcal/mol,表明其结合性好。结合能越低,结合构象越稳定。化合物槲皮素和蛋白SRC的MET344、GLU342、ASP407、LYS298和GLU313 形成氢键,结合能为-10.1 kcal/mol,如图7A所示。山柰酚和蛋白SRC的GLU342和MET344形成氢键,结合能为-10.0 kcal/mol,如图7B所示。五味子甲素与蛋白HSP90AA1的LYS58 形成氢键,结合能为-7.2 kcal/mol,如图7C所示。α-亚麻酸和蛋白HSP90AA1的SGLY135、PHE138和ASN51形成氢键,结合能为-7.4 kcal/mol,如图7D所示。五味子醇乙和蛋白MAPK1的LYS151、THR190、TYR36形成氢键,结合能为-6.5 kcal/mol,如图7E所示。非诺贝特和蛋白HSP90AA1的TRP162和ASN51形成氢键,结合能为-8.7 kcal/mol,如图7F所示。此外,上述活性化合物与相关蛋白结合至少形成了一个氢键相互作用力。结果表明,上述5个活性成分及非诺贝特与目标蛋白之间均有稳定的结合(结合能<-5.0 kcal/mol)。
3. 讨论与结论
非酒精脂肪肝与肝脏脂肪细胞过度堆积及炎症等有着紧密的关联[38],是全球最严重的代谢疾病之一[39],对众多患者的生活质量与生命安全产生影响。目前对于非酒精脂肪肝的发病机制尚未清晰,医学界普遍认可“二次打击学说”,即以胰岛素抵抗(Insulin resistance, IR)为主要环节的“第一次打击”和以肝细胞大量凋亡、氧化应激和纤维化为主的“二次打击”[40]。现代药理研究表明,五味子可以保护肝脏,明显改善肝纤维化等[41]。因此,研究五味子治疗非酒精性脂肪肝的物质基础和作用机制,为寻找治疗非酒精性脂肪肝的植物来源的天然化合物的保健食品和治疗药物开发提供高效筛选的方法具有重要意义。
为此,本研究利用UHPLC-Q-Orbitrap HRMS技术从五味子中共鉴定了50个成分,通过网络药理分析,最终得到23种主要活性成分。通过文献检索,发现其中的一些成分可以通过脂质代谢、氧化应激和炎症相关途径等对非酒精脂肪肝发挥保护或治疗作用[42-44]。例如,在高脂高胆固醇饮食诱导的非酒精脂肪肝的小鼠模型中,五味子甲素可以通过降低肝脏中脂肪酸和甘油三酯合成酶的活性来降低高脂饮食小鼠血浆和肝脏中FFA和甘油三酯的含量。同时增加肝脏脂肪酸氧化和粪便游离脂肪酸和甘油三酯排泄。并且,这些对肝脏的有益作用也与五味子甲素改善氧化应激有关[45]。在非酒精脂肪肝细胞模型中,五味子乙素可以剂量依赖性抑制内质网应激信号通路的激活,进而影响脂肪合成相关基因表达,从而降低脂质堆积[40]。在T2DM诱导非酒精脂肪肝小鼠模型中,槲皮素治疗可以明显缓解Lepdb/Lepdb小鼠的肝肿胀,恢复异常的肝酶,降低肝脏中的高血糖和脂质积累。进一步研究表明,槲皮素治疗可通过抗氧化、抗炎和激活FXR1/TGR5信号通路改善TD2M诱导的非酒精性脂肪肝[46]。
同时,本文通过分析药物相关靶点和非酒精脂肪肝相关靶点,确定了246个交叉靶点。去除29个自由靶标后,以217个相交靶标构建蛋白-蛋白相互作用网络,从中识别出22个核心靶标,将它们与成分-非酒精性脂肪肝靶标网络分析筛选的前10个靶点相交共得到30个靶点,其中重复的SRC和EGFR可能起着非常关键的作用,它们或多或少被认为会影响非酒精脂肪肝。例如,研究表明,SRC通路的激活,增加了IP3R1蛋白的稳定性,促进了IP3R1的Tyr353磷酸化,从而导致肝细胞线粒体Ca2+超载和线粒体功能障碍。因此,抑制SRC/IP3R1通路,可能是一种新的潜在的治疗非酒精脂肪肝的方法[47]。表皮生长因子受体(EGFR)是肝细胞增殖和肝再生的重要调节因子。EGFR还可以调节肝部分切除术后肝再生过程中的脂质代谢,抑制EGFR也可以改善已经发展的纤维化[48-49]。同时,研究表明,在非酒精脂肪肝小鼠模型中,抑制EGFR可显著降低脂肪变性、肝损伤、肝纤维化,改善糖耐量。表明了EGFR在非酒精脂肪肝中的作用,以及EGFR抑制作为非酒精脂肪肝治疗策略的潜力[50]。此外,MAPK1是炎症评价的指标之一。VEGFA是一种高度特异性的促血管内皮细胞生长因子,具有促进血管通透性增加、增殖和血管形成等作用,参与了非酒精脂肪肝的病理生理过程[51]。
为了进一步探索五味子的作用机制,本文对选择的30个潜在核心靶点进行了GO和KEGG富集分析。GO富集分析结果表明,五味子的有效成分主要影响了蛋白激酶B信号的调节、活性氧代谢过程的调节、血管内皮生长因子受体信号通路和T细胞共刺激等方面。KEGG通路富集分析表明,五味子主要参与癌症中的蛋白聚糖、内分泌抵抗、Rap1信号通路、VEGF信号通路、糖尿病并发症中的AGE-RAGE信号通路和雌激素信号通路等。既往研究表明,非酒精脂肪肝的发展与内分泌,血管新生和糖尿病并发症中的信号通路密切相关[51-54]。
本研究采用UHPLC-Q-Orbitrap HRMS技术共鉴定出五味子中的50种成分,其中包含11个木脂素类成分,9个黄酮类成分,9个氨基酸类成分,7个有机酸类成分,3个核苷类成分,7个酚酸类成分,和4个其它成分。通过网络药理学分析,确定了23个潜在的关键活性成分和30个潜在靶点,这23个核心活性成分可能主要通过作用于脂质代谢、氧化应激和炎症相关途径等来改善非酒精脂肪肝的症状。进一步分析表明,五味子可能通过影响内分泌、血管新生和糖尿病并发症中的信号通路影响非酒精脂肪肝,但具体机制还有待进一步研究。综上所述,五味子可能通过多成分多靶点的方式影响非酒精性脂肪肝的病理生理过程。该研究为进一步研究五味子治疗非酒精性脂肪肝提供了理论依据和实验参考。
-
表 1 五味子化学成分的UPLC-Q-Orbitrap HRMS鉴定
Table 1 Identified compounds of SC by UHPLC-Q-Orbitrap HRMS
化合物 中文名称 英文名称 分子式 保留时间
(min)实际值
(m/z)理论值
(m/z)质量偏差
(ppm)加荷 二级碎片离子
(m/z)归属 1 精氨酸 Arginine C6H14N4O2 5.98 175.1188 175.1190 −1.14 [M+H]+ 158.0923, 116.0707, 130.0973, 70.0657 a 2 天冬酰胺 Asparagine C4H8N2O3 6.22 133.0607 133.0608 −0.75 [M+H]+ 116.0344, 88.0398, 87.0557, 74.0242 a 3 谷氨酰胺 D-(-)-Glutamine C5H10N2O3 6.24 147.0764 147.0764 0.00 [M+H]+ 130.0499, 101.0713, 84.0449 a 4 天冬氨酸 Aspartic acid C4H7NO4 6.26 134.0447 134.0448 −0.75 [M+H]+ 116.0344, 88.0398, 74.0242 a 5 谷氨酸 Glutamic acid C5H9NO4 6.32 148.0603 148.0604 −0.68 [M+H]+ 130.0499, 102.0553, 84.0449 a 6 半乳糖醛酸 Galacturonic acid C6H10O7 6.34 193.0348 193.0354 −3.11 [M-H]- 113.0235, 103.0027, 101.0234, 72.9920 b 7 脯氨酸 Proline C5H9NO2 6.46 116.0708 116.0706 1.72 [M+H]+ 98.0603, 70.0657 a 8 奎宁酸 Quinic acid C7H12O6 6.51 193.0706 193.0707 −0.52 [M+H]+ 157.0497, 147.0561, 139.0389, 129.0547, 111.0443 b 9 腺嘌呤 Adenine C5H5N5 6.55 136.0618 136.0618 0.00 [M+H]+ 119.0353, 109.0510, 94.0404 c 10 鸟嘌呤 Guanine C5H5N5O 6.62 152.0566 152.0567 −0.66 [M+H]+ 135.0299, 110.0351 c 11 富马酸 Fumaric acid C4H4O4 6.75 115.0032 115.0037 −4.35 [M-H]- 71.0128, 53.1018 b 12 5-羟甲基糠醛 5-Hydroxymethyl
furfuralC6H6O3 6.76 127.0391 127.0390 0.79 [M+H]+ 109.0286, 99.0444, 97.0288, 81.0340 g 13 缬氨酸 Valine C5H11NO2 6.88 118.0865 118.0863 1.69 [M+H]+ 101.0510, 85.1967, 72.0814 a 14 对香豆酸 4-Coumaric acid C9H8O3 7.12 165.0546 165.0546 0.00 [M+H]+ 147.043, 123.0441, 119.0493 d 15 苯甲酸 Benzoic acid C7H6O2 7.12 123.0442 123.0441 0.81 [M+H]+ 105.0448, 80.0500, 67.0548 b 16 柠檬酸 Citric acid C6H8O7 8.27 191.0193 191.0197 −2.09 [M-H]- 173.0082, 129.0184, 111.0078, 87.0078, 67.0178 b 17 腺苷 Adenosine C10H13N5O4 8.29 268.1038 268.1040 −0.75 [M+H]+ 233.0293, 179.6329, 165.1536, 136.0617 c 18 莽草酸 Shikimic acid C7H10O5 8.45 173.045 173.0455 −2.89 [M-H]- 137.0236, 129.0183, 111.0078, 93.0336 b 19 异亮氨酸 Isoleucine C6H13NO2 9.3 132.102 132.1019 0.76 [M+H]+ 113.9639, 86.0969, 72.9377 a 20 没食子酸 Gallic acid C7H6O5 10.19 169.0138 169.0142 −2.37 [M-H]- 140.0215, 125.0 236 124.0155 d 21 苯丙氨酸 Phenylalanine C9H11NO2 11.33 164.0711 164.0717 −3.66 [M-H]- 147.0444, 135.2626, 123.9453, 103.9192 a 22 新绿原酸 Neochlorogenic acid C16H18O9 13.27 353.0886 353.0878 2.27 [M-H]- 191.0555, 179.0343, 173.0083, 135.0443 d 23 原儿茶酸 Protocatechuic acid C7H6O4 13.73 153.0186 153.0193 −4.57 [M-H]- 109.0286, 108.0274, 91.0179 d 24 原花青素B2 Procyanidin B2 C30H26O12 14.58 577.1357 577.1351 1.04 [M-H]- 425.0890, 407.0770, 289.0719, 109.0286 e 25 原花青素B1 Procyanidin B1 C30H26O12 14.87 577.1355 577.1351 0.69 [M-H]- 407.0773, 289.0718, 109.0266 e 26 绿原酸 Chlorogenic acid C16H18O9 15.21 353.0886 353.0878 2.27 [M-H]- 191.0556, 173.0082, 135.0445 d 27 表儿茶素 Epicatechin C15H14O6 15.65 289.0718 289.0718 0.00 [M-H]- 245.0817, 203.0711, 123.0442, 109.0286 e 28 对羟基苯甲酸 4-Hydroxybenzoic acid C7H6O3 16.66 137.0238 137.0244 −4.38 [M-H]- 108.0207, 93.0336 d 29 芦丁 Rutin C27H30O16 18.87 609.1464 609.1461 0.49 [M-H]- 301.0356, 300.0227, 271.0249 e 30 槲皮素 Quercetin C15H10O7 19.71 303.0498 303.0499 −0.33 [M+H]+ 285.0407, 257.0437, 201.0544, 165.0178 e 31 金丝桃苷 Hyperoside C21H20O12 19.71 465.1027 465.1028 −0.22 [M+H]+ 303.0496, 285.0378, 153.0181 e 32 异槲皮苷 Isoquercitrin C21H20O12 19.86 463.0886 463.0882 0.86 [M-H]- 301.0356, 300.0277 e 33 山奈酚-3-O-葡萄糖苷 Kaempferol-3-O-glucoside C21H20O11 21.26 447.0933 447.0936 −0.67 [M-H]- 255.0297, 227.0348 e 34 3,5-二咖啡酰奎宁酸 3,5-Dicaffeoylquininic acid C25H24O12 21.69 515.1198 515.1195 0.58 [M-H]- 191.0556, 179.0343, 93.0332 d 35 小檗碱 Berberine C20H17NO4 24.55 336.1229 336.1230 −0.30 [M+H]+ 321.0998, 320.0916, 306.0757, 292.0996 g 36 山柰酚 Kaempferol C15H10O6 29.32 285.0406 285.0405 0.35 [M-H]+ 239.0364, 213.0545 e 37 戈米辛D Gomisin D C28H34O10 34.02 531.2224 531.2225 −0.19 [M+H]+ 485.2157, 401.1588, 382.1485, 352.1304, 341.1016 f 38 苯乙醛 Phenylacetaldehyde C8H8O 34.7 121.0649 121.0648 0.83 [M+H]+ 105.0451, 103.0546, 95.0460 g 39 五味子醇甲 Schisandrol A* C24H32O7 35.54 433.2213 433.2221 −1.85 [M+H]+ 415.2110, 400.1871, 384.1927, 369.1695, 346.1413 f 40 吉马酮 Germacrone C15H22O 36.65 219.1743 219.1743 0.00 [M+H]+ 191.1793, 177.1641, 159.1167, 135.1168 g 41 五味子醇乙 Schisandrol B* C23H28O7 36.93 417.1903 417.1908 −1.20 [M+H]+ 399.1805, 373.1644, 357.1331, 353.1385 f 42 戈米辛J Gomisin J C22H28O6 37.98 389.1955 389.1959 −1.03 [M+H]+ 374.1741, 357.1695, 319.1187, 287.0912 f 43 当归酰戈米辛H Angeloyl gomisin H C28H36O8 38.75 501.2477 501.2483 −1.20 [M+H]+ 483.2369, 453.0873, 427.1727, 401.1952, f 44 戈米辛G Gomisin G C30H32O9 39.51 537.2093 537.2119 −4.84 [M+H]+ 437.1588, 371.1506, 340.1303, 325.1068, 299.0903 f 45 五味子酯甲 Schisantherin A* C30H32O9 40.46 559.1937 559.1939 −0.36 [M+Na]+ 437.1566, 371.1487, 325.1084, 299.0917 f 46 五味子酯乙 Schizantherin B* C28H34O9 40.87 537.2089 537.2095 −1.12 [M+Na]+ 437.1572, 415.1749, 385.1647, 371.1480 f 47 α-亚麻酸 α-Linolenic acid C18H30O2 41.43 279.2319 279.2319 0.00 [M+H]+ 209.1532, 191.1433, 123.1168, 09.1015 b 48 五味子酚 Schisanhenol* C23H30O6 41.88 403.2113 403.2115 −0.50 [M+H]+ 388.1882, 340.1663, 302.1149, 371.1844 f 49 五味子甲素 Schizandrin A* C24H32O6 44.59 417.2270 417.2272 −0.48 [M+H]+ 402.2033, 316.1304, 301.1068, 285.1111, 270.0889 f 50 五味子乙素 Schisandrin B* C23H28O6 44.61 401.1952 401.1958 −1.50 [M+H]+ 386.2180, 370.3476, 354.2842 f 注:*:参考标准品;a:氨基酸类化合物;b:有机酸类化合物;c:核苷类化合物;d:酚酸类化合物;e:黄酮类化合物;f:木脂素类化合物;g:其他类化合物。 表 2 五味子治疗非酒精性脂肪肝的核心靶点
Table 2 Key target of SC for the treatment of NAFLD
编号 靶基因 靶点名称 1 AKT1 RAC-α丝氨酸/苏氨酸-蛋白激酶(RAC-alpha serine/threonine-protein kinase) 2 HSP90AA1 热休克蛋白90-α(Heat shock protein HSP 90-alpha) 3 SRC 原癌基因酪氨酸蛋白激酶SRC(Proto-oncogene tyrosine-protein kinase SRC) 4 MAPK1 丝裂原活化蛋白激酶1(Mitogen-activated protein kinase 1) 5 PIK3CA 磷脂酰肌醇-3-激酶亚基α(PI3-kinase subunit alpha) 6 MAPK3 丝裂原激活的蛋白激酶3(Mitogen-activated protein kinase 3) 7 PIK3R1 磷脂酰肌醇-3-激酶调节亚基α(PI3-kinase regulatory subunit alpha) 8 EGFR 表皮生长因子受体(Epidermal growth factor receptor) 9 VEGFA 血管内皮生长因子A(Vascular endothelial growth factor A) 10 JUN 转录因子AP-1 (Transcription factor AP-1) 11 TP53 细胞肿瘤抗原p53(Cellular tumor antigen p53) 12 ESR1 雌激素受体(Estrogen receptor) 13 FYN 酪氨酸蛋白激酶FYN(Tyrosine-protein kinase FYN) 14 RAC1 Ras相关的C3肉毒素底物1(Ras-related C3 botulinum toxin substrate 1) 15 EGF 前表皮生长因子(Pro-epidermal growth factor) 16 PTPN11 酪氨酸蛋白磷酸酶非受体11型(Tyrosine-protein phosphatase non-receptor type 11) 17 MAPK14 丝裂原激活的蛋白激酶14(Mitogen-activated protein kinase 14) 18 INS 胰岛素(Insulin) 19 RPS6KB1 核糖体蛋白S6激酶-β-1(Ribosomal protein S6 kinase beta-1) 20 CDC42 细胞分裂控制蛋白42(Cell division control protein 42 homolog) 21 NR3C1 糖皮质激素受体(Glucocorticoid receptor) 22 CREBBP CREB结合蛋白(CREB-binding protein) 23 PTGS2 前列腺素G/H合成酶2(Prostaglandin G/H synthase 2) 24 CA2 碳酸酐酶2(Carbonic anhydrase 2) 25 F2 凝血酶原,第二因子(Prothrombin) 26 NOS2 一氧化氮合酶(Nitric oxide synthase) 27 CTSD 组织蛋白酶D(Cathepsin D) 28 HSD11B1 皮质类固醇11-β-脱氢酶同工酶1(Corticosteroid 11-beta-dehydrogenase isozyme 1) 29 MMP2 基质金属蛋白酶2(72 kDa type IV collagenase) 30 TNF 肿瘤坏死因子(Tumor necrosis factor) 表 3 分子对接结果
Table 3 Molecular docking results
编号 中文名称 英文名称 靶点 PDB-ID 分辨率(A) 结合能(kcal/mol) 氢键数目 氨基酸残基名称 1 槲皮素 Quercetin AKT1 6CCY 2.18 −7.2 4 PHE161, GLY162 2 槲皮素 Quercetin HSP90AA1 7LT0 1.70 −9.4 5 TRP162, TYR139, LEU103, GLN23 3 槲皮素 Quercetin SRC 6ATE 2.40 −10.1 6 MET344, GLU342, ASP407, LYS298, GLU313 5 槲皮素 Quercetin MAPK1 6RQ4 1.96 −9.2 5 MET108, LYS54, GLU71, ASP167 6 山奈酚 Kaempferol AKT1 6CCY 2.18 −7.2 2 LEU156, GLU198 7 山奈酚 Kaempferol HSP90AA1 7LT0 1.70 −9.4 3 LEU103, TRP162, GLN23 8 山奈酚 Kaempferol SRC 6ATE 2.40 −10.0 2 GLU342, MET344 10 山奈酚 Kaempferol MAPK1 6RQ4 1.96 −8.8 3 GLU71, MET108, LYS54 11 五味子甲素 Schizandrin A AKT1 6CCY 2.18 −5.5 1 LYS276 12 五味子甲素 Schizandrin A HSP90AA1 7LT0 1.70 −7.2 1 LYS58 13 五味子甲素 Schizandrin A SRC 6ATE 2.40 −5.1 3 GLN516, SER375, LYS324 15 五味子甲素 Schizandrin A MAPK1 6RQ4 1.96 −5.4 2 ARG50, ASN158 16 α-亚麻酸 α-Linolenic acid AKT1 6CCY 2.18 −5.2 1 LYS276 17 α-亚麻酸 α-Linolenic acid HSP90AA1 7LT0 1.70 −7.4 3 GLY135, PHE138, ASN51 18 α-亚麻酸 α-Linolenic acid SRC 6ATE 2.40 −6.3 2 ASP407, LYS298 20 α-亚麻酸 α-Linolenic acid MAPK1 6RQ4 1.96 −5.0 2 VAL173 21 五味子醇乙 Schisandrol B AKT1 6CCY 2.18 −6.7 2 THR160, GLY162 22 五味子醇乙 Schisandrol B HSP90AA1 7LT0 1.70 −7.3 1 GLY135 23 五味子醇乙 Schisandrol B SRC 6ATE 2.40 −5.2 1 GLU399 25 五味子醇乙 Schisandrol B MAPK1 6RQ4 1.96 −6.5 4 LYS151, THR190, TYR36 26 非诺贝特 Fenofibrate AKT1 6CCY 2.18 −7.1 3 LYS284, LYS419, LYS289 27 非诺贝特 Fenofibrate HSP90AA1 7LT0 1.70 −8.7 2 TRP162, ASN51 28 非诺贝特 Fenofibrate SRC 6ATE 2.40 −8.6 1 SER348 29 非诺贝特 Fenofibrate MAPK1 6RQ4 1.96 −7.7 1 LYS54 -
[1] YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology,2016,64(1):73−84. doi: 10.1002/hep.28431
[2] HUANG D Q, EL-SERAG H B, LOOMBA R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention[J]. Nature Reviews Gastroenterology Hepatol,2020,18(4):223−238.
[3] CHALASANI N, YOUNOSSI Z, LAVINE J E, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American association for the study of liver diseases[J]. Hepatology,2018,67(1):328−357. doi: 10.1002/hep.29367
[4] DOKMAK A, LIZAOLA-MAYO B, TRIVEDI H D. The impact of nonalcoholic fatty liver disease in primary care: A population health perspective[J]. The American Journal of Medicine,2020,134(1):23−29.
[5] ADAMS L A, LYMP J F, SAUVER J S, et al. The natural history of nonalcoholic fatty liver disease: A population-based cohort study[J]. Gastroenterology,2005,129(1):113−121. doi: 10.1053/j.gastro.2005.04.014
[6] WHITE D L, KANWAL F, EL-SERAG H B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review[J]. Clinical Gastroenterology and Hepatology,2012,10(12):1342−1359. doi: 10.1016/j.cgh.2012.10.001
[7] FAN J G, WEI L, ZHUANG H. Guidelines for the prevention and treatment of non-alcoholic fatty liver disease (updated in 2018)[J]. Journal of Digestive Diseases,2019,20(4):163−173. doi: 10.1111/1751-2980.12685
[8] 高晓乐, 段冷昕, 仇可可, 等. 鬼针草水煎液对高脂高糖诱导的小鼠非酒精性脂肪肝的作用及机制研究[J]. 中国中药杂志,2020,45(16):3915−3921. [GAO X L, DUAN L X, QIU K K, et al. Study on the effect and mechanism of Bidens pilosa decoction on non-alcoholic fatty liver induced by high-fat and high-sugar in mice[J]. Chinese Journal of Chinese Materia Medica,2020,45(16):3915−3921. [9] 陈珍, 陆敏涛, 徐方艳, 等. 刺梨果酒对高脂诱导肥胖小鼠脂代谢的影响[J/OL]. 食品工业科技, 2021: 1−16 [2021-10-28]. https://doi.org/10.13386/j.issn1002-0306.2021050264. CHEN Z, LU M T, XU F Y, et al. Effects of Cili Fruit Wine on lipid metabolism in obese mice induced by high fat[J/OL]. Science and Technology of Food Industry, 2021: 1−16 [2021-10-28]. https://doi.org/10.13386/j.issn1002-0306.2021050264.
[10] JANG H I, DO G-M, LEE H M, et al. Schisandra chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats[J]. Nutrition Research Practice,2014,8(3):272−277. doi: 10.4162/nrp.2014.8.3.272
[11] XU W, ZHOU Q, YIN J J, et al. Anti-diabetic effects of polysaccharides from Talinum triangulare in streptozotocin(STZ)-induced type 2 diabetic male mice[J]. International Journal of Biological Macromolecules,2015,72:575−579. doi: 10.1016/j.ijbiomac.2014.09.011
[12] SONG F J, ZENG K W, CHEN J F, et al. Extract of fructus Schisandrae chinensis inhibits neuroinflammation mediator production from Microglia via NF-κB and MAPK pathways[J]. Chinese Journal of Integrative Medicine (English Edition),2019,25(2):131−138.
[13] PARK H J, LEE S-J, SONG Y, et al. Schisandra chinensis prevents alcohol-induced fatty liver disease in rats[J]. Journal of Medicinal Food,2014,17(1):103−110. doi: 10.1089/jmf.2013.2849
[14] 邵士凤. 五味子深加工产品研究进展[J]. 轻工科技,2021,37(10):1−2,11. [SHAO S F. Research progress of Schisandra chinensis deep processing products[J]. Light Industry Science and Technology,2021,37(10):1−2,11. [15] CHUN J N, CHO M, SO I, et al. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: A review of the molecular mechanisms[J]. Fitoterapia,2014,97:224−233. doi: 10.1016/j.fitote.2014.06.014
[16] CUI L, ZHU W, YANG Z, et al. Evidence of anti-inflammatory activity of schizandrin A in animal models of acute inflammation[J]. Naunyn Schmiedebergs Arch Pharmacol,2020,393(11):2221−2229. doi: 10.1007/s00210-020-01837-x
[17] 尚小莹, 陈茂彬. 五味子果醋饮料的研制[J]. 中国调味品,2013,38(11):36−39. [SHANG X Y, CHEN M B. Development of Schisandra chinensis fruit vinegar beverage[J]. China Condiments,2013,38(11):36−39. doi: 10.3969/j.issn.1000-9973.2013.11.010 [18] 尹乐斌, 周娟, 李立才, 等. 石榴五味子保健酒发酵工艺优化及抗氧化活性研究[J]. 食品与机械,2019,35(3):208−214. [YIN L B, ZHOU J, LI L C, et al. Fermentation process optimization and antioxidant activity of Punica granatum and Schisandra chinensis health wine[J]. Food & Machinery,2019,35(3):208−214. [19] 李安, 章绍凡, 周戴维, 等. 桑椹五味子复合功能性酸奶的研制[J]. 食品工业科技,2017,38(10):42−47. [LI A, ZHANG S F, ZHOU D W, et al. Preparation of Fructus mori and Schisandra chinensis compound functional yogurt[J]. Food Industry Science,2017,38(10):42−47. [20] 张宝香, 秦红艳, 张庆田, 等. 玫瑰茄五味子复合果汁饮料研究[J]. 特产研究,2015,37(3):30−33. [ZHANG B X, QIN H Y, ZHANG Q T, et al. Study on Hibiscus sabdariffa and Schisandra chinensi compound fruit juice beverage[J]. Specialty Research,2015,37(3):30−33. doi: 10.3969/j.issn.1001-4721.2015.03.007 [21] 王平, 周海燕, 曾万钧, 等. 促睡眠酸乳的制备及其功能评价[J]. 中国乳品工业,2020,48(4):55−59. [WANF P, ZHOU H Y, ZENG W J, et al. Preparation and functional evaluation of sleep-promoting yogurt[J]. China Dairy Industry,2020,48(4):55−59. [22] LI F, ZHANG T, SUN H, et al. A new nortriterpenoid, a sesquiterpene and hepatoprotective lignans isolated from the fruit of Schisandra chinensis[J]. Molecules,2017,22(11):1931. doi: 10.3390/molecules22111931
[23] 刘松, 赵振宇, 曾稳稳, 等. UPLC-Q-Orbitrap HRMS测定白酒接触塑料制品中21种双酚类及其衍生物[J]. 食品工业科技,2021,42(9):263−269. [LIU S, ZHAO Z Y, ZENG W W, et al. UPLC-Q-Orbitrap HRMS determination of 21 bisphenols and their derivatives in liquor contact plastic products[J]. Food Industry Science and Technology,2021,42(9):263−269. [24] 张梦雅, 左莉华, 周霖, 等. 基于UPLC-Q-Orbitrap HRMS益智仁中倍半萜类物质的分析与鉴定[J]. 中草药,2020,51(24):6168−6177. [ZHANG M Y, ZUO L H, ZHOU L, et al. Analysis and identification of sesquiterpenoids in sharpleaf galangal based on UPLC-Q-Orbitrap HRMS[J]. Chinese Herbal Medicine,2020,51(24):6168−6177. doi: 10.7501/j.issn.0253-2670.2020.24.005 [25] ZHOU Y, WANG C, KOU J, et al. Chrysanthemi Flos extract alleviated acetaminophen-induced rat liver injury via inhibiting oxidative stress and apoptosis based on network pharmacology analysis[J]. Pharmaceutical Biology,2021,59(1):1378−1387. doi: 10.1080/13880209.2021.1986077
[26] GUO K, WANG T, LUO E, et al. Use of network pharmacology and molecular docking technology to analyze the mechanism of action of Velvet Antler in the treatment of postmenopausal osteoporosis[J]. Evidence-Based Complementary and Alternative Medicin,2021,2021:7144529.
[27] JIAO X, LIU H, LU Q, et al. Study on the mechanism of Prunella vulgaris L on diabetes mellitus complicated with hypertension based on network pharmacology and molecular docking analyses[J]. Journal of Diabetes Research,2021,2021:9949302.
[28] ZHANG L, LING Z, HU Z, et al. Huanglianjiedu decoction as an effective treatment for oral squamous cell carcinoma based on network pharmacology and experimental validation[J]. Cancer Cell International,2021,21(1):553. doi: 10.1186/s12935-021-02201-6
[29] AN W, HUANG Y, CHEN S, et al. Mechanisms of Rhizoma Coptidis against type 2 diabetes mellitus explored by network pharmacology combined with molecular docking and experimental validation[J]. Scientific Reports,2021,11(1):20849. doi: 10.1038/s41598-021-00293-8
[30] LIN W Z, CHEN Y H. Determination of total nitrogen and amino acid content of Bei Wuweizi[J]. Specialty Research,1998,4(1):35−36.
[31] 杨文潮, 杨洁, 段金廒, 等. 南五味子中氨基酸类成分分析评价[J]. 中药材,2016,39(2):342−347. [YANG W C, YANG J, DUAN J A, et al. Analysis and evaluation of amino acids in Nan Wuweizi[J]. Chinese Materia Medica,2016,39(2):342−347. [32] 黄文倩. 五味子“五味”物质基础研究[D]. 北京: 首都医科大学, 2015 HUANG WQ. Research on the material basis of the "five flavors" of Schisandra chinensis [D]. Beijing: Capital Medical University, 2015.
[33] 白文宇, 王厚恩, 王冰瑶, 等. 五味子化学成分及其药理作用研究进展[J]. 中成药,2019,41(9):2177−2183. [BAI W Y, WANG H E, WANG B Y, et al. Research progress on the chemical constituents of Schisandra chinensis and its pharmacological effects[J]. Chinese Patent Medicine,2019,41(9):2177−2183. doi: 10.3969/j.issn.1001-1528.2019.09.033 [34] 卞振华, 金舒, 周春刚, 等. 五味子对耐甲氧西林金黄色葡萄球菌体外抑菌活性部位的筛选和UP-LC-QTOF-MS/MS分析活性组分化学成分[J]. 中国医院药学杂志,2018,38(19):2008−2012. [BIAN Z H, JIN S, ZHOU C G, et al. Screening of antibacterial active sites of Schisandra chinensis on methicillin-resistant Staphylococcus aureus in vitro and UP-LC-QTOF-MS/MS analysis of active components of chemical components[J]. Chinese Journal of Hospital Pharmacy,2018,38(19):2008−2012. [35] 金银萍, 艾军, 王振兴, 等. 不同种质资源五味子藤茎酚酸类成分的含量测定[J]. 中药材,2018,41(2):322−324. [JIN Y P, AI J, WANG Z X, et al. Determination of phenolic acids in different germplasm resources of Schisandra chinensis[J]. Chinese Materia Medica,2018,41(2):322−324. [36] MOCAN A, SCHAFBERG M, CRISAN G, et al. Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: Contribution of individual components to overall antioxidant activity and comparison with traditional[J]. Journal of Functional Foods,2016,24:579−594. doi: 10.1016/j.jff.2016.05.007
[37] 李伟, 刘亚丽, 宋永贵, 等. UPLC-Q-TOF-MSE结合OPLS-DA模式快速鉴定南, 北五味子化学成分与识别差异标志物[J]. 中草药,2015(15):2212−2218. [LI W, LIU Y L, SONG Y G, et al. UPLC-Q-TOF-MSE combined with OPLS-DA model for rapid identification of chemical constituents of the Nan Wuweizi and Bei Wuweiz and identification of differential markers[J]. Chinese Herbal Medicine,2015(15):2212−2218. doi: 10.7501/j.issn.0253-2670.2015.15.006 [38] WIJARNPREECHA K, LOU S, WATTHANASUNTORN K, et al. Small intestinal bacterial overgrowth and nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. European Journal of Gastroenterology Hepatology,2020,32(5):601−608. doi: 10.1097/MEG.0000000000001541
[39] LINDENMEYER C C, MCCULLOUGH A J. The natural history of nonalcoholic fatty liver disease—An evolving view[J]. Clinics in Liver Disease,2018,22(1):11−21. doi: 10.1016/j.cld.2017.08.003
[40] 谢萍, 周新喜, 张琴. 非酒精性脂肪肝的发病机制和治疗[J]. 中西医结合学报,2010,8(3):201−209. [XIE P, ZHOU X X, ZHANG Q. Pathogenesis and treatment of non-alcoholic fatty liver[J]. Chinese Journal of Integrative Medicine,2010,8(3):201−209. doi: 10.3736/jcim20100301 [41] WANG H, CHE J, CUI K, et al. Schisantherin A ameliorates liver fibrosis through TGF-β1 mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo[J]. Phytomedicine,2021,88:153609. doi: 10.1016/j.phymed.2021.153609
[42] JEONG M J, KIM S R, JUNG U J. Schizandrin A supplementation improves nonalcoholic fatty liver disease in mice fed a high-fat and high-cholesterol diet[J]. Nutrition Research,2019,64:64−71. doi: 10.1016/j.nutres.2019.01.001
[43] LU Y, SHAO M, XIANG H, et al. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis[J]. Food Function,2020,11(11):10058−10069. doi: 10.1039/D0FO02123G
[44] ZHU X, XIONG T, LIU P, et al. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway[J]. Food Chemical Toxicology,2018,114:52−60. doi: 10.1016/j.fct.2018.02.019
[45] 尉捷, 董艳敏, 王辉, 等. 五味子乙素对NAFLD细胞模型肝脂质堆积, 内质网应激信号通路蛋白及脂肪酸合成相关基因表达的影响[J]. 中国中医药信息杂志,2019,26(12):45−49. [WEI J, DONG Y M, WANG H, et al. Effects of schisandrin B on liver lipid accumulation, endoplasmic reticulum stress signaling pathway protein and fatty acid synthesis-related gene expression in NAFLD cell model[J]. China Journal of Information on Traditional Chinese Medicine,2019,26(12):45−49. doi: 10.3969/j.issn.1005-5304.2019.12.011 [46] YANG H, YANG T, HENG C, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice[J]. Phytotherapy Research,2019,33(12):3140−3152. doi: 10.1002/ptr.6486
[47] YU T, ZHENG E, LI Y, et al. Src-mediated Tyr353 phosphorylation of IP3R1 promotes its stability and causes apoptosis in palmitic acid-treated hepatocytes[J]. Experimental Cell Research,2021,399(2):112438. doi: 10.1016/j.yexcr.2020.112438
[48] SCHEVING L A, ZHANG X, THREADGILL D W, et al. Hepatocyte ERBB3 and EGFR are required for maximal CCl4-induced liver fibrosis[J]. American Journal of Physiology Gastrointestinal Liver Physiology,2016,311(5):G807−G816. doi: 10.1152/ajpgi.00423.2015
[49] FUCHS B C, HOSHIDA Y, FUJII T, et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma[J]. Hepatology,2014,59(4):1577−1590. doi: 10.1002/hep.26898
[50] BHUSHAN B, BANERJEE S, PARANJPE S, et al. Pharmacologic inhibition of epidermal growth factor receptor suppresses nonalcoholic fatty liver disease in a murine fast-food diet model[J]. Hepatology,2019,70(5):1546−1563. doi: 10.1002/hep.30696
[51] COULON S, FRANCQUE S, COLLE I, et al. Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease[J]. Cytokine,2012,59(2):442−449. doi: 10.1016/j.cyto.2012.05.001
[52] WU W, LI W, WEI J, et al. Chronic intermittent hypoxia accelerates liver fibrosis in rats with combined hypoxia and nonalcoholic steatohepatitis via angiogenesis rather than endoplasmic reticulum stress[J]. Acta Biochimica et Biophysica Sinica,2019,51(2):159−167. doi: 10.1093/abbs/gmy169
[53] LONARDO A, MANTOVANI A, LUGARI S, et al. NAFLD in some common endocrine diseases: Prevalence, pathophysiology, and principles of diagnosis and management[J]. International Journal of Molecular Sciences,2019,20(11):2841. doi: 10.3390/ijms20112841
[54] RADAELLI M G, MARTUCCI F, PERRA S, et al. NAFLD/NASH in patients with type 2 diabetes and related treatment options[J]. Journal of Endocrinological Investigation,2018,41(5):509−521. doi: 10.1007/s40618-017-0799-3
-
期刊类型引用(1)
1. 李诗. 柚子副产物主要活性成分及综合利用的研究进展. 现代食品. 2024(01): 24-26 . 百度学术
其他类型引用(1)